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Abstract—Along with the development of volleyball match 
video analysis, this paper introduces a novel human target 
detection method based on an optimized You Only Look 
Once (YOLO) deep learning strategy. Firstly, shot 
segmentation (identifying scene boundaries) is performed on 
the volleyball videos to extract key frames. Then, using 
semantic annotation techniques (classifying segments to filter 
non-game content), the videos are described as sequences of 
shots composed of long shots, medium shots, close-ups, 
replays, and off-court shots. Secondly, to address the issue of 
slow speed in target detection algorithms, the backbone 
network of YOLOv8s is optimized by implementing 
lightweighting through the GhostNet network and enhancing 
semantic information with the Convolutional Block 
Attention Module (CBAM) module to improve model 
accuracy. Experimental results on the PascalVisual Object 
Classes (PASCAL VOC), Common Objects in Context 
(COCO), and the Volleyball datasets, as well as real 
volleyball match videos, demonstrate that the proposed 
algorithm achieves a 1.5% higher mAP@50 with 64.2% 
fewer computational load Giga Floating- point Operations 
Per Second (GFLOPs) compared to the baseline YOLOv8s, 
achieving an optimal balance between accuracy and 
efficiency, making it suitable for real-time tactical analysis 
and automated player performance statistics in coaching and 
broadcasting.   
 
Keywords—semantic annotation, object detection, deep 
learning, lightweight network, volleyball video 
 

I. INTRODUCTION 

With the rapid development of computer vision 
technology, sports video analysis has become an active 
research area. Particularly in volleyball, recognizing and 
analyzing athletes and their movements can significantly 
enhance the efficiency of training and the scientific nature 
of match strategies. However, due to the fast movements 
and complex posture changes of volleyball players, 
automatic detection and analysis of events in videos face 
many challenges. 

 
Manuscript received August 20, 2025; revised October 16, 2025; 
accepted October 27, 2025; published January 20, 2026. 

Early volleyball video event detection mainly relied on 
traditional machine learning methods. These methods 
utilized prior information from images, such as low-rank 
properties and temporal correlations, and employed matrix 
or tensor decomposition or Bayesian representations, 
combined with optimization algorithms, to obtain the final 
fusion results. However, these traditional methods were 
limited by high computational complexity or sub-optimal 
feature representation, which seriously affected their 
practical performance and applicability. Later, deep 
learning methods were applied to volleyball video event 
detection [1–6]. Compared with traditional machine 
learning methods, deep learning methods demonstrated 
superior performance, with significant improvements in 
accuracy and robustness.  

One research direction in computer vision is object 
detection, whose core task is to identify and locate objects 
in images or videos. Human object detection is a more 
specific branch of this task, which is crucial for 
understanding people in images and serves as the 
foundation for more advanced applications, such as pose 
estimation and action recognition [7–12]. 

Deep learning-based object detectors, such as You Only 
Look Once (YOLOv8), demonstrate superior performance 
in general applications. However, their direct application 
to volleyball match analysis introduces several unique 
challenges. First, live broadcasting and real-time tactical 
analysis demand exceptionally high processing speed. 
Although YOLOv8s is relatively efficient, its standard 
version still involves a substantial number of parameters 
and significant computational overhead, which may limit 
deployment on resource-constrained devices or in 
scenarios requiring ultra-high frame rates. Second, the 
volleyball court environment presents complex visual 
conditions, including frequent player occlusions, 
transitions between long shots and close-ups, large 
variations in player scale, and cluttered backgrounds with 
crowd interference [13–16]. These factors necessitate a 
model with enhanced capabilities for multi-scale object 
detection and robust attention to salient features. 

153

Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

doi: 10.12720/jait.17.1.153-170

mailto:2840082717@qq.com
mailto:1287725598@qq.com
mailto:3209134406@qq.com
mailto:44128592@qq.com
https://www.so.com/link?m=zIEUfnlDm4rY5cebbeinwfPN/RvwBFIIYMrdv6dYvinNW1AoOxO1uuuPNNOXYvU9X46fcAXRow3VHo9TITsEpPb117J4+zZPdp0uK9koo0h3/Xvtpwbcbp+nBHz3gX6S7fXPzPqsktnC4TscO+Tb3jV6LJaqpLexAspI/WvsGh0WElLGpUNOKt8aLBVOyaf56zYKRiTLErU0FpIySt7a0mnhflEHwjm31C0Nq+Q==
https://www.so.com/link?m=zIEUfnlDm4rY5cebbeinwfPN/RvwBFIIYMrdv6dYvinNW1AoOxO1uuuPNNOXYvU9X46fcAXRow3VHo9TITsEpPb117J4+zZPdp0uK9koo0h3/Xvtpwbcbp+nBHz3gX6S7fXPzPqsktnC4TscO+Tb3jV6LJaqpLexAspI/WvsGh0WElLGpUNOKt8aLBVOyaf56zYKRiTLErU0FpIySt7a0mnhflEHwjm31C0Nq+Q==


 

Therefore, there is a pressing need to develop a specialized 
human detection method that achieves an optimal balance 
among accuracy, inference speed, and model compactness 
for volleyball video analysis. 

In contrast to generic YOLO optimization approaches, 
this work proposes a dedicated volleyball analysis 
framework that integrates video semantic understanding 
with an optimized detection architecture. The key 
innovations include: 1) a lightweight GhostNet backbone 
to improve computational efficiency [17–19],         
2) Convolutional Block Attention Module (CBAM) 
modules to enhance feature representation in complex      
scenes [20–22], and 3) Sturcture Intersection over Union 
(SIoU) loss to improve localization accuracy⸺integrated 
within a semantically aware processing pipeline [23–25]. 
This holistic approach is specifically tailored to address 
the distinctive challenges of sports video analysis, 
including real-time processing demands, frequent 
occlusions, and significant variations in object scale. 

We identify all relevant event video clips from match 
videos and perform human object detection on the pre- 
processed video results to recognize the players’ posture 
information for subsequent action analysis and statistics, 

such as analyzing the volleyball serving action. Therefore, 
there are high requirements for the accuracy and real-time 
performance of video processing and human object 
detection algorithms [26–28]. 

Videos are composed of continuous image frames, 
which contain additional temporal information compared 
to static images. In volleyball match videos, there are 
twelve athletes, which poses a challenge to human pose 
estimation algorithms, especially when dealing with multi-
person scenarios. How to apply techniques originally 
designed for single individuals to multi-person video 
scenarios is the focus of this research [29–31]. This 
chapter specifically studies this issue and proposes video 
shot segmentation to obtain key video frames and human 
object detection on video frames. The innovation of this 
method of this paper lies in its optimization of a single-
stage object detection network structure, simplification of 
the backbone network to increase processing speed, and 
introduction of a new loss function to accelerate the model 
training process and improve model performance [32–38]. 
The algorithm flow for player detection in volleyball 
videos is shown in Fig. 1 below.

 

 
Fig. 1. Flowchart of player detection in volleyball videos. 

Fig. 1 presents the overall architecture of the proposed 
volleyball video analysis framework. The pipeline 
comprises three main stages [39–45]: 1) video 
preprocessing, where the original footage undergoes shot 
segmentation (dividing the video into contiguous 
segments) and key frames are extracted to substantially 
reduce data redundancy; 2) semantic shot annotation 
(categorizing key frames into types such as long shots, 
medium shots, and replays), to filter out non-game content 
and prioritize computational resources for relevant game 
segments; and 3) optimized player detection using an 
enhanced YOLOv8s model, which is applied exclusively 
to selected game shots [46–50]. By integrating video 
semantics with object detection, this workflow forms the 
foundation of our approach, ensuring efficient and 
accurate analysis [51–55]. 

Moshayedi et al. [56] studied the integration of 
Autonomous Aerial Vehicles (AAVs) has significantly 
advanced image processing and remote sensing, 
particularly in precision agriculture. This study addresses 
the challenge of accurately quantifying corn production by 
developing an enhanced YOLO-v8-based deep learning 
model, incorporating dynamic and fixed labeling 
techniques, tested on 810 images and video data for real-
time detection. The research utilized two primary datasets 
totaling 570 images. The evaluation process comprised 

four distinct tests: conducted on Dataset 1 with 200 
images, assessed seven attention mechanisms (Spatial 
Extended Attention (SE), CBAM, Gobal Attention (GA), 
Local Key Attention (LKA), Channel Attention (CA), Soft 
attention (SA), and Time Attention (TA)) using deep 
learning metrics (Precision, Recall, mAP50, mAP50-95, 
F1-score) and statistical methods. This study advances 
computer vision in agriculture, offering a scalable, high-
accuracy model for corn yield estimation, with broad 
applications in farming optimization, financial planning, 
and policy-making. 

