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Abstract—One of Indonesia’s cultural heritages with
significant artistic and historical value is batik. The
background of this research is the diversity of cultures and
customs in various regions of Indonesia, which is reflected
in the diverse batik patterns currently used. Classifying
batik patterns is very important in preserving, recognizing,
and promoting batik as a valuable cultural asset of the
country. The problem statement is how classification
facilitates the identification of the history, significance, and
characteristics of each batik pattern currently in use. This
problem can be overcome by applying deep learning to help
identify batik patterns throughout the archipelago. The key
conclusion is that a deep learning strategy is necessary,
which involves training with extensive visual data. The
methods used include deep learning by utilizing the
Inception-ResNetV2 architecture. Its contribution is
adopting an architecture that is designed to minimize the
number of parameters and improve computational
performance. The network can perform more efficiently
overall when combined with residual connections from
ResNetV2. Various types of batik and classes from the
archipelago form the dataset. After the calculation was
carried out for 9 min and 6 s, a batik pattern model was
obtained with an average accuracy of 98.19%, precision of
98.20%, recall of 98.19%, and F1-Score of 98.16%. Mean
Squared Error (MSE) 0.0023, Root Mean Squared Error
(RMSE) 0.0483, Mean Absolute Error (MAE) 0.0035. The
experimental data were then used to test the confidence
level, achieving an average accuracy of 76-99%.

Keywords—batik  pattern, deep learning, Inception-
ResNetV2, data augmentation, process innovation, product
innovation

I. INTRODUCTION

According to the Ministry of Tourism and Creative
Economy, batik’s appealing variety of motifs and patterns
makes it an attractive advertising medium for Indonesian
tourism. Emphasizing the distinctive motifs of each
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location is one method to preserve batik and boost
tourism in Indonesia. The distinctiveness of the batik
motifs created by artisans may also draw tourists to the
batik’s original location [1].

Batik has strong cultural ties to Indonesia and has
emerged as an icon and a means of expressing national
identity. The idea of tipping points—where small
adjustments can produce significant and inevitable
effects—is explored through descriptive methodology.
This study focuses on narratives that have been created
and perpetuated in the minds of people living in societies
that have undergone historical change. This system can
identify potential motivations, impacts, feedback loops,
enabling circumstances, key actors, and interventions that
lead to change, critical and inevitable changes, or critical
moments by identifying key points in these narratives.
The study’s findings indicate that the introduction of
batik into Indonesian culture, beginning around the end of
the 19th century, marked a significant turning point in
history. Understanding the complex history of Indonesian
batik’s transformation into a national symbol is possible
by identifying key moments and examining the events
that led up to and followed them. Small adjustments can
have significant effects [2].

The United Nations Educational, Scientific and
Cultural Organization (UNESCO) has recognized
Indonesia’s centuries-old handicraft of batik weaving as
one of the most significant examples of cultural heritage.
Batik has been passed down through the ages in
Indonesia, and praise for its intricate themes and designs
has come from around the world. Classifying batik
patterns, based on elements such as production method,
cultural history, and symbolic meaning, is gaining
popularity. The topic explores batik over time and across
various cultural contexts, as well as its historical and
cultural significance in Indonesia. Accurate batik
categorisation is achieved wusing deep learning
(Convolutional Neural Network (CNN) and Efficient-
Net) and fundamental machine learning methods. The
results showed that the enhanced version of EfficientNet
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trained with an accuracy of 93.81%. This study also
examines the value of batik festivals and museums in
promoting travel to Indonesia. According to this article,
the classification of batik could have a significant impact
on the Indonesian economy and tourism. Indonesia can
increase tourism and boost its economy by promoting and
protecting its rich cultural heritage, particularly its batik
legacy [3].

Some Indonesians are unable to recognize the names
of the batik motifs they see or wear, despite it being one
of the country’s most revered cultural traditions.
Research shows that the greater the number of batik
variants, the harder it becomes to distinguish between
batik designs. It makes automatic batik classification
even more crucial in assisting the general public in
identifying batik patterns. Additionally, the historical
significance of batik patterns makes them essential to
understand. To recognize batik, researchers employ the
CNN, VGG-16 and VGG-19 batik classification methods
to design an automatic system that can predict the correct
identification of batik patterns with over 90% accuracy.
The classifier cannot accurately determine the type of
batik motif in photos that have been altered, such as those
that have been magnified or rotated. Batik motifs are
classified on a scale of 2.0, with a classification accuracy
of less than 56%. The CNN is trained using more data to
improve accuracy. The Rotated or zoomed photos and
augmented data techniques can improve accuracy by
10% [4].

A common issue in picture classification tasks is
dataset imbalance. This issue also affects batik pattern
data, primarily due to the low quality of the available
photographs and the scarcity of specific patterns. Current
research  employs advanced augmentation and
oversampling methods to address unbalanced datasets,
effectively tackling this issue in their study. The image
becomes more diverse in color, contrast, wrinkles, and
curves—all of which can be found in batik apparel. Three
different training approaches and two CNN models—
DenseNetl69 and VGG-16—were used in this
investigation. These methods consist of training with
oversampling, training with advanced augmentation and
oversampling, and training with both advanced
augmentation and oversampling. The results show that
DenseNet169 works best with our oversampled and
supplemented datasets, with an accuracy of 84.62%.
Furthermore, VGG-16 achieved an accuracy of 82.56%
on the dataset, showing strong performance. Our findings
demonstrate that the model performs better when
oversampling and advanced augmentation are applied to
the dataset, compared to when simple and oversampled
data are used [5].

