
Toward an Embedded Semantic Reasoning
Database: From Similarity Search to Semantic

Discovery
Gerry Wolfe∗, Ashraf Elnashar, and William Schreiber

Intificia, LLC, Bismarck, ND, USA
Email: gwolfe@intificia.com (G.W.); aelnashar@intificia.com (A.E.); wschreiber@intificia.com (W.S.)

∗Corresponding author

Abstract—While Large Language Models (LLM) excel at 
semantic reasoning across concepts and domains, existing 
database systems, including those with vector capabilities 
and knowledge graphs, only support similarity search and 
graph traversal. They cannot perform inter-domain discov-
ery, analogical reasoning, or causal chain discovery. This 
paper proposes a semantic reasoning database (ReasonDB), a 
novel database paradigm with a functional prototype that 
validates a couple of core capabilities. ReasonDB is the 
first system that treats embeddings as primary data and 
implements multiple reasoning modes as first-class opera-
tions. Through three core innovations: vector-native storage 
with probabilistic semantics, semantic reasoning primitives, 
and machine learning-driven adaptive indexing, ReasonDB 
transforms databases from passive storage systems into active 
discovery partners. Experimental validation demonstrates 
two breakthrough results: 7× performance improvement in 
inter-domain analogical reasoning over similarity search, and 
successful causal chain discovery where vector similarity 
fundamentally fails (0.708 causal chain strength despite 0.074 
cosine similarity). This paper investigates four key areas. 
First, how vector-native storage transforms query capabilities 
to enable discovery-based reasoning that uncovers novel rela-
tionships across domains. Second, what new query classes and 
reasoning capabilities become possible. Third, how adaptive 
indexing improves performance over fixed strategies. Fourth, 
how these innovations integrate into a cohesive architecture. 
ReasonDB demonstrates that semantic reasoning requires 
fundamentally different database primitives. This enables 
entirely new classes of discovery operations impossible with 
current database architecture.

Keywords—semantic reasoning databases, analogical rea-
soning, causal chain discovery, inter-domain discovery, 
vector-native storage, reasoning primitives, adaptive 
indexing, prob-abilistic semantics, database architecture

I. INTRODUCTION

The Semantic Reasoning Database (ReasonDB) intro-
duces a novel architecture designed for semantic reasoning,
treating embeddings as primary data to enable inter-domain
discovery. Large Language Models excel at cross-domain
reasoning, yet current databases cannot natively support
analogical capabilities at the data layer [1]. Unlike tradi-
tional relational databases, vector databases, or knowledge
graphs, ReasonDB is embedding-native: it treats dense
vector representations as primary data and implements
semantic reasoning operations as first-class d atabase prim-
itives [2, 3]. Current systems, while effective for similarity
search and relationship traversal, cannot perform analogical

Manuscript received September 6, 2025; revised October 4, 2025; 
accepted October 23, 2025; published January 15, 2026.

reasoning due to their reliance on predefined semantic
neighborhoods or explicit relationships [4, 5, 6].

Scientific breakthroughs often stem from analogical rea-
soning, recognizing structural patterns across domains [7].
For example, CRISPR-Cas9’s repurposing from bacterial
immunity to gene editing [8] and biomimetics’ adaptation
of gecko feet for adhesives [9] exemplify cross-domain ana-
logical reasoning. Current databases cannot support such
discovery at scale; implementing analogical reasoning as
database primitives enables declarative, optimized queries
over large-scale semantic data rather than requiring custom
application-layer implementations. This architectural gap
prevents discovering functional similarities across thera-
peutic domains or detecting fraud patterns adapted across
financial markets, contributing to billions in losses [10, 11].
ReasonDB’s database-layer reasoning primitives could help
minimize these costs by making cross-domain discovery
just a query away instead of requiring dedicated application
services.

ReasonDB addresses these challenges through three in-
novations: vector-native storage, reasoning primitives, and
adaptive indexing. These transform databases into active
discovery partners, enabling queries impossible with cur-
rent systems. This paper contrasts existing approaches with
semantic reasoning requirements, presents ReasonDB’s
architectural innovations including comparisons with re-
cent AI-enhanced database systems, provides mathemat-
ical foundations, validates the approach through proto-
type experimentation, and discusses implications for future
database architectures.

This paper makes four key contributions: (1) experi-
mental validation showing 7× performance improvement
in inter-domain analogical reasoning over similarity search;
(2) a novel vector-native architecture treating embeddings
as primary data rather than auxiliary indices; (3) five
semantic reasoning primitives (analogical reasoning, tem-
poral evolution, domain alignment mapping, causal chain
discovery, concept synthesis) implemented as first-class
database operations; and (4) adaptive indexing using ma-
chine learning to optimize for diverse reasoning patterns.
Together, these contributions demonstrate that semantic
reasoning databases require fundamentally different archi-
tectural primitives than current systems.

The remainder of this paper is organized as follows:
Section II contrasts current approaches with semantic
reasoning requirements; Section III presents our research
questions; Section IV details ReasonDB’s architectural

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

75doi: 10.12720/jait.17.1.75-85



innovations including contrasts with AI-enhanced systems;
Section V provides mathematical foundations; Section VI
analyzes implementation feasibility; Section VII validates
the approach through prototype experimentation, demon-
strating 7× performance improvement; Section VIII posi-
tions our work within the broader research landscape; and
Section IX concludes with future directions.

II. CURRENT DATABASES: THE CROSS-DOMAIN
CAUSAL AND ANALOGICAL REASONING GAP

Vector databases excel at similarity search but cannot
distinguish between semantic similarity and structural anal-
ogy, typically returning results from the same conceptual
domain [12]. Knowledge graphs enable relationship traver-
sal yet remain constrained to pre-encoded connections
[5]. Neither supports analogical reasoning across disparate
domains, which is critical for intelligent discovery.

The semantic reasoning gap persists across current
database architectures due to three fundamental constraints.
First, reliance on discrete records, exact results, and fixed
schemas prevents discovery-oriented queries [13, 14]. Sec-
ond, vector systems measure correlation in embedding
space, not causation through mechanistic pathways. Third,
graph systems traverse explicit relationships, not implicit
structural correspondences. No current system natively
supports queries like ”what mechanisms from domain A
solve problems in domain B?” or ”what causal pathways
connect semantically dissimilar states?”