And they analyzed the components and design features 
of robots employed in corn fields. This analysis not only 
serves as a comparison tool for designers but also 
encourages the development of more diverse designs. The 
structure of robots in corn farming plays a crucial role in 
advancing agricultural practices by boosting efficiency, 
precision, adaptability, data collection capabilities, 
environmental sustainability, and safety standards [57]. 
They introduced a comprehensive approach to detecting 
and analyzing ammonia in agricultural settings. It 
elucidates the merits and demerits of conventional indoor 
and outdoor ammonia detection methods, juxtaposing 
them with the innovative technology of Electronic nose 
(E-nose) and seven widely employed ammonia detection 
methods in farmland are scrutinized and compared against 
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traditional techniques. They did comprehensive 
comparative analysis encompassing all the 
aforementioned methodologies, elucidating the potential 
and limitations of E-nose in facilitating ammonia detection 
endeavors within agricultural contexts [58]. 

In existing literature, deep learning algorithms are 
considered powerful technologies that have demonstrated 
remarkable performance and effectiveness in various 
fields. For example, in image recognition, natural 
language processing, and medical diagnosis, deep learning 
algorithms, by mimicking the structure of the human 
brain’s neural networks, are capable of processing and 
analyzing vast amounts of data to achieve highly complex 
tasks. Moreover, deep learning algorithms continue to 
advance, and with in-depth research, they show greater 
potential in solving even more complex problems. 
However, in this context, their application in volleyball is 
relatively limited and many drawbacks, such as fast 
mobility, more security, more reliability, and so on.  

In order to solve the above issues (the research 
objectives or aim and motivation of this paper), the main 
contributions of this paper are as follows: 

A decision-tree-based algorithm for volleyball video 
frame segmentation is proposed. We develop an efficient 
preprocessing pipeline for volleyball game video that 
integrates shot segmentation and semantic annotation to 
filter irrelevant frames and focus computational resources 
on key game segments. 

The YOLOv8s architecture specifically for human 
detection in sports videos is optimized, and a lightweight 
structure (GhostNet) is introduced to reduce parameters 
and computational cost, and an attention mechanism 
(CBAM) is introduced to enhance feature representation 
under complex backgrounds. 

The loss function has been improved to enable the 
model to fit the data better, thereby accelerating the 
convergence speed and reducing the training time. 

The proposed method is comprehensively verified on 
public datasets (PASCAL VOC, COCO) and a specialized 
volleyball dataset as well as real game videos. Compared 
with the existing state-of-the-art detectors, the proposed 
method is superior in accuracy, speed, and model 
complexity. 

II. LITERATURE REVIEW 

For the analysis of volleyball match videos, it is 
necessary to first process the videos by extracting key 
frames. Only then can existing deep learning algorithms be 
used to identify the positions of players and subsequently 
assess their postures and actions. 

A. Event Detection Methods 
The task of video event detection is to extract segments 

with specific significance from long videos, with the aim 
of automatically identifying abnormal events using 
computer technology [7]. In sports video analysis, this 
technology can filter out exciting moments that may 
interest the audience from the entire match video. Initially, 
this work was entirely manual, with professionals using 
video editing software to mark and edit the desired 

segments based on their experience. However, given the 
need for rapid processing and the large volume of sports 
videos, manual operations are not only time-consuming 
and labor-intensive but also lack accuracy. 

Event detection in volleyball videos can be divided into 
two distinct techniques: one based on manually set rules 
and the other using machine learning. The latter trains 
models on annotated video segments to enable automatic 
event detection in new videos [8]. This method is highly 
automated and widely applicable, but in practice, machine 
learning faces challenges in collecting comprehensive 
training samples. Insufficient training data can affect the 
model’s performance and applicability. In contrast, 
manually set rules require defining detection criteria based 
on the characteristics of volleyball videos, which 
necessitates a deep understanding of the video content. 
Overly simple rules may reduce accuracy and 
applicability, while overly complex rules can affect the 
stability and generalizability of the detection [9]. 

Considering practical application scenarios, a three-
layer semantic structure analysis method can be adopted. 
This method includes the extraction of low-level visual 
features, recognition of middle-level entities and scenes, 
and analysis of high-level entity relationships and 
attributes. First, low-level semantic features are extracted 
through video shot segmentation. Next, these features are 
used to semantically annotate the shots, resulting in 
semantically labeled shots. Finally, events are detected by 
combining machine learning and manual rules. 

B. Object Detection Algorithms 
In the task of object detection, traditional methods are 

often disturbed by factors such as changes in lighting, 
cluttered backgrounds, varying object sizes, and 
occlusions [10]. These factors hinder the algorithm’s 
ability to accurately capture the core features of the target, 
thereby affecting the detection accuracy and stability of 
the model [11]. In contrast, deep learning techniques can 
accurately extract target features in complex 
environments, making the model more robust [12–16]. 

There are two major categories of deep learning 
applications in object detection: one-stage and two-stage 
methods. 

The Region-Convolutional Neural Networks (R-CNN) 
model was proposed by Girshick et al. [16] in 2014 and 
was the first object detection model to use deep learning. 
The model identifies potential object regions using the 
selective search method, which involves dividing the 
image into multiple blocks of varying sizes, merging 
similar blocks, and finally filtering out potential object 
regions. Since neural networks can only process images of 
fixed size, normalization is required. Subsequently, 
Convolutional Neural Networks (CNNs) are used to 
extract features from these regions, and the extracted 
features are classified using Support Vector Machines 
(SVMs) to determine the object category and predict its 
location in the image. Although R-CNN significantly 
improved detection performance, it has several limitations. 
Its training process is complex and time-consuming due to 
the need to generate a large number of potential object 
regions, which slows down both training and detection 
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speeds. Additionally, resizing regions can cause image 
distortion, affecting detection accuracy. 

Unlike two-stage algorithms, single-stage methods 
directly predict the target’s location, confidence score, and 
category on the feature map, outputting results in one step. 
This approach eliminates the need for intermediate region 
proposal generation, resulting in faster detection speeds 
and reduced hardware requirements, making it more 
suitable for practical applications. 

Redmon and Farhadi [21] proposed the You Only Look 
Once (YOLO) object detection algorithm, which was the 
first single-stage detection model that merged region 
proposal and object recognition into one stage. YOLOv1’s 
detection logic is based on the grid cell containing the 
center of the object being responsible for detecting that 
object. The model divides the image into a 7×7 grid and 
predicts two bounding boxes for each grid cell, resulting 
in a total of 98 candidate boxes. It uses Intersection over 
Union (IoU) to filter the predicted boxes against the 
ground-truth boxes, with higher IoU values indicating 
better localization. 

YOLOv1 employs a lightweight feature extraction 
network to achieve fast regression and classification. 
Although this approach improves detection speed, it has 
several limitations. Each grid cell predicts only two 
bounding boxes and one class, which restricts the number 
of detectable objects and weakens overall detection 
performance. Additionally, assigning equal loss weights to 
all objects results in lower accuracy when detecting small 
objects [19–23]. 

In 2024, Varghese and Sambath [24] proposed the latest 
model in the YOLO series, YOLOv8. This network adopts 
state-of-the-art backbone and neck structure designs and is 
equipped with an anchor-free, decoupled Ultralytics head. 
It achieves an ideal balance between accuracy and 
inference speed, making it highly suitable for real-time 
object detection tasks in various application 
scenarios [25]. 

C. Model Light-Weight Methods 
Miniaturized models, with their smaller storage 

footprint and lower computational load, are more readily 
deployable in practical applications and can more 
effectively create value. 

Deep learning has unique advantages in the field of 
image processing. However, complex deep convolutional 
neural networks also make real-time processing tasks such 
as object detection and pose estimation more challenging 
on GPUs. As the number of network layers increases, 
although model accuracy is improved, more 
computational power is required. Therefore, it is necessary 
to compress and accelerate the models, reducing their 
depth and computational load while maintaining detection 
accuracy. This can speed up model training and prediction, 
enabling algorithms to be more stably and efficiently 
deployed on other platforms. This is crucial for the 
practical application of deep learning technologies. 