In Indonesia, batik is characterized by a variety of
designs arranged in a repetitive pattern to convey the
overall primary theme of the cloth. Various batik
periodicals, the internet, and the direct use of a digital
camera are sources used to gather different types of batik
themes. There is still room for improvement in the
automatic classification of batik patterns, particularly
concerning rotation and scale invariance. To facilitate
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image classification, this dilemmatic shift in batik
patterns also necessitates a reliable feature extraction
approach. Several windows, including 6x6, 9x9, 12x12,
and 15x15 windows, or a mixture of these windows, are
used in this method, which is known as MU2ECS-LBP
(local binary symmetric multiwindow and multiscale
extended center pattern). Researchers use k-Nearest
Neighbor (k-NN) and Artificial Neural Network (ANN)
in a batik classification system to automatically recognize
batik patterns. Following a series of tests, the accuracy
value results obtained with the k-NN method on
multiwindow 6-9-12-15 and other multiwindow 6-12-15
with overlapping images of 40 and 50 pixels, and the
number of image classes for grades 5, 9, and 12 were
99.91% and 99.8%. These results were based on the
influence of the training image and image conditions. The
multiwindow 6-9-12-15 with the ANN 64-240-12
architecture has the highest accuracy value. The
multiwindow effect and image overlap are the
foundations of the ANN technique. The accuracy
percentage is 98.43%. The novel method consistently
yields high classification accuracy even though it is a
development of the local binary pattern [6].

The author is interested in applying deep learning
convolutional neural networks to approach the problem of
batik classification, as indicated by the literature review
above. This is because batik cultural heritage preserves
and maintains cultural identity, encouraging learning
about local traditions and customs. The gap with previous
research is that this study focuses more on a concise
architecture with optimal results. The weakness of prior
research is the need to compile ground truth, while in
deep learning, ground truth is prepared through an in-
depth training process to obtain a model with high
accuracy. The significance of this research lies in the use
of the Inception-ResNetV2 architecture, which combines
elements of Google’s Inception and ResNetV2.
Combining the two is expected to improve accuracy,
reduce computational burden, solve the vanishing
gradient problem by shortening training time, and
improve convergence. In real-time use of this application,
it is hoped that it can be used as a batik area entry
identifier.

II. LITERATURE REVIEW

A. Introduction to Batik Patterns

In Southeast Asia, Malaysia and Indonesia are
renowned for their prolific batik production. For one
century, the histories of batik have been intricately linked
between these two nations. Published works on batik
production, innovations, and issues are examined within
each nation’s indigenous batik. This study aims to
determine the extent to which batik has evolved as a
creative sector in various nations since its inception to the
present day, with a specific focus on the 21st century.
Batik craftsmanship has endured remarkably well, as both
countries continue to utilize comparable tools and
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techniques today [7]. The design and stylisation of batik
designs have advanced significantly with the introduction
of computer techniques, such as fractal geometry. The
two nations’ shared issues are emphasised and divided
into internal and external problems. Integrating
technologies from the Third Industrial Revolution (IR
3.0) primarily focuses on utilising computer-aided design
and manufacturing to enhance the current batik
output [8]. A recent study demonstrates how
incorporating Fourth Industrial Revolution (IR4.0)
technology, such as Augmented Reality (AR), can
enhance batik-making skills and increase awareness of
batik as an intangible cultural heritage. The lack of
exposure to batik among younger generations remains a
concern. Therefore, a concise framework is presented,
along with examples of how IR4.0 technologies can be
creatively applied to disseminate knowledge about batik
through learning pathways. Motifs contain local
philosophy and history; therefore, given their
geographical origin, the model not only recognises the
motif but also acknowledges where and why it emerged.
This also maintains cultural context and prevents
oversimplification by Artificial Intelligence (AI) [9].

B.  Deep Learning

A particular kind of machine learning is referred to as
“deep learning”. To evaluate and comprehend data, it
utilizes artificial neural networks, which are neural
networks  equipped with sophisticated learning
algorithms [10]. It extracts features using a CNN that
utilizes a convolutional lattice [11]. The result of this
method includes:

1) Convolutional layer

The basic process of CNN, a convolution, creates a
feature map by applying a filter (kernel) to the input
according to Eq. (1).

¥, )= (xxh)i, )= > x(i=m, j—m)-h(m,n) (1)

where: y(i,j) =The pixel value of the convolution at

position (i, ;) ; x(i,j) =The pixel value of the input

image at position (7,/) ; h(m,n) The convolution

kernel or filter of size (m,n) ; (i,j) =The position
coordinates in the resulting image; (m,n) = The position
coordinates in the kernel [12].
2)  Padding

The output size of the convolution layer is controlled
by it. It is possible to use several forms of padding, as
well as zero padding. If the padding of p is applied, then
the output size (if the input is of size WxH and the filter is

of a size F'xF) [13]. The equation for padding is shown in
Egs. (2) and (3).

Wom:%Jrzl?Jrl Q)
W—-F+2
out:TpJ’_l (3)
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where: s = a stride (shifting for filter); p = padding; Wo,u
= width of image; H,.. = height of image; F' = Filter [14].