Code Block 1 shows a similarity search retrieving drugs
similar to remdesivir (e.g., antivirals), confined to the same
therapeutic domain due to a high similarity threshold.

1 query = "SELECT similar_drugs FROM drugs WHERE
embedding_similarity(drug, ’remdesivir’) >
0.9"

2 similarity_search(query) -> [ivermectin, paxlovid
, ...]

Code Block 1. Similarity search.

Code Block 2 demonstrates knowledge graph traversal,
returning drugs explicitly linked to COVID-19, limited to
predetermined relationships.

1 query = "MATCH (covid:Disease)-[:CAUSED_BY]->(
virus:Virus)-[:INHIBITED_BY]->(drug:Drug)
RETURN drug.name"

2 knowledge_graph_traversal(query) -> [remdesivir,
paxlovid, molnupiravir, ...]

Code Block 2. Knowledge graph traversal.

In contrast, Code Block 3 illustrates ReasonDB’s seman-
tic reasoning, transferring viral RNA interference mecha-
nisms to materials science and agriculture, generating novel
inter-domain applications like smart materials and antiviral
crop coatings.

1 concept_a = "viral_RNA_interference"
2 domain_1 = "material_science"
3 domain_2 = "agriculture"
4 reasoning_type = "mechanism_transfer"
5 semantic_reasoning(concept_a, domain_1, domain_2,

reasoning_type) -> ["
smart_material_gene_silencing", "
crop_antiviral_coatings", "
agricultural_RNA_delivery_systems", ...]

Code Block 3. Semantic reasoning discovery.

These limitations motivate ReasonDB’s vector-native
architecture with semantic reasoning primitives, designed

to enable the discovery operations that current systems
fundamentally cannot support.

III. RESEARCH QUESTIONS

The fundamental limitations identified in current
database architectures drive ReasonDB’s architectural in-
novations. Rather than pursuing incremental improvements
to existing approaches, ReasonDB addresses four critical
requirements: (1) vector-native storage that eliminates dual-
storage architecture by treating embeddings as primary
data; (2) reasoning primitives that implement semantic
reasoning as first-class database operations; (3) adaptive
indexing that provides dynamic optimization for different
semantic reasoning patterns; and (4) system integration
that ensures the innovations work together as a cohesive,
extensible, and production-ready architecture.

This research investigates how each innovation con-
tributes to overcoming the core constraints that prevent
current systems from supporting semantic reasoning and
inter-domain discovery. The research questions are:

1) How does vector-native storage impact storage over-
head, computational efficiency, and the semantic in-
tegrity of data compared to traditional systems that
maintain separate vector and data stores?

2) What new classes of analytical queries and inter-
domain reasoning tasks does ReasonDB enable, and
how accurately can it track the temporal evolution of
concepts?

3) To what extent can a machine learning-driven adap-
tive indexing strategy improve query performance
and resource utilization over static indexing methods
when handling dynamic, evolving query patterns?

4) How effectively do the proposed innovations in stor-
age, reasoning, and indexing integrate into a cohe-
sive, extensible, and production-ready system?

These questions guide our investigation from architec-
tural design (RQ1, RQ3) through capability validation
(RQ2) to system integration (RQ4). The prototype in
Section VII directly addresses RQ2 by demonstrating ana-
logical reasoning performance, while Sections IV and V
establish the theoretical foundations for RQ1 and RQ3.

IV. METHODOLOGY AND ARCHITECTURAL
INNOVATIONS

ReasonDB’s architecture comprises four components:
Semantic Manifold Storage Layer, Reasoning Primitive
Engine, Adaptive Query Optimization Layer, and Tempo-
ral Consistency Management System—designed to enable
semantic reasoning while ensuring performance and relia-
bility (Fig. 1). Unlike traditional databases that separate
storage, computation, and optimization, ReasonDB inte-
grates these to handle the continuous, probabilistic nature
of semantic data.

A. Vector-Native Storage Layer

The Semantic Manifold Storage Layer implements the
vector-native storage principle, treating embeddings as
primary data rather than auxiliary indices. This layer
represents entities as probabilistic distributions (µ, Σ, τ ,
C, Γ, Ψ) on semantic manifolds, eliminating dual-storage
overhead and enabling direct reasoning operations (Fig. 2).

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

76



Vector-Native
Storage

Reasoning
Primitives

Adaptive
Indexing

Novel
Discoveries

Fig. 1. Vector-native storage enables reasoning primitives, which inform
adaptive indexing for optimized inter-domain discovery.

Core embeddings (µ) capture semantic meaning, uncer-
tainty matrices (Σ) quantify ambiguity, temporal signatures
(τ ) track concept evolution, contextual factors (C) adjust
meaning by domain, causal connectivity tensors (Γ) encode
mechanistic relationships, and synthesis potentials (Ψ) rep-
resent conceptual blending capacity. Traditional fields are
computed on-demand, reducing storage from O(n(k+ d))
to O(nd+ |Γ|+ d).

Entity
Probabilistic

Representation
µ,Σ, τ, C,Γ,Ψ

Reasoning
Primitive
Engine

Traditional
Fields

Compute
On-Demand

Fig. 2. Entities as probabilistic distributions with traditional fields
computed on-demand, enabling semantic reasoning.

B. Contrasting Architectural Philosophies: AI-Enhanced
vs. AI-Native

Recent work has explored AI integration with fundamen-
tally different architectural philosophies than ReasonDB.
Understanding these contrasts clarifies ReasonDB’s design
choices and their implications for semantic reasoning ca-
pabilities.

Stanford’s LOTUS introduces semantic operators into
relational query processing, extending SQL with semantic
filters, joins, and aggregations [15, 16]. AnDB bridges
structured and unstructured data through LLM-powered
query interfaces that map between data representations
[17]. Both systems represent the AI-enhanced paradigm:
traditional database architectures augmented with AI capa-
bilities.

ReasonDB adopts a fundamentally different approach:
AI-native architecture where reasoning is a first-class op-
eration rather than an enhancement layer. The key distinc-
tion lies in the computational model. LOTUS and AnDB
augment existing database operations with LLM calls for
semantic retrieval; ReasonDB performs multi-step ana-
logical reasoning natively through specialized primitives.
LOTUS extends relational models while AnDB enhances
SQL capabilities, both computing semantics when needed.
ReasonDB inverts this model: embeddings are primary
data, with traditional fields computed on demand.

