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Abstract—The adoption of Digital Twins (DT) and Industrial
Internet of Things (IIoT) systems necessitates efficient
database solutions for real-time data ingestion and analytics.
This study evaluates the performance of time-series
databases, Influx Database (InfluxDB) and Timescale
Database (TimescaleDB), alongside Not only Structured
Query Language (NoSQL) database Mongo Database
(MongoDB). Through comprehensive benchmarking,
including write throughput and query latency under
simulated IIoT workloads, the study identifies trade-offs
between write-intensive and read-intensive operations. The
results highlight the suitability of InfluxDB for high-
frequency data ingestion and TimescaleDB for complex
analytical queries. The findings provide actionable
recommendations for database selection in digital twin
architectures, offering insights for practitioners in industrial
applications. Key features and differences, such as data
write/read speed and scalability, are analysed. Special
attention was given to load testing using Go language, which
allowed running parallel threads and achieving write speeds
up to 300,000 records per second in InfluxDB. TimescaleDB
showed stable performance when executing complex SQL
queries, providing 40 ms per query when sampling 50,000
and 250,000 rows. Examples of using time series databases
for storing and processing real-time data from IoT sensors
are considered. A brief analysis of the OpenTwins
architecture, its databases, and internal components related
to database operations has been conducted. It is concluded
that the choice of technology should be based on specific
requirements for data processing speed, analytics, and long-
term storage.

Keywords—databases, digital twin, industrial internet of
things, internet of things, time-series databases

I. INTRODUCTION

The rapid development of the Industrial Internet of
Things (IToT) and the increasing adoption of digital twins
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are fundamentally changing the approach to data
collection, processing and analysis in industry. Digital
twins are virtual models that reflect the state and behaviour
of physical objects in real time, enabling enterprises to
improve operational efficiency, provide predictive
maintenance, and enhance decision making. A key
technology enabled by the IIoT is the Digital Twin (DT),
a virtual model synchronized with a physical object or
system through a continuous flow of real-time data [1, 2].
The industrial applications of such models are vast and
continue to expand [3]. In the context of this study, a
Digital Twin is defined not by its applications, but by its
core data-centric architecture: a high-fidelity virtual
representation that is dynamically updated with data from
its physical counterpart, enabling analysis, simulation, and
prediction, the novelty of this study lies in contextualizing
these performance metrics specifically for the demanding
data persistence layer of an I[loT-enabled Digital Twin. To
highlight the broader implications, recent studies have
explored the integration of digital twins into the
framework of the IIoT, emphasizing the importance of
scalable and adaptive architectures to address emerging
challenges [4, 5]. The challenge of securely integrating [oT
systems with cloud platforms has been explored, offering
solutions for ensuring data integrity in real-time
applications [6]. Digital twins have revolutionized smart
manufacturing by providing real-time insights and
predictions for factory operations [7]. The core challenge
in digital twin and [1oT architectures is selecting a database
system that balances high data ingestion rates, which are
critical for real-time monitoring of thousands of sensors,
with complex analytics necessary for predictive
maintenance and long-term trend analysis, as well as
scalability and reliability to ensure seamless operation
under varying workloads.

Recent reviews have underscored the gaps in current
implementations, noting the challenges in achieving
seamless integration of IoT systems and digital twins,
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particularly in applications demanding high-speed data
ingestion and analytics, a challenge highlighted in
foundational studies on the future of Digital Twins [8—10].
Traditional relational databases, such as PostgreSQL,
struggle to handle the high-frequency data ingestion
demands of IIoT. Time-series databases, such as Influx
Database (InfluxDB), excel in write speed but face
limitations in performing complex analytical querying.
Not only Structured Query Language (NoSQL) solutions,
such as Mongo Database (MongoDB), provide schema
flexibility, making them suitable for dynamic entity
representation in digital twins, but lack optimization for
time-series data. These constraints hinder the effective
deployment of digital twin systems in real-world industrial
settings, where both speed and analytical depth are critical.