Using more streamlined CNNs can enhance model 
performance. Through optimization, models can achieve 
excellent real-time performance across different 
platforms. In the development of deep learning, several 

techniques aimed at reducing computation have emerged, 
such as Xception, the MobileNet series (including 
MobileNetV1, MobileNetV2, MobileNetV3), the Shuffle 
Net series (including Shuffle-NetV1, Shuffle NetV2), and 
GhostNet [26–32]. While Xception simplifies 
computation, it has higher requirements for GPU memory. 
The MobileNet series uses a large number of 1×1 
convolutions and depthwise separable convolutions to 
streamline calculations. The ShuffleNet series not only 
employs grouped convolutions but also enhances channel 
information to improve model performance. GhostNet, on 
the other hand, considers the correlation and redundancy 
between feature maps, generating redundant features 
through linear transformations and intrinsic features 
through identity mappings. By combining these two 
approaches, GhostNet reduces the number of parameters 
and computational load. 

Network structure lightweighting aims to reduce the 
number of model parameters without consuming more 
resources. This goal is typically achieved through 
techniques such as pruning and quantization. 

In deep learning, both fully connected layers and 
convolutional layers contain a large number of 
unnecessary parameters that contribute little to model 
performance [33]. Moreover, many neurons have 
activation values close to zero, leading to wasted 
computational resources. Dropout, a technique that 
randomly deactivates some neurons, achieves a pruning 
effect by reducing the number of active neurons. 
Additionally, transforming fully connected networks into 
sparse networks is a common method for model 
compression [34–36]. 

Pruning involves evaluating the weights of network 
connections to determine whether to maintain connections 
between neurons, and then trimming neurons and their 
connections accordingly. This simplifies the network 
structure, reduces computational load, and speeds up 
training. However, pruning can lead to a drop in accuracy, 
which necessitates retraining and fine-tuning of the pruned 
model to recover lost precision [37–43]. 

Sparse models require the reuse of network parameters, 
which reduces the number of parameters without 
increasing computation, thereby shrinking the model size. 
For fully connected networks, random weight sharing 
methods can be used to compress the model while 
maintaining its performance, and connections with non-
shared weights are associated [44–48]. 

III. MATERIALS AND METHODS 

In this section, we first use shot segmentation methods 
to process the video into groups of individual frames. 
Then, we extract key frames from the sequences to 
represent each shot group. Next, we perform semantic 
classification and labeling on the key frames. Finally, we 
detect all players in the images from key frames with 
specific semantic information. The detected candidate 
bounding boxes are then enlarged, cropped, and saved by 
position for subsequent input into pose estimation. 
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A. Shot Segmentation 
Videos contain a vast amount of data. This paper 

chooses to remove the audio from the video, treating the 
video as a sequence composed of continuous frames. 
Processing event detection tasks frame by frame involves 
a significant amount of computation. To reduce the 
computational burden, frames with similar content are 
grouped together, and one or more key frames are 
extracted from each group as representatives. The video is 
then decomposed into a sequence of content-independent 
shots, which not only reduces the computational load but 
also ensures the integrity of the video content. To extract 
these frames, the video needs to be segmented into a series 
of meaningful and manageable video segments, namely 
shots. A shot is a collection of a series of interrelated video 
frames and constitutes the basic unit for event detection in 
volleyball videos. 

A common approach to shot segmentation is to use 
boundary detection algorithms to determine the boundary 
frames of each shot in the video, and then segment the 
video into independent shots based on these boundary 
frames. This process typically involves calculating the 
feature differences between frames and setting a specific 
threshold to judge whether the changes between frames are 
significant. Once the threshold is exceeded, it can be 
considered that the current frame marks the beginning of a 
new scene, thereby achieving video scene segmentation. 
Shot segmentation is mainly divided into two types: one is 
pixel comparison, which is highly effective for videos with 
minor and gradual changes in the scene; the other is 
histogram analysis, which is suitable for detecting rapidly 
changing shots. Since volleyball match videos often 
involve frequent shot changes and relatively simple 
backgrounds, a pixel comparison-based segmentation 
algorithm is adopted. The frame difference calculation as 
Eq. (1): 

 
𝐷𝐷(𝑘𝑘, 𝑘𝑘 + 1) = 1

𝐻𝐻𝐻𝐻
∑ ∑ |𝐼𝐼𝑘𝑘(𝑥𝑥,𝑦𝑦)  −  𝐼𝐼𝑘𝑘+1(𝑥𝑥,𝑦𝑦)|𝑊𝑊

𝑦𝑦=1
𝐻𝐻
𝑥𝑥=1  (1) 

 
where, 𝐷𝐷(𝑘𝑘, 𝑘𝑘 +  1)  represents the average absolute 
frame difference per pixel, which serves as the core metric 
for our shot segmentation algorithm. The factor 1

𝐻𝐻𝐻𝐻
 acts 

as a normalization term, ensuring that the calculated 
difference is the average per-pixel value rather than a total 
sum. The width and height of the video frame are denoted 
by W and H, respectively. 𝐼𝐼𝑘𝑘(𝑥𝑥,𝑦𝑦)  represents the 
brightness of the current frame at point (x, y), while 
𝐼𝐼𝑘𝑘+1(𝑥𝑥,𝑦𝑦) represents the brightness at the same position 
in the next frame.  When the difference 𝐷𝐷(𝑘𝑘, 𝑘𝑘 + 1) 
exceeds a predefined threshold, it indicates that the frames 
belong to different scenes in the video. 

We employs a dual-comparison method to determine 
the threshold for detecting scene changes, which can 
simultaneously identify both gradual and abrupt 
transitions. Initially, a higher threshold value is used to 
quickly detect abrupt changes in the video. Subsequently, 
a lower threshold value is applied to locate the starting 
frame of a gradual change, and the cumulative frame 
difference is calculated until the end frame of the gradual 

change is identified. When the cumulative value of the 
frame differences remains below the predefined threshold 
for an extended period, a tolerance value is set to allow a 
certain number of consecutive frames with minor 
differences before determining that no change has 
occurred. 

After shot segmentation, a series of independent shot 
groups are obtained. However, the specific content 
contained in these segments is still unknown; they are 
merely units separated physically. Subsequently, it is 
necessary to analyze the content of these shot groups, that 
is, to examine each video frame within each shot group 
frame by frame. However, similar frames within the same 
group would be redundant. Therefore, it is necessary to 
extract one or more frames from each shot group as key 
frames to represent the entire shot group, thereby reducing 
the number of frames. 

Technological advancements have brought about 
various key frame extraction techniques. Among them, 
shot-boundary-based extraction algorithms are suitable for 
shot groups segmented from complete videos, where the 
feature changes between adjacent frames are minimal. 
Visual-content-based extraction algorithms can 
comprehensively represent the content of a shot but are 
prone to extracting redundant key frames, making video 
processing time-consuming. Motion-analysis-based 
extraction algorithms introduce motion features to obtain 
more accurate key frames but are computationally 
complex. Clustering-based extraction algorithms can 
extract representative key frames but require predefined 
cluster numbers and centers, and they have longer running 
times. 

Considering the characteristics of volleyball videos and 
the requirements for efficiency, as well as the Twin 
Comparison shot segmentation algorithm used in this 
paper, analysis of the shot groups after segmentation 
reveals that the differences between frames within each 
group are relatively small. After weighing the advantages 
and disadvantages of various key frame extraction 
algorithms, the shot-boundary-based key frame extraction 
algorithm was chosen. This algorithm can efficiently and 
effectively select key frames. Among the extracted key 
frames, the middle frame is typically chosen as the final 
key frame. The sequence key frame obtained according to 
the algorithm presented in this paper is shown in Fig. 2. 

 

 
Fig. 2. The key frame of a sequence in a real match video. 
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B. Shot Semantic Annotation 
For a computer, the segmented shot sequences are 

merely a series of images, but the meanings behind these 
images are not recognized by the computer. Therefore, it 
is particularly important to perform semantic labeling on 
key frames. The content of volleyball videos is relatively 
simple, so it is possible to analyze the feature values of key 
frames and use decision tree techniques to categorize the 
video into different classes and label semantic 
information. 

Fig. 3 illustrates the rule-based decision tree developed 
for automatic semantic shot annotation. The classification 
follows a hierarchical logic grounded in computationally 
derived metrics. Initially, replay shots are identified 

through the detection of broadcast logos. Subsequent to 
this, non-replay shots are distinguished by their playfield 
ratio: a high PR value classifies a shot as a long shot, 
typically encompassing the majority of the court, whereas 
a medium PR indicates a medium shot. For shots with a 
low PR, the algorithm further evaluates the edge ratio. A 
low ER corresponds to a close-up shot, characterized by 
simple structural content such as a player’s face, while a 
high ER suggests a complex external shot, often focusing 
on the audience or coaching staff. This structured, rule-
based annotation is fundamental to automating video 
content interpretation and ensures that subsequent 
analytical processes, such as player detection, are 
concentrated on the most relevant game segments.  