This architectural inversion enables qualitatively dif-
ferent query capabilities. AI-enhanced systems excel

at making traditional database operations semantically
aware—filtering records by semantic similarity, joining ta-
bles through conceptual relationships, or translating natural
language to SQL. ReasonDB enables discovery queries that
bridge conceptual gaps between domains through structural
pattern mapping rather than semantic similarity alone. The
system can answer ”what mechanisms from domain A
solve problems in domain B?” through native analogical
reasoning primitives, or ”what causal pathways connect
semantically dissimilar states?” through causal chain dis-
covery—queries impossible in AI-enhanced architectures
without extensive application-layer programming.

Table I summarizes these architectural distinctions.

TABLE I
ARCHITECTURAL PHILOSOPHY COMPARISON

Characteristic AI-Enhanced AI-Native
(LOTUS,
AnDB)

(ReasonDB)

Primary Data Model Relational
records

Vector
embeddings

AI Integration Enhancement
layer

First-class opera-
tions

Semantic Processing On-demand
LLM calls

Native primitives

Query Capability Enhanced SQL Discovery opera-
tions

Example Query ”Find similar
records”

”Transfer
mechanisms
across domains”

The choice of AI-native architecture imposes differ-
ent trade-offs. AI-enhanced systems maintain compatibil-
ity with existing database ecosystems and leverage ma-
ture optimization techniques from decades of relational
database research. ReasonDB sacrifices this compatibility
to enable reasoning operations that would require complex
application-layer orchestration in traditional architectures.
This trade-off proves worthwhile for discovery-oriented
workloads where cross-domain reasoning and causal path-
way exploration constitute core requirements rather than
occasional enhancements.

In summary, LOTUS and AnDB make database opera-
tions AI-aware; ReasonDB makes AI reasoning operations
database-native. This distinction shapes the entire system
architecture and determines which classes of semantic
queries can be expressed declaratively versus requiring
procedural implementation.

C. Reasoning Primitive Engine

The reasoning primitive engine processes discovery
queries through five operations: analogical reasoning
(structural pattern mapping), temporal evolution (concept
change tracking), causal chain discovery (cause-effect path-
ways), domain alignment mapping (shared semantic space
projection), and concept synthesis (novel idea generation).
These operate on vector-native storage, with an execution
pipeline decomposing queries into optimized primitive se-
quences (Fig. 3).

Adaptive indexing uses contextual bandit algorithms,
which balance exploration and exploitation to dynamically
select index structures (e.g., hierarchical clustering, inter-

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

77



Reasoning
Primitive
Engine

Analogical
Reasoning

Temporal
Evolution

Causal
Chain

Discovery

Domain
Alignment
Mapping

Concept
Synthesis

Novel
Discoveries

Adaptive
Indexing

Discovery
Query

Vector-Native
Storage

Fig. 3. Five operations process discovery queries on vector-native storage,
coordinated for performance optimization.

domain bridges) based on query patterns, optimizing per-
formance for diverse reasoning tasks (Fig. 4).

Temporal consistency management ensures semantic co-
herence in distributed deployments through probabilistic
alignment, where replicas are consistent if

∫
M |P1(x) −

P2(x)|dx < ϵ.

Reasoning
Engine

Dynamic
Index

selection

Optimized
Discovery

Novel
Discoveries

Fig. 4. Dynamic index selection optimizes semantic reasoning perfor-
mance based on query characteristics.

V. THEORETICAL FRAMEWORK

Having established why semantic reasoning requires a
new database architecture, we now formalize how Rea-
sonDB works. This section presents the mathematical foun-
dations underlying the storage layer, reasoning primitives,
and adaptive indexing mechanisms.

A. Semantic Manifold Storage Layer

As outlined in Section IV, ReasonDB represents en-
tities through an extended probabilistic framework e =
(µe,Σe, τe, Ce,Γe,Ψe) on a semantic manifold M ⊆ Rd,
addressing Research Question 1.

1) Storage vs. Computation Architecture: The extended
storage layer provides the foundational representations
upon which reasoning primitives operate (Fig. 2). Each
component (µe,Σe, τe, Ce,Γe,Ψe) stores entity properties
as data; the reasoning primitives (analogical reasoning,
temporal evolution, domain alignment mapping, causal
chain discovery, concept synthesis) are computational oper-
ations that leverage these stored representations to perform
discovery queries. This separation enables efficient query
processing. Entities maintain rich semantic representations
while primitives compute relationships dynamically.

2) Component Definitions: The core embedding µe ∈
Rd captures semantic meaning. The uncertainty covariance
matrix Σe quantifies semantic ambiguity. The temporal

signature τe encodes evolution patterns. Contextual fac-
tors Ce modulate meaning based on domain. The causal
connectivity tensor Γe : E → [0, 1] ×M maps entities to
causal relationships with strength scores and mechanism
embeddings. The synthesis potential Ψe ∈ Rd represents
conceptual blending capacity and constraints. This vector-
native approach eliminates dual-storage overhead, reducing
complexity from O(n(k + d)) to O(nd + |Γe| + d) by
computing traditional fields on demand, enabling direct
reasoning operations across all five primitives.

The causal connectivity tensor Γe enables queries like
”what sequence of mechanisms transforms problem state
X to solution state Y?” by storing not just that entities are
causally related, but how they are related through specific
mechanisms. For example, Γpathogen might map to (0.85,
mimmune response), indicating strong causal influence through
an immune response mechanism. This representation en-
ables causal chain discovery to trace mechanistic pathways
that would be invisible to similarity-based retrieval, as
demonstrated in Section VII where high causal connectiv-
ity (0.708) exists between semantically dissimilar entities
(0.074 cosine similarity).

The semantic distance between entities combines embed-
ding, context, temporal, causal, and synthesis components:

ds(e1, e2) = α · dembed(µ1, µ2) + β · dcontext(C1, C2)
+ γ · dtemp(τ1, τ2)

+ δ · dcausal(Γ1,Γ2)

+ ϵ · dsynth(Ψ1,Ψ2)
(1)

with dynamically adjusted weights (α, β, γ, δ, ϵ) ∈ ∆5,
ensuring flexible similarity measures for comprehensive
cross-domain reasoning.

Note that the uncertainty matrix Σe is not included
in distance calculation but rather influences confidence
scoring and probabilistic consistency checks.