At the core of digital twin and I1oT architectures are data
storage and processing systems that can cope with streams
of information from various sources: sensors, machines,
and industrial devices. One of the key challenges is the
selection of suitable database technologies. The variety of
formats, volumes and velocity of incoming data requires
the use of optimal solutions on which the scalability,
performance and reliability of the system depend [11-13].
Moreover, studies have highlighted the critical role of
hybrid architectures in combining the strengths of different
database systems to overcome performance bottlenecks
and meet the demands of complex digital twin
ecosystems [13, 14].

A special role is played by time series databases (e.g.,
InfluxDB, Timescale Database (TimescaleDB)) that
process time series data in real time, as well as NoSQL
solutions (e.g., MongoDB) that allow flexible handling of
unstructured data. A time series database, based on the
name, is a database system that is specifically designed to
handle time-series related information. Time series
databases differ from the usual relational (PostgreSQL)
and NoSQL (MongoDB) databases.

Time series databases such as InfluxDB and
TimescaleDB are optimised to efficiently process huge
volumes of time-stamped data. They prioritise time-based
indexing where each data point has a timestamp attached
to it. This allows time-series databases to work well with
real-time analytics, IoT sensor data, and monitoring
applications. Their ability to aggregate and downsample
data over time makes them a critical component in
scenarios involving continuous data ingestion [15].

Time series databases such as InfluxDB and
TimescaleDB are optimised to handle huge continuous
streams of data, making them ideal for scenarios such as
real-time monitoring in IoT systems, tracking financial
markets, and scientific experiments with continuous
sensor readings. Studies have shown that these databases
outperform traditional databases in both write throughput
and query performance for time-based data. For example,
Barez [16] conducted comprehensive comparative tests of
time series databases with traditional relational systems
and showed that InfluxDB is much more efficient in
handling high write and read loads when the data is time-
stamped.
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InfluxDB is an open source time series database system
optimised for timestamping, making it ideal for IoT
applications, real-time data monitoring and analysis. It
efficiently handles high write and query workloads
through an architecture based on time sharding and the use
of Time-Structured Merge tree (TSM). The new version of
InfluxDB 3.0 (IOx) adds improved data processing
capabilities through Apache Arrow technology that
enables SQL support and provides scalability, efficient
data compression and parallel query execution [17, 18].

InfluxDB is widely recognized for its optimization in
high-speed data ingestion through its Write-Ahead Log
(WAL) and time-sharded architecture [17, 18]. However,
its SQL-like query language limits its ability to perform
complex data analysis. In contrast, TimescaleDB, built as
an extension of PostgreSQL, offers strong SQL support
and excels in analytical queries, yet its write performance
can become a bottleneck in high-frequency IloT
environments. MongoDB supports flexible schemas,
making it suitable for representing dynamic entities in
digital twins, but its lack of time-series optimization
diminishes its effectiveness in handling large-scale
temporal data. While each of these databases offers unique
advantages, no single solution effectively addresses the
dual demands of high-speed data ingestion and robust
analytics.

InfluxDB categorises data into dimensions, tags, and
fields. Dimensions are used to group data logically, tags
index data for fast retrieval, and fields store the actual data
values. All data is linked to timestamps for high efficiency
when processing time series. Data is written via Write-
Ahead Log (WAL) and then converted into a TSM
structure for long-term storage. This allows for high data
write and read speeds. InfluxDB 3.0 introduces the new
architecture shown in Fig. 1 with support for columnar
data storage and SQL queries. In addition to this, the
database utilizes Iron Oxide (IOx) for improved data
processing with high cardinality and efficient storage of
large amounts of data [18].

TimescaleDB is an open-source extension for
PostgreSQL specifically designed to efficiently work with
time series data using PostgreSQL’s powerful query
processing capabilities. Unlike many standalone time
series  databases, TimescaleDB integrates  with
PostgreSQL, offering a familiar SQL interface and
optimizing performance and scalability for time series
workloads. TimescaleDB also supports seamless scaling
by distributing data across multiple nodes while
maintaining high availability and performance. Its
integration with PostgreSQL ensures compatibility with
various indexing methods, triggers, and stored procedures,
making it a versatile solution for developers and data
analysts.

