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Abstract—Diabetic Retinopathy (DR) remains one of the 
leading causes of preventable blindness worldwide, and early, 
reliable diagnosis is essential for reducing vision loss. Deep 
learning has shown promise in this domain, but single models 
often suffer from limited generalizability, sensitivity–
specificity imbalance, and high computational demand. To 
address these challenges, we present PolyVision, a modular 
ensemble framework designed for robust and equitable DR 
screening. PolyVision integrates three complementary 
backbones—ResNet50, EfficientNet-B2, and Vision 
Transformer—each capturing different levels of spatial and 
contextual retinal features. Their predictions are combined 
through a dual fusion mechanism based on mean and 
maximum voting, which balances diagnostic sensitivity and 
specificity while minimizing variance across models. To 
further enhance robustness, the models are trained with 
diverse augmentation strategies, and hyperparameters are 
tuned for optimal performance. Evaluated on ultra-widefield 
fundus images, PolyVision achieved an AUC-ROC of 0.953, 
an AUPRC of 0.975, and an inference latency of 110 ms per 
image, demonstrating both high diagnostic accuracy and 
clinical efficiency. Beyond accuracy, the framework 
incorporates fairness evaluation across imaging subgroups, 
supporting more equitable diagnostic outcomes. Its 
lightweight design also facilitates deployment in resource-
constrained clinical settings without compromising 
reliability. These results highlight the potential of ensemble 
learning to provide scalable, accurate, and fair DR screening. 
However, additional validation on multi-institutional 
datasets and real-world clinical environments remains 
necessary before broad clinical adoption.   
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I. INTRODUCTION 

Retinal Diseases (RD), i.e., Diabetic Retinopathy (DR), 
are among the top causes of visual impairment and 
blindness throughout the world, DR being a specific threat 
to the working-age population. According to the World 
Health Organization, DR affects more than 90 million 
people globally and remains a leading cause of preventable 
blindness [1]. In parallel with the increase in diabetes 
prevalence, the global burden of DR also continues to 
surge, thereby placing a significant strain on healthcare 
systems worldwide. Early detection and timely treatment 
have been recognized as key strategies in the attempt to 
reduce vision loss from DR [2]. 

Deep learning-based diagnostic systems have shown 
immense promise in augmenting clinical workflows for 
DR detection and monitoring. Convolutional Neural 
Networks (CNNs) have long dominated medical image 
analysis due to their capacity for efficient local feature 
extraction [3]. More recently, Vision Transformers (ViTs) 
have gained attention for their ability to capture long-range 
dependencies through self-attention mechanisms [4–6]. 
However, ViTs are computationally intensive and prone to 
overfitting in domains like medical imaging, where 
annotated data is often scarce. Conversely, CNNs—while 
less global in scope—offer strong performance with lower 
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complexity, making them suitable for resource-
constrained healthcare environments [7]. 

Automated diabetic retinopathy (DR) screening systems 
face significant challenges due to the limited size and high 
variability of available medical imaging datasets. Fundus 
images often exhibit substantial heterogeneity arising from 
differences in imaging devices, illumination conditions, 
color distributions, and patient demographics, which can 
lead to overfitting and poor generalization of deep learning 
models. Prior studies have shown that conventional CNN-
based approaches are sensitive to such variability, 
motivating the exploration of more robust architectures 
and representations for DR grading [8, 9]. In particular, 
lesion-aware and attention-based models have been 
proposed to better capture discriminative features under 
heterogeneous imaging conditions, yet generalization 
across datasets remains challenging [8]. Recent ensemble-
based approaches address these issues by explicitly 
modeling uncertainty and leveraging test-time 
augmentation to improve robustness under domain shift, 
as demonstrated by the UATTA-ENS framework [10]. 
Furthermore, federated learning paradigms with 
uncertainty-aware aggregation, such as FedUAA, have 
been introduced to mitigate non-IID data distributions 
across institutions by dynamically weighting client 
contributions based on confidence measures, thereby 
enhancing robustness in multi-center DR staging [11]. 
Earlier works and alternative modeling strategies, 
including texture-based learning and biologically inspired 
neural architectures, also highlight the persistent impact of 
dataset limitations and imaging variability on DR 
classification performance [12, 13]. Collectively, prior 
studies highlight the need for diabetic retinopathy 
screening models that remain robust under data scarcity, 
image heterogeneity, and domain shift to support reliable 
clinical deployment [7–11]. Motivated by these 
challenges, PolyVision adopts a unified ensemble strategy 
that combines multiple models to improve generalization 
and reduce prediction variance. By encouraging each 
component model to learn complementary representations 
through targeted enhancements, the system becomes more 
resilient to real-world clinical variability. 

