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Abstract—Along with the development of volleyball match
video analysis, this paper introduces a novel human target
detection method based on an optimized You Only Look
Once (YOLO) deep learning strategy. Firstly, shot
segmentation (identifying scene boundaries) is performed on
the volleyball videos to extract key frames. Then, using
semantic annotation techniques (classifying segments to filter
non-game content), the videos are described as sequences of
shots composed of long shots, medium shots, close-ups,
replays, and off-court shots. Secondly, to address the issue of
slow speed in target detection algorithms, the backbone
network of YOLOv8s is optimized by implementing
lightweighting through the GhostNet network and enhancing
semantic information with the Convolutional Block
Attention Module (CBAM) module to improve model
accuracy. Experimental results on the PascalVisual Object
Classes (PASCAL VOC), Common Objects in Context
(COCQO), and the Volleyball datasets, as well as real
volleyball match videos, demonstrate that the proposed
algorithm achieves a 1.5% higher mAP@50 with 64.2%
fewer computational load Giga Floating- point Operations
Per Second (GFLOPs) compared to the baseline YOLOVSs,
achieving an optimal balance between accuracy and
efficiency, making it suitable for real-time tactical analysis
and automated player performance statistics in coaching and
broadcasting.

Keywords—semantic annotation, object detection, deep
learning, lightweight network, volleyball video

I.  INTRODUCTION

With the rapid development of computer vision
technology, sports video analysis has become an active
research area. Particularly in volleyball, recognizing and
analyzing athletes and their movements can significantly
enhance the efficiency of training and the scientific nature
of match strategies. However, due to the fast movements
and complex posture changes of volleyball players,
automatic detection and analysis of events in videos face
many challenges.
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Early volleyball video event detection mainly relied on
traditional machine learning methods. These methods
utilized prior information from images, such as low-rank
properties and temporal correlations, and employed matrix
or tensor decomposition or Bayesian representations,
combined with optimization algorithms, to obtain the final
fusion results. However, these traditional methods were
limited by high computational complexity or sub-optimal
feature representation, which seriously affected their
practical performance and applicability. Later, deep
learning methods were applied to volleyball video event
detection [1-6]. Compared with traditional machine
learning methods, deep learning methods demonstrated
superior performance, with significant improvements in
accuracy and robustness.

One research direction in computer vision is object
detection, whose core task is to identify and locate objects
in images or videos. Human object detection is a more
specific branch of this task, which is crucial for
understanding people in images and serves as the
foundation for more advanced applications, such as pose
estimation and action recognition [7—12].

Deep learning-based object detectors, such as You Only
Look Once (YOLOVS), demonstrate superior performance
in general applications. However, their direct application
to volleyball match analysis introduces several unique
challenges. First, live broadcasting and real-time tactical
analysis demand exceptionally high processing speed.
Although YOLOVSs is relatively efficient, its standard
version still involves a substantial number of parameters
and significant computational overhead, which may limit
deployment on resource-constrained devices or in
scenarios requiring ultra-high frame rates. Second, the
volleyball court environment presents complex visual
conditions, including frequent player occlusions,
transitions between long shots and close-ups, large
variations in player scale, and cluttered backgrounds with
crowd interference [13—16]. These factors necessitate a
model with enhanced capabilities for multi-scale object
detection and robust attention to salient features.
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Therefore, there is a pressing need to develop a specialized
human detection method that achieves an optimal balance
among accuracy, inference speed, and model compactness
for volleyball video analysis.

In contrast to generic YOLO optimization approaches,
this work proposes a dedicated volleyball analysis
framework that integrates video semantic understanding
with an optimized detection architecture. The key
innovations include: 1) a lightweight GhostNet backbone
to improve computational efficiency [17-19],
2) Convolutional Block Attention Module (CBAM)
modules to enhance feature representation in complex
scenes [20—22], and 3) Sturcture Intersection over Union
(SIoU) loss to improve localization accuracy—integrated
within a semantically aware processing pipeline [23-25].
This holistic approach is specifically tailored to address
the distinctive challenges of sports video analysis,
including real-time processing demands, frequent
occlusions, and significant variations in object scale.

We identify all relevant event video clips from match
videos and perform human object detection on the pre-
processed video results to recognize the players’ posture
information for subsequent action analysis and statistics,

such as analyzing the volleyball serving action. Therefore,
there are high requirements for the accuracy and real-time
performance of video processing and human object
detection algorithms [26-28].