 

 
Fig. 3. Shot semantic labeling decision tree. 

Replay shots play a guiding role in the detection and 
positioning of events in volleyball match videos. For 
viewers, replays not only enhance the viewing experience 
but also provide insights into unexpected incidents, with 
directors often replaying exciting details captured from 
different angles. When creating replay footage, to alert the 
audience, the competition’s logo is usually added at the 
beginning and end of the footage, allowing viewers to 
naturally get into the mood and continue watching the 
match smoothly. The replay shots mentioned in this paper 
actually refer to a set of shots composed of two frames 
with logos and a series of normal or slow-motion frames, 
which, for convenience, are simply referred to as replay 
shots, and will not be elaborated on further. 

Slow motion is often seen in replay footage, which can 
serve as a marker to identify replay shots. There are two 
main ways to create slow motion: one is to capture the 
action with a high-speed camera and then play it back at 
normal speed, allowing viewers to see slow motion; the 
other is to use a regular camera and simulate slow motion 
through technical means such as repeating frames or 
interpolating frames. Depending on the production 
method, different approaches can be used to detect replays. 
One is the template matching method. The template 
matching method first creates a template based on the 
replay frames and then uses the template to compare with 
the video frames that belong to the replay. However, this 
method has not been very accurate and is relatively time-

consuming. The second is the logo detection method. This 
method detects replay shots by identifying logos inserted 
before and after the replay. To ensure a smooth viewing 
experience, replays are usually placed in the middle of the 
event logo, so replays can be indirectly determined by 
recognizing the logo. However, different events may have 
different logos, and one logo template cannot be used to 
detect replays in all videos. By studying a large number of 
volleyball match videos and related literature, this paper 
proposes using motion feature vectors to determine the 
pixel area of the logo, thus solving the non-universal 
problem. Experiments have proven that this method can be 
used in videos of major events such as the Olympics, 
World Championships, and FIVB Volleyball World Cup, 
with a high identification accuracy rate.  

We identifies logo shots by comparing key frames of 
suspected logo shots with preset logo templates; shots that 
fall within a certain similarity threshold are considered 
logo shots. Fig. 4 shows the key frames of event logos 
obtained using the logo detection method with motion 
feature vectors, and replays are typically located between 
two logo key frames. 

The long shots and medium shots in the text refer 
specifically to the court scenes captured by the camera. 
Long shots can capture the entire or most of the court 
scene; medium shots show one or several players in full 
body and posture, and although the court is visible, it 
occupies a much smaller proportion of the frame compared 
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to long shots. Therefore, the two types of shots can be 
distinguished by using the Playfield Ratio (PR) metric. 

 

 
Fig. 4. Key frames of replay shots in real match videos. 

To calculate the Playfield Ratio, it is necessary to 
identify the color of the court. However, there is no 
uniform standard for the color of volleyball courts; they 
are only required to be light-colored and different from the 
boundary line color, so each court has slightly different 
color values. Long shots include court scenes, but partial 
audience seats may appear and cause errors. To address 
this, this paper reduces the impact on the court ratio by 
normalizing the top one-third of the pixels of all frames to 
be detected before calculating the main color range of the 
court. The steps for algorithm implementation are as 
follows: 

1) Before the match starts, capture the scene of the 
players entering the court, using it as a key frame to 
determine the court color. By calculating the pixel 
distribution, select the color corresponding to more than 
50% of the pixels as the court color. 

2) Normalize only the bottom two-thirds of the area of 
non-replay key frames, and then calculate the Playfield 
Ratio (PR). The calculation formula for PR as Eq. (2): 
 

 𝑃𝑃𝑃𝑃(𝑗𝑗) = 𝐷𝐷1(𝑗𝑗)

𝑤𝑤×ℎ×23
        (2) 

 
where, 𝐷𝐷1(𝑗𝑗)  represents the number of pixels obtained 
after extracting the playing field from the j-th frame. h and 
w denote the height and width of the image, respectively, 
and 2

3
  indicates that only the bottom two-thirds of each 

frame is used. 
3) Analyze the area of the playfield in key frames of 

medium shots and long shots to obtain a threshold for 
distinguishing these two groups of shots. If more than half 
of the frames in a shot are identified as long shots or 
medium shots, then the shot will be labeled with the 
corresponding tag; otherwise, the shot will be marked as a 
non-field shot and proceed to the next labeling phase in the 
decision tree. 

After filtering out other types of shots, only external 
field and close-up shots remain. Close-up shots are 
directed towards the athletes, typically capturing their 
faces or upper bodies, with the background primarily being 
the competition field, as shown in Fig. 5. 

 

 
Fig. 5. Close-up shots in real match videos。 

For external field shots, the main subjects in the frame 
are often multiple people with complex contours. 
Therefore, by using an algorithm to extract the edges of 
the image and calculate the proportion of edge pixels in the 
entire image, close-up shots can be distinguished from 
external field shots. The specific steps are as follows: 

1) Apply the Canny edge detection algorithm to each 
image to identify the edge areas and calculate the 
proportion of edge pixels. The formula for this as Eq. (3): 

 
 𝐸𝐸𝐸𝐸(𝑗𝑗) = 𝐷𝐷2(𝑗𝑗)

𝑤𝑤×ℎ
       (3) 

 
where, 𝐷𝐷2(𝑗𝑗) represents the number of edge pixels after 
edge detection for the j-th frame, and 𝐸𝐸𝐸𝐸(𝑗𝑗)  represents 
the edge pixel ratio of that image. The denominator 𝑤𝑤 × ℎ 
represents the total number of pixels of the image, which 
makes 𝐸𝐸𝐸𝐸(𝑗𝑗)  becomes a normalized ratio with a value 
between 0 and 1 that is used to fairly compare the texture 
complexity of images of different sizes. 

2) Determine the threshold for the edge pixel ratio based 
on analysis and experimentation, and use it to identify key 
frames. If the edge pixel ratio is below this threshold, the 
frame is considered a close-up frame; otherwise, it is 
considered an external field frame. 

3) Calculate the proportion of external field frames to 
close-up frames within a shot. If there are more external 
field frames, the shot is classified as an external field shot; 
conversely, if there are more close-up frames, it is 
classified as a close-up shot. 

C. Human Object Detection 
The key to player contour recognition is accurate and 

stable object detection. Single-stage object detection 
algorithms, as an efficient object detection framework, can 
simultaneously predict the category and location of objects 
in a single forward propagation, simplifying the object 
detection process and accelerating inference speed. The 
YOLO algorithm converts the object detection task into a 
regression problem by dividing the input image into a grid 
and predicting the bounding box and its class probability 
in each grid cell, achieving rapid detection. The advantage 
of this algorithm lies in its speed, which meets real-time 
requirements, but it has shortcomings in small object 
detection and image size adaptability. Therefore, based on 
the YOLOv8s algorithm, this paper uses the Feature 
Pyramid Network (FPN) structure to effectively avoid 
distortion and feature redundancy caused by image area 
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operations, enhancing the ability to detect small objects. 
For player detection in videos, given the scarcity of 
volleyball domain datasets, data augmentation techniques 
are used to expand the dataset to address the issue of 
insufficient data. 

The YOLOv8s object detection network mainly consists 
of four parts: the input end, the backbone network, the 
enhanced feature module, and the output end. Data 
augmentation methods are used during the data input 
phase, which helps to expand the dataset and prevent the 
model from overfitting. The backbone network is 
responsible for extracting image features. The enhanced 
feature module, through the Feature Pyramid Network 
(FPN), fuses high semantic information with low-level 
information to achieve multi-scale feature training, 
thereby improving the model’s ability to detect small 
targets [38]. The output end is composed of decoupled 
modules that predict the targets and their corresponding 
bounding boxes. 