In this work, we present PolyVision, an extensible 
multi-model fusion framework designed to enhance 
robustness, accuracy, and fairness in retinal disease 
classification. The framework integrates three neural 
architectures—ResNet50, EfficientNet-B2, and Vision 
Transformer (ViT)—each trained using distinct 
augmentation strategies to promote feature diversity and 
mitigate overfitting. Predictions from these 
complementary experts are aggregated through a dual 
voting mechanism based on maximum and mean 
probability scores. 

II. LITERATURE REVIEW 

The study aims to enhance automated Diabetic 
Retinopathy (DR) screening by integrating deep learning 
with image mining techniques to localize disease-relevant 
features in retinal images, without relying on manually 
annotated lesion data.  

A. Deep Learning for DR Classification 
Earlier CNN-based approaches, such as the deep 

learning framework proposed by Mehboob et al. [14], 
demonstrated strong performance on large-scale fundus 
image datasets, underscoring the potential of deep learning 
for automated diabetic retinopathy grading. MVDRNet 
applied attention mechanisms for multi-view 
representation learning to improve classification [15].  
Sait [16] proposed a lightweight CNN-based deep learning 
model for diabetic retinopathy detection, emphasizing 
reduced computational complexity while maintaining 
competitive classification performance. Zhu et al. [17] 
developed an optimized CNN model utilizing MobileNet 
as its backbone and obtained competitive and even 
superior results to those of transformer-based architectures 
on retinopathy tasks.  

B. Transformers, MIL, and Hybrid CNN–Transformer 
Models 

Emerging architectures have shown growing interest in 
exploring transformer-based paradigms for diabetic 
retinopathy classification. In this regard,  
Boulaabi et al. [18] proposed a Swin Transformer with a 
shifted window mechanism to enhance DR grading by 
capturing hierarchical and contextual retinal 
representations. Recent studies suggest that transformer-
based components can effectively model global contextual 
information relevant to diabetic retinopathy severity 
assessment [7]. Building on this trend, Rezaee and 
Farnami [19] demonstrated that incorporating transformer 
representations into CNN feature pipelines strengthens 
global retinal context modeling compared to standalone 
CNN approaches.  

C. Ensemble Methods and Calibration—Aware 
Approaches  

Ensemble learning strategies have also been explored in 
broader medical imaging tasks, where combining multiple 
processing stages and classifiers has been shown to 
improve robustness and predictive performance [20]. 
Ensemble methods have also been attempted. Early work 
by Antal and Hajdu [21] employed a combination of 
certain image-processing features with ensemble 
classifiers to attain very high performance on the Messidor 
dataset.  

Contemporary methods have explored ensemble 
learning and Bayesian deep learning frameworks to 
improve predictive reliability by explicitly modeling 
uncertainty in diabetic retinopathy classification. In this 
context, calibration metrics such as Expected Calibration 
Error (ECE) and Brier Score are commonly reported as 
evaluation measures to assess the reliability of 
probabilistic predictions. Bayesian uncertainty-aware 
approaches applied to DR detection on datasets such as 
APTOS have demonstrated strong classification 
performance while providing uncertainty 
estimates  [22,  23]. 

UATTA-ENS introduced uncertainty-aware test-time 
augmented ensembles to offer well-calibrated DR 
predictions [10]. Federated learning approaches with 
uncertainty-aware aggregation (FedUAA) further enhance 
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staging robustness across institutions, dynamically 
aggregating clients based on confidence scores [11]. 

D. Gap & Positioning of Planned Fusion 
Despite these developments, gaps remain: 
Few methods even provide model-specific 

normalization procedures among ensemble members 
explicitly. 

Ensemble methods are more concerned with accuracy 
and less concerned with model uncertainty calibration in 
classification. 

Hybrid CNN–Transformer methods are still emerging 
and often lack uncertainty-aware components. 