Videos are composed of continuous image frames,
which contain additional temporal information compared
to static images. In volleyball match videos, there are
twelve athletes, which poses a challenge to human pose
estimation algorithms, especially when dealing with multi-
person scenarios. How to apply techniques originally
designed for single individuals to multi-person video
scenarios is the focus of this research [29-31]. This
chapter specifically studies this issue and proposes video
shot segmentation to obtain key video frames and human
object detection on video frames. The innovation of this
method of this paper lies in its optimization of a single-
stage object detection network structure, simplification of
the backbone network to increase processing speed, and
introduction of a new loss function to accelerate the model
training process and improve model performance [32-38].
The algorithm flow for player detection in volleyball
videos is shown in Fig. 1 below.
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Fig. 1. Flowchart of player detection in volleyball videos.

Fig. 1 presents the overall architecture of the proposed
volleyball video analysis framework. The pipeline
comprises three main stages [39-45]: 1) video
preprocessing, where the original footage undergoes shot
segmentation (dividing the video into contiguous
segments) and key frames are extracted to substantially
reduce data redundancy; 2) semantic shot annotation
(categorizing key frames into types such as long shots,
medium shots, and replays), to filter out non-game content
and prioritize computational resources for relevant game
segments; and 3) optimized player detection using an
enhanced YOLOVS8s model, which is applied exclusively
to selected game shots [46-50]. By integrating video
semantics with object detection, this workflow forms the
foundation of our approach, ensuring efficient and
accurate analysis [51-55].

Moshayedi et al [56] studied the integration of
Autonomous Aerial Vehicles (AAVs) has significantly
advanced image processing and remote sensing,
particularly in precision agriculture. This study addresses
the challenge of accurately quantifying corn production by
developing an enhanced YOLO-v8-based deep learning
model, incorporating dynamic and fixed labeling
techniques, tested on 810 images and video data for real-
time detection. The research utilized two primary datasets
totaling 570 images. The evaluation process comprised
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four distinct tests: conducted on Dataset 1 with 200
images, assessed seven attention mechanisms (Spatial
Extended Attention (SE), CBAM, Gobal Attention (GA),
Local Key Attention (LKA), Channel Attention (CA), Soft
attention (SA), and Time Attention (TA)) using deep
learning metrics (Precision, Recall, mAP50, mAP50-95,
Fl-score) and statistical methods. This study advances
computer vision in agriculture, offering a scalable, high-
accuracy model for corn yield estimation, with broad
applications in farming optimization, financial planning,
and policy-making.

And they analyzed the components and design features
of robots employed in corn fields. This analysis not only
serves as a comparison tool for designers but also
encourages the development of more diverse designs. The
structure of robots in corn farming plays a crucial role in
advancing agricultural practices by boosting efficiency,
precision, adaptability, data collection capabilities,
environmental sustainability, and safety standards [57].
They introduced a comprehensive approach to detecting
and analyzing ammonia in agricultural settings. It
elucidates the merits and demerits of conventional indoor
and outdoor ammonia detection methods, juxtaposing
them with the innovative technology of Electronic nose
(E-nose) and seven widely employed ammonia detection
methods in farmland are scrutinized and compared against
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traditional  techniques. They did comprehensive
comparative  analysis  encompassing  all  the
aforementioned methodologies, elucidating the potential
and limitations of E-nose in facilitating ammonia detection
endeavors within agricultural contexts [58].

In existing literature, deep learning algorithms are
considered powerful technologies that have demonstrated
remarkable performance and effectiveness in various
fields. For example, in image recognition, natural
language processing, and medical diagnosis, deep learning
algorithms, by mimicking the structure of the human
brain’s neural networks, are capable of processing and
analyzing vast amounts of data to achieve highly complex
tasks. Moreover, deep learning algorithms continue to
advance, and with in-depth research, they show greater
potential in solving even more complex problems.
However, in this context, their application in volleyball is
relatively limited and many drawbacks, such as fast
mobility, more security, more reliability, and so on.

In order to solve the above issues (the research
objectives or aim and motivation of this paper), the main
contributions of this paper are as follows:

A decision-tree-based algorithm for volleyball video
frame segmentation is proposed. We develop an efficient
preprocessing pipeline for volleyball game video that
integrates shot segmentation and semantic annotation to
filter irrelevant frames and focus computational resources
on key game segments.

The YOLOVS8s architecture specifically for human
detection in sports videos is optimized, and a lightweight
structure (GhostNet) is introduced to reduce parameters
and computational cost, and an attention mechanism
(CBAM) is introduced to enhance feature representation
under complex backgrounds.

