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Abstract—The adoption of Digital Twins (DT) and Industrial 
Internet of Things (IIoT) systems necessitates efficient 
database solutions for real-time data ingestion and analytics. 
This study evaluates the performance of time-series 
databases, Influx Database (InfluxDB) and Timescale 
Database (TimescaleDB), alongside Not only Structured 
Query Language (NoSQL) database Mongo Database 
(MongoDB). Through comprehensive benchmarking, 
including write throughput and query latency under 
simulated IIoT workloads, the study identifies trade-offs 
between write-intensive and read-intensive operations. The 
results highlight the suitability of InfluxDB for high-
frequency data ingestion and TimescaleDB for complex 
analytical queries. The findings provide actionable 
recommendations for database selection in digital twin 
architectures, offering insights for practitioners in industrial 
applications. Key features and differences, such as data 
write/read speed and scalability, are analysed. Special 
attention was given to load testing using Go language, which 
allowed running parallel threads and achieving write speeds 
up to 300,000 records per second in InfluxDB. TimescaleDB 
showed stable performance when executing complex SQL 
queries, providing 40 ms per query when sampling 50,000 
and 250,000 rows. Examples of using time series databases 
for storing and processing real-time data from IoT sensors 
are considered. A brief analysis of the OpenTwins 
architecture, its databases, and internal components related 
to database operations has been conducted. It is concluded 
that the choice of technology should be based on specific 
requirements for data processing speed, analytics, and long-
term storage. 

Keywords—databases, digital twin, industrial internet of 
things, internet of things, time-series databases 

I. INTRODUCTION

The rapid development of the Industrial Internet of 
Things (IIoT) and the increasing adoption of digital twins 

are fundamentally changing the approach to data 
collection, processing and analysis in industry. Digital 
twins are virtual models that reflect the state and behaviour 
of physical objects in real time, enabling enterprises to 
improve operational efficiency, provide predictive 
maintenance, and enhance decision making. A key 
technology enabled by the IIoT is the Digital Twin (DT), 
a virtual model synchronized with a physical object or 
system through a continuous flow of real-time data [1, 2]. 
The industrial applications of such models are vast and 
continue to expand [3]. In the context of this study, a 
Digital Twin is defined not by its applications, but by its 
core data-centric architecture: a high-fidelity virtual 
representation that is dynamically updated with data from 
its physical counterpart, enabling analysis, simulation, and 
prediction, the novelty of this study lies in contextualizing 
these performance metrics specifically for the demanding 
data persistence layer of an IIoT-enabled Digital Twin. To 
highlight the broader implications, recent studies have 
explored the integration of digital twins into the 
framework of the IIoT, emphasizing the importance of 
scalable and adaptive architectures to address emerging 
challenges [4, 5]. The challenge of securely integrating IoT 
systems with cloud platforms has been explored, offering 
solutions for ensuring data integrity in real-time 
applications [6]. Digital twins have revolutionized smart 
manufacturing by providing real-time insights and 
predictions for factory operations [7]. The core challenge 
in digital twin and IIoT architectures is selecting a database 
system that balances high data ingestion rates, which are 
critical for real-time monitoring of thousands of sensors, 
with complex analytics necessary for predictive 
maintenance and long-term trend analysis, as well as 
scalability and reliability to ensure seamless operation 
under varying workloads. 

Recent reviews have underscored the gaps in current 
implementations, noting the challenges in achieving 
seamless integration of IoT systems and digital twins, Manuscript received April 18, 2025; revised July 29, 2025; accepted 
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particularly in applications demanding high-speed data 
ingestion and analytics, a challenge highlighted in 
foundational studies on the future of Digital Twins [8–10]. 
Traditional relational databases, such as PostgreSQL, 
struggle to handle the high-frequency data ingestion 
demands of IIoT. Time-series databases, such as Influx 
Database (InfluxDB), excel in write speed but face 
limitations in performing complex analytical querying. 
Not only Structured Query Language (NoSQL) solutions, 
such as Mongo Database (MongoDB), provide schema 
flexibility, making them suitable for dynamic entity 
representation in digital twins, but lack optimization for 
time-series data. These constraints hinder the effective 
deployment of digital twin systems in real-world industrial 
settings, where both speed and analytical depth are critical. 

At the core of digital twin and IIoT architectures are data 
storage and processing systems that can cope with streams 
of information from various sources: sensors, machines, 
and industrial devices. One of the key challenges is the 
selection of suitable database technologies. The variety of 
formats, volumes and velocity of incoming data requires 
the use of optimal solutions on which the scalability, 
performance and reliability of the system depend [11–13]. 
Moreover, studies have highlighted the critical role of 
hybrid architectures in combining the strengths of different 
database systems to overcome performance bottlenecks 
and meet the demands of complex digital twin 
ecosystems [13, 14]. 

A special role is played by time series databases (e.g., 
InfluxDB, Timescale Database (TimescaleDB)) that 
process time series data in real time, as well as NoSQL 
solutions (e.g., MongoDB) that allow flexible handling of 
unstructured data. A time series database, based on the 
name, is a database system that is specifically designed to 
handle time-series related information. Time series 
databases differ from the usual relational (PostgreSQL) 
and NoSQL (MongoDB) databases. 

Time series databases such as InfluxDB and 
TimescaleDB are optimised to efficiently process huge 
volumes of time-stamped data. They prioritise time-based 
indexing where each data point has a timestamp attached 
to it. This allows time-series databases to work well with 
real-time analytics, IoT sensor data, and monitoring 
applications. Their ability to aggregate and downsample 
data over time makes them a critical component in 
scenarios involving continuous data ingestion [15].  