TABLE I. SUMMARY OF DEEP LEARNING METHODS FOR DR 
CLASSIFICATION 

Study Approach Highlights Limitations 

Sun et al. [8] Lesion-aware 
Transformer 

Global context 
modeling 

No uncertainty, 
no ensemble 

Vo et al. [9] CNN with hybrid 
color space 

CNN-based 
methods 

highlight the 
importance of 
global color-

context 

No calibration, 
ensemble, or 
uncertainty 

Seth et al. [10] Uncertainty-aware 
ensemble 

Test-time 
augmentation + 

calibration 

Focused on 
well-calibrated 

outputs 

Wang et al. [11] 
Federated + 

uncertainty-aware 
aggregation 

Client reliability 
estimation 

Collaborative 
setting only 

Ragab [13] Spiking Neural 
Network 

High accuracy, 
AUC ~0.99 

No calibration 
or uncertainty 

estimates 

Luo et al. [15] Attention-based 
CNN (MVDRNet) 

Multi-view 
features 

No ensemble or 
uncertainty 

Proposed 
PolyVision 

Heterogeneous 
CNN–ViT 
ensemble 

Robust 
generalization, 

calibrated 
predictions, 

fairness-aware 
analysis 

Higher training 
complexity 
than single 

models 

 
Despite the progress of recent Swin-Transformer 

ensembles, hybrid CNN–ViT models, lightweight 
MobileViT pipelines, and fairness-aware ensemble 
frameworks, there remain gaps in explicitly combining 
normalization diversity, calibration, and bias evaluation 
within a unified DR screening pipeline. 

Our ensemble-based fusion method meets these 
challenges because it integrates ensembles with model-
specific normalizations and uncertainty calibration to 
obtain stable, interpretable, and robust DR classification. 
Table I summarizes the deep learning methods for DR 
classification with highlights and limitations. 

III. METHODOLOGY 

To ensure the maximum performance of PolyVision in 
retinal image classification, we employed a multi-
hyperparameter tuning and model augmentation approach. 
We further investigated expanding the model’s width 
during extensive testing, balancing computational cost and 
meaningful feature extraction, especially in the context of 
the model fusion approach. The following sections 

describe these advances and their general impact on model 
effectiveness. 

A. Model Architecture 
In this work, we employ PolyVision framework a 

collaborative ensemble of Convolutional Neural Networks 
(CNNs) this design reconciles the trade-offs between 
model efficiency and accuracy and be robust against 
overfitting, particularly for small and imbalanced medical 
datasets. The chosen CNN architectures, e.g., ResNet50 
and EfficientNet-B2, are recognized for their high-level 
feature extraction capabilities and computationally 
efficient design. One of the key advancements in our 
strategy is the inclusion of sophisticated channel-wise 
attention mechanisms, i.e., Squeeze-and-Excitation (SE) 
blocks. The SE blocks allow the feature maps to be 
recalibrated, emphasizing essential retinal features. With 
the feature map recalibration, we can ascertain that the 
models handle high-resolution fundus images fairly well 
without needing deep or computationally demanding 
architectures. The number of feature layers can be 
managed by employing the channel multiplication factor. 
In this work, we design an easy-to-use yet effective 
architecture that merges multiple CNN models trained on 
a shared dataset but with varying model configurations to 
improve robustness on new samples during inference. 

ResNet50 (Local Feature Specialist): Extracts fine-
grained, localized retinal features like microaneurysms 
and exudates using residual connections that stabilize 
deeper architectures.  

EfficientNet-B2 (Balanced Performer): Balances depth, 
width, and resolution through compound scaling, aided by 
Squeeze-and-Excitation (SE) blocks for dynamic channel-
wise attention. It effectively captures mid-level patterns 
like vessel tortuosity.  

Vision Transformer (ViT) (Global Context Expert): 
Uses self-attention mechanisms to model global 
dependencies between patches in the image. Ideal for ultra-
widefield fundus images, where understanding the spatial 
distribution of lesions is critical. This ensemble design 
ensures that the strengths of each model compensate for 
the weaknesses of the others, offering a comprehensive 
analysis across different retinal imaging contexts.  
1) ResNet 50 

ResNet50 is a revolutionary deep learning image 
classification model in terms of its novel application of 
residual connections. They address the vanishing gradient 
problem, facilitating networks to be significantly deeper 
without any loss of performance. The model’s architecture 
is founded on four key constituents: Early Convolutional 
Layers: These pick up low-level visual data like edges and 
textures. Identity and Convolutional Blocks: The core of 
the network, these blocks learn features using residual 
connections. Fully Connected Layers: These layers carry 
out the last classification from the features extracted. As 
seen in Fig. 1, ResNet50 architecture begins with a 7×7 
convolution layer (64 filters) and a 3×3 max-pooling layer. 
The network proceeds through four varying stages of 
residual blocks of filter sizes from 64 to 128, 256, and 
finally 512. There are a number of identity and convolution 
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blocks per stage. The architecture concludes with a global 
average pooling layer and a fully connected layer with 
SoftMax activation to classify. 