TimescaleDB presents hypertables, which are virtual
tables spanning multiple chunks of underlying data. Each
chunk corresponds to a specific time range, allowing the
data to be automatically partitioned. This design provides
smooth scaling and improves query performance by
focusing queries on relevant chunks rather than scanning
the entire dataset. The database also supports automatic
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partitioning in time and space, meaning that data is
automatically distributed across multiple nodes, providing
horizontal scaling [19, 20]. TimescaleDB has built-in
support for data retention policies, allowing users to

automatically delete old data after a specified period of
time. This simplifies the lifecycle management of time
series data without manual intervention, reduces storage
costs and improves system performance [21].
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Fig. 1. InfluxDB 3.0 architecture reproduced from [18].

To cope with the large volume of repetitive queries on
time series data, TimescaleDB implements continuous
aggregates. These materialized views are automatically
updated as new data becomes available, which
significantly reduces the query execution time from
minutes to milliseconds in many cases. One of the key
benefits of TimescaleDB is its compression mechanism,
which can reduce the amount of data stored by up to 90%.
It uses native columnar compression applied to each
chunk, which allows old data to be stored in a column-
oriented format for efficient aggregation and fresh data to
be stored in a row-oriented format for fast access [22].

MongoDB is widely used in digital twin systems to store
entities, primarily due to its flexible schema-free document
model, which is ideal for managing dynamic and complex
data structures commonly found in digital twins. In the
context of digital twin architectures, MongoDB does an
excellent job of handling hierarchical and relational data
models that represent entities and their relationships in the
digital twin ecosystem. For example, digital vehicle twin
projects use MongoDB to store digital representations of
vehicles and synchronize them with real-time data from
the physical world. In digital twins for IoT and large
industrial systems, MongoDB’s distributed architecture
allows handling huge data sets and entity representations
on multiple nodes, providing high availability and low
latency, while its horizontal scalability supports the
growing needs of interconnected digital twin
environments [23, 24].

The architecture of digital twins often involves real-time
monitoring and synchronisation of the physical and digital
systems, as demonstrated in recent flexible manufacturing
systems [25]. Recent studies have shown the potential of
deep reinforcement learning to optimize manufacturing
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processes using digital twins, providing automated control
systems that reduce costs and improve efficiency [26]. The
integration of Cyber-Physical Systems (CPS) with digital
twins plays a vital role in ensuring accurate control and
simulation of production processes [27]. The OpenTwins
architecture in Fig. 2 shows InfluxDB, and MongoDB are
an integral part of its functionality, but serve different
purposes [28].

InfluxDB is used as a time series database in
OpenTwins. Its role is to manage sensor data and other
time-sensitive information. In particular, it stores real-time
data generated by IoT devices connected to the digital
twin. In this architecture, sensor data is fed through tools
such as Telegraf, which connects to Apache Kafka to
stream data. For example, in the OpenTwins use case in
the petrochemical industry, InfluxDB stores sensor data on
the freezing temperature of lubricants. This data is then
used in predictive models (via Kafka-ML) and visualized
in Grafana, allowing plant operators to monitor and predict
freezing temperatures in real time.

MongoDB is used in OpenTwins to manage entities
rather than time series of data. It handles non-relational
structured data representing digital twin entities. The
flexibility of the MongoDB schema makes it an excellent
choice for storing hierarchical structures defining digital
twins and their subcomponents. This is particularly useful
for managing complex relationships between different
parts of a digital twin, such as machines, sensors, or even
subsystems, where each entity may have dynamic
attributes and properties that change over time. In the
OpenTwins architecture, MongoDB is responsible for
storing persistent data related to user configurations, entity
states, and twin compositions, allowing easy updating and
retrieval as the digital twin evolves.
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Fig. 2. OpenTwins architecture reproduced from [28].

This division of responsibilities between InfluxDB for
time series data and MongoDB for entity management
ensures that both real-time data streams and complex
dynamic data structures can be efficiently handled in the
OpenTwins framework. The concept of Cyber-Physical
Production Systems (CPPS) is closely linked to the
development of digital twins in Industry 4.0, enabling
more adaptive and responsive systems [29]. The
integration of digital twins with big data analytics is
critical for smart manufacturing, offering 360-degree
visibility into processes and operations [30]. The
convergence of digital twins and multimedia technologies
is shaping new applications, particularly in immersive
environments [31].