Data augmentation Mosaic is a method to improve the 
quality of samples. Its operation involves randomly 
selecting four images from the training dataset, performing 
cropping, flipping, and other operations on the images, and 
then splicing and cropping the processed images back to 
their original size. This operation enriches the information 
of the target background. At this time, the Mixup method 
is also used, which randomly selects two images and fuses 
pixel values by direct interpolation. The computing 
equaitons as Eqs. (4) and (5): 

 
𝑥𝑥𝑛𝑛 = 𝜆𝜆𝑥𝑥𝑖𝑖 + (1 − 𝜆𝜆)𝑥𝑥𝑗𝑗       (4) 

𝑦𝑦𝑛𝑛 = 𝜆𝜆𝑦𝑦𝑖𝑖 + (1 − 𝜆𝜆)𝑦𝑦𝑗𝑗      (5) 

where, (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)  represents the fused pixel values, 
(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)  and (𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗)  represent the pixel values of the 
randomly selected images, and λ is a preset parameter. The 
parameter 𝜆𝜆 is usually sampled from a beta distribution 
and is used to control the degree of mixing. When 𝜆𝜆 =  1, 
the output is exactly equivalent to the first image, while 
when 𝜆𝜆 = 0, it is exactly equivalent to the second image. 

This operation forces the model to learn smoother decision 
boundaries through linear interpolation, which improves 
generalization. 

Considering that features at different scales can provide 
richer information, and due to the fact that the size of 
players may vary under a single viewpoint, this paper 
proposes the use of convolutional kernels of different sizes 
in the deep feature extraction part of the model. Through a 
bottom-up feature extraction process, even if the input is 
of only one scale, a feature pyramid module with strong 
semantic features at all levels can be constructed. 

In most traditional network architectures, object 
recognition and localization tasks are often designed to be 
executed in parallel on a single feature map. However, this 
design may not fully consider the essential differences in 
the requirements of the two tasks: the recognition task 
focuses more on identifying subtle differences between 
sample features, while the localization task pays more 
attention to the contour and shape features of the target 
object. Therefore, YOLOv8 adjusts the channels of the 
feature map through a decoupling module and then sends 
them to two different task branches. In these two branches, 
two 3×3 convolution operations are stacked separately to 
perform classification and regression tasks, respectively. 
The network structure is shown in Fig. 6. It is YOLOv8s 
decoupling module network. 

Fig. 6 depicts the decoupled head structure 
implemented in the YOLOv8s architecture. In contrast to 
traditional coupled designs that rely on shared 
convolutional features for both classification and 
localization, this conFig.uration employs two dedicated, 
parallel branches. One branch specializes in classification 
tasks—specifically identifying objects as “person”—while 
the other focuses exclusively on regression tasks for 
precise bounding box coordinate prediction. This 
functional separation enables each branch to optimize its 
parameters for distinct feature representations, thereby 
enhancing localization precision and classification 
reliability compared to earlier integrated head designs. 

 

 
Fig. 6. YOLOv8s decoupling module network. 
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The improved YOLO network architecture is as 
follows: 
1) Lightweight feature extraction network 

The backbone network of YOLOv8 relies on the 
CSPDarknet for feature extraction, which has shown good 
performance in terms of object detection accuracy. 
However, due to its complex network structure and large 
number of parameters, the detection speed is affected. To 
enable the model to adapt to different computing 
environments, optimization becomes crucial. Currently, 
researchers have proposed various methods to improve the 
speed of deep learning models, including model 
lightweighting, merging BN layers, network pruning and 
quantization, and tensor decomposition techniques. 

Regarding the merging of BN layers, it is commonly 
used during training to prevent overfitting and promote 
faster model convergence. However, this practice may 
increase the computational cost of the model, thereby 
slowing down the detection speed. Network pruning 
techniques remove weights that have minimal impact on 
model performance after training, especially those close to 
zero. For convolutions with zero weights, dilated 
convolutions can be applied as a solution. Given these 
considerations, this paper proposes an improved scheme to 
enhance detection efficiency by adopting a lightweight 
feature extraction network to optimize the model. 
GhostNet serves as this lightweight feature extraction 
network, relying minimally on 3×3 convolutions to 
construct the base layers and generating redundant feature 
layers based on efficient linear operations. This method 

significantly reduces the model’s parameters while having 
a minimal impact on detection results, thereby enabling 
faster model operation. 
2) Introducing an attention module 

The Attention Mechanism (Attention Mechanism) 
originates from the way the human brain processes 
information [39]. It has been widely applied in 
Convolutional Neural Networks (CNNs) for both Natural 
Language Processing (NLP) and Computer Vision. This 
mechanism enhances the role of critical information and 
diminishes the impact of non-critical information by 
assigning different weights to various pieces of 
information, thereby improving the stability of the model. 
Depending on the level at which attention is applied, it can 
be categorized into three types: Channel Attention, Spatial 
Attention, and Hybrid Attention. 

The Channel Attention Mechanism (Channel Attention  
Module, CAM) focuses on analyzing the interrelationships 
among different channels in a feature map and evaluates 
their importance by assigning different weights to each 
channel. The Spatial Attention Mechanism (Spatial 
Attention Module, SAM) emphasizes identifying key 
pixel regions within a feature map. However, this focus 
may sometimes cause the model to overlook non-critical 
information such as the background. 

The Squeeze-and-Excitation (SE) network is a classic 
channel attention model, consisting of two parts: the 
Squeeze Block and the Excitation Block. The network 
structure is shown in Fig. 7 below.  

 

 
Fig. 7. SE network architecture. 

The so-called Squeeze Block has a core function of 
compressing data containing multiple channels into a 
single-dimensional vector. Subsequently, matrix 
calculations are performed using trainable weights 
associated with this vector, with the aim of enhancing the 
saliency of features. These weights are adjusted through 
the backpropagation algorithm, enabling the model to 
identify and retain important features. The computational 
formula for the Squeeze Block as Eq. (6): 

 
𝐹𝐹𝑠𝑠𝑠𝑠(𝑢𝑢𝑐𝑐) = 1

𝐻𝐻𝐻𝐻
∑ ∑ 𝑢𝑢𝑐𝑐(𝑖𝑖, 𝑗𝑗)𝑊𝑊

𝑗𝑗=1
𝐻𝐻
𝑖𝑖=1      (6) 

 
where, uc represents the feature of the c-th input matrix 
channel. The compressed vector is then fed into a neural 
network, using the ReLU function as the activation 

function. The activation of the features is completed 
through the Sigmoid function. Next, a scaling operation is 
performed, where the resulting output vector is multiplied 
element-wise with the original feature map to obtain a 
weighted feature map. This step not only enhances the 
important features but also weakens the impact of less 
important features, making the final extracted features 
more representative. The formula as Eq. (7): 
 

𝑥𝑥𝑐𝑐� = 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢𝑐𝑐 , 𝑠𝑠𝑐𝑐) = 𝑠𝑠𝑐𝑐 × 𝑢𝑢𝑐𝑐     (7) 
 

In the field of object detection, the size of the bounding 
box is crucial for the accuracy of object information. 
However, the SE network fails to fully address the issue of 
edge information loss during the feature compression 
process.  
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The CBAM network is composed of a spatial attention 
module and a channel attention module [40]. Its network 

structure is shown in Fig. 8. It is the structure of the CBAM 
module. 

 

 
Fig. 8. The structure of the CBAM module. 

Fig. 8 presents the detailed architecture of the 
Convolutional Block Attention Module (CBAM) 
integrated into our framework. This module progressively 
refines intermediate feature maps through a structured 
two-stage attention mechanism. Initially, the channel 
attention component evaluates the significance of 
individual feature channels, effectively determining 
“what” contextual information merits emphasis. 
Subsequently, the spatial attention component identifies 
salient regions within the feature maps, establishing 
“where” the model should concentrate its focus. This 
sequential processing enables the network to selectively 
amplify features associated with players while 
simultaneously suppressing non-essential background 
elements, thereby proving particularly advantageous for 
interpreting the complex visual environments 
characteristic of volleyball matches. 