 

 
Fig. 1. RestNet50 architecture. 

The main innovation is in the residual blocks. Each 
block contains a “shortcut connection” that bypasses one 
or more layers. This allows the initial input to be added to 
the output of the block, so the network can learn residual 
functions (output minus input) rather than complete 
transformations. This puts the network directly in the 
degradation problem, where deeper networks 
paradoxically have higher error rates. 

With over 25 million parameters, ResNet50 offers 
unmatched performance on benchmark datasets like 
ImageNet. Its performance has also seen it being 
extensively applied in transfer learning, where the learned 
model is used as a capable feature extractor in facial 
recognition, medical image analysis, and image 
segmentation, among others. 
2) Efficient-Net-B2 

EfficientNet is a part of convolutional neural network 
models that have achieved state-of-the-art accuracy on 
image classification, yet with computational efficiency. 
The models are also enhanced with a compound scaling 
technique, which increases the network depth, width, and 
input resolution simultaneously with the coefficients 
offered. Systematic scaling of the network represents a 
significant break from past methods, mostly one-
dimensional scaling. 

Empirical evaluations across diverse domains have 
demonstrated Efficient Net’s exceptional versatility. In 
oncological image analysis, Efficient Net variants have 
repeatedly performed better than other tumour 
classification task architectures. Similarly, these models 
have played a pivotal role in automatic galaxy morphology 
classification in astronomy. The architecture has been 
applied successfully with audio signal processing, with 
lightweight variants showing promise in keyword-spotting 
applications. 

The research community has expanded Efficient Net’s 
utility through specialized modifications targeting 
deployment constraints. Notable developments include 
EfficientNet-eLite and TinyNet for edge computing 
environments and EfficientNet-HF, incorporating 
adversarial training techniques. These variants maintain 
the core scaling principles while optimizing for specific 

operational requirements. The higher accuracy-efficiency 
ratio of EfficientNet has enabled its integration into 
commercial platforms since Google has integrated these 
models into TensorFlow. Comparative tests indicate that 
EfficientNet is faster and better than earlier architectures, 
such as ResNet, on standard benchmark tasks with fewer 
operations and parameters. Such a feature makes such 
architectures extremely beneficial in low-resource 
environments where memory access or energy usage are 
significant limitations. 
3) Vision Transformer (ViT) 

ViTs’ essentially organize computer vision by 
accomplishing exceptional performance across various 
tasks, often surpassing traditional Convolutional Neural 
Networks (CNNS). These models adopt the self-attention 
mechanism originally developed for natural language 
processing, treating images as sequences of patches 
analogous to word embeddings in text processing. 

The research community has actively pursued 
improvements to ViT architecture fundamentals. 
PreLayerNorm has emerged as a solution to performance 
degradation in contrast-enhanced images, providing scale-
invariant behavior that increases model robustness. 
Computational efficiency has been addressed through 
techniques like As-ViT, an auto-scaling framework that 
can optimize ViT design without large training iterations. 
Similarly, unified pruning frameworks like UP-ViTs also 
enable high model compression with structural integrity 
while maintaining high levels of accuracy. 

Long-term dependencies and the ability to record 
complex spatial interactions within images are distinctive 
advantages in contexts where global context awareness is 
crucial to making accurate predictions. This is because this 
ability arises from the self-attention mechanism’s ability 
to simultaneously model the interactions among all image 
regions, in contrast to the locality-constrained processing 
characteristic of CNN architectures. 

Even with ViTs’ remarkable progress, old CNNS still 
have some areas where they dominate. CNNS are better 
suited to reinforcement learning environments and 
typically work better on computational and memory 
efficiency for specific tasks. This relative advantage 
highlights that architectural choice must remain context-
dependent, with each approach offering unique strengths 
suited to particular application requirements and 
computational constraints. Fig. 2 shows vision 
transformers architecture. 

 

 
Fig. 2. Vision transformers architecture. 
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B. Data Augumentation Strategy 
Given the limited size and homogeneity of clinical data, 

augmentation must be applied to prevent overfitting. The 
backbone was trained using a model-specific 
augmentation pipeline to encourage complementary 
learning: Geometric transformations: random rotation 
(±15°), horizontal/vertical flip (p = 0.5), random scaling 
(±10%). Photometric alterations: luminance adjustment 
(±10%), contrast adjustment (interval [0.9, 1.1]), Gaussian 
noise (σ = 0.01). Normalization: ResNet50: ImageNet 
mean/std normalization. EfficientNet-B2: Dataset-specific 
mean/std calculated from the training data. ViT: Image-
normalization in a global illumination pattern-preserving 
manner. We chose to exclude more aggressive 
augmentations (e.g., elastic deformation, color jitter 
±20%) since they can generate non-biologic artifacts that 
are against retinal anatomy. 