The objective of this study is to provide a quantitative
performance evaluation of InfluxDB and TimescaleDB
under simulated IloT workloads, focusing on write
throughput and query latency. The research aims to
compare these databases to identify trade-offs between
write-intensive and read-intensive operations, as well as to
provide actionable recommendations for selecting or
combining database technologies based on specific use
cases in digital twin and I1oT systems. By addressing these
objectives, this research seeks to fill a critical gap in the
literature and guide practitioners in choosing the right
database  architecture = for  their  digital twin
implementations. While benchmarks of individual
database systems exist, the novelty of this study lies in
contextualizing these performance metrics specifically for
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the demanding data persistence layer of an IloT-enabled
Digital Twin. This research provides a direct, quantitative
comparison to validate the hybrid architectural model that
is often discussed theoretically but lacks specific,
comparative  performance data to support its
implementation.

The findings of this study will help industries optimize
their database strategies for digital twins and IIoT systems,
highlighting the strengths and limitations of existing
technologies. Additionally, this research will offer insights
into potential hybrid architectures that combine the
advantages of multiple database systems, enabling more
efficient and scalable solutions for the challenges faced by
modern industrial environments. By evaluating real-world
use cases and performance benchmarks, this study will
provide practical recommendations for implementing
robust and future-proof data management strategies.

II. METHODOLOGY

To evaluate the performance of InfluxDB and
TimescaleDB, a benchmarking system was developed to
simulate the data-handling requirements of the persistence
layer of a Digital Twin, where high-frequency data from
IToT sensors must be ingested and made available for
analytics. The complete source code for the benchmarking
tool is available as supplementary material to ensure
reproducibility [32].
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A. Experimental Setup

In this study, a software system consisting of several
key components was used to benchmark the InfluxDB and
TimescaleDB databases. The main goal was to evaluate the
performance of each database during data write and read
operations. For this purpose, the Go programming
language was chosen due to its established reputation for
high performance and native support for concurrency.
These features were critical for developing a high-
throughput benchmarking tool capable of managing large
data volumes and processing database queries in parallel.
Furthermore, Go’s standard library provides high-
resolution timing functions, which offered the necessary
accuracy for measuring execution times at the millisecond-
level granularity required by this study. This capability,
combined with simplified interaction with database
Application Programming Interfaces (APIs), ensured the
reliable collection of performance data [33, 34]. In
addition, the system was deployed using Docker
containers, which made it possible to quickly and easily
isolate work environments for each database. This made it
possible to ensure the same conditions for both tested
systems and to avoid the influence of external factors, such
as differences in hardware configuration. Docker
containers made it easy to set up and manage databases,
ensuring reproducibility of experiments and accuracy of
the results obtained. Each database, both InfluxDB and
TimescaleDB, was run in a separate container, which
ensured their independent operation and excluded the
influence of one database on another. This architecture
made it possible to conduct parallel benchmarks, evaluate
their performance under real load conditions, and analyse
key metrics such as write speed and response time when
reading data.

Fig. 3 shows the architecture of the benchmark. The
overall architecture of the benchmark, shown in Fig. 3, is
an adaptation of a benchmark for time-series databases in
Scientific Experiments and Industrial Internet of Things
(SciTS) framework proposed by Mostafa et al. [35]. The
processes in the architecture begin with the configurator,
which sets all the necessary parameters for correct
connection to databases and additional parameters for
adjusting the frequency of requests. After that, the module
is configured to connect several clients to the database in
parallel for multithreaded load and database testing, a data
generation module is enabled inside the module, namely
time series, after which the data is transferred to the
benchmark logic processing module, where the processes
of creating and preparing database queries take place, after
that the queries are sent to the abstraction layer work on
the database and further access to the database itself. The
internal monitoring module collects performance
information and outputs the result in a CSV (Comma-
Separated Values) file format.