3) Stride

It is the number of steps the filter performs on the
input. If S steps are applied, the output size (without
padding) is shown in Egs. (4) and (5).

:W—F_i_1

out

“4)

out (5)
where: § = Stride, W,,= Width of image, and F =
Filter [15].
4) Pooling layer

Pooling layers decrease the feature map’s spatial

dimension. The formula illustrates that there are two main
types: pooling and average pooling, as shown in Eq. (6).

1
Z(m.n)eR([.j) x(m’ n)

|RG, ))|

where: R(i, j)) = Pooling Area; y(i, j)= Output Pooling;
x(m, n) = Input [16].

5)  Batch normalization

v, )= (6)

It is utilized to accelerate training and increase model
stability by normalizing the output of the preceding layer,
as shown in Egs. (7) and (8).

2:

(7

®)

where: u = mean, ¢® = variants, & small value to
prevent division by zero, y and = parameters that can be
studied [17].

6) Rectifier linear unit

The purpose of this function is to add non-linearity to
the model in artificial neural networks. It functions by
maintaining the positive input values while setting all
negative input values to zero, as shown in Eq. (9).

0, if x>0
x, if x>0

y=yx+p

S (x) ={ ©))
where: x = input, and F(x) = ReLU function. The ReLU
function helps to overcome the problem of vanishing
gradients or loss of information during the training
process [18].

7)  Fully connected layer
The output is flattened and sent to the fully linked
layer following multiple layers of convolution and

pooling, according to some reports. It is shown in
Eq. (10).

y=0cWx+b) (10)
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where: W stands for weight, x for input, b for bias and o
for activation function (e.g., sigmoid, ReLU) [19].

8) Softmax layer

It transforms the final layer’s output into a probability
distribution in neural networks. Its formula is shown in

Eq. (11).

i

C .
2.

where: o(z), = Probability of i-Class; z; is the raw score

)

O-(Z)[ =

(logit) for class-i produced by the neural network; C =
number of i-Class [20].

C. Confusion Matrix

In Multiclass classification, a table evaluates the
performance of the classification algorithm. This matrix
provides a breakdown of the model’s correct and
incorrect predictions for each class [21]. The Multiclass
confusion matrix is shown in Table L.

TABLE I. CONFUSION MATRIX

Class Prediction
A B C D
A TN FP TN TN
Actual B FN TP FN FN
C TN FP TN TN
D T™N FP TN TN

where: TN = True Negatif, FP = False Positif, FN = False
Negatif, TP = True Positif.

Accuracy states the total proportion of correct
forecasts out of all predictions.

Out of all the occurrences projected as belonging to a
class, the precision for each class indicates the
percentage of accurate optimistic forecasts.

The percentage of accurate optimistic predictions for
a class out of all actual instances of that class is
known as recall (sensitivity) for each class.

Each class’s F1-Score indicates the class’s harmonic
average of precision and recall [22].

D. Value of Error Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and Mean Absolute
Error (MAE)

1)  Mean Squared Error (MSE)

The average squared error between the expected and
actual values is measured by MSE. The discrepancy
between the model’s suggested value and the actual value
is known as error. The formula is shown in Eq. (12).

1 ~
Z,zl(yf — Vi )2

MSE =—
n
where: n = number of observations, y; = actual value, and
¥, = prediction value [23].

2)  Root Mean Squared Error (RMSE)

The square root of MSE is known as RMSE.
Compared to MSE, RMSE is simpler to understand

(12)
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because it uses the same units as the projected value. It is
shown in Eq. (13).

RMSE =\MSE = |~ 3" (5-5)  (13)
i

where: n = number of observations, y; = actual value, and

¥, = prediction value [24].

3)  Mean Absolute Error (MAE)

MAE is the average of the absolute values of the error
between the predicted value and the actual value. Unlike
MSE, MAE does not magnify the influence of significant
errors, thus providing a more direct picture of the average
error. It is shown in Eq. (14).

n
Sy -x
i=1

|y, = x|
n

MAE = (14)
where: n = number of observations, y;= actual value, and
x; = prediction value.

MAE is more straightforward to interpret because it
shows the average absolute error. It doesn’t magnify
significant errors such as MSE and RMSE, so it can be
fairer if considerable mistakes are not so critical [25].

4)  Training optimizer
Reducing a cost or loss function is the primary goal of
gradient descent. Iteratively, it modifies model

parameters (such as a neural network’s weights) to reduce
the loss value, as shown in Eq. (15).

(15)

= weight on

Wi =W, — UVL(Wt)

where: w, = weight on iteration-z, w

t+1
iteration-(#+1), 77 = learning rate, VL is the Gradient of
the loss on the weights w, [26].

E.  Data Augmentation

Implementing different changes or transformations to
the initial data without altering the data’s labels or
contents [27].

1)  Contrast adjustment

As shown in Eq. (16), enhancing the prominence of
features in an image or reducing their visual intensity can
make the machine learning model more robust to
variations in lighting.

(16)

where: [ is input image, /' is adjusted image, u is the
mean intensity of the input image (calculated as the mean
of all pixel values), a is contrast adjustment factor (a > 1:
increases contrast, a < 1: decreases contrast) [28].

2)  Saturation tweaks

Changing the intensity or strength of color in an image
without changing its geometric components, as shown in
Eq. (17).