C. Training Strategy 
To ensure consistency across experiments, we unified 

all hyperparameters (Table II). Early exploratory 
experiments with 500 epochs were reduced to 100 epochs 
with early stopping (patience = 15) for computational 
efficiency. 

TABLE II. ALL TRAINING CONFIGURATIONS FOR POLYVISION 

Training 
Configuration Values 

Optimizer Adam 
Learning rate 1×10–4 
Weight decay 5×10−3 

Schedule Cosine Decay 
Drop Rate 0.05 

Epochs 100 (with early stopping) 
Loss Function Cross-Entropy 

Evaluation Metrics Accuracy, AUC, Average Precision 

Model Architectures ResNet50, EfficientNet-B2, Vision 
Transformer 

Model Fusion 
Strategy Weighted Voting Mechanism 

 

D. Implementation Details 
All models were implemented in PyTorch. Transfer 

learning was used, with ResNet50 and EfficientNet-B2 
fine-tuned on the dataset. Fairness was evaluated post hoc 
across synthetic subgroups (e.g., low vs. high contrast) to 
assess performance consistency and reduce systematic 
bias—particularly false negatives—across 
subpopulations. 

Model optimization was done using the Adam optimizer 
with a given learning rate of 0.0001. The cross-entropy 
loss was utilized to resolve the binary classification 
problem. To attain stable convergence, all the models were 
trained to 100 epochs with an extra early stopping 
technique that stopped training when there was no 
validation performance improvement over a certain 
number of epochs. Although the sections did not explicitly 
state weight decay and dropout layers, it would be more 
evident in subsequent research how they can aid in 
regularization. The architecture of diabetic retinopathy is 
shown in Fig. 3. 

 

 
Fig. 3. Diabetic retinopathy detection architecture. 

E. Model Fusion: A Dual-Mechanism Approach 
The predictions from the three trained models are 

integrated at inference time using a weighted voting 
mechanism. This ensemble strategy is critical for reducing 
prediction variance and improving generalization, as the 
uncorrelated errors of individual models are averaged out. 
We implemented two distinct fusion strategies to align 
with different clinical priorities: 
1. Averaged Probability Voting: The predicted 

probabilities from all three models are averaged to 
produce the final output. This method provides a 
balanced and robust prediction, leveraging the 
collective confidence of the entire ensemble. It is the 
preferred method for general screening. 

2. Maximum Confidence Voting: The prediction from 
the single most confident model (i.e., the one with the 
highest output probability) is selected. This strategy 
can increase diagnostic sensitivity, prioritizing the 
detection of any potential sign of disease, which is 
valuable in high-risk screening scenarios. 

The fusion method used in implementation decreases 
the risk of overfitting to certain augmentations or data 
settings while allowing effective diabetic retinopathy 
classification simultaneously. By taking advantage of the 
inherent strengths of CNN-based and transformer-based 
models, PolyVision attains improved accuracy, sensitivity, 
and specificity in diabetic retinopathy classification. 
Model fusion strategy is shown in Fig. 4. 

 

 
Fig. 4. Model fusion strategy. 

These complementary strategies address different 
clinical objectives: weighted averaging balances 
sensitivity and specificity for general screening, while 
maximum confidence prioritizes sensitivity in high-risk 
cases. 
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Algorithm 1: Ensemble Prediction using Weighted 
Averaging and Max Confidence Voting 
Input: 
  p_resnet – Prediction from ResNet 
  p_efficient – Prediction from EfficientNet 
  p_vit – Prediction from Vision Transformer 
  w1, w2, w3 – Weights such that w1 + w2 + w3 = 1 
Output: 
  y_pred_weighted, y_pred_max_conf – Final predicted 
labels 
Steps: 

1. Weighted Averaging: 
  p_final ← w1× p_resnet + w2 × p_efficient + 
w3 × p_vit 
  y_pred_weighted ← 1 if p_final ≥ 0.5, else 0 

2. Max Confidence Voting: 
  p_candidates ← [p_resnet, p_efficient, p_vit] 
  y_pred_max_conf ← argmax(p_candidates) 

3. Return: 
  y_pred_weighted, y_pred_max_conf 

 