Time series databases such as InfluxDB and 
TimescaleDB are optimised to handle huge continuous 
streams of data, making them ideal for scenarios such as 
real-time monitoring in IoT systems, tracking financial 
markets, and scientific experiments with continuous 
sensor readings. Studies have shown that these databases 
outperform traditional databases in both write throughput 
and query performance for time-based data. For example, 
Barez [16] conducted comprehensive comparative tests of 
time series databases with traditional relational systems 
and showed that InfluxDB is much more efficient in 
handling high write and read loads when the data is time-
stamped. 

InfluxDB is an open source time series database system 
optimised for timestamping, making it ideal for IoT 
applications, real-time data monitoring and analysis. It 
efficiently handles high write and query workloads 
through an architecture based on time sharding and the use 
of Time-Structured Merge tree (TSM). The new version of 
InfluxDB 3.0 (IOx) adds improved data processing 
capabilities through Apache Arrow technology that 
enables SQL support and provides scalability, efficient 
data compression and parallel query execution [17, 18]. 

InfluxDB is widely recognized for its optimization in 
high-speed data ingestion through its Write-Ahead Log 
(WAL) and time-sharded architecture [17, 18]. However, 
its SQL-like query language limits its ability to perform 
complex data analysis. In contrast, TimescaleDB, built as 
an extension of PostgreSQL, offers strong SQL support 
and excels in analytical queries, yet its write performance 
can become a bottleneck in high-frequency IIoT 
environments. MongoDB supports flexible schemas, 
making it suitable for representing dynamic entities in 
digital twins, but its lack of time-series optimization 
diminishes its effectiveness in handling large-scale 
temporal data. While each of these databases offers unique 
advantages, no single solution effectively addresses the 
dual demands of high-speed data ingestion and robust 
analytics. 

InfluxDB categorises data into dimensions, tags, and 
fields. Dimensions are used to group data logically, tags 
index data for fast retrieval, and fields store the actual data 
values. All data is linked to timestamps for high efficiency 
when processing time series. Data is written via Write-
Ahead Log (WAL) and then converted into a TSM 
structure for long-term storage. This allows for high data 
write and read speeds. InfluxDB 3.0 introduces the new 
architecture shown in Fig. 1 with support for columnar 
data storage and SQL queries. In addition to this, the 
database utilizes Iron Oxide (IOx) for improved data 
processing with high cardinality and efficient storage of 
large amounts of data [18]. 

TimescaleDB is an open-source extension for 
PostgreSQL specifically designed to efficiently work with 
time series data using PostgreSQL’s powerful query 
processing capabilities. Unlike many standalone time 
series databases, TimescaleDB integrates with 
PostgreSQL, offering a familiar SQL interface and 
optimizing performance and scalability for time series 
workloads. TimescaleDB also supports seamless scaling 
by distributing data across multiple nodes while 
maintaining high availability and performance. Its 
integration with PostgreSQL ensures compatibility with 
various indexing methods, triggers, and stored procedures, 
making it a versatile solution for developers and data 
analysts. 

TimescaleDB presents hypertables, which are virtual 
tables spanning multiple chunks of underlying data. Each 
chunk corresponds to a specific time range, allowing the 
data to be automatically partitioned. This design provides 
smooth scaling and improves query performance by 
focusing queries on relevant chunks rather than scanning 
the entire dataset. The database also supports automatic 
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partitioning in time and space, meaning that data is 
automatically distributed across multiple nodes, providing 
horizontal scaling [19, 20]. TimescaleDB has built-in 
support for data retention policies, allowing users to 

automatically delete old data after a specified period of 
time. This simplifies the lifecycle management of time 
series data without manual intervention, reduces storage 
costs and improves system performance [21]. 

  
Fig. 1. InfluxDB 3.0 architecture reproduced from [18]. 

To cope with the large volume of repetitive queries on 
time series data, TimescaleDB implements continuous 
aggregates. These materialized views are automatically 
updated as new data becomes available, which 
significantly reduces the query execution time from 
minutes to milliseconds in many cases. One of the key 
benefits of TimescaleDB is its compression mechanism, 
which can reduce the amount of data stored by up to 90%. 
It uses native columnar compression applied to each 
chunk, which allows old data to be stored in a column-
oriented format for efficient aggregation and fresh data to 
be stored in a row-oriented format for fast access [22]. 

MongoDB is widely used in digital twin systems to store 
entities, primarily due to its flexible schema-free document 
model, which is ideal for managing dynamic and complex 
data structures commonly found in digital twins. In the 
context of digital twin architectures, MongoDB does an 
excellent job of handling hierarchical and relational data 
models that represent entities and their relationships in the 
digital twin ecosystem. For example, digital vehicle twin 
projects use MongoDB to store digital representations of 
vehicles and synchronize them with real-time data from 
the physical world. In digital twins for IoT and large 
industrial systems, MongoDB’s distributed architecture 
allows handling huge data sets and entity representations 
on multiple nodes, providing high availability and low 
latency, while its horizontal scalability supports the 
growing needs of interconnected digital twin  
environments [23, 24]. 

The architecture of digital twins often involves real-time 
monitoring and synchronisation of the physical and digital 
systems, as demonstrated in recent flexible manufacturing 
systems [25]. Recent studies have shown the potential of 
deep reinforcement learning to optimize manufacturing 

processes using digital twins, providing automated control 
systems that reduce costs and improve efficiency [26]. The 
integration of Cyber-Physical Systems (CPS) with digital 
twins plays a vital role in ensuring accurate control and 
simulation of production processes [27]. The OpenTwins 
architecture in Fig. 2 shows InfluxDB, and MongoDB are 
an integral part of its functionality, but serve different 
purposes [28]. 

