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Abstract—Diabetic Retinopathy (DR) remains one of the
leading causes of preventable blindness worldwide, and early,
reliable diagnosis is essential for reducing vision loss. Deep
learning has shown promise in this domain, but single models
often suffer from limited generalizability, sensitivity—
specificity imbalance, and high computational demand. To
address these challenges, we present PolyVision, a modular
ensemble framework designed for robust and equitable DR
screening. PolyVision integrates three complementary
backbones—ResNet50, EfficientNet-B2, and Vision
Transformer—each capturing different levels of spatial and
contextual retinal features. Their predictions are combined
through a dual fusion mechanism based on mean and
maximum voting, which balances diagnostic sensitivity and
specificity while minimizing variance across models. To
further enhance robustness, the models are trained with
diverse augmentation strategies, and hyperparameters are
tuned for optimal performance. Evaluated on ultra-widefield
fundus images, PolyVision achieved an AUC-ROC of 0.953,
an AUPRC of 0.975, and an inference latency of 110 ms per
image, demonstrating both high diagnostic accuracy and
clinical efficiency. Beyond accuracy, the framework
incorporates fairness evaluation across imaging subgroups,
supporting more equitable diagnostic outcomes. Its
lightweight design also facilitates deployment in resource-
constrained clinical settings without compromising
reliability. These results highlight the potential of ensemble
learning to provide scalable, accurate, and fair DR screening.
However, additional validation on multi-institutional
datasets and real-world clinical environments remains
necessary before broad clinical adoption.
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1. INTRODUCTION

Retinal Diseases (RD), i.e., Diabetic Retinopathy (DR),
are among the top causes of visual impairment and
blindness throughout the world, DR being a specific threat
to the working-age population. According to the World
Health Organization, DR affects more than 90 million
people globally and remains a leading cause of preventable
blindness [1]. In parallel with the increase in diabetes
prevalence, the global burden of DR also continues to
surge, thereby placing a significant strain on healthcare
systems worldwide. Early detection and timely treatment
have been recognized as key strategies in the attempt to
reduce vision loss from DR [2].

Deep learning-based diagnostic systems have shown
immense promise in augmenting clinical workflows for
DR detection and monitoring. Convolutional Neural
Networks (CNNs) have long dominated medical image
analysis due to their capacity for efficient local feature
extraction [3]. More recently, Vision Transformers (ViTs)
have gained attention for their ability to capture long-range
dependencies through self-attention mechanisms [4-6].
However, ViTs are computationally intensive and prone to
overfitting in domains like medical imaging, where
annotated data is often scarce. Conversely, CNNs—while
less global in scope—offer strong performance with lower
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complexity, making them suitable for
constrained healthcare environments [7].

Automated diabetic retinopathy (DR) screening systems
face significant challenges due to the limited size and high
variability of available medical imaging datasets. Fundus
images often exhibit substantial heterogeneity arising from
differences in imaging devices, illumination conditions,
color distributions, and patient demographics, which can
lead to overfitting and poor generalization of deep learning
models. Prior studies have shown that conventional CNN-
based approaches are sensitive to such variability,
motivating the exploration of more robust architectures
and representations for DR grading [8, 9]. In particular,
lesion-aware and attention-based models have been
proposed to better capture discriminative features under
heterogeneous imaging conditions, yet generalization
across datasets remains challenging [8]. Recent ensemble-
based approaches address these issues by explicitly
modeling  uncertainty and leveraging test-time
augmentation to improve robustness under domain shift,
as demonstrated by the UATTA-ENS framework [10].
Furthermore, federated learning paradigms with
uncertainty-aware aggregation, such as FedUAA, have
been introduced to mitigate non-IID data distributions
across institutions by dynamically weighting client
contributions based on confidence measures, thereby
enhancing robustness in multi-center DR staging [11].
Earlier works and alternative modeling strategies,
including texture-based learning and biologically inspired
neural architectures, also highlight the persistent impact of
dataset limitations and imaging variability on DR
classification performance [12, 13]. Collectively, prior
studies highlight the need for diabetic retinopathy
screening models that remain robust under data scarcity,
image heterogeneity, and domain shift to support reliable
clinical deployment [7-11]. Motivated by these
challenges, PolyVision adopts a unified ensemble strategy
that combines multiple models to improve generalization
and reduce prediction variance. By encouraging each
component model to learn complementary representations
through targeted enhancements, the system becomes more
resilient to real-world clinical variability.