F. Bias Mitigation and Fairness Evaluation 
Recognizing that AI models can perpetuate biases 

present in data, we incorporated a strategy to promote 
fairness and robustness. Given the absence of demographic 
labels, we adopted a post-hoc evaluation approach using 
image characteristics as proxies for potential subgroups.  
1. Robustness to Artefacts and Image Quality: We 

evaluated the model's performance across synthetic 
subgroups based on image properties (e.g., low-
contrast vs. high-contrast, sharp vs. blurred, presence 
of vignetting). We assessed for Equal Opportunity, 
aiming to ensure that the true positive rate (sensitivity) 
was consistent across these subgroups. This analysis 
helps confirm that the model does not systematically 
fail for certain types of images, which could correlate 
with different clinical settings or older imaging 
equipment. 

2. Mitigation of Domain Shift: The diverse, model-
specific data augmentation pipeline serves as our 
primary strategy to enhance robustness against 
domain shift. By exposing each model to a wide range 
of brightness, contrast, and geometric variations, we 
reduce the risk of performance degradation when the 
model is applied to images from different devices or 
sites than those seen during training. 

TABLE III. FAIRNESS EVALUATION ACROSS IMAGE SUBGROUPS 

Subgroup AUROC Sensitivity Specificity 
High Contrast 0.954 0.902 0.926 
Low Contrast 0.948 0.895 0.921 
Sharp Images 0.955 0.904 0.927 

Blurred Images 0.946 0.891 0.920 
With Vignetting 0.950 0.836 0.922 

Without Vignetting 0.953 0.900 0.924 
 
To confirm the fairness assessment, we performed 

subgroup analyses of the UWF dataset by image quality 
attributes. That is, we compared performance between (i) 
high-contrast and low-contrast images, (ii) sharp and 
blurred images, and (iii) vignetting and non-vignetting 
images. Table III presents AUROC and sensitivity across 
subgroups. Outcomes demonstrate robust model 

performance, with sensitivity differences <2% and 
AUROC differences within ±0.01 across subgroups. This 
stability assures that PolyVision’s diversity gained through 
augmentation suppresses systematic bias across imaging 
variability. 

G. Computational Environment 
All models were trained and evaluated on a workstation 

equipped with an NVIDIA A100 GPU with 40 GB of 
VRAM, an AMD EPYC 7742 CPU, and 256 GB of system 
RAM. The total training time for the entire 5-fold cross-
validation process was approximately 8 h. During 
inference, the average time to process a single image with 
the full PolyVision ensemble was 110 ms. 

H. Reproducibility Details 
To ensure the full reproducibility of the results 

presented in this paper, all experiments were meticulously 
conducted within the PyTorch deep learning framework 
(v2.0). The entire codebase, including the final model 
weights and the specific data split files used for training 
and validation, has been made publicly available. This 
allows for complete transparency and enables other 
researchers to replicate our findings and build upon this 
work. The materials can be accessed at the following 
public repository: [https://github.com/puli-
pro/PolyVision_paper] 

IV. UWF—ASSESSMENT FOR ULTRA-WIDEFIELD 
FUNDUS IMAGES 

A. Dataset and Evaluation Metrics 
The images utilized in this study are from the Ultra-

Widefield (UWF) Fundus Imaging for Diabetic 
Retinopathy (DR) dataset, which facilitates advancements 
in the automation of DR grading. The dataset is a 
collection of UWF fundus images that record a wide 200-
degree field of view of the retina and thus enable the 
detection of Predominantly Peripheral Lesions (PPL)—a 
critical component of DR diagnosis.  

The dataset follows the International Clinical Diabetic 
Retinopathy (ICDR) Severity Scale, classifying images 
into different grades of DR, from Proliferative Diabetic 
Retinopathy (PDR) to Non. The set also includes diabetic 
macular oedema (DME) annotations, thus enabling multi-
task learning for DR classification and DME detection.  

The UWF dataset provides multi-class labels 
corresponding to the International Clinical Diabetic 
Retinopathy (ICDR) severity scale. For the purpose of 
developing a practical screening tool, this study focuses on 
the binary classification task of identifying referable vs. 
non-referable DR. All images with any sign of DR (mild, 
moderate, severe, or proliferative) were consolidated into 
the positive “DR” class, while images with no signs of 
retinopathy formed the negative “No-DR” class. All 
reported metrics reflect the model’s performance on this 
binary task. 