Under the framework of channel attention mechanism, 
global max pooling and average pooling operations are 
first performed on the feature map to reduce the 
dimensions in the width and height of the feature map. 
Subsequently, the processed feature map is fed into a 
multilayer perceptron network, which outputs two 
different feature vectors. The corresponding elements of 
these two vectors are added together and a Sigmoid 
function is applied to generate a weight vector for the 
channel features. Finally, this weight vector is used to 
multiply with each channel of the original input feature 
map, thereby enhancing the spatial attention of the feature 
map and obtaining a map that highlights important features 
more prominently. The expression as Eq. (8): 

 
𝑀𝑀𝑐𝑐(𝐹𝐹) = 𝜎𝜎(𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹) + 𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐹𝐹)� (8) 

 

In the spatial attention mechanism, when processing 
feature maps, global max pooling and global average 
pooling techniques are employed to capture global 
information from the image. Subsequently, the results of 
these two pooling methods are concatenated along the 
spatial axis to integrate the information obtained from 
different pooling strategies. Then, a 7×7 convolutional 
layer is used to further refine the features, and a Sigmoid 
activation function is applied to determine the importance 
of the features. Ultimately, this process generates a feature 
map that integrates spatial and channel attention 
information, enabling the model to more accurately 
identify key features. The expression as Eq. (9): 

 
𝑀𝑀𝑐𝑐(𝐹𝐹) = 𝜎𝜎�𝑓𝑓7×7([𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐹𝐹);𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐹𝐹)])� (9) 
 
Using asymmetric convolution, 3×3 dilated convolution 

is decomposed into two convolutions of 1×3 and 3×1 [41]. 
This operation retains only 2

3
  of the parameters of a 

regular convolution. The calculation of the compression 
ratio as Eq. (10): 

 
𝑞𝑞 = 𝑚𝑚

𝑀𝑀
= 𝑁𝑁2

2𝑁𝑁
      (10) 

 
where, m represents the number of parameters in a regular 
convolution, while M represents the number of parameters 
in an asymmetric convolution. Taking a 4×4 input as an 
example, the computational comparison between the two 
types of convolutions is shown in Fig. 9. It is 
computational process comparison for asymmetric 
convolution as Fig. 9a) based on asymmetric mode 
1×3:3×1 and regular convolution as Fig. 9b) based on 
regular window 3×3.  

 

 
Fig. 9. Computational process comparison for asymmetric convolution and regular convolution. 
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The network structure of the improved model, 
incorporating the aforementioned optimization 
techniques, is shown in Fig. 10.  

Fig. 10 illustrates the complete architecture of our 
proposed Pro-YOLOv8s model, highlighting three 
primary modifications to the baseline YOLOv8s 
framework. The backbone network incorporates GhostNet 
to reduce computational complexity and parameter count 
through efficient linear operations. The enhanced features 
are subsequently processed by a Convolutional Block 
Attention Module (CBAM), which selectively emphasizes 
meaningful spatial and channel information. For bounding 
box regression, the conventional Complete Intersection 
over Union (CIoU) loss is replaced by the SIoU function 
to improve localization accuracy. Collectively, these 
optimizations yield a model that achieves superior 
detection performance while maintaining a reduced 
computational footprint, rendering it particularly suitable 
for deployment in real-time sports analytic applications. 

The improved loss function is as follows: The 
calculation of the loss function is an essential part of object 
detection algorithms. The regression loss function for the 
prediction box in the YOLOv8s algorithm is CIoU, which 
takes into account the overlap area, the distance between 
the centers, and the aspect ratio of the predicted bounding 
box and the ground truth box. The specific formula for 
CIoU as Eqs. (11)–(13): 

 
𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐼𝐼𝐼𝐼𝐼𝐼 − �𝜌𝜌

2�𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐵𝐵𝑔𝑔𝑔𝑔�
𝑐𝑐2

+ 𝛼𝛼𝛼𝛼�   (11) 

𝜈𝜈 = 4
π
�tan−1 𝑤𝑤

𝑔𝑔𝑔𝑔

ℎ𝑔𝑔𝑔𝑔
− tan−1 𝑤𝑤

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�     (12) 

𝛼𝛼 = 𝜈𝜈
(1−𝐼𝐼𝐼𝐼𝐼𝐼) + 𝜈𝜈

       (13) 

where, 𝛼𝛼 is a balancing coefficient, ν is used to measure  
the length and width ratio, and 𝜌𝜌2(𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝐵𝐵𝑔𝑔𝑔𝑔) represents 
the Euclidean distance between the centers of the predicted 
box and the ground truth box. 

 

 
Fig. 10. The improved YOLOv8 network architecture. 

However, the description of the aspect ratio in CIoU is 
somewhat subjective, which introduces a degree of 
uncertainty and ignores the directional differences 
between the ground truth box and the predicted box. 
Therefore, this paper proposes replacing CIoU with SIoU 
to improve training and convergence speed. The 
calculation of SIoU is divided into four parts: IoU loss, 
angle loss, distance loss, and shape loss. The formula for 
calculating the angle loss as Eq. (14): 

 

𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐 �2 × �𝑠𝑠𝑠𝑠𝑠𝑠−1(𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾) − 𝜋𝜋
4
��   (14) 

 
where, 𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 is the sine value of the angle between the 
centers of the predicted box and the ground truth box, 

calculated based on the differences in width and height of 
the centers. The formula for calculating the distance loss 
as Eq. (15): 

 
𝑃𝑃𝑥𝑥 = 2 − 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽 × 𝜌𝜌𝑥𝑥) − 𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽 × 𝜌𝜌𝑦𝑦�   (15) 

 
where, 𝜌𝜌𝑥𝑥 and 𝜌𝜌𝑦𝑦 are the normalized values of the width 
and height differences between the centers, respectively, 
and 𝛽𝛽 is the adjustment coefficient for the angle loss. The 
formula for calculating the shape loss as Eq. (16): 

 
𝛺𝛺 = (1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜔𝜔𝑤𝑤))4 + (1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜔𝜔ℎ))4   (16) 

 
where, 𝜔𝜔𝑤𝑤  and 𝜔𝜔ℎ  are the normalized differences in 
width and height between the predicted box and the ground 
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truth box, respectively. IoU, as a scale-invariant metric, 
can measure the similarity between two rectangles of 
different shapes. The calculation formula for IoU as    
Eq. (17): 
 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴,𝐵𝐵 = ‖𝐴𝐴∩𝐵𝐵‖
‖𝐴𝐴∪𝐵𝐵‖

= ‖𝐼𝐼‖
‖𝑈𝑈‖

     (17) 
 

where, A and B are the boundary boxes of the predicted box 
and the ground truth box, respectively. Symbol‖𝐴𝐴 ∩ 𝐵𝐵‖ 
calculates the intersection area between the predicted box 
and the true box, while ‖𝐴𝐴 ∩ 𝐵𝐵‖ computes the area of their 
union. As a scale invariant index, IoU has a range of [0, 1], 
1 for perfect coincidence and 0 for perfect no overlap, which 
directly measures the accuracy of localization. I denotes the 
intersection, and U denotes the union. 

Combining the four parts mentioned above, the 
expression for the SIoU loss function as Eq. (18): 

 
𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − 𝐷𝐷𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑃𝑃𝑥𝑥+𝛺𝛺

2
     (18) 

D. Experimental Setup 
The experiments in this paper were conducted on the 

Ubuntu 22.04 operating system, using an NVIDIA RTX 
4070 GPU. The environment includes CUDA 12.3, 
PyTorch 1.13.1, and Python 3.11 [44–48]. The YOLOv8s 
model was used as the baseline, following the default 
conFig.uration of v8. The hyper-parameters used during 
training are shown in Table I. The images were resized to 
640×640 pixels, and data augmentation techniques such as 
Mosaic and Mixup were employed. The initial number of 
training iterations was set to 500, and after model 
lightweighting, the number of iterations was reduced to 
100. 

TABLE I. HYPER-PARAMETER SETTINGS 

Parameter 
Name Meaning Default 

Value 
learning_rate Initial Learning Rate 0.01 
momentum Learning Rate Momentum 0.937 

weight_decay Weight Decay Coefficient 0.0005 
epoch Number of Training Epochs 500 

lw_epoch Number of Training Epochs after 
Model Lightweighting 100 

batchsize The number of samples used in 
one iteration 16 

 

E. Experimental Dataset 
Datasets are crucial for deep learning algorithms, not 

only ensuring fair comparisons between algorithms but 
also bringing new challenges to algorithm research 
through continuous expansion and improvement. The 
PASCAL VOC 2012 dataset is a publicly available dataset 
that provides a unified data format, high-quality images, 
and detailed annotations. It covers 20 categories, including 
people, animals, and vehicles, and contains approximately 
11,000 images and 27,000 annotated objects. By writing a 
Python script to filter images labeled with “person,” we 
obtained a training set of 1994 images and a validation set 
of 2093 images. We then randomly selected 1006 images 

from the validation set to add to the training set, leaving 
the remaining 1087 images for validation [49–52]. 

The COCO (Common Objects in Context) dataset 
provides a large-scale, diverse, and practical benchmark 
for image recognition and object detection, containing 
330,000 training images, 35,000 validation images, and 
50,000 test images. By writing a Python script to filter 
images labeled with the “person” tag in the COCO dataset, 
we identified 64,115 images in the training set and 2693 
images with corresponding labels in the validation set. 
These images will be used in this study. 