The loss function has been improved to enable the
model to fit the data better, thereby accelerating the
convergence speed and reducing the training time.

The proposed method is comprehensively verified on
public datasets (PASCAL VOC, COCO) and a specialized
volleyball dataset as well as real game videos. Compared
with the existing state-of-the-art detectors, the proposed
method is superior in accuracy, speed, and model
complexity.

II. LITERATURE REVIEW

For the analysis of volleyball match videos, it is
necessary to first process the videos by extracting key
frames. Only then can existing deep learning algorithms be
used to identify the positions of players and subsequently
assess their postures and actions.

A. Event Detection Methods

The task of video event detection is to extract segments
with specific significance from long videos, with the aim
of automatically identifying abnormal events using
computer technology [7]. In sports video analysis, this
technology can filter out exciting moments that may
interest the audience from the entire match video. Initially,
this work was entirely manual, with professionals using
video editing software to mark and edit the desired
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segments based on their experience. However, given the
need for rapid processing and the large volume of sports
videos, manual operations are not only time-consuming
and labor-intensive but also lack accuracy.

Event detection in volleyball videos can be divided into
two distinct techniques: one based on manually set rules
and the other using machine learning. The latter trains
models on annotated video segments to enable automatic
event detection in new videos [8]. This method is highly
automated and widely applicable, but in practice, machine
learning faces challenges in collecting comprehensive
training samples. Insufficient training data can affect the
model’s performance and applicability. In contrast,
manually set rules require defining detection criteria based
on the characteristics of volleyball videos, which
necessitates a deep understanding of the video content.
Overly simple rules may reduce accuracy and
applicability, while overly complex rules can affect the
stability and generalizability of the detection [9].

Considering practical application scenarios, a three-
layer semantic structure analysis method can be adopted.
This method includes the extraction of low-level visual
features, recognition of middle-level entities and scenes,
and analysis of high-level entity relationships and
attributes. First, low-level semantic features are extracted
through video shot segmentation. Next, these features are
used to semantically annotate the shots, resulting in
semantically labeled shots. Finally, events are detected by
combining machine learning and manual rules.

B.  Object Detection Algorithms

In the task of object detection, traditional methods are
often disturbed by factors such as changes in lighting,
cluttered backgrounds, varying object sizes, and
occlusions [10]. These factors hinder the algorithm’s
ability to accurately capture the core features of the target,
thereby affecting the detection accuracy and stability of
the model [11]. In contrast, deep learning techniques can
accurately extract target features in complex
environments, making the model more robust [12—-16].

There are two major categories of deep learning
applications in object detection: one-stage and two-stage
methods.

The Region-Convolutional Neural Networks (R-CNN)
model was proposed by Girshick ef al. [16] in 2014 and
was the first object detection model to use deep learning.
The model identifies potential object regions using the
selective search method, which involves dividing the
image into multiple blocks of varying sizes, merging
similar blocks, and finally filtering out potential object
regions. Since neural networks can only process images of
fixed size, normalization is required. Subsequently,
Convolutional Neural Networks (CNNs) are used to
extract features from these regions, and the extracted
features are classified using Support Vector Machines
(SVMs) to determine the object category and predict its
location in the image. Although R-CNN significantly
improved detection performance, it has several limitations.
Its training process is complex and time-consuming due to
the need to generate a large number of potential object
regions, which slows down both training and detection
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speeds. Additionally, resizing regions can cause image
distortion, affecting detection accuracy.

Unlike two-stage algorithms, single-stage methods
directly predict the target’s location, confidence score, and
category on the feature map, outputting results in one step.
This approach eliminates the need for intermediate region
proposal generation, resulting in faster detection speeds
and reduced hardware requirements, making it more
suitable for practical applications.

Redmon and Farhadi [21] proposed the You Only Look
Once (YOLO) object detection algorithm, which was the
first single-stage detection model that merged region
proposal and object recognition into one stage. YOLOvI1’s
detection logic is based on the grid cell containing the
center of the object being responsible for detecting that
object. The model divides the image into a 7x7 grid and
predicts two bounding boxes for each grid cell, resulting
in a total of 98 candidate boxes. It uses Intersection over
Union (IoU) to filter the predicted boxes against the
ground-truth boxes, with higher IoU values indicating
better localization.