InfluxDB is used as a time series database in 
OpenTwins. Its role is to manage sensor data and other 
time-sensitive information. In particular, it stores real-time 
data generated by IoT devices connected to the digital 
twin. In this architecture, sensor data is fed through tools 
such as Telegraf, which connects to Apache Kafka to 
stream data. For example, in the OpenTwins use case in 
the petrochemical industry, InfluxDB stores sensor data on 
the freezing temperature of lubricants. This data is then 
used in predictive models (via Kafka-ML) and visualized 
in Grafana, allowing plant operators to monitor and predict 
freezing temperatures in real time. 

MongoDB is used in OpenTwins to manage entities 
rather than time series of data. It handles non-relational 
structured data representing digital twin entities. The 
flexibility of the MongoDB schema makes it an excellent 
choice for storing hierarchical structures defining digital 
twins and their subcomponents. This is particularly useful 
for managing complex relationships between different 
parts of a digital twin, such as machines, sensors, or even 
subsystems, where each entity may have dynamic 
attributes and properties that change over time. In the 
OpenTwins architecture, MongoDB is responsible for 
storing persistent data related to user configurations, entity 
states, and twin compositions, allowing easy updating and 
retrieval as the digital twin evolves. 
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Fig. 2. OpenTwins architecture reproduced from [28]. 

This division of responsibilities between InfluxDB for 
time series data and MongoDB for entity management 
ensures that both real-time data streams and complex 
dynamic data structures can be efficiently handled in the 
OpenTwins framework. The concept of Cyber-Physical 
Production Systems (CPPS) is closely linked to the 
development of digital twins in Industry 4.0, enabling 
more adaptive and responsive systems [29]. The 
integration of digital twins with big data analytics is 
critical for smart manufacturing, offering 360-degree 
visibility into processes and operations [30]. The 
convergence of digital twins and multimedia technologies 
is shaping new applications, particularly in immersive 
environments [31]. 

The objective of this study is to provide a quantitative 
performance evaluation of InfluxDB and TimescaleDB 
under simulated IIoT workloads, focusing on write 
throughput and query latency. The research aims to 
compare these databases to identify trade-offs between 
write-intensive and read-intensive operations, as well as to 
provide actionable recommendations for selecting or 
combining database technologies based on specific use 
cases in digital twin and IIoT systems. By addressing these 
objectives, this research seeks to fill a critical gap in the 
literature and guide practitioners in choosing the right 
database architecture for their digital twin 
implementations. While benchmarks of individual 
database systems exist, the novelty of this study lies in 
contextualizing these performance metrics specifically for 

the demanding data persistence layer of an IIoT-enabled 
Digital Twin. This research provides a direct, quantitative 
comparison to validate the hybrid architectural model that 
is often discussed theoretically but lacks specific, 
comparative performance data to support its 
implementation. 

The findings of this study will help industries optimize 
their database strategies for digital twins and IIoT systems, 
highlighting the strengths and limitations of existing 
technologies. Additionally, this research will offer insights 
into potential hybrid architectures that combine the 
advantages of multiple database systems, enabling more 
efficient and scalable solutions for the challenges faced by 
modern industrial environments. By evaluating real-world 
use cases and performance benchmarks, this study will 
provide practical recommendations for implementing 
robust and future-proof data management strategies.   

II. METHODOLOGY 

To evaluate the performance of InfluxDB and 
TimescaleDB, a benchmarking system was developed to 
simulate the data-handling requirements of the persistence 
layer of a Digital Twin, where high-frequency data from 
IIoT sensors must be ingested and made available for 
analytics. The complete source code for the benchmarking 
tool is available as supplementary material to ensure 
reproducibility [32].  
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A. Experimental Setup 
In this study, a software system consisting of several 

key components was used to benchmark the InfluxDB and 
TimescaleDB databases. The main goal was to evaluate the 
performance of each database during data write and read 
operations. For this purpose, the Go programming 
language was chosen due to its established reputation for 
high performance and native support for concurrency. 
These features were critical for developing a high-
throughput benchmarking tool capable of managing large 
data volumes and processing database queries in parallel. 
Furthermore, Go’s standard library provides high-
resolution timing functions, which offered the necessary 
accuracy for measuring execution times at the millisecond-
level granularity required by this study. This capability, 
combined with simplified interaction with database 
Application Programming Interfaces (APIs), ensured the 
reliable collection of performance data [33, 34]. In 
addition, the system was deployed using Docker 
containers, which made it possible to quickly and easily 
isolate work environments for each database. This made it 
possible to ensure the same conditions for both tested 
systems and to avoid the influence of external factors, such 
as differences in hardware configuration. Docker 
containers made it easy to set up and manage databases, 
ensuring reproducibility of experiments and accuracy of 
the results obtained. Each database, both InfluxDB and 
TimescaleDB, was run in a separate container, which 
ensured their independent operation and excluded the 
influence of one database on another. This architecture 
made it possible to conduct parallel benchmarks, evaluate 
their performance under real load conditions, and analyse 
key metrics such as write speed and response time when 
reading data. 