F. Evaluation Metrics 
The Volleyball dataset is a specialized dataset for 

volleyball match videos. It is the only publicly available 
dataset for multi-person action recognition and is currently 
the largest dataset for group activity recognition. The 
dataset consists of 55 volleyball match videos and 4,830 
annotated frames [53–58]. Among these, 24 video 
sequences are used for training, 15 for validation, and 16 
for testing. Each frame is annotated with bounding boxes 
and coordinates of the players, as well as nine individual 
action labels (waiting, passing, diving, falling, spiking, 
blocking, jumping, moving, and standing) and eight group 
activity labels (right pass, right spike, right reception, right 
score, left score, left pass, left spike, and left reception). 

To evaluate the performance of player detection 
algorithms, appropriate evaluation metrics are necessary. 
The F1-score is a metric that takes into account both 
precision and recall. Average Precision (AP) is calculated 
by measuring the area under the Precision-Recall (PR) 
curve, typically using the 101-point interpolation method. 
This involves taking 101 points with a step size of 0.01 in 
the recall range from 0 to 1, and for each point, the 
precision value is the maximum value to its right. AP50 is 
the average precision calculated at an Intersection over 
Union (IoU) threshold of 0.5, meaning that a detection is 
considered correct if the overlap between the predicted 
box and the ground-truth box exceeds 50%. The mean 
Average Precision (mAP) is obtained by averaging the 
individual AP values and is also used for model evaluation. 
However, in this study, we focus primarily on the “person” 
category label, so its mAP value is essentially the AP 
value. The formulas for calculating precision, recall, and 
F1-score as Eqs. (19–(21): 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑃𝑃

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
     (19) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

      (20) 

𝐹𝐹1 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

     (21) 
 

where, True Positive (TP) represents the number of samples 
that are predicted as positive by the model and are actually 
positive. False Positive (FP) is the number of samples that 
are predicted as positive by the model but are actually 
negative. False Negative (FN) is the number of samples that 
are predicted as negative by the model but are actually 
positive. 
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IV. RESULT AND DISCUSSION 

A. Experimental Results and Comparative Analysis 
The Precision-Recall (P-R) curve of the improved 

YOLOv8s shows high precision and recall, with an mAP 
value reaching 84.8%. The fullness of the curve indicates 
good robustness. 

To evaluate the practical performance of the improved 
model, this paper compares the improved YOLOv8s with 
Faster R-CNN, YOLOv3, YOLOv5s, YOLOv7-tiny, and 
the original YOLOv8s models on the filtered datasets and 
analyzes their performance [42, 43]. The experimental 
results on the VOC dataset are shown in Table II, it is 
comparison of experimental performance on the PASCAL 
VOC 2012 Validation Set on our cared relative parameters. 
The results on the COCO dataset are shown in Table III, it 
is comparison of experimental performance on COCO 
Validation Set on our cared relative parameters. And the 
results on the Volleyball dataset are shown in Table IV, it 
is comparison of experimental performance on the 
Volleyball Validation Set on our cared relative parameters. 

TABLE II. COMPARISON OF EXPERIMENTAL PERFORMANCE ON THE 
PASCAL VOC 2012 VALIDATION SET 

Method GFLOPs F1/% mAP@50/% FPS/s 
Faster RCNN 180 80 78.8 39 

YOLOv3 85 72 77.5 44 
YOLOv5 53 84 81.5 76 

YOLOv7-tiny 23 72 78.3 103 
YOLOv8s 53 91 83.3 71 

Pro-YOLOv8s 19 90 84.8 87 

TABLE III. COMPARISON OF EXPERIMENTAL PERFORMANCE ON COCO 
VALIDATION SET 

Method GFLOPs F1/% mAP@50/% FPS/s 
Faster RCNN 180 68 58.7 37 

YOLOv3 85 43 42.1 43 
YOLOv5 53 90 66.7 80 

YOLOv7-tiny 23 76 51.2 107 
YOLOv8s 53 70 81.8 88 

Pro-YOLOv8s 19 71 81.7 93 

TABLE IV. COMPARISON OF EXPERIMENTAL PERFORMANCE ON THE 
VOLLEYBALL VALIDATION SET 

Method GFLOPs F1/% mAP@50/% 
Faster RCNN 180 71 77.5 

YOLOv3 85 55 75.3 
YOLOv5 53 73 82.5 

YOLOv7-tiny 23 72 80.7 
YOLOv8s 53 83 84.6 

Pro-YOLOv8s 19 84 85.4 
 
By analyzing the experimental results mentioned above, 

the optimized YOLOv8s model outperforms other models 
in terms of average precision and meets the requirement 
for real-time processing, achieving a balance between 
accuracy and speed. Compared with the original version, 
the optimized model reduces the number of parameters 
and computational load while maintaining a similar 
average precision and improving detection speed. 
Although its detection speed is slightly slower than that of 
YOLOv7-tiny, its accuracy is significantly higher, which 
meets the requirements for subsequent tasks. 

B. Ablation Study 
To verify whether the introduction of attention 

mechanisms improves performance, SE and CBAM 
attention modules were added respectively after the 
network’s feature extraction, and the results were 
compared. The specific comparison results are shown in 
Table V, it is comparison of Experiments with Different 
Attention Mechanisms on our cared relative parameters, 
such as Precision, Recall, mAP@50/%. 

TABLE V. COMPARISON OF EXPERIMENTS WITH DIFFERENT 
ATTENTION MECHANISMS 

Method Precision/% Recall/% mAP@50/% 
YOLOv8s 83.7 74.3 83.3 

YOLOv8s+SE 85.4 75.6 83.0 
YOLOv8s+CBAM 85.5 76.5 83.9 

 
Compared with YOLOv8s, the model performance 

decreased after adding the SE module, which implies that 
the SE mechanism may not always be effective across 
different datasets. The CBAM attention mechanism, which 
focuses on both channel and spatial dimensions 
simultaneously, led to a 0.5 percentage point increase in 
the model’s mAP and achieved the best performance in 
both detection precision and recall, demonstrating that the 
addition of CBAM had the most significant impact. Table 
VI shows the comparison results of the ablation study, 
where the first and second groups represent the effects of 
using the CBAM module and the SIoU loss function 
individually, while the third group presents the final 
detection model combining both. It is Ablation Study 
Results of the Optimized YOLOv8s on our cared relative 
parameters, such as Precision, Recall, mAP@50/%. 

TABLE VI. ABLATION STUDY RESULTS OF THE OPTIMIZED YOLOV8S 

Method Module Precision/% Recall/% mAP@50/% 
YOLOv8s - 83.7 74.3 83.3 

1 CBAM 85.4 75.6 83.0 
2 SIoU 84.8 76.7 83.7 
3 CBAM+SIoU 85.5 76.5 83.9 

 
As shown in Table VI, YOLOv8 uses the CIoU loss 

function. Group 1 involves adding the CBAM module but 
retaining the original CIoU loss function, while Group 2 
uses the SIoU loss function without the CBAM module. 
Both groups have lower precision and recall compared to 
Group 3, which combines the CBAM module and the 
SIoU loss function in the optimized YOLOv8s. 

The precision, recall, and mAP of the optimized 
YOLOv8s are improved by 1.7%, 3.8%, and 1.6%, 
respectively. This validates that the introduction of the 
CBAM module and the SIoU loss function positively 
impacts the model’s performance, enabling better 
detection of human bodies in motion and thus providing a 
solid foundation for the subsequent tasks in this study. 
Table VI does NOT include the impact of these 
modifications on speed (FPS) and computational load 
(GFLOPs) because of these modifications are minor 
impact for speed (FPS) and computational load (GFLOPs), 
and are no need for discussion in our cared relative 
parameters.  
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Fig. 11. Comparison of visualization effects on the VOC & COCO datasets. 

To visually compare the optimized model with other 
models in human target detection on the same images, a 
visualization is presented in Fig. 11. The first row of 
images is from the PASCAL VOC 2012 training set, the 
second row from the PASCAL VOC 2012 validation set, 
the third row from the COCO training set, the fourth row 
from the COCO validation set, and the fifth and sixth rows 
are both from the Volleyball validation set. By examining 
Fig. 11, it can be observed that the optimized model Pro-
YOLOv8s (as the 1rt column) maintains consistency with 
YOLOv8s (as the 2nd column) in detection performance. 
In scenes with multiple people, both outperform the 
YOLOv7-tiny (as the 3rd column) model, effectively 
reducing computational load while minimizing missed 
detection. 