In this work, we present PolyVision, an extensible
multi-model fusion framework designed to enhance
robustness, accuracy, and fairness in retinal disease
classification. The framework integrates three neural
architectures—ResNet50, EfficientNet-B2, and Vision
Transformer (ViT)—each trained using distinct
augmentation strategies to promote feature diversity and
mitigate  overfitting. Predictions  from  these
complementary experts are aggregated through a dual
voting mechanism based on maximum and mean
probability scores.

resource-

II. LITERATURE REVIEW

The study aims to enhance automated Diabetic
Retinopathy (DR) screening by integrating deep learning
with image mining techniques to localize disease-relevant
features in retinal images, without relying on manually
annotated lesion data.
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A. Deep Learning for DR Classification

Earlier CNN-based approaches, such as the deep
learning framework proposed by Mehboob et al. [14],
demonstrated strong performance on large-scale fundus
image datasets, underscoring the potential of deep learning
for automated diabetic retinopathy grading. MVDRNet
applied  attention  mechanisms  for  multi-view
representation learning to improve classification [15].
Sait [16] proposed a lightweight CNN-based deep learning
model for diabetic retinopathy detection, emphasizing
reduced computational complexity while maintaining
competitive classification performance. Zhu et al. [17]
developed an optimized CNN model utilizing MobileNet
as its backbone and obtained competitive and even
superior results to those of transformer-based architectures
on retinopathy tasks.

B.  Transformers, MIL, and Hybrid CNN-Transformer
Models

Emerging architectures have shown growing interest in
exploring transformer-based paradigms for diabetic
retinopathy classification. In this regard,
Boulaabi ef al. [18] proposed a Swin Transformer with a
shifted window mechanism to enhance DR grading by
capturing  hierarchical and  contextual  retinal
representations. Recent studies suggest that transformer-
based components can effectively model global contextual
information relevant to diabetic retinopathy severity
assessment [7]. Building on this trend, Rezaee and
Farnami [19] demonstrated that incorporating transformer
representations into CNN feature pipelines strengthens
global retinal context modeling compared to standalone
CNN approaches.

C. Ensemble
Approaches

Methods and  Calibration—Aware

Ensemble learning strategies have also been explored in
broader medical imaging tasks, where combining multiple
processing stages and classifiers has been shown to
improve robustness and predictive performance [20].
Ensemble methods have also been attempted. Early work
by Antal and Hajdu [21] employed a combination of
certain image-processing features with ensemble
classifiers to attain very high performance on the Messidor
dataset.

Contemporary methods have explored ensemble
learning and Bayesian deep learning frameworks to
improve predictive reliability by explicitly modeling
uncertainty in diabetic retinopathy classification. In this
context, calibration metrics such as Expected Calibration
Error (ECE) and Brier Score are commonly reported as
evaluation measures to assess the reliability of
probabilistic predictions. Bayesian uncertainty-aware
approaches applied to DR detection on datasets such as
APTOS have demonstrated strong classification
performance while providing uncertainty
estimates [22, 23].

UATTA-ENS introduced uncertainty-aware test-time
augmented ensembles to offer well-calibrated DR
predictions [10]. Federated learning approaches with
uncertainty-aware aggregation (FedUAA) further enhance
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staging robustness across institutions, dynamically
aggregating clients based on confidence scores [11].

D. Gap & Positioning of Planned Fusion

Despite these developments, gaps remain:

Few methods even provide model-specific
normalization procedures among ensemble members
explicitly.

Ensemble methods are more concerned with accuracy
and less concerned with model uncertainty calibration in
classification.

Hybrid CNN-Transformer methods are still emerging
and often lack uncertainty-aware components.