Fig. 3 shows the architecture of the benchmark. The 
overall architecture of the benchmark, shown in Fig. 3, is 
an adaptation of a benchmark for time-series databases in 
Scientific Experiments and Industrial Internet of Things 
(SciTS) framework proposed by Mostafa et al. [35]. The 
processes in the architecture begin with the configurator, 
which sets all the necessary parameters for correct 
connection to databases and additional parameters for 
adjusting the frequency of requests. After that, the module 
is configured to connect several clients to the database in 
parallel for multithreaded load and database testing, a data 
generation module is enabled inside the module, namely 
time series, after which the data is transferred to the 
benchmark logic processing module, where the processes 
of creating and preparing database queries take place, after 
that the queries are sent to the abstraction layer work on 
the database and further access to the database itself. The 
internal monitoring module collects performance 
information and outputs the result in a CSV (Comma-
Separated Values) file format. 

Docker containers have been selected for convenient 
and fast database deployment. In Fig. 4, both databases 
were deployed in isolated environments using Docker 
containers to ensure consistent and reproducible testing 
conditions. InfluxDB was configured to optimize write 
performance and long-term data storage. The Write-Ahead 

Log (WAL) was enabled to allow for high-speed data 
ingestion by buffering writes before committing them to 
disk. The Time-Structured Merge tree (TSM) storage 
system was configured to manage time-series data 
efficiently, with optimizations for compression and 
storage. A default retention policy was applied, allowing 
data to persist without additional truncation during the 
tests. TimescaleDB was configured to leverage its 
strengths in querying and data management. Hypertables 
were used to partition data into chunks based on time 
intervals, enhancing query performance and scalability. 
Continuous aggregates were enabled to precompute and 
store results for common queries, reducing overhead 
during benchmarking. The database inherited 
PostgreSQL’s default settings for query execution and 
indexing, with hypertable-specific optimizations applied. 
Both databases were allocated identical resources within 
their Docker containers, including equal CPU (Central 
Processing Unit) shares to ensure comparable processing 
power, the same amount of Random Access Memory 
(RAM) to handle data caching and processing, and 
identical storage configurations to standardize read and 
write performance. This standardized setup minimized 
variability and ensured the results reflected the inherent 
performance characteristics of the databases under similar 
workloads. 

 

 
Fig. 3. The architecture of the benchmark. 

 
Fig. 4. Databases in docker containers. 

The Go programming language was used to write a 
program that implements two benchmarks: writing and 
reading data into each database. Go was chosen due to its 
high performance and built-in support for competitive 
tasks. The benchmark program was written using third-
party libraries and the Go standard library for working with 
database queries, as well as libraries for interacting with 
the InfluxDB and TimescaleDB APIs. 
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B. Benchmark Implementation 
To evaluate the performance of InfluxDB and 

TimescaleDB, a benchmarking system was developed to 
simulate the data-handling requirements of the persistence 
layer of a Digital Twin, where high-frequency data from 
IIoT sensors must be ingested and made available for 
analytics. 

The Go program implements benchmarks for writing 
and reading data in each database. The logic for these 
benchmarks was designed to test write speeds with a 
continuous stream of data and read speeds with analytical 
queries on datasets of 50,000 and 250,000 rows. During 
testing, each database processed requests for data 
sampling, and the response time was recorded for 
comparative analysis. 

Benchmark Timescalewrite and Benchmark 
Timescaleread are modules responsible for testing the 
speed of writing data to the database, the speed of reading 
data, with different amounts of data: 50,000 and 250,000 
rows. During testing, rows containing three parameters 
were recorded in each database: the sensor ID, the 
measured temperature and the timestamp. Each database 
processed requests for data sampling, and the response 
time was recorded and used for comparative analysis. 

C. Data Generation 
Generated data simulating the behavior of temperature 

sensors were used to conduct the experiment. Three 
parameters were stored as input data in the databases. 
Sensor ID: the unique identifier of each sensor from which 
the data comes. Temperature: the temperature values that 
were generated for each sensor. Timestamp: The time at 
which the temperature measurement was recorded.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (1) 

The generation formula Eq. (1) was based the base 
temperature (Base_Temperature) was calculated based on 
the sensor ID value and formed the starting point for each 
sensor. For example, for a sensor with ID 0, the base 
temperature started at 20.0 ℃, and for a sensor with ID 1, 
it started at 21.0 ℃. This decision was made in order to 
demonstrate the diversity of temperature values for each 
sensor individually for visual display in combined graphs. 

Eq. (2) was calculated based on a sinusoidal function 
that takes into account the frequency of changes depending 
on time. 

 Sine_𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  A ×  𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋×𝑡𝑡
𝑇𝑇

) (2) 

A—the amplitude of temperature fluctuations. In this case, 
the amplitude was set to 5.0 ℃, which means that the 
temperature will fluctuate 5 degrees above and below the 
base value. t—the current time, expressed in hours. It is 
calculated by dividing the timestamp of the current time by 
3600 seconds (the number of seconds in one hour). T—the 
oscillation period, which is 24 h. This means that the 
temperature will be repeated every 24 h, simulating daily 
changes. 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋×𝑡𝑡

𝑇𝑇
) —a sinusoidal function that creates 

smooth periodic oscillations. In this formula, it sets the 

daily cycle of temperature fluctuations. At the time 
corresponding to morning and evening, the value of the 
sine wave will be near zero, and in the middle of the day 
and night it will reach extreme values. To generate more 
realistic synthetic data, the noise was modeled using a 
Gaussian (normal) distribution with a mean of 0 and a 
standard deviation of 0.5 ℃. 

This study assumes that the performance observed in the 
controlled environment reflects real-world scenarios. 
However, certain factors, such as hardware variability and 
network latency, were not considered. Additionally, the 
synthetic datasets, while representative of typical IIoT 
workloads, may not capture all complexities of specific 
industrial applications. The complete benchmarking 
framework, including data generation scripts and database 
configurations, is available upon request to facilitate 
reproducibility. Previously published methods, such as 
database-specific optimizations, are referenced in the 
respective sections of this paper. 