C. Experimental Results on Real Competition Videos 
The video materials used in the experiment were taken 

from the live broadcasts of the 2023 FIVB Volleyball 
Women’s World League. As an international high-level 
competition, the production quality ensures the 
professionalism and standardization of the videos. From 
the 128 preliminary matches, 16 matches featuring the 
Chinese women’s volleyball team were selected, and four 
matches were randomly chosen for analysis. These 
included the matches between China and Brazil (Japan 
leg), China and Canada (Hong Kong leg), China and Korea 
(Korea leg), and China and Japan (Japan leg) When 
processing the videos, the audio tracks were first removed, 
and then non-essential information such as commercials 
was manually edited out to ensure that only the key parts 
were retained. Subsequently, a shot segmentation 
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algorithm was applied to these selected videos, and the 
experimental results are shown in Table VII. It is 
experimental results of video shot segmentation on our 
cared relative parameters, such as Real Shot, Predicted Shot, 
Segmentation Time. 

TABLE VII. EXPERIMENTAL RESULTS OF VIDEO SHOT SEGMENTATION 

Match Name Time/min Real 
Shot 

Predicted 
Shot 

Segmentation 
Time/s 

China-Brazil 27 202 200 162 
China-Canada 29 219 215 163 
China-Korea 30 223 213 180 
China-Japan 25 189 185 145 

 
Table VII summarizes the quantitative performance of 

the proposed shot segmentation algorithm across four 
actual match recordings. The results demonstrate a close 
correspondence between the number of predicted shots 
and the ground truth annotations across all test cases. For 
instance, in the China-Brazil match, the algorithm 
identified 200 shots against a manual annotation of 202. 
This high level of agreement confirms the segmentation 
reliability. Furthermore, the computational overhead 
remains practical for real-world deployment, with a    
27-min video processed in 162 s, underscoring the 
feasibility of integrating this preprocessing stage into a 
complete analysis pipeline. 

From the selected four volleyball matches, logo images 
were extracted and used as templates to compare the 
similarity with keyframes of potential logo shots. If the 
similarity exceeds 70%, the shot is determined to be a logo 
shot. The results are shown in Table VIII. It is the Results 
of Identifying Logo Shots. Table IX presents the semantic 
annotation status of the volleyball match videos. It is the 
Results of Identifying Logo Shots. 

TABLE VIII. THE RESULTS OF IDENTIFYING LOGO SHOTS 

Match Name Badge Count FP FN Recall/% Accuracy/% 
China-Brazil 38 0 0 100 96.1 

China-Canada 46 0 5 89.1 95.8 
China-Korea 42 0 1 97.6 96.9 
China-Japan 40 0 3 92.5 95.4 

TABLE IX. THE RESULTS OF IDENTIFYING LOGO SHOTS 

Match 
Name 

Total 
Shot 

Replay 
Shot 

Medium 
Shot 

Long 
Shot 

Close-up 
Shot 

External 
Shot 

China-
Brazil 202 19 82 62 29 10 

China-
Canada 219 23 86 65 34 11 

China-
Korea 223 21 89 67 36 10 

China- 
Japan 189 20 76 56 28 9 

 
The data in the table shows that after detecting the logos 

and replay shots in four complete matches, the accuracy 
obtained is high, and the recall rate is also quite high, with 
almost no missed detection. This indicates that the 
semantic annotation of the relevant shots using the method 
proposed in this paper is truly effective. 

On the validation set composed of real volleyball match 
videos, the improved algorithm proposed in this paper was 

compared with other algorithms, and the relevant 
experimental results are shown in Table X. It is the 
experimental performance comparison was conducted on 
real match videos. 

TABLE X. THE EXPERIMENTAL PERFORMANCE COMPARISON WAS 
CONDUCTED ON REAL MATCH VIDEOS 

Method GFLOPs F1/% mAP@50/% FPS/s 
Faster RCNN 180 60 69.1 20 

YOLOv3 85 49 65.7 27 
YOLOv5 53 66 70.7 50 

YOLOv7-tiny 23 63 68.9 69 
YOLOv8s 53 78 77.4 55 

Pro-YOLOv8s 19 78 78.2 60 
 
Table X presents the detection performance of the 

proposed Pro-YOLOv8s framework when processing 
high-resolution broadcast footage under real-world 
conditions. Although a reduction in frame rate is observed 
across all models due to the substantial input dimensions, 
our approach achieves the highest detection accuracy with 
a mAP@50 of 78.2% while maintaining a processing 
speed of 60 FPS. Notably, the model accomplishes this 
performance with significantly lower computational 
demand, requiring only 19 GFLOPs.  

Human target detection was performed on the same 
image using the optimized model and other models for 
comparison, and the results were visually displayed. By 
observing the comparison of the visual effects, it can be 
seen that the optimized model performs better in real 
match videos. 

D. Discussion 
Based on experimental results, we can know how the 

optimized model achieves a balance between accuracy, 
computational load, and processing speed during real 
match video analysis. Because through the analysis of the 
experimental results, it can be seen that when processing 
real match videos, the high resolution of the input images 
generally leads to a decrease in the processing speed of 
various models. But the improved model proposed in this 
paper still maintains a certain processing speed, and the 
accuracy remains high, which is sufficient to meet 
requirements of subsequent tasks. These results validate 
that the architectural optimizations successfully reconcile 
the competing objectives of precision and efficiency, 
fulfilling a core prerequisite for practical implementation 
in resource -constrained environments. In terms of video 
processing, this paper performs shot segmentation and 
key-frame extraction on videos with audio removed. 
Through a semantic annotation method, the video is 
described as a sequence of shots composed of long shots, 
medium shots, close-ups, replays, and off-court shots, 
laying the groundwork for the subsequent extraction of 
player position information from the video. 

In order to clarify why these specific components are 
particularly suitable for the volleyball video scenario, our 
explanation is as follows: the proposed algorithm in this 
paper performs well on two object detection datasets of the 
volleyball video scenario. Compared with the original 
model, it has fewer parameters and lower computational 
load, and is suit for meeting the requirements of efficiency 
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and accuracy in subsequent pose estimation of the 
volleyball video scenario.  

While the rule-based and threshold-driven decision tree 
method is effective, its generalization capability may be 
limited, so its limitations is existing, such as how to build 
the rules based on knowledge databases, how to self-
tuning threshold and so on. In the future work, we will 
continue to study relative machine learning method to deal 
with it. 

V. CONCLUSION 

The standard YOLOv8s network performs well in 
human detection. However, its large parameter count and 
high computational load hinder practical deployment. To 
address this, we implemented a lightweight design. 
Therefore, this paper achieves model lightweighting by 
integrating the Ghost network with the backbone network 
and introduces the CBAM module to enhance the semantic 
information of the lightweight model, thereby improving 
model accuracy. The proposed algorithm in this paper 
performs well on two object detection datasets. Compared 
with the original model, it has fewer parameters and lower 
computational load, and is capable of meeting the 
requirements for efficiency and accuracy in subsequent 
pose estimation. Ultimately, this work demonstrates the 
significant practical potential of optimized deep learning 
solutions in transforming volleyball match analysis, with 
immediate applications in coaching decision-support and 
live broadcast enhancement. 

While the proposed framework demonstrates 
competitive performance, its current form suggests several 
meaningful avenues for future development. Building on 
the lightweight architecture and video understanding 
pipeline established in this study, subsequent research will 
pursue three key directions. First, we aim to incorporate 
multi-modal data streams by integrating visual analysis 
with physiological metrics—such as heart rate variability 
and electro- myography signals—alongside tactical match 
statistics. This integrated approach would enable a more 
comprehensive assessment of athlete performance and 
fatigue patterns. Second, to enhance the practical utility of 
the system, we plan to implement explainable AI 
techniques that provide transparent rationale for the 
model’s outputs. Generating interpretable feedback is 
essential for fostering trust among coaches and sports 
analysts who rely on these systems for strategic decisions. 

Complementing these technical focuses, a third 
direction involves developing a unified, real-time analysis 
platform that seamlessly integrates player detection, 
kinematic analysis, and tactical evaluation. Such an end-
to- end system could offer immediate insights during both 
training sessions and competitive matches. The 
methodologies presented in this paper, (particularly the 
efficient model design and structured video parsing 
framework), provide a solid foundation for these future 
endeavors. Ultimately, this work not only offers a 
functional tool for volleyball analytics but also illustrates 
a viable approach for deploying optimized deep learning 
solutions in dynamic sports environments, contributing to 
the evolving landscape of sports intelligence systems. 
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