Docker containers have been selected for convenient
and fast database deployment. In Fig. 4, both databases
were deployed in isolated environments using Docker
containers to ensure consistent and reproducible testing
conditions. InfluxDB was configured to optimize write
performance and long-term data storage. The Write-Ahead
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Log (WAL) was enabled to allow for high-speed data
ingestion by buffering writes before committing them to
disk. The Time-Structured Merge tree (TSM) storage
system was configured to manage time-series data
efficiently, with optimizations for compression and
storage. A default retention policy was applied, allowing
data to persist without additional truncation during the
tests. TimescaleDB was configured to leverage its
strengths in querying and data management. Hypertables
were used to partition data into chunks based on time
intervals, enhancing query performance and scalability.
Continuous aggregates were enabled to precompute and
store results for common queries, reducing overhead
during  benchmarking. The database inherited
PostgreSQL’s default settings for query execution and
indexing, with hypertable-specific optimizations applied.
Both databases were allocated identical resources within
their Docker containers, including equal CPU (Central
Processing Unit) shares to ensure comparable processing
power, the same amount of Random Access Memory
(RAM) to handle data caching and processing, and
identical storage configurations to standardize read and
write performance. This standardized setup minimized
variability and ensured the results reflected the inherent
performance characteristics of the databases under similar
workloads.
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Fig. 4. Databases in docker containers.

The Go programming language was used to write a
program that implements two benchmarks: writing and
reading data into each database. Go was chosen due to its
high performance and built-in support for competitive
tasks. The benchmark program was written using third-
party libraries and the Go standard library for working with
database queries, as well as libraries for interacting with
the InfluxDB and TimescaleDB APIs.
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B. Benchmark Implementation

To evaluate the performance of InfluxDB and
TimescaleDB, a benchmarking system was developed to
simulate the data-handling requirements of the persistence
layer of a Digital Twin, where high-frequency data from
IIoT sensors must be ingested and made available for
analytics.

The Go program implements benchmarks for writing
and reading data in each database. The logic for these
benchmarks was designed to test write speeds with a
continuous stream of data and read speeds with analytical
queries on datasets of 50,000 and 250,000 rows. During
testing, each database processed requests for data
sampling, and the response time was recorded for
comparative analysis.

Benchmark Timescalewrite and Benchmark
Timescaleread are modules responsible for testing the
speed of writing data to the database, the speed of reading
data, with different amounts of data: 50,000 and 250,000
rows. During testing, rows containing three parameters
were recorded in each database: the sensor ID, the
measured temperature and the timestamp. Each database
processed requests for data sampling, and the response
time was recorded and used for comparative analysis.

C. Data Generation

Generated data simulating the behavior of temperature
sensors were used to conduct the experiment. Three
parameters were stored as input data in the databases.
Sensor ID: the unique identifier of each sensor from which
the data comes. Temperature: the temperature values that
were generated for each sensor. Timestamp: The time at
which the temperature measurement was recorded.

SenSOrTemperature = BaseTemperature X

Sine_Value X Noise

(M

The generation formula Eq. (1) was based the base
temperature (Base_Temperature) was calculated based on
the sensor ID value and formed the starting point for each
sensor. For example, for a sensor with ID 0, the base
temperature started at 20.0 °C, and for a sensor with ID 1,
it started at 21.0 °C. This decision was made in order to
demonstrate the diversity of temperature values for each
sensor individually for visual display in combined graphs.

Eq. (2) was calculated based on a sinusoidal function
that takes into account the frequency of changes depending
on time.

21Xt

) @
A—the amplitude of temperature fluctuations. In this case,
the amplitude was set to 5.0 °C, which means that the
temperature will fluctuate 5 degrees above and below the
base value. +—the current time, expressed in hours. It is
calculated by dividing the timestamp of the current time by
3600 seconds (the number of seconds in one hour). 7—the
oscillation period, which is 24 h. This means that the
temperature will be repeated every 24 h, simulating daily

Sine Value A X sin(

2 . . .
changes. sm(nTXt) —a sinusoidal function that creates
smooth periodic oscillations. In this formula, it sets the
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daily cycle of temperature fluctuations. At the time
corresponding to morning and evening, the value of the
sine wave will be near zero, and in the middle of the day
and night it will reach extreme values. To generate more
realistic synthetic data, the noise was modeled using a
Gaussian (normal) distribution with a mean of 0 and a
standard deviation of 0.5 °C.

This study assumes that the performance observed in the
controlled environment reflects real-world scenarios.
However, certain factors, such as hardware variability and
network latency, were not considered. Additionally, the
synthetic datasets, while representative of typical IloT
workloads, may not capture all complexities of specific
industrial applications. The complete benchmarking
framework, including data generation scripts and database
configurations, is available upon request to facilitate
reproducibility. Previously published methods, such as
database-specific optimizations, are referenced in the
respective sections of this paper.