YOLOv1] employs a lightweight feature extraction
network to achieve fast regression and classification.
Although this approach improves detection speed, it has
several limitations. Each grid cell predicts only two
bounding boxes and one class, which restricts the number
of detectable objects and weakens overall detection
performance. Additionally, assigning equal loss weights to
all objects results in lower accuracy when detecting small
objects [19-23].

In 2024, Varghese and Sambath [24] proposed the latest
model in the YOLO series, YOLOvS. This network adopts
state-of-the-art backbone and neck structure designs and is
equipped with an anchor-free, decoupled Ultralytics head.
It achieves an ideal balance between accuracy and
inference speed, making it highly suitable for real-time
object detection tasks in various application
scenarios [25].

C. Model Light-Weight Methods

Miniaturized models, with their smaller storage
footprint and lower computational load, are more readily
deployable in practical applications and can more
effectively create value.

Deep learning has unique advantages in the field of
image processing. However, complex deep convolutional
neural networks also make real-time processing tasks such
as object detection and pose estimation more challenging
on GPUs. As the number of network layers increases,
although model accuracy is improved, more
computational power is required. Therefore, it is necessary
to compress and accelerate the models, reducing their
depth and computational load while maintaining detection
accuracy. This can speed up model training and prediction,
enabling algorithms to be more stably and efficiently
deployed on other platforms. This is crucial for the
practical application of deep learning technologies.

Using more streamlined CNNs can enhance model
performance. Through optimization, models can achieve
excellent real-time performance across different
platforms. In the development of deep learning, several
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techniques aimed at reducing computation have emerged,
such as Xception, the MobileNet series (including
MobileNetV1, MobileNetV2, MobileNetV3), the Shuffle
Net series (including Shuffle-NetV1, Shuffle NetV2), and
GhostNet  [26-32]. While Xception simplifies
computation, it has higher requirements for GPU memory.
The MobileNet series uses a large number of 1x1
convolutions and depthwise separable convolutions to
streamline calculations. The ShuffleNet series not only
employs grouped convolutions but also enhances channel
information to improve model performance. GhostNet, on
the other hand, considers the correlation and redundancy
between feature maps, generating redundant features
through linear transformations and intrinsic features
through identity mappings. By combining these two
approaches, GhostNet reduces the number of parameters
and computational load.

Network structure lightweighting aims to reduce the
number of model parameters without consuming more
resources. This goal is typically achieved through
techniques such as pruning and quantization.

In deep learning, both fully connected layers and
convolutional layers contain a large number of
unnecessary parameters that contribute little to model
performance [33]. Moreover, many neurons have
activation values close to zero, leading to wasted
computational resources. Dropout, a technique that
randomly deactivates some neurons, achieves a pruning
effect by reducing the number of active neurons.
Additionally, transforming fully connected networks into
sparse networks is a common method for model
compression [34-36].

Pruning involves evaluating the weights of network
connections to determine whether to maintain connections
between neurons, and then trimming neurons and their
connections accordingly. This simplifies the network
structure, reduces computational load, and speeds up
training. However, pruning can lead to a drop in accuracy,
which necessitates retraining and fine-tuning of the pruned
model to recover lost precision [37—43].

Sparse models require the reuse of network parameters,
which reduces the number of parameters without
increasing computation, thereby shrinking the model size.
For fully connected networks, random weight sharing
methods can be used to compress the model while
maintaining its performance, and connections with non-
shared weights are associated [44—48].

III. MATERIALS AND METHODS

In this section, we first use shot segmentation methods
to process the video into groups of individual frames.
Then, we extract key frames from the sequences to
represent each shot group. Next, we perform semantic
classification and labeling on the key frames. Finally, we
detect all players in the images from key frames with
specific semantic information. The detected candidate
bounding boxes are then enlarged, cropped, and saved by
position for subsequent input into pose estimation.
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A. Shot Segmentation

Videos contain a vast amount of data. This paper
chooses to remove the audio from the video, treating the
video as a sequence composed of continuous frames.
Processing event detection tasks frame by frame involves
a significant amount of computation. To reduce the
computational burden, frames with similar content are
grouped together, and one or more key frames are
extracted from each group as representatives. The video is
then decomposed into a sequence of content-independent
shots, which not only reduces the computational load but
also ensures the integrity of the video content. To extract
these frames, the video needs to be segmented into a series
of meaningful and manageable video segments, namely
shots. A shot is a collection of a series of interrelated video
frames and constitutes the basic unit for event detection in
volleyball videos.