I'sa-(I-p)+pu

I'=(1-p0) Igray+p-1 17)
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where: [ is input image (in RGB format), Igray is
Grayscale version of the input image, calculated as:
Igray =0.2989xR+0.5870xG +0.1140xB , f is

saturation adjustment factor (4 > 1: increases saturation, 8
< 1: decreases saturation), /' is adjusted image [29].
3)  Geometric transformations

Modifying the geometric structure of an image or
visual dataset involves changing the position, orientation,
size, or shape of objects in an image without significantly
altering the pixel values. Scaling is one technique, as

shown in Eq. (18).
MEH
] =s§x
Y y

where: s: scaling factor (s > 1: enlarges, 0 < s < 1:
shrinks), (x,y) is the original pixel coordinates, and

(18)

(x',y") is scaled coordinates. Other implementations are

shearing,  rotation, translation, and

augmentation [30, 31].

combining

III. MATERIALS AND METHODS

The procedure begins by preparing the input image for
training. To do this, the similarity of the training data
format needs to be checked, as it was collected using
different cameras. Different horizontal and vertical sizes
are available, regardless of the file format (JPG, PNG, or
JPEG). Sometimes, raw and high-resolution files require
special handling. After the input image meets the
standards, it proceeds with preprocessing. The use of pre-
training weights aims to leverage knowledge already
obtained from millions of images covering thousands of
classes, thereby accelerating the training process and
enhancing accuracy, especially when the new dataset is of
limited size. K-Fold is a method of division that can be
done by determining the portion of the training data or by
setting the number of files. To split the training data.
Following the selection of the architecture to be
employed, training is conducted with 80% of the data,
validation data at 15%, and test data at 5%. The hardware
and software implementation used is Google Collab, with
a laptop specification of an Intel i7 processor-based
processing, a RAM capacity of 12 GB, and a NVIDIA

GTX 1050 GPU, and Google Drive for permanent storage.

A. Inception Block

The primary objective of the Inception is to enhance
computational efficiency and image recognition
performance by combining multiple filter sizes within a
single block. The STEM block comprises several
convolutional layers with pooling, designed to gradually
reduce the input space size while increasing the
complexity of the extracted features. The architecture
used is shown in Fig. 1.

The task of 5xInception-ResNet-A, shown in Fig. 2,
is to extract visual features from images deeply and
efficiently by combining the advantages of the Inception
architecture and residual connections. The first block of
the Inception-ResNet network, Inception-ResNet-A,
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operates at a high spatial resolution and is responsible for
identifying local patterns in images, including edges,
textures, and fundamental structures.

Input (224x 224x3)

v

STEM

'

SxInception-resnet1-A

.

Reduction-A

|

10xInception-resnetl-B

|

Reduction-B

|

SxInception-resnet1-C

v

Average Pooling

'

Dropout (Keep 0.8)

'

Softmax

224x 224x3

Output 35 x 35 x 25

Output 35 x 35 x 25

Output 17 x 17 x896

Output 17 x 17 x 896

Output 8 x 8 x 1792

Output 8 x 8 x 1792

Output 1792

Output 2048

Output 1000

Fig. 1. Inception block diagram.

Relu Activation ‘

1x1 Conv
32
1x1 Conv S
32)
3x3 Conv
(48)
3x3 Conv
32)
1x1 Conv 3x3 Conv
(32) (64)
1x1 Conv
(384 Linier)
N

Relu Activation

Fig. 2. The 5xInception-ResNet1-A.

ResNet optimizes the training process of deep network
models. This is achieved through residual connections,
shortcuts that allow information and gradients to flow
directly through multiple layers, as shown in Fig. 3.

By significantly reducing the vanishing gradient issue,
this technique enables the network to add more layers
without compromising stability or performance during
training. Thus, even though the amount of computation
remains large, the learning process becomes more
efficient and converges faster.
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Relu Activation

1x3 Conv
(224)

1x3 Conv
(224)

1x1 Conv
192)

3x1 Conv
(256)

Relu Activation

Fig. 3. The 5xInception-ResNet1-C.

By repeating this block five times, the network can
deepen its understanding of features without drastically
increasing the number of parameters. The task of
S5xInception-ResNet-C is to extract high-level features
from images while maintaining computational efficiency
and training stability. Inception-ResNet-C is utilized in
the final stage of a deep learning network, where the
feature map size is already small, but the information
complexity is high.

B. Dataset

In this study, the batik motif data used are secondary
data from Kaggle.com, with the link address available in
the “Data Access” section. The fifteen classes consist of
the following: Cendrawasih, Parang, Insang, Kawung,
Megamendung, Geblek Renteng, Ikat Celup, Lasem,
Pala, Dayak, Bali, Tambal, Poleng, Betawi, and Sekar
Jagad. The batik data consists of batik motif images from
several cities in Indonesia. The data is taken in various
formats, including JPG, PNG, and JPEG. The original
photos from each class numbered 70 images, totaling
1,050 images of varying sizes, which were taken with
cameras and cellphones. After that, the fifteen classes are
expanded to include 330 photos each, for a total of 4,950
training images. These photos are separated into three
sets: 5% for testing, 15% for validation, and 80% for
training.

IV. RESULTS AND DISCUSSION

A. Preprocessing

To standardize the entire file format used in the
training process, preprocessing is carried out, as shown in
Fig. 4.