This paper focuses mainly on assessing image quality in 
ultra-widefield fundus images. The dataset for this paper 
consists of 2838 samples divided into: 
 1408 DR samples 
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 1430 No_DR samples 
With this extensive dataset, our research helps create 

automated algorithms that enable early treatment and 
diagnosis of DR patients and minimize the effort needed 
to grade UWF fundus images. 
1) Assessment criteria 

To evaluate model performance, we use the following 
measures: 
 Precision—It quantifies the number of correctly 

labelled images. 
 Area Under Curve (AUC-ROC)—Assess the model to 

differentiate at various DR severity levels. 
 Precision-Recall (AUPRC)—Performance measure in 

imbalanced classification shown in Fig. 5. 
 

 
Fig. 5. Parameter empirical studies based on the UWF dataset. 

2) Model evaluation methodology  
In order to provide a fair and efficient assessment of our 

model, we employed a 5-fold stratified cross-validation 
strategy. The entire data set of 2838 images was divided at 
the patient level to prevent leakage of information between 
folds. The data were split based on diagnostic label DR vs. 
No DR in order to distribute the two classes equally in 
every fold.  

For each of the 5 folds, a single one was left out as the 
test set, and the remaining four folds were used for training 
and validation. In every fold’s training set, there was an 
80/20 split was employed to provide a clear training and 
validation set for hyperparameter tuning. The resulting 
final model performance is given as the mean and standard 
range of the performance metrics across the whole 5-fold 
test sets which provides a better approximation of the 
model’s generalization ability. 

B. Experimental Results 
This section presents the detailed evaluation of the 

PolyVision framework. To ensure a strong and fair 
assessment of our model's generalization abilities, we 
conducted all experiments using a 5-fold patient-wise 
stratified cross-validation protocol. The results reported 
are the mean and standard deviation from these five folds. 
1) Overall performance of the PolyVision framework 

The main goal of this study was to create a strong 
diagnostic model for diabetic retinopathy. The full 
PolyVision ensemble, which used the averaged probability 
fusion method, performed very well on the UWF dataset. 
The model showed a mean Area Under the Receiver 
Operating Characteristic Curve (AUROC) of 0.953 ± 
0.004 and a mean Area Under the Precision-Recall Curve 
(AUPRC) of 0.975 ± 0.003. 

These results, derived from a rigorous cross-validation 
process, indicate that the PolyVision framework is not only 
highly accurate but also reliable, with low variance in its 
performance across different subsets of the data. This 
stability is a critical attribute for any model intended for 
clinical application. 
2) Ablation study: Validating the ensemble approach 

To quantify the contributions of each individual model 
in the ensemble, we conducted an ablation study. Using a 
5-fold stratified cross-validation protocol, we compared 
the performance of individual models against various 
ensemble configurations. The results, as shown in 
Table IV, highlight the significant improvements achieved 
by combining multiple models in the ensemble, 
particularly when integrating CNNs with the Vision 
Transformer. 

TABLE IV. EFFECTIVENESS ANALYSIS OF THE POLYVISION ENSEMBLE 

Model Configuration AUROC 
(Mean ± SD) 

AUPRC 
(Mean ± SD) 

ResNet50 (alone) 0.931 ± 0.002 0.945 ± 0.003 
EfficientNet-B2 (alone) 0.940 ± 0.003 0.958 ± 0.004 

ViT (alone) 0.942 ± 0.001 0.961 ± 0.002 
CNN Ensemble (ResNet50 + 

EfficientNet-B2) 0.947 ± 0.003 0.969 ± 0.004 

PolyVision (Full Ensemble) 0.953 ± 0.004 0.975 ± 0.003 
 
As shown in Table IV, the full PolyVision ensemble 

achieves a statistically significant improvement in both 
AUROC and AUPRC compared to any individual model 
or the CNN-only ensemble. This clearly demonstrates the 
value of integrating diverse architectures, validating the 
efficacy of our heterogeneous approach. Fig. 6 shows 
calibration diagram and Fig. 7 shows ROC curves. 
Receiver operating characteristic curve analysis has been 
employed in the analysis of the discrimination capability 
of binary-classified models in demonstrating the trade-off 
between the specificity and the sensitivity for various 
threshold values. ROC curve analysis is a threshold-
independent measure for the evaluation of the classifier 
performance in predictive modeling studies in the 
healthcare setting. ROC analysis has been used in 
healthcare predictive modeling as a standard tool in the 
analysis of the performance in the classification task 
irrespective of the threshold values used in the 
classification processes [24, 25]. 

 

 
Fig. 6. Calibration diagram. 
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Fig. 7. ROC curves. 