D. Existing Constraints and Future Extension Directions

This study was intentionally scoped to evaluate the core
performance metrics of write throughput and analytical
query latency under a high-ingestion workload. It is
assumed that the performance observed in this controlled
environment is indicative of real-world behavior, though
factors like network latency were not considered. The
benchmark focused on complex analytical queries, as these
are often bottlenecks in IloT systems. A comparison of
simple point-query performance was not included and
remains an area for future investigation. Furthermore, this
study did not evaluate other important non-functional
requirements. A comprehensive analysis of resource
utilization (CPU, memory, and storage costs for indexing),
elasticity, high availability, and fault tolerance would be
valuable extensions to this work. Future research should
also explore the practical implementation of the proposed
hybrid architecture. This includes evaluating middleware
solutions (e.g., Apache Kafka, NiFi) for orchestrating data
routing between an ingestion-optimized database like
InfluxDB and an analytics-optimized database like
TimescaleDB.

III. RESULTS

Benchmarks for data write and read operations were
conducted to evaluate the performance of InfluxDB and
TimescaleDB databases. The following benchmark
extends existing evaluations of InfluxDB and
TimescaleDB by demonstrating its stability under
sustained high-throughput conditions with real-world I[loT
workloads. The results of each database are shown in
Figs. 5 and 6. The results obtained make it possible to
identify differences in data processing speed between these
systems, which is shown in Figs. 7 and 8.

A. Write Performance

The graph in Fig. 5 highlights the robust performance of
InfluxDB under a continuous high-frequency data stream,
achieving an average write speed of approximately
310,000 records per second. This is evidenced by the stable
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plateau observed after an initial increase in write speed,
with values consistently ranging between 300,000 and
320,000 records per second. The lack of significant

fluctuations demonstrates InfluxDB’s reliability in
processing large volumes of real-time data, making it an
ideal solution for time-series use cases in IloT
environments.
e INfluxDB
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Fig. 5. Write speed over time in InfluxDB.
Compared to existing literature on time-series

databases, these results underscore the efficiency of
InfluxDB’s architecture, particularly its Write-Ahead Log
(WAL) mechanism and time-sharded storage. This aligns
with findings by other studies, which emphasize the
database’s optimization for high-speed write operations.
Such performance makes InfluxDB a suitable choice for
scenarios requiring real-time data ingestion, such as IloT
systems and predictive maintenance in digital twins. The
ability of InfluxDB to sustain a stable write speed of
310,000 records per second under high load conditions
directly supports its applicability in time-critical IloT
systems and digital twins. This performance ensures
seamless real-time data collection, which is crucial for
predictive maintenance, process optimization, and
decision-making. By reliably handling such high data
volumes, InfluxDB minimizes potential bottlenecks in
high-frequency data environments, ensuring operational
efficiency in industries like manufacturing and energy.

This result demonstrates that InfluxDB excels in
scenarios prioritizing write throughput. Nevertheless,
when analytical complexity or large-scale querying is
required, systems like TimescaleDB might offer
complementary advantages, as demonstrated in later
sections. Combining the strengths of different database
systems could further enhance the flexibility and capability
of digital twin architectures.

Fig. 6 illustrates a gradual decline in TimescaleDB’s
write speed from an initial rate of 6000 records per second
to a low of 4500 records per second. This performance
decrease, while steady, suggests resource-intensive
processes such as chunk creation and index maintenance
that are inherent to TimescaleDB’s architecture. The
system stabilizes slightly toward the end, indicating its
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ability to maintain functionality under stress while
managing internal optimizations.

e TimescaleDB

rows/s

timestamp

Fig. 6. Write speed over time in TimescaleDB.