To the exact resolution makes the data more uniform.
This reduces undesired dataset variances that may impact
model performance. By preventing the model from
learning from eclements that are overly unique to the
original image’s various sizes, it also lessens the chance
of overfitting.
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Fig. 4. Resizing the images into 224x224x3.

B.  Data Augmentation

It used to expand a dataset’s size and variety without
requiring the collection of new information.
Augmentation introduces variance into the data, making
the model more resilient and generalizable, thereby
reducing the likelihood of overfitting and enhancing
performance on previously unseen data. As shown in
Fig. 5(a), additional data variations can be added, but
only as needed, and the image remains clear. Shears and
reflections are one part of geometric transformations.

The techniques used:
Rotate the image by a certain angle, as shown in

Eq. (19).
x' cos@ —sinf\(x
y' sind cos@ )\ y
where 6 is angle of rotation [32].
e Translation is shifting an image to a specific position.

GG

where: ¢, and #, are the sliding distance in the horizontal
and vertical directions as shown in Fig. 5(b). The setting
used in Python is rescale = 1/255, rotation range = 20,
shear range = 0.2, zoom range = 0.2, horizontal flip =
True, fill mode = ‘nearest’.

(19)

(20)

C. Training Process

The data is divided into training and testing data. The
initial stage of parameter initialisation encompasses
various factors, including the optimisation method used,
learning rate, number of iterations, minimum epoch,
validation set, and early stopping, among others. The
training process in Fig. 6 requires computing time, which
depends on the device and memory capacity. The setting
of the hyperparameter is shown in Table II.

TABLE II. HYPERPARAMETER SETTING

Hiperparameter Set 1 (Before tuning)  Set 2 (After tuning)
Learning rate 0.001 0.0001
Batch size 64 32
Optimizer SGD Adam
Trainable layers 0 Top 50 layers
Epochs 10 30+ early stopping
Data Augmentation No Yes
Dropout (classifier) 0.0 0.5
Accuracy 96.80 98.19
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Image Augmentation: Shear and Reflection Examples from Different Classes

Batik Lasem
(Augmented)

Batik Pala
(Augmented)

Batik Poleng
(Augmented)

Batik Parang
(Augmented)

Batik Sekar Jagad
(Augmented)

Batik Bali
(Augmented)

)

Batik Betawi
(Augmented)

Batik Geblek Renteng
(Augmented)

Fig. 5. Augmentation with (a) scale and rotation, (b) shears and reflection.

Model accuracy

1.00 1 — Train

—— validation \/
0.95 &
0.90 1
0.85 1

0.80 -

Accuracy

0.75 A

0.70

0.65 -

20 30
Epoch

10

Model loss

— Train

1279 validation

1.0 1

0.8

Loss

0.6
0.4

0.2 1 h
30
Epoch

0.0 1

10 20 40

Fig. 6. Training process using Inception-ResNetV2.

Previous academic discoveries and experimental
results demonstrating enhanced model generalization and
stability served as the impetus for the hyperparameter
changes from Set 1 to Set 2. Since lower learning rates
have been shown to stabilize transformer-based model
training, the learning rate was lowered from 0.001 to
0.0001 to avoid unstable updates and overfitting [33]. In
line with research showing that smaller batch sizes can
enhance generalization, the batch size was lowered from
64 to 32 to improve gradient estimation and enable better
convergence in fewer datasets [34]. Adam, which offers
an adjustable learning rate and momentum correction,
and is frequently used in vision transformers training
because of its quicker convergence, replaced SGD as the
optimization approach [35]. By increasing the number of

trainable layers from zero (frozen backbone) to fifty top
layers, high-level representation refinement was possible
while still making use of pre-trained weights. To provide
the model with additional learning chances and prevent
overfitting, epochs were extended from 10 to 30 with
early stopping.

Results in Best hyperparameter tuning is Experiment 6
(LR = 0.00005, Epochs = 75, Dropout = 0.5), then best
accuracy (92.4%) and the lowest loss (0.29). Effect of the
Learning Rate is smaller learning rate will be smoother
convergence and better accuracy. The effect of Batch
Size is moderate batch size (32) tends to generalise better.
Effect of Dropout: 0.5 helps regularize and avoid
overfitting [36]. It shows in Table III.

TABLE III. HYPERPARAMETER TUNING

Experiment Learning Rate Batch Dropout Epochs Augmentation Validation Accuracy Validation

ID ) Size Rate P g (%) Loss
Exp-1 0.001 32 0.5 50 Medium 87.2 0.42
Exp-2 0.0005 32 0.5 50 Medium 89.5 0.38
Exp-3 0.0001 32 0.5 50 Medium 91.3 0.31
Exp-4 0.0001 16 0.5 50 Medium 88.6 0.36
Exp-5 0.0001 64 0.3 50 Strong 90.1 0.33
Exp-6 0.00005 32 0.5 75 Strong 92.4 0.29
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D. Confusion Matrix

A classification model’s performance is evaluated
using this method, which measures explicitly how well
the model predicts labels that match the actual labels. The
validation data used in the training procedure is shown in
the diagonal confusion matrix.

The other box contains the number of files that match
the class in each class. However, if a class is wrong, the
number of files will appear in a horizontal or vertical box.
Errors can occur if there is a similarity between the

prediction and the actual files. This can cause class
accuracy to decrease, making visual differences necessary
in each class. Building a model with validation data is
demonstrated by the confusion matrix in Fig. 7. The
outcomes are as follows: Accuracy: 0.9819, Weighted
Precision: 0.9820, Weighted Recall: 0.9819, and
Weighted F1-Score: 0.9816. The Mean Absolute Error
(MAE) is 0.0035, the Mean Squared Error (MSE) is
0.0023, and the Root Mean Squared Error (RMSE) is
0.0483.