A common approach to shot segmentation is to use
boundary detection algorithms to determine the boundary
frames of each shot in the video, and then segment the
video into independent shots based on these boundary
frames. This process typically involves calculating the
feature differences between frames and setting a specific
threshold to judge whether the changes between frames are
significant. Once the threshold is exceeded, it can be
considered that the current frame marks the beginning of a
new scene, thereby achieving video scene segmentation.
Shot segmentation is mainly divided into two types: one is
pixel comparison, which is highly effective for videos with
minor and gradual changes in the scene; the other is
histogram analysis, which is suitable for detecting rapidly
changing shots. Since volleyball match videos often
involve frequent shot changes and relatively simple
backgrounds, a pixel comparison-based segmentation
algorithm is adopted. The frame difference calculation as

Eq. (1):
D(k,k+1) = $Z¥=1 Zﬂilllk(x,y) = L (621 (1)

where, D(k,k + 1) represents the average absolute
frame difference per pixel, which serves as the core metric

for our shot segmentation algorithm. The factor ﬁ acts

as a normalization term, ensuring that the calculated
difference is the average per-pixel value rather than a total
sum. The width and height of the video frame are denoted
by W and H, respectively. I,(x,y) represents the
brightness of the current frame at point (x, y), while
I.+1(x,y) represents the brightness at the same position
in the next frame. When the difference D(k,k + 1)
exceeds a predefined threshold, it indicates that the frames
belong to different scenes in the video.

We employs a dual-comparison method to determine
the threshold for detecting scene changes, which can
simultaneously identify both gradual and abrupt
transitions. Initially, a higher threshold value is used to
quickly detect abrupt changes in the video. Subsequently,
a lower threshold value is applied to locate the starting
frame of a gradual change, and the cumulative frame
difference is calculated until the end frame of the gradual

157

change is identified. When the cumulative value of the
frame differences remains below the predefined threshold
for an extended period, a tolerance value is set to allow a
certain number of consecutive frames with minor
differences before determining that no change has
occurred.

After shot segmentation, a series of independent shot
groups are obtained. However, the specific content
contained in these segments is still unknown; they are
merely units separated physically. Subsequently, it is
necessary to analyze the content of these shot groups, that
is, to examine each video frame within each shot group
frame by frame. However, similar frames within the same
group would be redundant. Therefore, it is necessary to
extract one or more frames from each shot group as key
frames to represent the entire shot group, thereby reducing
the number of frames.

Technological advancements have brought about
various key frame extraction techniques. Among them,
shot-boundary-based extraction algorithms are suitable for
shot groups segmented from complete videos, where the
feature changes between adjacent frames are minimal.
Visual-content-based  extraction  algorithms  can
comprehensively represent the content of a shot but are
prone to extracting redundant key frames, making video
processing  time-consuming.  Motion-analysis-based
extraction algorithms introduce motion features to obtain
more accurate key frames but are computationally
complex. Clustering-based extraction algorithms can
extract representative key frames but require predefined
cluster numbers and centers, and they have longer running
times.

Considering the characteristics of volleyball videos and
the requirements for efficiency, as well as the Twin
Comparison shot segmentation algorithm used in this
paper, analysis of the shot groups after segmentation
reveals that the differences between frames within each
group are relatively small. After weighing the advantages
and disadvantages of various key frame extraction
algorithms, the shot-boundary-based key frame extraction
algorithm was chosen. This algorithm can efficiently and
effectively select key frames. Among the extracted key
frames, the middle frame is typically chosen as the final
key frame. The sequence key frame obtained according to
the algorithm presented in this paper is shown in Fig. 2.

EETV /5

Fig. 2. The key frame of a sequence in a real match video.
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B. Shot Semantic Annotation

For a computer, the segmented shot sequences are
merely a series of images, but the meanings behind these
images are not recognized by the computer. Therefore, it
is particularly important to perform semantic labeling on
key frames. The content of volleyball videos is relatively
simple, so it is possible to analyze the feature values of key
frames and use decision tree techniques to categorize the
video into different classes and label semantic
information.

Fig. 3 illustrates the rule-based decision tree developed
for automatic semantic shot annotation. The classification
follows a hierarchical logic grounded in computationally
derived metrics. Initially, replay shots are identified

Replay shot

Is it located

between two
logos

Field area Yes

>
Threshold

No

External
field shot

Face ratio

>

Threshold

through the detection of broadcast logos. Subsequent to
this, non-replay shots are distinguished by their playfield
ratio: a high PR value classifies a shot as a long shot,
typically encompassing the majority of the court, whereas
a medium PR indicates a medium shot. For shots with a
low PR, the algorithm further evaluates the edge ratio. A
low ER corresponds to a close-up shot, characterized by
simple structural content such as a player’s face, while a
high ER suggests a complex external shot, often focusing
on the audience or coaching staff. This structured, rule-
based annotation is fundamental to automating video
content interpretation and ensures that subsequent
analytical processes, such as player detection, are
concentrated on the most relevant game segments.