The slight recovery in write speed at the end indicates
that TimescaleDB can maintain operational stability
despite temporary performance drops. This suggests
potential optimization mechanisms in play, such as
periodic garbage collection or adaptive resource
management. The observed decline in TimescaleDB’s
write performance underscores its limitations in handling
large-scale, continuous data ingestion. However, its
stability at lower write speeds makes it a reliable choice
for applications where analytical capabilities are
prioritized over raw ingestion speed. This insight
highlights the need for careful consideration of database
choice based on the specific requirements of a digital twin
system, suggesting TimescaleDB’s role in scenarios
focused on long-term data analysis rather than real-time
monitoring.

These results underline that while TimescaleDB
provides consistent operation, it may not be ideal for
scenarios requiring sustained high-frequency data writes.
Instead, its strengths are likely better leveraged in
applications where the focus is on querying and analyzing
time-series data rather than purely high-throughput data
ingestion. This makes TimescaleDB a suitable choice for
use cases such as monitoring systems, financial analytics,
and predictive maintenance, where efficient querying and
aggregation are more critical than extreme write
performance.

Fig. 7 reveals a stark contrast in write performance
between InfluxDB and TimescaleDB when handling a
dataset of 50,000 rows. InfluxDB achieves a write speed
of 150,000 rows per second, significantly outperforming
TimescaleDB’s 3000 rows per second. This difference
underscores InfluxDB’s architectural optimization for
high-throughput ingestion, whereas TimescaleDB’s SQL-
based design adds overhead that limits its write efficiency.
InfluxDB’s superior performance can be attributed to its
time-sharded architecture and the use of a Write-Ahead
Log (WAL), which are optimized for high-throughput
time-series data ingestion. These features allow InfluxDB
to handle large volumes of sequential data efficiently,
making it a suitable choice for applications requiring rapid
data ingestion.
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Fig. 7. The results of testing the program in the speed of writing to the
database with a volume of 50,000 rows.

In contrast, TimescaleDB, as an extension of
PostgreSQL, processes timestamps within the context of
relational database structures. This integration adds
overhead, such as indexing and chunk management, which
impacts its ability to sustain high write speeds. While this
design supports complex querying and long-term data
analysis, it limits TimescaleDB’s performance in write-
intensive scenarios. The stark performance difference
between InfluxDB and TimescaleDB illustrates the trade-
offs in database design for IloT and digital twin systems.
While InfluxDB excels in write-intensive scenarios,
TimescaleDB’s slower performance points to its reliance
on additional functionalities such as SQL processing.
These findings emphasize the importance of aligning
database selection with system priorities—whether it’s
high-throughput ingestion or advanced analytics.

These results underline the strengths of each database
for different use cases. InfluxDB is well-suited for
environments requiring high-frequency data recording,
such as real-time monitoring systems. On the other hand,
TimescaleDB, with its SQL capabilities, may be more
advantageous for applications emphasizing analytics and
historical data querying over raw write performance.

B.  Query Performance

Fig. 8 compares the query performance of InfluxDB and
TimescaleDB for a dataset of 250,000 rows. TimescaleDB
processes queries in 40 ms on average, outperforming
InfluxDB’s 150 ms. This demonstrates the efficiency of
TimescaleDB’s hypertable design and SQL optimization,
which focus query execution on relevant data chunks and
enable faster retrieval times, especially for analytical
queries.

InfluxDB, on the other hand, processes queries in
150 ms. While this performance is acceptable, it is notably
slower than TimescaleDB for the same data volume. The
decrease in performance with larger datasets may be linked
to InfluxDB’s time-sharded architecture, which, while
optimized for write operations, can introduce overhead
during read operations when accessing specific subsets of
data. TimescaleDB’s superior query performance at 40 ms
per query demonstrates its value in applications requiring
rapid data retrieval and analysis, such as operational
reporting or historical data trend analysis in digital twins.
Conversely, InfluxDB’s slower query speed suggests it is
better suited for real-time monitoring, where write speed
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takes precedence. This distinction highlights the
complementary roles these databases can play in hybrid
architectures.
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Fig. 8. The results of testing the program in the time spent on processing
1 data select query.

These results highlight the contrasting strengths of the
two databases. TimescaleDB excels in read-intensive
scenarios requiring efficient data sampling and complex
analytical queries, making it well-suited for applications
such as historical data analysis and reporting in digital twin
systems. Conversely, InfluxDB, with its focus on high
write throughput, is better suited for real-time monitoring
where frequent read operations are less critical.