In practice, a high dcontext value indicates entities whose
meanings shift significantly across domains; for example,
”bank” as a financial institution versus riverbank would
exhibit high contextual distance despite similar embed-
dings. The dynamic weight adjustment allows queries to
emphasize the most relevant similarity component. Tem-
poral reasoning queries increase γ to prioritize evolution
patterns, inter-domain discovery increases β to emphasize
contextual alignment, and causal queries increase δ to
weight mechanistic relationships. This flexibility enables
the same storage representation to serve multiple reasoning
modes efficiently.

B. Reasoning Primitives

Table II summarizes the five reasoning primitives, ad-
dressing Research Question 2. These operate on the se-
mantic manifold to enable complex queries, orchestrated
by an execution pipeline (Algorithm 1).

• Analogical Reasoning: Identifies structural patterns
across source domain s and target domain t by
maximizing the sum of similarities between mapped
relations, where ϕ is the mapping function trans-
forming source relations Rs to target relations Rt;
complexity O(|s| · |t|) [18]. The mapping function

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

78



TABLE II
REASONDB REASONING PRIMITIVES

Primitive Formulation

Analogical Rea-
soning

A(s, t) = maxϕ
∑

r∈Rs
similarity(ϕ(r), Rt)

Temporal Evolu-
tion

Et(c) = Pc(t)− Pc(t0) +
∑

i λi · Ii(t)

Domain
Alignment
Mapping

B(e1, e2) = exp
(
− d(proj(e1),proj(e2))

2

2σ2

)
Causal Chain
Discovery

Path(X → Y ) =
∏

edge (u,v) wu,v

Concept Synthe-
sis

c1 ⊕ c2 = argminc[d(c, c1) + d(c, c2) − λ ·
novelty(c)]

ϕ acts as a translation dictionary: in the biology-to-
engineering example from Section VII, ϕ(recognition)
= detection and ϕ(modification) = correction, enabling
inter-domain knowledge transfer by finding structural
correspondence rather than surface similarity.

• Temporal Evolution: Tracks changes in concept c over
time by measuring shifts in probability distribution
Pc(t) from baseline t0, adjusted by weighted external
influences Ii(t) (e.g., λ1 = 0.8 for major events, λ2 =
0.2 for minor trends).

• Domain Alignment Mapping: Projects entities e1 and
e2 from different domains into a shared semantic
space and computes a Gaussian similarity score, where
proj is the projection function and σ2 controls match-
ing tolerance for meaningful cross-domain compar-
isons.

• Causal Chain Discovery: Traces cause-effect relation-
ships by multiplying edge weights wu,v ∈ [0, 1] along
paths from X to Y , representing causal influence
strength (e.g., a three-edge path with weights 0.9,
0.8, 0.7 yields 0.504). This product-based formulation
naturally enforces parsimony. Longer causal chains
have exponentially decreasing strength, favoring di-
rect mechanistic connections over tenuous multi-hop
relationships. In practice, this enables discovering
transformative pathways where start and end states
are semantically dissimilar (problem vs. solution) but
causally connected through intermediate mechanisms,
as validated in Section VII.

• Concept Synthesis: Combines concepts c1 and c2 to
generate novel ones by minimizing distance while
maximizing novelty (measured as distance to existing
concepts), with λ balancing preservation and innova-
tion.

Algorithm 1 outlines the execution framework, trans-
forming natural language queries into executable operations
by parsing intent, selecting primitives, optimizing their
sequence, and materializing results.

C. Adaptive Query Optimization Layer

Adaptive indexing optimizes query performance using
contextual bandit algorithms, which balance exploration of
new index strategies with exploitation of known optimal
ones, addressing Research Question 3. The system observes
queries, measures execution times, and learns effective

Algorithm 1 Semantic Reasoning Primitive Engine
1: procedure EXECUTESEMANTICQUERY(query q, se-

mantic manifold M)
2: plan← ParseQueryIntent(q)
3: operators← SelectOperators(plan)
4: pipeline← OptimizePipeline(operators)
5: for each operator op ∈ pipeline do
6: M← ApplyOperator(op, M)
7: end for
8: return MaterializeResults(M, q)
9: end procedure

indices for specific patterns (e.g., hash-based for temporal
queries, graph-based for analogical). The query cost is:

C(q) =
∑
op∈q

Ccomp(op)+Cmem(op)+Cio(op)·Pselectivity(op)

(2)
Optimal index selection is formulated as:

I∗(q) = argmax
I

E[Performance(q, I)]− λ · C(I) (3)

The contextual bandit formulation provides theoretical
guarantees on learning efficiency. Regret, defined as the
cumulative difference between chosen and optimal index
performance, is bounded by:

RT ≤ 2

√
dT log

(
1 + T/λd

δ

)
+
√
λ||θ∗||2 (4)

where RT is total regret after T queries, d is context
dimensionality, δ is confidence, λ regularizes exploration,
and ||θ∗||2 reflects strategy complexity. This ensures per-
formance converges to optimal as the system learns from
query patterns.

D. Temporal Consistency Management

Semantic data require probabilistic consistency rather
than ACID guarantees because embeddings represent
continuous probability distributions over semantic space,
where exact replication is neither achievable nor mean-
ingful. Instead, replicas are consistent if their probability
distributions align:

Consistent(R1, R2) ⇐⇒
∫
M
|P1(x)−P2(x)|dx < ϵ (5)

This measures total variation distance across the seman-
tic manifoldM, with ϵ as the tolerance threshold, ensuring
some basis for coherence in distributed systems for scalable
semantic operations.

Fig. 5 illustrates how the mathematical formulations
translate into executable reasoning operations. Each en-
tity’s extended probabilistic representation enables all five
reasoning primitives to compute semantic distances, tem-
poral evolution, domain alignment mapping, causal chain
discovery, and concept synthesis that would be impossible
with discrete data representations.

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

79



Mathematical
Representation
(µ,Σ, τ, C,

Γ,Ψ)

Temporal
Evolution

Analogical
Reasoning

Domain
Alignment
Mapping

Causal Chain
Discovery

Concept
Synthesis

Discovery
Queries

Fig. 5. From mathematical formulations to discovery operations. The
extended probabilistic representation enables all five reasoning primitives
to operate on semantic data.

VI. IMPLEMENTATION FEASIBILITY AND SCALABILITY
ANALYSIS

ReasonDB’s reasoning primitives exhibit computational
complexity characteristics that require careful considera-
tion for practical deployment. While the system demon-
strates novel semantic reasoning capabilities, scalability
constraints must be addressed through targeted optimiza-
tion strategies.