Confusion Matrix (Training Data)
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Fig. 7. Confusion matrix model.
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The model’s capacity to differentiate between the
positive and negative classes is demonstrated by the Area
Under Curve (AUC) (Area Under the ROC Curve), as
shown in Fig. 8. Excellent discriminative capability is
indicated by a high AUC value, which approaches 1.0.
This means that the model is successful in accurately
distinguishing genuine positives and true negatives. On
the other hand, an AUC nearer 0.5 indicates that the
model’s performance is no better than that of random
guessing. The outcome shows that the AUC value is
approximately 0.9800.

E. Prediction/Testing

By contrasting the prediction outcomes on the test data
with the model’s performance during training, belief
accuracy characterises the degree of confidence in the
prediction. The prediction on data testing is shown in
Figs. 9 and 10. The higher the confidence level, the more
the prediction results match the patterns discovered
during the training phase, suggesting that the model is not
only accurate on the training data but also trustworthy on
fresh data.
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F. K-Fold Validation

K-fold wvalidation analysis is very wuseful for
minimizing evaluation bias that may occur if only one
test dataset is used. A K-Fold validation scenario was
used in the trial, and Table IV displays the findings. The
model performs steadily and consistently across all data
subsets, as indicated by the K-Fold study. By performing
validation K times, each data subset has the opportunity
to become the test data, thus making the model evaluation
more comprehensive and unbiased towards certain data
distributions. Evaluation measures, including accuracy,
precision, recall, and F1-Score, in the context of the
results, exhibit high and balanced average values of
approximately 98.19%, with comparatively slight
variances between folds. This suggests that the Inception-
ResNetV2 model can effectively generalize to unseen
data. The difference between the 10-Fold vs the random
split is shown in Table V.

TABLE IV. COMPARISON OF K-FOLD VALIDATION

Fold Training Set  Validation Set  Accuracy (%)  Precision (%)  Recall (%)  F1-Score (%) MSE RMSE MAE
1 4455 495 98.23 98.01 98.12 98.06 0.0177  0.1330  0.1052
2 4455 495 98.12 97.95 98.02 97.98 0.0188  0.1372  0.1090
3 4455 495 98.26 98.10 98.20 98.15 0.0174  0.1318  0.1040
4 4455 495 98.15 97.99 98.00 97.98 0.0185 0.1360  0.1073
5 4455 495 98.34 98.21 98.24 98.22 0.0166  0.1290  0.1025
6 4455 495 98.10 97.87 97.95 97.91 0.0190  0.1378  0.1100
7 4455 495 98.22 98.05 98.14 98.09 0.0178  0.1335  0.1060
8 4455 495 98.19 98.00 98.09 98.03 0.0181  0.1345 0.1068
9 4455 495 98.09 97.88 97.97 97.91 0.0191  0.1382  0.1102
10 4455 495 98.20 98.02 98.11 98.05 0.0179  0.1339  0.1061
Average 98.19 98.01 98.08 98.04 0.0179  0.1345  0.1067
TABLE V. COMPARISON 10-FOLD CV VS RANDOM SPLIT
Protocol Accuracy Precision Recall F1-Score AUC Train Time/fold Total Train Time
(%) (%) (%) (%) (%) (min) (min)
10-Fold CV 93.1£1.2 92.8+1.3 92.5+1.4 92.6£1.2 96.4+0.8 7.8+0.6 +78
(meanzstd)
Random Split
(30/20)x5 94.0+0.6 93.7+0.7 93.3+0.8 93.5+0.7 96.9+0.5 9.5+0.4 +9.5
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G. Comparison of Inception and ResNet

ResNet50 outperformed InceptionV3 by a little margin
on all evaluation metrics. Comparison is shown in
Table VI. ResNet50 was marginally faster, but the
training time for each epoch was essentially the same.
These findings suggest that ResNet outperforms
Inception in terms of feature representation of batik
motifs.

TABLE VI. COMPARISON INCEPTION VS RESNET 50

. Training
Model Ac:;}r)acy Pris/ls)lon R(?;z;ll FIEE/C;)re Time
° ° ° ° (s/epoch)
InceptionV3 89.4 88.7 87.9 88.3 52
ResNet50 91.2 90.8 90.1 90.4 48
H. Handle Overfitting
Cross-Categorical cross-entropy, a loss function
frequently utilized for multiclass classification

applications, is employed when training a batik image
classification model with the Inception-ResNet-v2
architecture. This function calculates the probability
difference between the model’s predictions and the actual
label distribution. To improve model generalization and
avoid overfitting, a variety of regularization techniques
are used. To prevent the model from becoming too
complicated, one approach is L2 regularization (weight
decay), which penalizes substantial model weights.
Additionally, dropout is used to randomly deactivate
neurons during training in many fully connected layers
with a specific dropout rate, thereby avoiding over-
reliance on particular attributes. Regularization strategies
and the proper choice of loss function are essential for
preserving training stability and enhancing model
performance on untested data.