D. Existing Constraints and Future Extension Directions 
This study was intentionally scoped to evaluate the core 

performance metrics of write throughput and analytical 
query latency under a high-ingestion workload. It is 
assumed that the performance observed in this controlled 
environment is indicative of real-world behavior, though 
factors like network latency were not considered. The 
benchmark focused on complex analytical queries, as these 
are often bottlenecks in IIoT systems. A comparison of 
simple point-query performance was not included and 
remains an area for future investigation. Furthermore, this 
study did not evaluate other important non-functional 
requirements. A comprehensive analysis of resource 
utilization (CPU, memory, and storage costs for indexing), 
elasticity, high availability, and fault tolerance would be 
valuable extensions to this work. Future research should 
also explore the practical implementation of the proposed 
hybrid architecture. This includes evaluating middleware 
solutions (e.g., Apache Kafka, NiFi) for orchestrating data 
routing between an ingestion-optimized database like 
InfluxDB and an analytics-optimized database like 
TimescaleDB. 

III. RESULTS 

Benchmarks for data write and read operations were 
conducted to evaluate the performance of InfluxDB and 
TimescaleDB databases. The following benchmark 
extends existing evaluations of InfluxDB and 
TimescaleDB by demonstrating its stability under 
sustained high-throughput conditions with real-world IIoT 
workloads. The results of each database are shown in  
Figs. 5 and 6. The results obtained make it possible to 
identify differences in data processing speed between these 
systems, which is shown in Figs. 7 and 8. 

A. Write Performance 
The graph in Fig. 5 highlights the robust performance of 

InfluxDB under a continuous high-frequency data stream, 
achieving an average write speed of approximately 
310,000 records per second. This is evidenced by the stable 
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plateau observed after an initial increase in write speed, 
with values consistently ranging between 300,000 and 
320,000 records per second. The lack of significant 
fluctuations demonstrates InfluxDB’s reliability in 
processing large volumes of real-time data, making it an 
ideal solution for time-series use cases in IIoT 
environments. 

 

 
Fig. 5. Write speed over time in InfluxDB. 

Compared to existing literature on time-series 
databases, these results underscore the efficiency of 
InfluxDB’s architecture, particularly its Write-Ahead Log 
(WAL) mechanism and time-sharded storage. This aligns 
with findings by other studies, which emphasize the 
database’s optimization for high-speed write operations. 
Such performance makes InfluxDB a suitable choice for 
scenarios requiring real-time data ingestion, such as IIoT 
systems and predictive maintenance in digital twins. The 
ability of InfluxDB to sustain a stable write speed of 
310,000 records per second under high load conditions 
directly supports its applicability in time-critical IIoT 
systems and digital twins. This performance ensures 
seamless real-time data collection, which is crucial for 
predictive maintenance, process optimization, and 
decision-making. By reliably handling such high data 
volumes, InfluxDB minimizes potential bottlenecks in 
high-frequency data environments, ensuring operational 
efficiency in industries like manufacturing and energy. 

This result demonstrates that InfluxDB excels in 
scenarios prioritizing write throughput. Nevertheless, 
when analytical complexity or large-scale querying is 
required, systems like TimescaleDB might offer 
complementary advantages, as demonstrated in later 
sections. Combining the strengths of different database 
systems could further enhance the flexibility and capability 
of digital twin architectures.  

Fig. 6 illustrates a gradual decline in TimescaleDB’s 
write speed from an initial rate of 6000 records per second 
to a low of 4500 records per second. This performance 
decrease, while steady, suggests resource-intensive 
processes such as chunk creation and index maintenance 
that are inherent to TimescaleDB’s architecture. The 
system stabilizes slightly toward the end, indicating its 

ability to maintain functionality under stress while 
managing internal optimizations. 

 

 
Fig. 6. Write speed over time in TimescaleDB. 

The slight recovery in write speed at the end indicates 
that TimescaleDB can maintain operational stability 
despite temporary performance drops. This suggests 
potential optimization mechanisms in play, such as 
periodic garbage collection or adaptive resource 
management. The observed decline in TimescaleDB’s 
write performance underscores its limitations in handling 
large-scale, continuous data ingestion. However, its 
stability at lower write speeds makes it a reliable choice 
for applications where analytical capabilities are 
prioritized over raw ingestion speed. This insight 
highlights the need for careful consideration of database 
choice based on the specific requirements of a digital twin 
system, suggesting TimescaleDB’s role in scenarios 
focused on long-term data analysis rather than real-time 
monitoring. 

These results underline that while TimescaleDB 
provides consistent operation, it may not be ideal for 
scenarios requiring sustained high-frequency data writes. 
Instead, its strengths are likely better leveraged in 
applications where the focus is on querying and analyzing 
time-series data rather than purely high-throughput data 
ingestion. This makes TimescaleDB a suitable choice for 
use cases such as monitoring systems, financial analytics, 
and predictive maintenance, where efficient querying and 
aggregation are more critical than extreme write 
performance.  

Fig. 7 reveals a stark contrast in write performance 
between InfluxDB and TimescaleDB when handling a 
dataset of 50,000 rows. InfluxDB achieves a write speed 
of 150,000 rows per second, significantly outperforming 
TimescaleDB’s 3000 rows per second. This difference 
underscores InfluxDB’s architectural optimization for 
high-throughput ingestion, whereas TimescaleDB’s SQL-
based design adds overhead that limits its write efficiency. 
InfluxDB’s superior performance can be attributed to its 
time-sharded architecture and the use of a Write-Ahead 
Log (WAL), which are optimized for high-throughput 
time-series data ingestion. These features allow InfluxDB 
to handle large volumes of sequential data efficiently, 
making it a suitable choice for applications requiring rapid 
data ingestion.  
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Fig. 7. The results of testing the program in the speed of writing to the 

database with a volume of 50,000 rows. 