A. Computational Complexity Constraints

Analogical reasoning operations scale as O(|Ds|·|Dt|·k)
where |Ds| and |Dt| are source and target domain sizes.
For domains with 10,000 entities each, this translates to ap-
proximately 100 million comparison operations per query.
However, adaptive indexing reduces this to O(log |Ds| +
log |Dt|+ k) through hierarchical pruning, achieving sub-
second response times for most analogical queries.

Domain Alignment Mapping exhibits quadratic worst-
case complexity O(n2) but benefits from dimensionality
reduction and GPU acceleration. Causal chain discovery
scales as O(bh), bounded by branching factor b and search
depth h, requiring approximate algorithms for deeper
searches.

B. Memory and Storage Requirements

Vector-native storage requires d-dimensional embed-
dings per entity, typically 768-1536 dimensions for cur-
rent embedding models. For 1 million entities with 1024-
dimensional embeddings, ReasonDB requires approxi-
mately 4 GB of core storage compared to 8-12 GB for
equivalent dual-storage architectures. Uncertainty matrices
add O(d2) overhead per entity, but diagonal approxima-
tions reduce this to O(d) with minimal quality degradation.

C. Scalability Bottlenecks and Mitigation

The primary bottleneck emerges from quadratic com-
plexity in inter-domain operations. Key mitigation strate-
gies include:

• GPU acceleration for batch similarity computations
• Quantized embeddings (8-bit) reducing memory by 4×
• Hierarchical domain partitioning through semantic

clustering
• Approximate reasoning algorithms trading accuracy

for speed
While scalability challenges exist, they represent en-

gineering problems rather than fundamental architectural

limitations. Production deployment requires continued op-
timization of reasoning algorithms and indexing strategies,
but the core semantic reasoning approach remains viable
for enterprise-scale applications.

D. Distributed Architecture and Scale Thresholds

To address scalability for production deployments, Rea-
sonDB employs a distributed architecture with domain-
partitioned indexing and parallel primitive execution. The
architecture comprises five key components: a query co-
ordinator that decomposes discovery queries into primi-
tive sequences, domain partition servers managing entity
subsets with local vector indices, distributed HNSW or
IVF index shards for approximate nearest neighbor search,
reasoning primitive worker pools executing analogical and
causal operations in parallel, and a result aggregator merg-
ing partial discoveries across partitions. This design enables
horizontal scaling while maintaining semantic coherence
through consistent entity embedding spaces.

Table III specifies data volume thresholds where different
mitigation strategies become necessary, based on extrapola-
tion from prototype results (10 entities, sub-second latency,
8 GB RAM) and established vector database performance
characteristics. These estimates assume 768-dimensional
embeddings, typical HNSW index performance (1 M vec-
tors queried in 10–100 ms at 95% recall), and consumer
hardware (modern multi-core CPUs, consumer GPUs).
Actual performance depends on query complexity, do-
main characteristics, hardware specifications, and quality-
performance trade-offs.

TABLE III
SCALABILITY THRESHOLDS AND MITIGATION STRATEGIES

Scale Entity Strategy Expected
Category Count Required Latency

Small 102–104 Single node, CPU ¡ 1 s
Medium 104–105 Quantization (8-bit) 1–5 s
Large 105–106 GPU acceleration 5–30 s
Very Large 106–107 Distributed index 30 s–5 min
Massive 107+ Full distributed 5–30 min

These thresholds represent order-of-magnitude estimates
rather than guaranteed performance bounds. Actual latency
depends on several factors: reasoning primitive complexity,
embedding models producing 768 to 1536 dimensions,
search parameters (beam width, quality thresholds), hard-
ware capabilities, and domain characteristics such as entity
distribution and relationship density. These scale categories
correspond to common deployment scenarios: ”Medium”
(10K–100K entities) for departmental knowledge bases,
”Large” (100K–1M) for enterprise document collections,
and ”Very Large” (1M–10M) for scientific literature or
product catalogs. Performance validation at these scales
remains future work; the current prototype validates archi-
tectural feasibility at small scale with 10 entities.

VII. ANALOGICAL REASONING AND CAUSAL CHAIN
DISCOVERY PROTOTYPE

This section presents a dual-component prototype that
validates two complementary reasoning primitives: analog-
ical pattern matching for structural correspondence discov-
ery and causal chain discovery for mechanistic pathway

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

80



exploration. While both operate on semantic relationships,
they serve distinct but synergistic purposes. Analogical
reasoning identifies structural correspondences between
entities based on relational patterns (what relates to what
in similar ways), enabling inter-domain knowledge trans-
fer. Causal chain discovery traces mechanistic pathways
through directed cause-effect relationships (what leads to
what), enabling transformative process understanding.

The key insight from our validation is that high causal
connectivity can exist between semantically dissimilar en-
tities. This enables discovery of problem-solution path-
ways invisible to vector similarity methods, which as-
sume semantic similarity implies relevance. Together, these
demonstrate how semantic reasoning operations can iden-
tify meaningful connections across domains that traditional
similarity-based methods fundamentally cannot detect.

A. Analogical Reasoning Validation

Analogical reasoning operates by identifying structural
correspondences between relational patterns across do-
mains. While vector databases compute relevance through
embedding similarity, analogical reasoning discovers map-
pings between how entities relate to each other (relational
structure) rather than what they are (entity similarity).
This enables knowledge transfer across semantically distant
domains by recognizing parallel problem-solving patterns.

1) Experimental design and methodology: The proto-
type uses six entities: three from biology (CRISPR im-
munity, DNA repair, RNA interference) and three from
engineering (error correction codes, adaptive filtering, pat-
tern recognition). The prototype (Fig. 6) follows a two-
stage process: first, identify relational patterns within each
domain; second, map biological patterns onto engineering
patterns using a translation dictionary.

Biology
Entities

Extract
Patterns

Transform
(ϕ)

Engineering
Entities

Extract
Patterns

Pattern
Match

Analogical
Scores

Fig. 6. Analogical reasoning: pattern extraction, transformation, and
matching.