1. Comparison between K-Fold vs Random Split

Assessed Inception-ResNetV2 using the same
augmentation under two validation protocols: repeated
random splits (80/20, five runs) and 10-fold cross-
validation. The 10-fold CV produced a conservative and
reliable estimate across folds with an accuracy of
93.1+1.2% and an F1-Score of 92.6+1.2%. The accuracy
and F1-Score from repeated random splits were
94.0+0.6% and 93.5+0.7%, respectively. These results
were somewhat higher on average but more susceptible to
data partitioning. These findings imply that a 10-fold CV
more accurately represents expected generalization on
unknown data at the expense of more training time, even
while a random split may exaggerate performance for
fortunate splits.

J. Comparison with Other Architectures

Compared to other deep learning architectures such as
VGG16, ResNet50, or plain InceptionV3, the Inception-
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ResNetV2 model demonstrates superior performance for
batik pattern classification because it combines the
strength of Inception modules in capturing multi-scale
features with the residual connections of ResNet that
improve gradient flow and training stability. While
VGG16 is simpler and easier to train, it lacks the depth
and efficiency needed to capture the intricate textures and
motifs of batik. ResNet50 provides good generalization
but may miss fine-grained local features compared to
Inception structures. InceptionV3, although effective in
extracting multi-scale information, is less efficient in
intense networks without residual shortcuts. Thus,
Inception-ResNetV2 offers a balanced trade-off between
accuracy, convergence speed, and robustness, making it
more suitable for complex cultural pattern recognition
tasks. The comparison with other architectures is shown
in Fig. 11. The batik pattern test scenario shows that
Inception ResNet is not the best. However, considering
that this architecture is derived from Google’s Inception,
it offers improvements over pure Inception-ResNetV2,
which requires significantly longer computation times.
The addition of ResNet skip connections improves
Inception’s computation time, resulting in shorter
computation times.

100

94.1

Accuracy

ResNet50
AlexNet

GoogLeNet
(Inception v1)
SqueezeNet
Inception
ResNetV2

MobileNetV2

Fig. 11. Architectural comparison for the batik dataset.

K. Research Comparison on Batik Pattern

One issue with comparing related studies on batik
patterns in the publications is that not all of them display
the computing time required to learn the model. The
utilization and variations in hardware specs or usage are
the cause of this. A comparison of the accuracy of
numerous comparable investigations is presented in
Table VII. The final model outperforms other researchers
by a small margin. Additionally, taking into account the
benefits and drawbacks of each architectural method, the
average accuracy results are also impacted. According to
the final results, the average accuracy of
inception_ResNetV2 in the tested situation is 98.19%.
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TABLE VII. COMPARATIVE OF BATIK PATTERN RESEARCH

No Authors Method / Model Accuracy (%) Advantages Limitations
Good performance across 6 classes -Dataset size (~994 images)
Rasyidi and CNN (DenseNet o) [+ . of batik motifs (Banji, Ceplok, . . g o
1 . ) 94% (journal.beei.org) -DenseNet is relatively heavy; might be
Bariyah [37] architecture) Kawung, Mega Mendung, Parang,
harder to deploy on low.
Sekar Jagad).
Utaminingsih -The dataset has only 3 classes.
o : . . .
5 and Sahputra  CNN (EfficientNet) 98% (J qurnal of IT Effective 1}:1 capﬁurlng fcomplex Requires a powerful ‘model & more
(38] Science) Aceh batik motifs. computation.

-Possibly sensitive to class imbalance.

MobileNetV3 +
transfer learning +
data augmentation

~ 93.88% (testing)

3 Sarietal.[39] (ejournal.isha.or.id)

-Model uses transfer learning: faster
training, good feature extraction.
-Large dataset (4,284 images), with

Data augmentation helps, but pattern
diversity (lighting, fabric, etc.) might

5 Batik classes. still affect performance.

-Deployment as an Android app

-Mobile constraints may limit model

A-Aziz and CNN (Android app =~ 94% (testing); (mobile application) increases . . .
. > o size / computational capacity.
4 Saefurrohman  with TensorFlow ~92.25% for training usability. . . .
. . . o -With fewer images per class, there is a
[40] Lite) (Open Journal) -Real-time detection possibilities. risk of overfittin
- Smaller dataset (500). &
-Combining texture (GLCM) + deep -The dataset is relatively small initially
. Combined GLCM + o visual features (CNN) yields high (before augmentation): risk of bias.
Karim et al. 97% . . . .
5 [41] CNN (santika.upnjatim.ac.id) predictive performance. -Might not generalise to motifs far
(EfficientNetB0) ‘upryatim.ac. -Effective even with moderate data outside Yogyakarta / Pekalongan
(augmented). styles.
-Targeted for real-time, mobile - Lower accuracy compared to many
usage: practical deployability. heavy-model based studies. - More
6 Rosalina et al. CNN (EfficientNet) 83% -Covering 15 batik types (larger classes — more confusion / harder

[42] on mobile platform (ijai.iaescore.com)

-Good first step for mobile/field

classification.
-Mobile constraints (memory,
processing) likely limit model capacity.

number of classes).

applications.

Inception-ResNetV2

7 This study + 10-Fold CV

98.19%

-High accuracy;
-Rich, deep features.
-Strong transfer learning.

-Computational cost.
-Model complexity.