In contrast, TimescaleDB, as an extension of 
PostgreSQL, processes timestamps within the context of 
relational database structures. This integration adds 
overhead, such as indexing and chunk management, which 
impacts its ability to sustain high write speeds. While this 
design supports complex querying and long-term data 
analysis, it limits TimescaleDB’s performance in write-
intensive scenarios. The stark performance difference 
between InfluxDB and TimescaleDB illustrates the trade-
offs in database design for IIoT and digital twin systems. 
While InfluxDB excels in write-intensive scenarios, 
TimescaleDB’s slower performance points to its reliance 
on additional functionalities such as SQL processing. 
These findings emphasize the importance of aligning 
database selection with system priorities—whether it’s 
high-throughput ingestion or advanced analytics. 

These results underline the strengths of each database 
for different use cases. InfluxDB is well-suited for 
environments requiring high-frequency data recording, 
such as real-time monitoring systems. On the other hand, 
TimescaleDB, with its SQL capabilities, may be more 
advantageous for applications emphasizing analytics and 
historical data querying over raw write performance.  

B. Query Performance 
Fig. 8 compares the query performance of InfluxDB and 

TimescaleDB for a dataset of 250,000 rows. TimescaleDB 
processes queries in 40 ms on average, outperforming 
InfluxDB’s 150 ms. This demonstrates the efficiency of 
TimescaleDB’s hypertable design and SQL optimization, 
which focus query execution on relevant data chunks and 
enable faster retrieval times, especially for analytical 
queries.  

InfluxDB, on the other hand, processes queries in 
150  ms. While this performance is acceptable, it is notably 
slower than TimescaleDB for the same data volume. The 
decrease in performance with larger datasets may be linked 
to InfluxDB’s time-sharded architecture, which, while 
optimized for write operations, can introduce overhead 
during read operations when accessing specific subsets of 
data. TimescaleDB’s superior query performance at 40 ms 
per query demonstrates its value in applications requiring 
rapid data retrieval and analysis, such as operational 
reporting or historical data trend analysis in digital twins. 
Conversely, InfluxDB’s slower query speed suggests it is 
better suited for real-time monitoring, where write speed 

takes precedence. This distinction highlights the 
complementary roles these databases can play in hybrid 
architectures.  

 

 
Fig. 8. The results of testing the program in the time spent on processing 

1 data select query. 

These results highlight the contrasting strengths of the 
two databases. TimescaleDB excels in read-intensive 
scenarios requiring efficient data sampling and complex 
analytical queries, making it well-suited for applications 
such as historical data analysis and reporting in digital twin 
systems. Conversely, InfluxDB, with its focus on high 
write throughput, is better suited for real-time monitoring 
where frequent read operations are less critical.  

IV. DISCUSSION 

The results of this study support the initial hypothesis 
that no single database excels at both high-speed data 
ingestion and complex analytics for IIoT and digital twin 
systems. Instead, InfluxDB and TimescaleDB demonstrate 
a clear trade-off between write-intensive and read-
intensive performance, with each being suited to different 
aspects of a digital twin architecture. 

While MongoDB plays a crucial role in Digital Twin 
architecture for managing entity data, as seen in the 
OpenTwins framework, it was intentionally excluded from 
the performance benchmark. Its document-based 
architecture is optimized for flexible, semi-structured data 
representing digital twin entities and their complex 
relationships, not for high-throughput time-series 
ingestion. Therefore, a direct performance comparison 
against specialized time-series databases for this specific 
task would not be a meaningful evaluation of their distinct 
and complementary functions within a hybrid system. 

Similarly, other well-regarded time-series databases 
such as Open Time Series Database (OpenTSDB) were not 
included in this benchmark. The primary goal of this study 
was not to provide an exhaustive survey of all available 
technologies, but rather to perform a deep comparative 
analysis of two leading databases with distinct 
architectural philosophies—InfluxDB and 
TimescaleDB—that are commonly considered for IIoT 
applications. This focused comparison allowed us to 
directly evaluate the trade-offs between a purpose-built 
time-series solution and a PostgreSQL-based extension, 
which is central to our recommendation of a hybrid 
architecture. Future work could certainly extend this 
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benchmark to include a wider array of databases to provide 
a broader market overview. 

InfluxDB’s superior write performance, peaking at over 
300,000 records per second, is consistent with findings 
from other studies that highlight its architectural strengths, 
such as the Write-Ahead Log (WAL) and time-sharded 
storage. This makes InfluxDB an ideal choice for the data 
ingestion layer of a digital twin, where it can reliably 
handle high-frequency data streams from thousands of 
sensors in real-time. This capability is critical for 
applications like real-time monitoring and immediate 
operational feedback. 

Conversely, TimescaleDB’s slower write speed can be 
attributed to the overhead associated with its relational 
foundation, including indexing and chunk management 
within its hypertable structure. While this limits its 
suitability for extreme data ingestion scenarios, these very 
features are what enable its superior query performance. 
An average query time of 40 ms on a large dataset makes 
TimescaleDB highly effective for the analytical layer of a 
digital twin. It is well-suited for tasks that require complex 
querying, historical data analysis, and generating insights 
for predictive maintenance or process optimization. 