TABLE 1. SUMMARY OF DEEP LEARNING METHODS FOR DR

CLASSIFICATION
Study Approach Highlights Limitations
Lesion-aware Global context No uncertainty,

Sun et al. [8]

Transformer modeling no ensemble
CNN-based
methods a
CNN with hybrid  highlight the  \© calibration,
Vo et al. [9] . ensemble, or
color space importance of .
uncertainty
global color-
context
Uncertainty-aware Test-time Focused on
Seth et al. [10] Y augmentation + well-calibrated
ensemble o
calibration outputs
Federated +

Client reliability Collaborative

L [11 rtainty- L .
Wang et al. [11] uncertainty-aware estimation setting only

aggregation

No calibration

Spiking Neural ~ High accuracy,

Ragab [13] Network AUC ~0.99 or unpertainty
estimates

Luo et al. [15] Attention-based Multi-view  No ensemble or

) CNN (MVDRNet) features uncertainty
Robust

Heterogeneous generfilization, Higher traiping
Proposed CNN_ViT calibrated complexity
PolyVision ensemble predictions, than single

fairness-aware models

analysis

Despite the progress of recent Swin-Transformer
ensembles, hybrid CNN-ViT models, lightweight
MobileViT pipelines, and fairness-aware ensemble
frameworks, there remain gaps in explicitly combining
normalization diversity, calibration, and bias evaluation
within a unified DR screening pipeline.

Our ensemble-based fusion method meets these
challenges because it integrates ensembles with model-
specific normalizations and uncertainty calibration to
obtain stable, interpretable, and robust DR classification.
Table I summarizes the deep learning methods for DR
classification with highlights and limitations.

III. METHODOLOGY

To ensure the maximum performance of PolyVision in
retinal image classification, we employed a multi-
hyperparameter tuning and model augmentation approach.
We further investigated expanding the model’s width
during extensive testing, balancing computational cost and
meaningful feature extraction, especially in the context of
the model fusion approach. The following sections
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describe these advances and their general impact on model
effectiveness.

A.  Model Architecture

In this work, we employ PolyVision framework a
collaborative ensemble of Convolutional Neural Networks
(CNNs) this design reconciles the trade-offs between
model efficiency and accuracy and be robust against
overfitting, particularly for small and imbalanced medical
datasets. The chosen CNN architectures, e.g., ResNet50
and EfficientNet-B2, are recognized for their high-level
feature extraction capabilities and computationally
efficient design. One of the key advancements in our
strategy is the inclusion of sophisticated channel-wise
attention mechanisms, i.e., Squeeze-and-Excitation (SE)
blocks. The SE blocks allow the feature maps to be
recalibrated, emphasizing essential retinal features. With
the feature map recalibration, we can ascertain that the
models handle high-resolution fundus images fairly well
without needing deep or computationally demanding
architectures. The number of feature layers can be
managed by employing the channel multiplication factor.
In this work, we design an easy-to-use yet effective
architecture that merges multiple CNN models trained on
a shared dataset but with varying model configurations to
improve robustness on new samples during inference.

ResNet50 (Local Feature Specialist): Extracts fine-
grained, localized retinal features like microaneurysms
and exudates using residual connections that stabilize
deeper architectures.

EfficientNet-B2 (Balanced Performer): Balances depth,
width, and resolution through compound scaling, aided by
Squeeze-and-Excitation (SE) blocks for dynamic channel-
wise attention. It effectively captures mid-level patterns
like vessel tortuosity.

Vision Transformer (ViT) (Global Context Expert):
Uses self-attention mechanisms to model global
dependencies between patches in the image. Ideal for ultra-
widefield fundus images, where understanding the spatial
distribution of lesions is critical. This ensemble design
ensures that the strengths of each model compensate for
the weaknesses of the others, offering a comprehensive
analysis across different retinal imaging contexts.

1) ResNet 50

ResNet50 is a revolutionary deep learning image
classification model in terms of its novel application of
residual connections. They address the vanishing gradient
problem, facilitating networks to be significantly deeper
without any loss of performance. The model’s architecture
is founded on four key constituents: Early Convolutional
Layers: These pick up low-level visual data like edges and
textures. Identity and Convolutional Blocks: The core of
the network, these blocks learn features using residual
connections. Fully Connected Layers: These layers carry
out the last classification from the features extracted. As
seen in Fig. 1, ResNet50 architecture begins with a 7x7
convolution layer (64 filters) and a 3x3 max-pooling layer.
The network proceeds through four varying stages of
residual blocks of filter sizes from 64 to 128, 256, and
finally 512. There are a number of identity and convolution



Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

blocks per stage. The architecture concludes with a global
average pooling layer and a fully connected layer with
SoftMax activation to classify.
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Fig. 1. RestNet50 architecture.
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The main innovation is in the residual blocks. Each
block contains a “shortcut connection” that bypasses one
or more layers. This allows the initial input to be added to
the output of the block, so the network can learn residual
functions (output minus input) rather than complete
transformations. This puts the network directly in the
degradation  problem, where deeper networks
paradoxically have higher error rates.