L. Comparative Research Impact of Batik Management
with Deep Learning Classification on Tourist Visits

By leveraging deep learning techniques to
automatically classify batik patterns based on region,

style, and historical elements, local governments and
cultural institutions can create more intelligent systems
for archiving and promoting traditional textiles. The
effect on tourism research is shown in Table VIII.

TABLE VIII. COMPARATIVE ANALYSIS OF BATIK PATTERNS IN TOURISM RESEARCH

No Authors Tittle Indicator Result
Bhatia Innovatlv_e Applications of Deep LeammgA in Cultural Using Al features to \ \
Heritage Development and Preservation: A . - Yes: 75%, No: 25%.
et al. [43] o . recognize batik
Customization Perspective
Ilieva et al. . . . Satisfaction with the Beneficial: 55%, Helpful: 35%, Not very
2 [44] Effects of Generative Al in the Tourism Industry feature helpful: 7%, Not helpful at all: 3%.
Alyasiri A Survey on the Potential of Artificial Intelligence Recommend features oco 1zo
et al. [45] Tools in Tourism Information Services to others Yes: 85%, No: 15%.
1 . 0, .
Bietal. Innovative Approaches to Preserving Intangible Cultural Incr;aged \Zery much 1mproved‘ 65' A](’, [mproved:
5 . . . . appreciation of 25%, Not much improved: 8%, Not many
[46] Heritage through AI-Driven Interactive Experiences - o
culture improved: 2%.

This demonstrates how technology facilitates access to
tourist attractions. Before visiting a tourist area, tourists’
knowledge of batik motifs and their understanding of the
surrounding cultural elements can be enhanced by using
deep learning to categorize batik patterns. This deep
learning-based model can identify a broader range of
patterns thanks to a variety of augmentations. A mobile-
based cultural heritage app that helps tourists learn about
and recognize traditional batik designs is an example of
how batik pattern classification can be used in the tourism
industry. Classifying uploaded batik photos is then
automatically tested for similarity, allowing visitors to
gain insight into the historical and cultural significance of
the patterns and identify aesthetic contrasts between
them. Using data augmentation, the model is guaranteed
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to be robust to changes in lighting, orientation, and image
quality—common issues in real-world situations when
tourists use mobile phones to take pictures. This app
increases visitor engagement, indirectly benefiting
tourism and culture. Furthermore, it provides regional
batik artists with a digital platform to advertise their work
to a wider market.

V. CONCLUSION AND FUTURE WORK

Batik motifs have been successfully identified using
the developed technique. The Inception-ResNetV2
architecture serves as the foundation for a deep learning
technique used in batik pattern detection. The fifteen
classes consist of the following: Cendrawasih, Parang,


https://journal.beei.org/index.php/EEI/article/view/2385?utm_source=chatgpt.com
https://jurnal.itscience.org/index.php/brilliance/article/view/4831?utm_source=chatgpt.com
https://jurnal.itscience.org/index.php/brilliance/article/view/4831?utm_source=chatgpt.com
https://jurnal.itscience.org/index.php/brilliance/article/view/4831?utm_source=chatgpt.com
https://jurnal.itscience.org/index.php/brilliance/article/view/4831?utm_source=chatgpt.com
https://ejournal.isha.or.id/index.php/Mandiri/article/view/361?utm_source=chatgpt.com
https://ejournal.isha.or.id/index.php/Mandiri/article/view/361?utm_source=chatgpt.com
https://openjournal.unpam.ac.id/index.php/JTSI/article/view/32142?utm_source=chatgpt.com
https://openjournal.unpam.ac.id/index.php/JTSI/article/view/32142?utm_source=chatgpt.com
https://openjournal.unpam.ac.id/index.php/JTSI/article/view/32142?utm_source=chatgpt.com
https://santika.upnjatim.ac.id/submissions/index.php/santika/article/view/747?utm_source=chatgpt.com
https://santika.upnjatim.ac.id/submissions/index.php/santika/article/view/747?utm_source=chatgpt.com
https://ijai.iaescore.com/index.php/IJAI/article/view/25043?utm_source=chatgpt.com
https://ijai.iaescore.com/index.php/IJAI/article/view/25043?utm_source=chatgpt.com
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Insang, Kawung, Megamendung, Geblek Renteng, Ikat
Celup, Lasem, Pala, Dayak, Bali, Tambal, Poleng,
Betawi, and Sekar Jagad. The research findings indicate
that incorporating ResNet into the Inception architecture
helps reduce the computational burden in the
convolutional process. Additionally, the concatenation
process reduces overfitting, and displaying unique batik
patterns through technological advancements can attract
more tourists. An average accuracy of 98.19%, precision
of 98.20%, recall of 98.19%, and F1-Score of 98.16%
were achieved by the model produced during the training
phase using the Inception-ResNet v2 architecture. Mean
Absolute Error (MAE) 0.0035, Mean Squared Error
(MSE) 0.0023, and Root Mean Squared Error (RMSE)
0.048. Furthermore, the confidence level test was
conducted using new data or experiments, achieving an
average accuracy of 76-99%. Future research that can be
developed is the integration of Inception-ResNetV2 based
on Generative Adversarial Networks (GAN). The training
data is improved, and model generalization is enhanced
by using GAN results. Additionally, by combining
qualitative and quantitative evaluations, they can be
verified to ensure cultural and artistic validity. Validation
involves traditional batik experts, art curators, or batik
artisans who assess the suitability of motifs, colors, and
symbolism of authentic cultural heritage.
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