The performance differences underscore the importance 
of aligning database selection with specific system 
priorities. For a digital twin system requiring both real-
time data capture and deep analytics, a hybrid architecture 
is the most effective solution. In such a setup, InfluxDB 
could serve as the primary time-series data store for 
incoming sensor data, while TimescaleDB could be used 
for aggregated data, long-term storage, and as the backend 
for analytical dashboards and reporting tools. This 
approach leverages the strengths of both technologies, 
creating a more robust and capable system than a single-
database solution.  

V. CONCLUSION 

This study provides a quantitative comparison of 
InfluxDB and TimescaleDB, revealing their distinct 
strengths for the data persistence layer of Digital Twin and 
IIoT applications. The benchmark results offer a 
significant contribution by providing specific performance 
metrics: InfluxDB excels at high-throughput data 
ingestion, with demonstrated write speeds of over 300,000 
records per second, making it ideal for the real-time data 
synchronization required by a Digital Twin. In contrast, 
TimescaleDB is superior for analytics, executing complex 
queries in an average of 40 ms, making it suitable for the 
analytical and simulation components of a DT 
architecture. These findings provide clear, data-driven 
evidence that a hybrid database architecture is the most 
effective approach for systems that demand both high-
speed data capture and robust analytics. 

This research moves beyond theoretical 
recommendations by presenting concrete data that 
empowers engineers to design more efficient and reliable 
Digital Twin systems. By adopting a hybrid model—using 
InfluxDB for real-time ingestion and TimescaleDB for 
analytics—industries can build scalable and future-proof 

data infrastructures that form the foundation of a high-
fidelity Digital Twin. 

Future work could extend these benchmarks to include 
other emerging database technologies or evaluate the 
performance of middleware designed to manage data flow 
in such hybrid systems. Ultimately, this study’s primary 
contribution is the technological clarification and new data 
that validate a hybrid database strategy, advancing the 
practical implementation of high-performance, data-
driven Digital Twins. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

BA conceptualized the study, supervised the project, 
and wrote the initial draft of the paper. AA made the main 
contribution to this research; he developed the 
benchmarking software, conducted the experiments, 
collected and analyzed the performance data. MK 
provided methodological guidance and reviewed the 
manuscript. GA provided overall supervision and project 
administration. TI assisted with the experimental setup and 
data collection. DZ contributed to the research 
conceptualization and manuscript review. All authors have 
read and approved the final version of the manuscript. 

FUNDING 

The article was supported by the project from the 
Ministry of Science and Higher Education of the Republic 
of Kazakhstan, BR24992975: “Development of a Digital 
Twin of a Food Processing Enterprise Using Artificial 
Intelligence and IIoT Technologies”. 

REFERENCES 
[1] D. Galar and U. Kumar, “Digital twins: Definition, implementation 

and applications,” in Advances in Risk-Informed Technologies, 
Singapore: Springer Nature Singapore, 2024, ch. 7, pp. 79–106. 

[2] Y. Lu, C. Liu, I. Kevin et al., “Digital twin-driven smart 
manufacturing: Connotation, reference model, applications and 
research issues,” Robotics and Computer-Integrated 
Manufacturing, vol. 61, 101837, 2020. 

[3] Y. Jiang, S. Yin, K. Li et al., “Industrial applications of digital 
twins,” Philosophical Transactions of the Royal Society A: 
Mathematical, Physical and Engineering Sciences, vol. 379, no. 
2207, 20200360, 2021. 

[4] T. Yu, Z. Li, O. Hashash et al., “Internet of federated digital twins: 
Connecting twins beyond borders for society 5.0,” IEEE Internet of 
Things Magazine, vol. 7, no. 5, pp. 64–71, 2024. 

[5] M. P. D. Mudiyanselage and H. Sellahewa, “Digital twins as a 
framework for IoT applications: A review,” in Proc. 2023 7th 
SLAAI International Conf. on Artificial Intelligence(SLAAI-ICAI), 
2023, pp. 1–6. 

[6] C. Stergiou, K. E. Psannis, B. G. Kim et al., “Secure integration of 
IoT and cloud computing,” Future Generation Computer Systems, 
vol. 78, pp. 964–975, 2018. 

[7] J. F. Yao, Y. Yang, X. C. Wang et al., “Systematic review of digital 
twin technology and applications,” Visual Computing for Industry, 
Biomedicine, and Art, vol. 6, 10, 2023. 

[8] National Academies of Engineering, National Academies of 
Sciences, Engineering, and Medicine, Division on Engineering and 
Physical Sciences. (2024). Foundational research gaps and future 
directions for digital twins. Washington. [Online]. Available: 

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

73



https://nap.nationalacademies.org/catalog/26894/foundational-rese 
arch-gaps-and-future-directions-for-digital-twins 

[9] H. Xu, J. Wu, Q. Pan et al., “A survey on digital twin for industrial 
internet of things: Applications, technologies and tools,” IEEE 
Communications Surveys and Tutorials, vol. 25, no. 4, pp. 2569–
2598, 2023. 

[10] Y. Zhang, L. Fang, H. Deng et al., “Recent advances and future 
perspectives of digital twins,” in Proc. 2023 IEEE International 
Conf. on Control, Electronics and Computer Technology (ICCECT), 
2023, pp. 1563–1566. 

[11] A. A. Mirani, G. Velasco-Hernandez, A. Awasthi et al., “Key 
challenges and emerging technologies in industrial IoT 
architectures: A review,” Sensors, vol. 22, no. 15, 5836, 2022. 

[12] H. Wu, P. Ji, H. Ma, et al., “A comprehensive review of digital twin 
from the perspective of total process: Data, models, networks and 
applications,” Sensors, vol. 23, no. 19, 8306, 2023. 