With over 25 million parameters, ResNet50 offers
unmatched performance on benchmark datasets like
ImageNet. Its performance has also seen it being
extensively applied in transfer learning, where the learned
model is used as a capable feature extractor in facial
recognition, medical image analysis, and image
segmentation, among others.

2)  Efficient-Net-B2

EfficientNet is a part of convolutional neural network
models that have achieved state-of-the-art accuracy on
image classification, yet with computational efficiency.
The models are also enhanced with a compound scaling
technique, which increases the network depth, width, and
input resolution simultaneously with the coefficients
offered. Systematic scaling of the network represents a
significant break from past methods, mostly one-
dimensional scaling.

Empirical evaluations across diverse domains have
demonstrated Efficient Net’s exceptional versatility. In
oncological image analysis, Efficient Net variants have
repeatedly performed Dbetter than other tumour
classification task architectures. Similarly, these models
have played a pivotal role in automatic galaxy morphology
classification in astronomy. The architecture has been
applied successfully with audio signal processing, with
lightweight variants showing promise in keyword-spotting
applications.

The research community has expanded Efficient Net’s
utility through specialized modifications targeting
deployment constraints. Notable developments include
EfficientNet-eLite and TinyNet for edge computing
environments and  EfficientNet-HF, incorporating
adversarial training techniques. These variants maintain
the core scaling principles while optimizing for specific

operational requirements. The higher accuracy-efficiency
ratio of EfficientNet has enabled its integration into
commercial platforms since Google has integrated these
models into TensorFlow. Comparative tests indicate that
EfficientNet is faster and better than earlier architectures,
such as ResNet, on standard benchmark tasks with fewer
operations and parameters. Such a feature makes such
architectures extremely beneficial in low-resource
environments where memory access or energy usage are
significant limitations.

3) Vision Transformer (ViT)

ViTs’ essentially organize computer vision by
accomplishing exceptional performance across various
tasks, often surpassing traditional Convolutional Neural
Networks (CNNS). These models adopt the self-attention
mechanism originally developed for natural language
processing, treating images as sequences of patches
analogous to word embeddings in text processing.

The research community has actively pursued
improvements to ViT architecture fundamentals.
PreLayerNorm has emerged as a solution to performance
degradation in contrast-enhanced images, providing scale-
invariant behavior that increases model robustness.
Computational efficiency has been addressed through
techniques like As-ViT, an auto-scaling framework that
can optimize ViT design without large training iterations.
Similarly, unified pruning frameworks like UP-ViTs also
enable high model compression with structural integrity
while maintaining high levels of accuracy.

Long-term dependencies and the ability to record
complex spatial interactions within images are distinctive
advantages in contexts where global context awareness is
crucial to making accurate predictions. This is because this
ability arises from the self-attention mechanism’s ability
to simultaneously model the interactions among all image
regions, in contrast to the locality-constrained processing
characteristic of CNN architectures.

Even with ViTs’ remarkable progress, old CNNS still
have some areas where they dominate. CNNS are better
suited to reinforcement learning environments and
typically work better on computational and memory
efficiency for specific tasks. This relative advantage
highlights that architectural choice must remain context-
dependent, with each approach offering unique strengths

suited to particular application requirements and
computational constraints. Fig. 2 shows vision
transformers architecture.
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B.  Data Augumentation Strategy

Given the limited size and homogeneity of clinical data,
augmentation must be applied to prevent overfitting. The
backbone was trained wusing a model-specific
augmentation pipeline to encourage complementary
learning: Geometric transformations: random rotation
(£15°), horizontal/vertical flip (p = 0.5), random scaling
(£10%). Photometric alterations: luminance adjustment
(+10%), contrast adjustment (interval [0.9, 1.1]), Gaussian
noise (¢ = 0.01). Normalization: ResNet50: ImageNet
mean/std normalization. EfficientNet-B2: Dataset-specific
mean/std calculated from the training data. ViT: Image-
normalization in a global illumination pattern-preserving
manner. We chose to exclude more aggressive
augmentations (e.g., elastic deformation, color jitter
+20%) since they can generate non-biologic artifacts that
are against retinal anatomy.