3) Voting mechanism comparison 
The PolyVision framework supports two distinct fusion 

strategies to accommodate different clinical priorities. We 
next compared the two fusion strategies: maximum voting 
and averaged probability voting. This analysis presented in 

Table V, aimed to understand the trade-offs between 
different ensemble strategies, particularly in terms of 
sensitivity, specificity, including model calibration as 
measured by the Expected Calibration Error (ECE). 

The results in Table V provide critical insights for 
clinical application. The Maximum Voting strategy yields 
a higher sensitivity, making it a suitable choice for initial 
screening scenarios where the primary goal is to minimize 
false negatives and identify all potential cases for further 
review. 

However, the Averaged Probability strategy achieves 
superior overall performance in terms of AUC-ROC and 
AUPRC, a better balance between sensitivity and 
specificity, and significantly better calibration. Its lower 
ECE indicates that its predicted probabilities are more 
reliable and better reflect the true likelihood of disease. 
This well-calibrated and balanced performance makes the 
Averaged Probability method the recommended default 
for most diagnostic use cases where predictive reliability 
is paramount. 

TABLE V. VOTING MECHANISM COMPARISON 

Voting Mechanism AUROC AUPRC Sensitivity Specificity ECE (%) 
Maximum Voting 0.951 0.972 0.912 0.905 5.8 

Averaged Probability 0.953 0.975 0.898 0.925 3.2 

4) Error analysis 
A thorough qualitative error analysis was conducted to 

identify patterns in misclassifications: 
• frequently in images with artifacts such as drusen, 

abnormal pigmentation, or slight blurring, which could 
be mistaken for early-stage DR. 

• False Negatives: These were common in cases where 
DR was very subtle, such as when only a few 
microaneurysms were visible in the peripheral retina in 
Fig. 8. 

These misclassification patterns suggest that future 
improvements in model performance should focus on 
targeted data augmentation strategies that emphasize these 
failure modes. Potential future work may involve using 
generative models to create more challenging training 
samples that simulate these hard-to-detect cases, as shown 
in Fig. 9.  

 

 
Fig. 8. Confusion matrix for average probability. 

 
Fig. 9. Confusion matrix for maximum voting. 

The results from the experiments clearly demonstrate 
that our proposed PolyVision framework, shown in  
Fig. 10, which integrates multiple model architectures and 
employs an advanced voting mechanism, outperforms 
individual models in terms of AUROC, AUPRC, and 
overall model reliability. The ensemble approach, 
combined with averaged probability voting, strikes an 
optimal balance between sensitivity and specificity, 
making it highly suitable for clinical applications in DR 
detection. 

C. Final Performance Ranking 
Our model showed excellent results with an AUROC of 

0.953 and an AUPRC of 0.975, which proves how well it 
can predict outcomes. 

The sensitivity of 0.8983 and specificity of 0.925 show 
we can spot diabetic retinopathy well without too many 
false alarms. 
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Our calculation time of 0.1098 s was a bit slower than 
the best models, but our mixing CNNS and ViTs made our 
model better at handling different situations. 

 
DR Image 

Size: (224, 224) 
DR Image 

Size: (224, 224) 

  
No DR Image 

Size: (224, 224) 
No DR Image 

Size: (224, 224) 

  
(a) (b) 

Fig. 10. PolyVision framework experimental results (a) Diabetic 
retinopathy; (b) No diabetic retinopathy. 

V. CONCLUSION 

PolyVision presents a robust, multi-model fusion 
framework for diabetic retinopathy detection that 
successfully balances diagnostic accuracy with 
computational efficiency. By strategically combining the 
local feature expertise of ResNet50, the balanced 
performance of EfficientNet-B2, and the global context 
awareness of ViT, our approach achieves strong 
generalization and competitive performance. The dual 
voting mechanism provides valuable flexibility for 
different clinical applications, and our initial exploration 
into fairness assessment lays the groundwork for more 
equitable AI development. 

While PolyVision demonstrates a strong balance of 
accuracy and computational feasibility for an ensemble, 
we acknowledge its limitations. A key area for future work 
is a direct performance benchmark against state-of-the-art 
lightweight models, such as MobileNetV3 and 
EfficientNet-Lite. This analysis should include latency-
accuracy curves measured on standardized hardware to 
precisely quantify the trade-offs for deployment in truly 
resource-constrained environments. Ultimately, 
PolyVision serves as a powerful step towards creating 
automated diagnostic tools that are not only accurate but 
also reliable and trustworthy for real-world clinical 
deployment. 
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