2) Domain literature validation: The discovered analo-
gies between biological and engineering systems are not
merely computationally valid but align with established
inter-domain research. Goldman and colleagues demon-
strated practical implementation of information storage in
synthesized DNA, explicitly leveraging error correction
codes analogous to those used in digital communication
systems [19]. This design choice reflects the deep struc-
tural correspondence between biological error correction
mechanisms (DNA repair pathways) and computational
error correction algorithms (Reed-Solomon codes, check-
sums). The fact that ReasonDB’s analogical reasoning inde-
pendently rediscovered these expert-validated connections
provides external validation that high structural alignment
corresponds to scientifically meaningful and actionable
discoveries rather than mere computational artifacts.

B. Causal Chain Discovery: Mechanistic Pathway Explo-
ration

Causal chain discovery operates on a fundamentally
different principle than similarity-based retrieval. While
vector databases compute relevance through cosine simi-
larity in embedding space, causal chain discovery traces
directed mechanistic pathways through cause and effect
relationships. Chain strength is computed as the prod-
uct of individual causal link strengths along each path.
This product-based calculation naturally favors direct con-
nections. Longer paths accumulate exponentially lower
strength.

1) Experimental design and methodology: The causal
chain discovery prototype (Fig. 7) tests whether causal con-
nectivity can exist independent of semantic similarity. We
constructed two structurally parallel 4-hop causal chains
from deliberately different domains (Table IV).

TABLE IV
PARALLEL CAUSAL CHAINS ACROSS DOMAINS

Domain Causal Chain

Biology bacterial infection → pathogen detection
→ CRISPR activation → DNA cleavage →
immunity acquired

Engineering transmission error → error detection →
correction activation → data repair → re-
liability achieved

Despite low pairwise cosine similarities between cor-
responding concepts (mean: 0.074, range: 0.031–0.128),
both chains share identical causal structure. Detection
triggers activation, activation enables correction, correc-
tion produces the desired outcome. The experimental de-
sign deliberately maximizes this challenge by constructing
chains that begin and end at semantically dissimilar states
(error/failure vs. reliability/success), forcing the discovery
algorithm to rely purely on causal structure rather than
embedding similarity. This tests whether causal chain dis-
covery can identify mechanistic parallels that similarity
search cannot detect.

Source
Entities

Causal
Relationships

Build
Adjacency
Structure

Beam
Search

Pattern
Strength

Calc

Causal
Chains

Transform
Mechanism

Analysis

Causal
Bridges

Fig. 7. Causal chain discovery architecture showing temporal ordering,
pathway search, and inter-domain knowledge transfer.

2) The divergence from vector similarity: The engineer-
ing domain reveals the inherent restrictions of similarity-
based methods. A vector database assigns relevance score
0.074 to a connection with causal chain strength 0.708.
This 0.634 divergence (nearly an order of magnitude)
occurs because vector similarity measures correlation in
semantic space, not causation.

Vector databases fail in this regard. In transformative
processes, start states (error, failure, corruption) and end

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

81



states (reliability, success, achievement) occupy different
or opposite regions of semantic space. Their embeddings
have low cosine similarity despite a strong causal pathway
connecting them through intermediate states (detection →
activation → repair).

3) Inter-domain causal bridging: The most powerful
application combines analogical and causal reasoning. Our
Biology → Engineering bridge achieves 0.794 mechanism
transfer strength with 5/11 shared mechanisms after trans-
formation (recognition → detection, modification → cor-
rection, immunity → protection). This enables knowledge
transfer. Understanding CRISPR immunity mechanisms
informs error correction system design.

C. Combined Prototype Results

The combined prototype demonstrates two critical capa-
bilities working synergistically.

1) Analogical reasoning performance: Success is mea-
sured using a structural alignment score based on Gentner’s 
Structure Mapping Theory [7], which evaluates analogical 
quality through three components: systematicity (whether 
higher-order relations are preserved), one-to-one mapping 
(whether each source element maps to exactly one target 
element), and pragmatic relevance (whether the mapping 
serves the discovery goal). The final score ranges from 0 
to 1, where scores above 0.3 indicate meaningful analogies 
according to validation studies on scientific analogies [20].

Analogical reasoning achieves an average structural 
alignment score of 0.207 compared to vector similar-
ity’s 0.030, representing 7× better performance for finding 
meaningful inter-domain connections (Fig. 8). Fig. 9 
shows pattern transformation quality scores range from 
0.28 to 0.38, with 100% of mappings achieving ”good qual-
ity” status (above the 0.30 threshold, where scores above 
0.30 indicate meaningful analogies according to validation 
studies on scientific analogies [20, 21]), demonstrating 
that pattern translation across domains successfully bridges 
conceptual gaps between domains.

0.207

0.030

7x
Better!

Analogical Reasoning
(Pattern-Based)

Vector Similarity
(Content-Based)

Sc
or

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Individual Analogical Scores
Individual Similarity Scores

Fig. 8. Cross-domain comparison: Analogical reasoning vs. vector
similarity

2) Causal chain discovery performance: Table V
presents the critical finding. Causal chain discovery suc-
ceeds precisely where vector similarity fails.

Causal chain discovery traces mechanistic pathways with
0.708 chain strength in the engineering domain despite
only 0.074 semantic similarity between endpoints, demon-
strating discovery where vector similarity fundamentally
fails. The Biology → Engineering bridge achieves 0.794

CRISPR immunity sys→
pattern recognition algo 0.309

CRISPR immunity sys→
error correction codes 0.309

RNA interference path→
pattern recognition algo 0.351

RNA interference path→
error correction codes 0.351

DNA mismatch repair→
error correction codes 0.351

DNA mismatch repair→
pattern recognition algo 0.351

- - Good
(0.30+)

- - Excellent
(0.35+)

0.28 0.30 0.32 0.34 0.36 0.38
Transformation Quality Score

(analogical score + embedding similarity + relationship similarity) / 3

Fig. 9. Pattern transformation, biology to engineering mappings.

TABLE V
CAUSAL CHAIN DISCOVERY VS. VECTOR SIMILARITY

Domain Chain Cosine ∆
Strength Similarity (Divergence)

Biology 0.692 0.719 0.027
Engineering 0.708 0.074 0.634
Biology→Engineering 0.794 -0.050 0.844

mechanism transfer strength across domains through these
discovered causal pathways.

3) Execution timing and efficiency: Empirical execution
times from the prototype validate its efficiency. For the
analogical pattern extraction process on a dataset of 6 enti-
ties (3 each from biology and engineering), total execution
time was 2.21 ms, comprising 0.35 ms for biology pattern
extraction, 0.23 ms for engineering pattern extraction, 1.24
ms for pattern embedding computation, and 0.39 ms for
cross-domain analogical scoring. This yields a throughput
of 5651 operations per second, with pattern extraction rates
at 9077 patterns/second.