C. Training Strategy

To ensure consistency across experiments, we unified
all hyperparameters (Table II). Early exploratory
experiments with 500 epochs were reduced to 100 epochs
with early stopping (patience = 15) for computational
efficiency.

TABLE II. ALL TRAINING CONFIGURATIONS FOR POLY VISION

Trainin,

Conﬁgura?ion Values
Optimizer Adam

Learning rate 1x107*

Weight decay 5x1073
Schedule Cosine Decay
Drop Rate 0.05

Epochs 100 (with early stopping)

Loss Function
Evaluation Metrics

Cross-Entropy
Accuracy, AUC, Average Precision
ResNet50, EfficientNet-B2, Vision

Transformer

Model Architectures

Model Fusion

Strategy Weighted Voting Mechanism

D. Implementation Details

All models were implemented in PyTorch. Transfer
learning was used, with ResNet50 and EfficientNet-B2
fine-tuned on the dataset. Fairness was evaluated post hoc
across synthetic subgroups (e.g., low vs. high contrast) to
assess performance consistency and reduce systematic
bias—particularly false negatives—across
subpopulations.

Model optimization was done using the Adam optimizer
with a given learning rate of 0.0001. The cross-entropy
loss was utilized to resolve the binary classification
problem. To attain stable convergence, all the models were
trained to 100 epochs with an extra early stopping
technique that stopped training when there was no
validation performance improvement over a certain
number of epochs. Although the sections did not explicitly
state weight decay and dropout layers, it would be more
evident in subsequent research how they can aid in
regularization. The architecture of diabetic retinopathy is
shown in Fig. 3.
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Fig. 3. Diabetic retinopathy detection architecture.

E.  Model Fusion: A Dual-Mechanism Approach

The predictions from the three trained models are
integrated at inference time using a weighted voting
mechanism. This ensemble strategy is critical for reducing
prediction variance and improving generalization, as the
uncorrelated errors of individual models are averaged out.
We implemented two distinct fusion strategies to align
with different clinical priorities:

1. Averaged Probability Voting: The predicted

probabilities from all three models are averaged to
produce the final output. This method provides a
balanced and robust prediction, leveraging the
collective confidence of the entire ensemble. It is the
preferred method for general screening.
Maximum Confidence Voting: The prediction from
the single most confident model (i.e., the one with the
highest output probability) is selected. This strategy
can increase diagnostic sensitivity, prioritizing the
detection of any potential sign of disease, which is
valuable in high-risk screening scenarios.

The fusion method used in implementation decreases

the risk of overfitting to certain augmentations or data

settings while allowing effective diabetic retinopathy
classification simultaneously. By taking advantage of the
inherent strengths of CNN-based and transformer-based
models, PolyVision attains improved accuracy, sensitivity,
and specificity in diabetic retinopathy classification.
Model fusion strategy is shown in Fig. 4.

Vision Transformer
Analysis

Final Prediction

Fig. 4. Model fusion strategy.

These complementary strategies address different
clinical objectives: weighted averaging balances
sensitivity and specificity for general screening, while
maximum confidence prioritizes sensitivity in high-risk
cases.
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Algorithm 1: Ensemble Prediction using Weighted
Averaging and Max Confidence Voting
Input:
p_resnet — Prediction from ResNet
p_efficient — Prediction from EfficientNet
p_vit — Prediction from Vision Transformer
wl, w2, w3 — Weights such that wl + w2 + w3 =1
Output:
y_pred_weighted, y pred max_conf — Final predicted
labels
Steps:
1. Weighted Averaging:
p_final «— wlx p_resnet + w2 x p_efficient +
w3 X p_vit
y_pred _weighted < 1 if p_final > 0.5, else 0
2.  Max Confidence Voting:
p_candidates < [p_resnet, p_efficient, p_vit]
y_pred_max_conf « argmax(p_candidates)
3.  Return:
y_pred weighted, y pred max conf

F.  Bias Mitigation and Fairness Evaluation

Recognizing that Al models can perpetuate biases

present in data, we incorporated a strategy to promote
fairness and robustness. Given the absence of demographic
labels, we adopted a post-hoc evaluation approach using
image characteristics as proxies for potential subgroups.
1. Robustness to Artefacts and Image Quality: We
evaluated the model's performance across synthetic
subgroups based on image properties (e.g., low-
contrast vs. high-contrast, sharp vs. blurred, presence
of vignetting). We assessed for Equal Opportunity,
aiming to ensure that the true positive rate (sensitivity)
was consistent across these subgroups. This analysis
helps confirm that the model does not systematically
fail for certain types of images, which could correlate
with different clinical settings or older imaging
equipment.
Mitigation of Domain Shift: The diverse, model-
specific data augmentation pipeline serves as our
primary strategy to enhance robustness against
domain shift. By exposing each model to a wide range
of brightness, contrast, and geometric variations, we
reduce the risk of performance degradation when the
model is applied to images from different devices or
sites than those seen during training.