[13] A. Fuller, Z. Fan, C. Day et al., “Digital twin: Enabling technologies, 
challenges and open research,” IEEE Access, vol. 8, pp. 108952–
108971, 2020. 

[14] I. A. Arin, Meyliana, H. L. H. S. Warnars et al., “A systematic 
literature review of recent trends and challenges in digital twin 
implementation,” in Proc. 2023 10th International Conf. on ICT for 
Smart Society (ICISS), 2023, pp. 1–10. 

[15] B. Shah, P. M. Jat, and K. Sasidhar, “Performance study of time 
series databases,” arXiv preprint, arXiv:2208.13982, 2022.  

[16] F. Barez, P. Bilokon, and R. Xiong, “Benchmarking specialized 
databases for high-frequency data,” arXiv preprint, 
arXiv:2301.12561, 2023.  

[17] A. Lamb. (October 2022). On InfluxData’s new storage engine. 
Q&A with Andrew Lamb. ODBMS. [Online]. Available: 
https://www.odbms.org/2022/10/on-influxdata-new-storage-engin 
e-qa-with-andrew-lamb/ 

[18] N. Tran, P. Dix, A. Lamb et al. (June 2023). InfluxDB 3.0: System 
architecture. influxdata. [Online]. Available: 
https://www.influxdata.com/blog/influxdb-3-0-system-architectu 
re/ 

[19] TimescaleDB: Rearchitecting a SQL database for time-series data. 
DataCouncil. [Online]. Available: https://www.datacouncil.ai/ 
talks25/timescaledb-rearchitecting-a-sql-database-for-time-series-
data 

[20] C. Diwadkar. (June 2024). Comprehensive comparison between 
TDengine and TimescaleDB. TDengine. [Online]. Available: 
https://www.tdengine.com/blog/comprehensive-comparison-betw 
een-tdengine-and-timescaledb/ 

[21] TimescaleDB vs Amazon timestream: 6,000x Higher Inserts, 5-
175x faster queries, 150-220x cheaper. Timescale Blog. [Online]. 
Available: https://www.timescale.com/blog/timescaledb-vs-
amazon-timestream-6000x-higher-inserts-175x-faster-queries-220 
x-cheaper 

[22] PostgreSQL + TimescaleDB: 1,000x faster queries, 90% data 
compression, and much more. TimescaleDB. [Online]. Available: 
https://www.timescale.com/blog/postgresql-timescaledb-1000x-
faster-queries-90-data-compression-and-much-more 

[23] F. Reichenbach and M. Yellapantula. (January 2023). Digital twin 
data middleware with AWS and MongoDB. AWS. [Online]. 
Available: https://aws.amazon.com/blogs/industries/digital-twin-
data-middleware-with-aws-and-mongodb/ 

[24] Scalable IoT projects with MongoDB: Gaining value from IoT & 
digital twins. MongoDB. [Online]. Available: 
https://www.mongodb.com/resources/solutions/use-cases/webinar-
scalable-iot-projects-with-mongodb-gaining-value-from-iot-digita 
l-twins 

[25] Y. Fan, J. Yang, J. Chen et al., “A digital-twin visualized 
architecture for flexible manufacturing system,” Journal of 
Manufacturing Systems, vol. 60, pp. 176–201, 2021. 

[26] A. Khdoudi, T. Masrour, I. E. Hassani et al., “A deep-
reinforcement-learning-based digital twin for manufacturing 
process optimization,” Systems, vol. 12, no. 2, 38, 2024. 

[27] E. Negri, L. Fumagalli, and M. Macchi, “A review of the roles of 
digital twin in CPS-based production systems,” Procedia 
Manufacturing, vol. 11, pp. 939–948, 2017. 

[28] J. Robles, C. Martín, and M. Díaz, “OpenTwins: An open-source 
framework for the development of next-gen compositional digital 
twins,” Computers in Industry, vol. 152, 104007, 2023. 

[29] T. H. J. Uhlemann, C. Lehmann, and R. Steinhilper, “The digital 
twin: Realizing the cyber-physical production system for Industry 
4.0,” Procedia CIRP, vol. 61, pp. 335–340, 2017. 

[30] Q. Qi and F. Tao, “Digital twin and big data towards smart 
manufacturing and industry 4.0: 360 degree comparison,” IEEE 
Access, vol. 6, pp. 3585–3593, 2018. 

[31] A. E. Saddik, “Digital twins: The convergence of multimedia 
technologies,” IEEE Multimedia, vol. 25, no. 2, pp. 87–92, 2018. 

[32] db-benchmarks. GitHub. [Online]. Available: 
https://github.com/rtzgod/db-benchmarks 

[33] N. Togashi and V. Klyuev, “Concurrency in Go and Java: 
Performance analysis,” in Proc. 2014 4th IEEE International Conf. 
on Information Science and Technology, 2014, pp. 213–216. 

[34] A. A. Donovan and B. W. Kernighan, The Go Programming 
Language, Boston: Addison-Wesley Professional, 2015. 

[35] J. Mostafa, S. Wehbi, S. Chilingaryan et al., “SciTS: A benchmark 
for time-series databases in scientific experiments and industrial 
internet of things,” in Proc. 34th International Conf. on Scientific 
and Statistical Database Management, 2022, 12. 

 
Copyright © 2026 by the authors. This is an open access article 
distributed under the Creative Commons Attribution License which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited (CC BY 4.0).  

 

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

74

https://creativecommons.org/licenses/by/4.0/

	JAIT-V17N1-65