For the causal chain discovery process on 10 entities with
8 causal relationships across two domains, total execution
time was 0.40 ms, including 0.06 ms for biology chain
discovery, 0.16 ms for engineering chain discovery, and
0.18 ms for cross-domain bridge creation, achieving a
throughput of 9077 chains/second and 5651 bridges/sec-
ond. Figure 10 illustrates the execution time breakdown and
comparative throughput across operations. These results
confirm sub-second response times for small-scale oper-
ations, consistent with the theoretical complexity analysis
in Section VI.

4) Synthesis: Discovery beyond similarity: Together,
these primitives enable a new query class: ”What causal
mechanisms from analogous systems in domain A could
solve problems in domain B?” Analogical reasoning dis-
covers structural correspondences for knowledge transfer
(”biological system X solves problems similar to engi-
neering challenge Y”), measured by structural alignment
score (0.207 vs. 0.030 for similarity search). Causal chain
discovery traces mechanistic pathways for intervention
design (”this sequence of mechanisms transforms problem
state A to solution state B”), measured by chain strength
independent of endpoint similarity (0.708 strength despite
0.074 similarity). This combined capability is impossible

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

82



Query Execution Times

Biology
Chain

0.06ms

Engineering
Chain

0.15ms

Cross-Domain
Bridge

0.18ms
E

xe
cu

tio
n

Ti
m

e
(m

s)

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.180

Operation Time Distribution

16.1%39.4%

44.5%

Biology Chain
Engineering Chain
Bridge Creation

System Throughput

Chain
Discovery

9077/s

Bridge
Creation

5651/s

T
hr

ou
gh

pu
t

(o
ps

/s
ec

)

0
2000
4000
6000
8000

Fig. 10. Causal chain discovery: Efficiency metrics on 10-entity dataset.

with either similarity search or knowledge graph traversal
alone.

D. Application Domains

Beyond the biology-engineering validation, ReasonDB’s
approach suggests potential applications in domains re-
quiring cross-domain analogical discovery. While these
applications remain to be validated, they illustrate the
breadth of problems addressable through semantic reason-
ing primitives.

In pharmaceutical research, ReasonDB would identify
functional similarities between compounds that work in
completely different therapeutic areas. Instead of just
comparing molecular structures, the system analyzes how
mechanisms actually work; for instance, it could discover
that antifungal pathways and cancer resistance mechanisms
solve problems in structurally similar ways. This adds a
new dimension to traditional structure-based screening.

Financial institutions could apply ReasonDB to detect
emerging fraud patterns by finding structural similari-
ties across different markets. For example, the system
could recognize that certain cryptocurrency manipulation
schemes follow the same playbook as historical commodity
market frauds, enabling earlier intervention. Causal chain
discovery can trace how instabilities in one region ripple
through seemingly unrelated financial instruments.

E. Constraints, Implementation Details and Reproducibil-
ity

While ReasonDB demonstrates promising semantic rea-
soning capabilities, practical deployment faces several con-
straints including computational complexity, memory re-
quirements, and accuracy trade-offs. These limitations de-

fine operational boundaries that require further experimen-
tation and optimization before production systems can be
fully characterized. Comprehensive performance evaluation
and scalability testing remain essential for understanding
the system’s practical deployment.

The prototype implementation uses a modern Python-
based stack optimized for semantic reasoning operations.
Core computational operations leverage NumPy, SciPy,
and scikit-learn for vector mathematics and probabilistic
computations. Entity embeddings are generated using Ol-
lama with the nomic-embed-text model, providing 768-
dimensional semantic representations. Vector-native stor-
age uses LMDB (Lightning Memory-Mapped Database)
for high-performance key-value operations with minimal
overhead, while comparison baselines employ ChromaDB
for vector similarity search and NetworkX for graph-based
traversal. Data processing and visualization use Pandas for
tabular operations and Matplotlib with Seaborn for results
plotting.

The prototype requires 8 GB RAM minimum for optimal
performance, enabling sub-second query response times
for the experimental workload (10 entities, 4-hop causal
chains). Dependency management uses uv for reproducible
Python environments, ensuring consistent results across
deployments. All timing measurements were conducted
on consumer laptops (MacBook Pro M1 Max 64Gb),
demonstrating that semantic reasoning primitives achieve
practical performance without specialized infrastructure.

Complete implementation, experimental data, and re-
production instructions are available at https://github.com/
crywolfe/ReasonDB-prototype.

VIII. REASONDB IN CONTEXT: AI-ENHANCED
VECTOR SYSTEMS VS. NATIVE SEMANTIC REASONING

PRIMITIVES

The foundational limitations of vector databases and
knowledge graphs for semantic reasoning were discussed in
Section II, which established why current systems cannot
support analogical reasoning or causal chain discovery.
Section IV contrasted ReasonDB’s AI-native architecture
with recent AI-enhanced approaches like LOTUS [15, 16]
and AnDB [17], clarifying how treating reasoning as a first-
class operation rather than an enhancement layer enables
qualitatively different discovery capabilities.

This architectural foundation positions ReasonDB within
the broader evolution of database systems toward semantic
reasoning. While vector databases optimize for similarity
search and knowledge graphs enable relationship traver-
sal, ReasonDB introduces reasoning primitives as native
database operations. This enables discovery queries—such
as cross-domain mechanism transfer and causal pathway
exploration—that current systems cannot express declara-
tively.

The experimental validation in Section VII demonstrates
these capabilities concretely: 7× improvement in analogical
reasoning over similarity search, and successful causal
chain discovery where vector similarity fundamentally fails
(0.708 chain strength despite 0.074 cosine similarity).
These results validate that semantic reasoning requires
fundamentally different database primitives than those pro-
vided by current architectures, whether enhanced with AI
capabilities or not.

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

83



IX. CONCLUDING REMARKS

A. Core Architecture

ReasonDB demonstrates that semantic reasoning re-
quires fundamentally different database architectures. By
treating embeddings as primary data and implementing rea-
soning as first-class operations, the system enables discov-
ery queries impossible with current architectures. Three ar-
chitectural innovations work synergistically: vector-native
storage eliminates dual-storage overhead while preserv-
ing semantic relationships, reasoning primitives implement
analogical and causal operations as native database func-
tions, and adaptive indexing dynamically optimizes for
diverse reasoning patterns.