TABLE III. FAIRNESS EVALUATION ACROSS IMAGE SUBGROUPS

Subgroup AUROC  Sensitivity  Specificity
High Contrast 0.954 0.902 0.926
Low Contrast 0.948 0.895 0.921
Sharp Images 0.955 0.904 0.927

Blurred Images 0.946 0.891 0.920
With Vignetting 0.950 0.836 0.922
Without Vignetting 0.953 0.900 0.924

To confirm the fairness assessment, we performed
subgroup analyses of the UWF dataset by image quality
attributes. That is, we compared performance between (i)
high-contrast and low-contrast images, (ii) sharp and
blurred images, and (iii) vignetting and non-vignetting
images. Table III presents AUROC and sensitivity across
subgroups. Outcomes demonstrate robust model
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performance, with sensitivity differences <2% and
AUROC differences within +£0.01 across subgroups. This
stability assures that PolyVision’s diversity gained through
augmentation suppresses systematic bias across imaging
variability.

G. Computational Environment

All models were trained and evaluated on a workstation
equipped with an NVIDIA A100 GPU with 40 GB of
VRAM, an AMD EPYC 7742 CPU, and 256 GB of system
RAM. The total training time for the entire 5-fold cross-
validation process was approximately 8 h. During
inference, the average time to process a single image with
the full PolyVision ensemble was 110 ms.

H. Reproducibility Details

To ensure the full reproducibility of the results
presented in this paper, all experiments were meticulously
conducted within the PyTorch deep learning framework
(v2.0). The entire codebase, including the final model
weights and the specific data split files used for training
and validation, has been made publicly available. This
allows for complete transparency and enables other
researchers to replicate our findings and build upon this
work. The materials can be accessed at the following
public repository: [https://github.com/puli-
pro/PolyVision_paper]

IV. UWF—ASSESSMENT FOR ULTRA-WIDEFIELD
FUNDUS IMAGES

A. Dataset and Evaluation Metrics

The images utilized in this study are from the Ultra-
Widefield (UWF) Fundus Imaging for Diabetic
Retinopathy (DR) dataset, which facilitates advancements
in the automation of DR grading. The dataset is a
collection of UWF fundus images that record a wide 200-
degree field of view of the retina and thus enable the
detection of Predominantly Peripheral Lesions (PPL)—a
critical component of DR diagnosis.

The dataset follows the International Clinical Diabetic
Retinopathy (ICDR) Severity Scale, classifying images
into different grades of DR, from Proliferative Diabetic
Retinopathy (PDR) to Non. The set also includes diabetic
macular oedema (DME) annotations, thus enabling multi-
task learning for DR classification and DME detection.

The UWF dataset provides multi-class labels
corresponding to the International Clinical Diabetic
Retinopathy (ICDR) severity scale. For the purpose of
developing a practical screening tool, this study focuses on
the binary classification task of identifying referable vs.
non-referable DR. All images with any sign of DR (mild,
moderate, severe, or proliferative) were consolidated into
the positive “DR” class, while images with no signs of
retinopathy formed the negative ‘“No-DR” class. All
reported metrics reflect the model’s performance on this
binary task.

This paper focuses mainly on assessing image quality in
ultra-widefield fundus images. The dataset for this paper
consists of 2838 samples divided into:

» 1408 DR samples
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» 1430 No_DR samples

With this extensive dataset, our research helps create
automated algorithms that enable early treatment and
diagnosis of DR patients and minimize the effort needed
to grade UWF fundus images.

1) Assessment criteria

To evaluate model performance, we use the following
measures:
» Precision—It quantifies the number of correctly
labelled images.
Area Under Curve (AUC-ROC)—Assess the model to
differentiate at various DR severity levels.
Precision-Recall (AUPRC)—Performance measure in
imbalanced classification shown in Fig. 5.