IV. DISCUSSION

The results of this study support the initial hypothesis
that no single database excels at both high-speed data
ingestion and complex analytics for IloT and digital twin
systems. Instead, InfluxDB and TimescaleDB demonstrate
a clear trade-off between write-intensive and read-
intensive performance, with each being suited to different
aspects of a digital twin architecture.

While MongoDB plays a crucial role in Digital Twin
architecture for managing entity data, as seen in the
OpenTwins framework, it was intentionally excluded from
the performance benchmark. Its document-based
architecture is optimized for flexible, semi-structured data
representing digital twin entities and their complex
relationships, not for high-throughput time-series
ingestion. Therefore, a direct performance comparison
against specialized time-series databases for this specific
task would not be a meaningful evaluation of their distinct
and complementary functions within a hybrid system.

Similarly, other well-regarded time-series databases
such as Open Time Series Database (OpenTSDB) were not
included in this benchmark. The primary goal of this study
was not to provide an exhaustive survey of all available
technologies, but rather to perform a deep comparative
analysis of two leading databases with distinct
architectural philosophies—InfluxDB and
TimescaleDB—that are commonly considered for IIoT
applications. This focused comparison allowed us to
directly evaluate the trade-offs between a purpose-built
time-series solution and a PostgreSQL-based extension,
which is central to our recommendation of a hybrid
architecture. Future work could certainly extend this
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benchmark to include a wider array of databases to provide
a broader market overview.

InfluxDB’s superior write performance, peaking at over
300,000 records per second, is consistent with findings
from other studies that highlight its architectural strengths,
such as the Write-Ahead Log (WAL) and time-sharded
storage. This makes InfluxDB an ideal choice for the data
ingestion layer of a digital twin, where it can reliably
handle high-frequency data streams from thousands of
sensors in real-time. This capability is critical for
applications like real-time monitoring and immediate
operational feedback.

Conversely, TimescaleDB’s slower write speed can be
attributed to the overhead associated with its relational
foundation, including indexing and chunk management
within its hypertable structure. While this limits its
suitability for extreme data ingestion scenarios, these very
features are what enable its superior query performance.
An average query time of 40 ms on a large dataset makes
TimescaleDB highly effective for the analytical layer of a
digital twin. It is well-suited for tasks that require complex
querying, historical data analysis, and generating insights
for predictive maintenance or process optimization.

The performance differences underscore the importance
of aligning database selection with specific system
priorities. For a digital twin system requiring both real-
time data capture and deep analytics, a hybrid architecture
is the most effective solution. In such a setup, InfluxDB
could serve as the primary time-series data store for
incoming sensor data, while TimescaleDB could be used
for aggregated data, long-term storage, and as the backend
for analytical dashboards and reporting tools. This
approach leverages the strengths of both technologies,
creating a more robust and capable system than a single-
database solution.

V. CONCLUSION

This study provides a quantitative comparison of
InfluxDB and TimescaleDB, revealing their distinct
strengths for the data persistence layer of Digital Twin and
IIoT applications. The benchmark results offer a
significant contribution by providing specific performance
metrics: InfluxDB excels at high-throughput data
ingestion, with demonstrated write speeds of over 300,000
records per second, making it ideal for the real-time data
synchronization required by a Digital Twin. In contrast,
TimescaleDB is superior for analytics, executing complex
queries in an average of 40 ms, making it suitable for the
analytical and simulation components of a DT
architecture. These findings provide clear, data-driven
evidence that a hybrid database architecture is the most
effective approach for systems that demand both high-
speed data capture and robust analytics.

This research moves beyond theoretical
recommendations by presenting concrete data that
empowers engineers to design more efficient and reliable
Digital Twin systems. By adopting a hybrid model—using
InfluxDB for real-time ingestion and TimescaleDB for
analytics—industries can build scalable and future-proof
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data infrastructures that form the foundation of a high-
fidelity Digital Twin.

Future work could extend these benchmarks to include
other emerging database technologies or evaluate the
performance of middleware designed to manage data flow
in such hybrid systems. Ultimately, this study’s primary
contribution is the technological clarification and new data
that validate a hybrid database strategy, advancing the
practical implementation of high-performance, data-
driven Digital Twins.
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