B. Validation and Breakthrough

Experimental validation demonstrates two breakthrough
capabilities. Analogical reasoning achieves 7× performance
improvement over similarity search (structural alignment
0.207 vs. 0.030), enabling inter-domain knowledge transfer
through structural pattern mapping. Causal chain discovery
succeeds where similarity-based methods fundamentally
fail, tracing mechanistic pathways between semantically
dissimilar states (0.708 chain strength despite 0.074 cosine
similarity). Together, these results validate that current
database architectures cannot support semantic discovery
operations.

C. Practical Implementation

ReasonDB complements rather than replaces traditional
databases. Production deployments use hybrid architectures
where query routers direct transactional queries requiring
ACID properties to traditional systems while routing dis-
covery queries requiring semantic reasoning to ReasonDB.
Data synchronization layers maintain consistency across
systems. This division enables each system to optimize
for its computational strengths: deterministic transactions
versus probabilistic discovery.

D. Future Directions

Three critical areas require development. First, full
production implementation integrating vector-native stor-
age with real-time updates, optimized reasoning engines,
and the remaining primitives (temporal evolution, domain
alignment mapping, concept synthesis). Second, system-
atic benchmarks measuring discovery quality, inter-domain
transfer effectiveness, and causal reasoning accuracy across
diverse scales. Third, domain validation in pharmaceutical
drug repurposing, financial fraud detection, and scientific
literature analysis to characterize performance envelopes
and optimal application scenarios. These advances will
transform databases from passive repositories into active
discovery partners.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

All authors collaborated extensively throughout the con-
ceptual development, writing, and review processes, and
approved the final manuscript. Gerry Wolfe conceived the
original idea, led the writing, and developed the proto-
types. Gerry Wolfe and Ashraf Elnashar provided critical

insights during the research and writing phases, shaping 
the manuscript collaboratively. Ashraf Elnashar contributed 
deep expertise to refine research concepts and sharpen the 
manuscript’s direction. William Schreiber provided valu-
able feedback, sourced and managed the bibliography and 
references, and ensured their accuracy and completeness. 
All authors had approved the final version.

REFERENCES
[1] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen,

Adam Pearce, Nicholas L. Turner, Craig Citro, David Abrahams,
Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy
Cunningham, Thomas Henighan, Adam Jermyn, Andy Jones,
Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson.
Tracing the thoughts of a large language model. Anthropic, March
2025.

[2] Vleer Doing and Ryan Wisnesky. Towards a more reasonable
semantic web. arXiv preprint arXiv:2407.19095, 2024.

[3] Oluwafemi Oloruntoba. Ai-driven autonomous database
management: Self-tuning, predictive query optimization, and
intelligent indexing in enterprise it environments. World Journal of
Advanced Research and Reviews, 25:1558–1580, 02 2025.

[4] Toni Taipalus. Vector database management systems: Fundamental
concepts, use-cases, and current challenges. Cognitive Systems
Research, 85:101216, 2024.

[5] Andreas Eibeck, Arkadiusz Chadzynski, Mei Qi Lim, Kevin
Aditya, Laura Ong, Aravind Devanand, Gourab Karmakar,
Sebastian Mosbach, Raymond Lau, Iftekhar A Karimi, et al. A
parallel world framework for scenario analysis in knowledge
graphs. Data-Centric Engineering, 1:e6, 2020.

[6] Nicolas Bschor. Enabling Semantic-Aware Query Evaluation in a
Traditional Database Framework. PhD thesis, Technische
Universität Wien, 2025.

[7] Dedre Gentner. Structure-mapping: A theoretical framework for
analogy. Cognitive Science, 7(2):155–170, 1983.

[8] Munshi Azad Hossain. Crispr-cas9: A fascinating journey from
bacterial immune system to human gene editing. Progress in
Molecular Biology and Translational Science, 178:63–83, 2021.

[9] Robert Bogue. Biomimetic adhesives: a review of recent
developments. Assembly Automation, 28(4):282–288, 2008.

[10] Ted T Ashburn and Karl B Thor. Drug repositioning: identifying
and developing new uses for existing drugs. Nature Reviews Drug
Discovery, 3(8):673–683, 2004.

[11] Naoufal Rtayli and Nourddine Enneya. Enhanced credit card fraud
detection based on svm-recursive feature elimination and
hyper-parameters optimization. Journal of Information Security
and Applications, 55:102596, 2020.

[12] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence
embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

[13] Lipyeow Lim, Haixun Wang, and Min Wang. Semantic queries in
databases: problems and challenges. In Proceedings of the 18th
ACM conference on Information and knowledge management,
pages 1505–1508, 2009.

[14] Dan Suciu. Probabilistic Databases, pages 1–7. Springer New
York, New York, NY, 2016.

[15] Liana Patel, Siddharth Jha, Carlos Guestrin, and Matei Zaharia.
Lotus: Enabling semantic queries with llms over tables of
unstructured and structured data. arXiv preprint arXiv:2407.11418,
2024.

[16] Adnan Masood. Lotus: Semantic operators for ai-powered data
processing — a technical review. Medium, 2024.

[17] Tianqing Wang, Xun Xue, Guoliang Li, and Yong Wang. Andb:
Breaking boundaries with an ai-native database for universal
semantic analysis. arXiv preprint arXiv:2502.13805, 2025.

[18] Kenneth D Forbus, Dedre Gentner, and Keith Law. Mac/fac: A
model of similarity-based retrieval. Cognitive science,
19(2):141–205, 1995.

[19] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz,
Emily M LeProust, Botond Sipos, and Ewan Birney. Towards
practical, high-capacity, low-maintenance information storage in
synthesized dna. Nature, 494(7435):77–80, 2013.

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

84



[20] Kevin Dunbar. How scientists really reason: Scientific reasoning in
real-world laboratories. In The nature of insight, pages 365–395.
MIT Press, 1995.

[21] Mark T Keane, Tim Ledgeway, and Stuart Duff. Constraints on
analogical mapping: A comparison of three models. Cognitive
Science, 18(3):387–438, 1994.

Copyright © 2026 by the authors. This is an open access article 
distributed under the Creative Commons Attribution License which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited (CC BY 4.0).

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

85

https://creativecommons.org/licenses/by/4.0/

	JAIT-V17N1-75