Avg Accuracy Avg Precision  Avg Recall Avg F-Measure

>

100%

50%

Performance

0%

Number of Attributes

B 6 Attributes B 9 Attributes  m12 Attributes 8 Attributes

Fig. 5. Parameter empirical studies based on the UWF dataset.

2)  Model evaluation methodology

In order to provide a fair and efficient assessment of our
model, we employed a 5-fold stratified cross-validation
strategy. The entire data set of 2838 images was divided at
the patient level to prevent leakage of information between
folds. The data were split based on diagnostic label DR vs.
No DR in order to distribute the two classes equally in
every fold.

For each of the 5 folds, a single one was left out as the
test set, and the remaining four folds were used for training
and validation. In every fold’s training set, there was an
80/20 split was employed to provide a clear training and
validation set for hyperparameter tuning. The resulting
final model performance is given as the mean and standard
range of the performance metrics across the whole 5-fold
test sets which provides a better approximation of the
model’s generalization ability.

B.  Experimental Results

This section presents the detailed evaluation of the
PolyVision framework. To ensure a strong and fair
assessment of our model's generalization abilities, we
conducted all experiments using a 5-fold patient-wise
stratified cross-validation protocol. The results reported
are the mean and standard deviation from these five folds.

1)  Overall performance of the PolyVision framework

The main goal of this study was to create a strong
diagnostic model for diabetic retinopathy. The full
PolyVision ensemble, which used the averaged probability
fusion method, performed very well on the UWF dataset.
The model showed a mean Area Under the Receiver
Operating Characteristic Curve (AUROC) of 0.953 +
0.004 and a mean Area Under the Precision-Recall Curve
(AUPRC) of 0.975 + 0.003.
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These results, derived from a rigorous cross-validation
process, indicate that the PolyVision framework is not only
highly accurate but also reliable, with low variance in its
performance across different subsets of the data. This
stability is a critical attribute for any model intended for
clinical application.

2)  Ablation study: Validating the ensemble approach

To quantify the contributions of each individual model
in the ensemble, we conducted an ablation study. Using a
5-fold stratified cross-validation protocol, we compared
the performance of individual models against various
ensemble configurations. The results, as shown in
Table IV, highlight the significant improvements achieved
by combining multiple models in the ensemble,
particularly when integrating CNNs with the Vision
Transformer.

TABLE IV. EFFECTIVENESS ANALYSIS OF THE POLY VISION ENSEMBLE

. AUROC AUPRC

Model Configuration (Mean = SD) (Mean = SD)
ResNet50 (alone) 0.931 +0.002 0.945 + 0.003
EfficientNet-B2 (alone) 0.940 + 0.003 0.958 +0.004
ViT (alone) 0.942 +0.001 0.961 £ 0.002

CNN Ensemble (ResNet50 +
EfficientNet-B2) 0.947 +0.003 0.969 +0.004
PolyVision (Full Ensemble) 0.953 + 0.004 0.975 + 0.003

As shown in Table 1V, the full PolyVision ensemble
achieves a statistically significant improvement in both
AUROC and AUPRC compared to any individual model
or the CNN-only ensemble. This clearly demonstrates the
value of integrating diverse architectures, validating the
efficacy of our heterogeneous approach. Fig. 6 shows
calibration diagram and Fig. 7 shows ROC curves.
Receiver operating characteristic curve analysis has been
employed in the analysis of the discrimination capability
of binary-classified models in demonstrating the trade-off
between the specificity and the sensitivity for various
threshold values. ROC curve analysis is a threshold-
independent measure for the evaluation of the classifier
performance in predictive modeling studies in the
healthcare setting. ROC analysis has been used in
healthcare predictive modeling as a standard tool in the
analysis of the performance in the classification task
irrespective of the threshold wvalues used in the
classification processes [24, 25].

Calibration Diagram

Fraction of positives

—e— ResNet50
—e— EfficientNet-B2

—e— MT

—&— CNN ensemble (avg)

—e— Full ensemble (avg, calibrated)

02

—e— Full ensemble (max, calibrated)

00 02 04 0.6 08 10
Mean predicted probability

Fig. 6. Calibration diagram.
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ROC Curves
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04 06
False Positive Rate
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Fig. 7. ROC curves.

3) Voting mechanism comparison

The PolyVision framework supports two distinct fusion
strategies to accommodate different clinical priorities. We
next compared the two fusion strategies: maximum voting
and averaged probability voting. This analysis presented in

Table V, aimed to understand the trade-offs between
different ensemble strategies, particularly in terms of
sensitivity, specificity, including model calibration as
measured by the Expected Calibration Error (ECE).

The results in Table V provide critical insights for
clinical application. The Maximum Voting strategy yields
a higher sensitivity, making it a suitable choice for initial
screening scenarios where the primary goal is to minimize
false negatives and identify all potential cases for further
review.

However, the Averaged Probability strategy achieves
superior overall performance in terms of AUC-ROC and
AUPRC, a better balance between sensitivity and
specificity, and significantly better calibration. Its lower
ECE indicates that its predicted probabilities are more
reliable and better reflect the true likelihood of disease.
This well-calibrated and balanced performance makes the
Averaged Probability method the recommended default
for most diagnostic use cases where predictive reliability
is paramount.

TABLE V. VOTING MECHANISM COMPARISON

Voting Mechanism  AUROC AUPRC  Sensitivity  Specificity ECE (%)
Maximum Voting 0.951 0.972 0.912 0.905 5.8
Averaged Probability 0.953 0.975 0.898 0.925 3.2

4)  Error analysis

A thorough qualitative error analysis was conducted to
identify patterns in misclassifications:

e frequently in images with artifacts such as drusen,
abnormal pigmentation, or slight blurring, which could
be mistaken for early-stage DR.

o False Negatives: These were common in cases where
DR was very subtle, such as when only a few
microaneurysms were visible in the peripheral retina in
Fig. 8.

These misclassification patterns suggest that future
improvements in model performance should focus on
targeted data augmentation strategies that emphasize these
failure modes. Potential future work may involve using
generative models to create more challenging training
samples that simulate these hard-to-detect cases, as shown
in Fig. 9.

Confusion Matrix (Averaged Probability)

1200
2 1000
800
600
144 200
200
DR

No DR

True Label
No DR

DR

Predicted Label

Fig. 8. Confusion matrix for average probability.
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Confusion Matrix (Maximum Voting)

1200

No DR

1000

800

True Label

600

DR

400

Predicted Label

Fig. 9. Confusion matrix for maximum voting.

The results from the experiments clearly demonstrate
that our proposed PolyVision framework, shown in
Fig. 10, which integrates multiple model architectures and
employs an advanced voting mechanism, outperforms
individual models in terms of AUROC, AUPRC, and
overall model reliability. The ensemble approach,
combined with averaged probability voting, strikes an
optimal balance between sensitivity and specificity,
making it highly suitable for clinical applications in DR
detection.

C. Final Performance Ranking

Our model showed excellent results with an AUROC of
0.953 and an AUPRC of 0.975, which proves how well it
can predict outcomes.

The sensitivity of 0.8983 and specificity of 0.925 show
we can spot diabetic retinopathy well without too many
false alarms.
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Our calculation time of 0.1098 s was a bit slower than
the best models, but our mixing CNNS and ViTs made our
model better at handling different situations.

DR Image
Size: (224, 224)

No DR Image
Size: (224, 224

No DR Image
Size: (224, 224

(b)

Fig. 10. PolyVision framework experimental results (a) Diabetic
retinopathy; (b) No diabetic retinopathy.

V. CONCLUSION

PolyVision presents a robust, multi-model fusion
framework for diabetic retinopathy detection that
successfully  balances diagnostic accuracy  with
computational efficiency. By strategically combining the
local feature expertise of ResNet50, the balanced
performance of EfficientNet-B2, and the global context
awareness of ViT, our approach achieves strong
generalization and competitive performance. The dual
voting mechanism provides valuable flexibility for
different clinical applications, and our initial exploration
into fairness assessment lays the groundwork for more
equitable Al development.

While PolyVision demonstrates a strong balance of
accuracy and computational feasibility for an ensemble,
we acknowledge its limitations. A key area for future work
is a direct performance benchmark against state-of-the-art
lightweight models, such as MobileNetV3 and
EfficientNet-Lite. This analysis should include latency-
accuracy curves measured on standardized hardware to
precisely quantify the trade-offs for deployment in truly
resource-constrained environments. Ultimately,
PolyVision serves as a powerful step towards creating
automated diagnostic tools that are not only accurate but
also reliable and trustworthy for real-world clinical
deployment.
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