Close-up

shot
Yes

Player area Yes

ratio >

Threshold

Fig. 3. Shot semantic labeling decision tree.

Replay shots play a guiding role in the detection and
positioning of events in volleyball match videos. For
viewers, replays not only enhance the viewing experience
but also provide insights into unexpected incidents, with
directors often replaying exciting details captured from
different angles. When creating replay footage, to alert the
audience, the competition’s logo is usually added at the
beginning and end of the footage, allowing viewers to
naturally get into the mood and continue watching the
match smoothly. The replay shots mentioned in this paper
actually refer to a set of shots composed of two frames
with logos and a series of normal or slow-motion frames,
which, for convenience, are simply referred to as replay
shots, and will not be elaborated on further.

Slow motion is often seen in replay footage, which can
serve as a marker to identify replay shots. There are two
main ways to create slow motion: one is to capture the
action with a high-speed camera and then play it back at
normal speed, allowing viewers to see slow motion; the
other is to use a regular camera and simulate slow motion
through technical means such as repeating frames or
interpolating frames. Depending on the production
method, different approaches can be used to detect replays.
One is the template matching method. The template
matching method first creates a template based on the
replay frames and then uses the template to compare with
the video frames that belong to the replay. However, this
method has not been very accurate and is relatively time-
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consuming. The second is the logo detection method. This
method detects replay shots by identifying logos inserted
before and after the replay. To ensure a smooth viewing
experience, replays are usually placed in the middle of the
event logo, so replays can be indirectly determined by
recognizing the logo. However, different events may have
different logos, and one logo template cannot be used to
detect replays in all videos. By studying a large number of
volleyball match videos and related literature, this paper
proposes using motion feature vectors to determine the
pixel area of the logo, thus solving the non-universal
problem. Experiments have proven that this method can be
used in videos of major events such as the Olympics,
World Championships, and FIVB Volleyball World Cup,
with a high identification accuracy rate.

We identifies logo shots by comparing key frames of
suspected logo shots with preset logo templates; shots that
fall within a certain similarity threshold are considered
logo shots. Fig. 4 shows the key frames of event logos
obtained using the logo detection method with motion
feature vectors, and replays are typically located between
two logo key frames.

The long shots and medium shots in the text refer
specifically to the court scenes captured by the camera.
Long shots can capture the entire or most of the court
scene; medium shots show one or several players in full
body and posture, and although the court is visible, it
occupies a much smaller proportion of the frame compared
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to long shots. Therefore, the two types of shots can be
distinguished by using the Playfield Ratio (PR) metric.

| s S

N |
Bl

Fig. 4. Key frames of replay shots in real match videos.

To calculate the Playfield Ratio, it is necessary to
identify the color of the court. However, there is no
uniform standard for the color of volleyball courts; they
are only required to be light-colored and different from the
boundary line color, so each court has slightly different
color values. Long shots include court scenes, but partial
audience seats may appear and cause errors. To address
this, this paper reduces the impact on the court ratio by
normalizing the top one-third of the pixels of all frames to
be detected before calculating the main color range of the
court. The steps for algorithm implementation are as
follows:

1) Before the match starts, capture the scene of the
players entering the court, using it as a key frame to
determine the court color. By calculating the pixel
distribution, select the color corresponding to more than
50% of the pixels as the court color.

2) Normalize only the bottom two-thirds of the area of
non-replay key frames, and then calculate the Playfield
Ratio (PR). The calculation formula for PR as Eq. (2):

PR(]) — Dl(])z

wxhx— (2)
where, D;(j) represents the number of pixels obtained
after extracting the playing field from the j-th frame. # and
w denote the height and width of the image, respectively,

and % indicates that only the bottom two-thirds of each

frame is used.

3) Analyze the area of the playfield in key frames of
medium shots and long shots to obtain a threshold for
distinguishing these two groups of shots. If more than half
of the frames in a shot are identified as long shots or
medium shots, then the shot will be labeled with the
corresponding tag; otherwise, the shot will be marked as a
non-field shot and proceed to the next labeling phase in the
decision tree.

After filtering out other types of shots, only external
field and close-up shots remain. Close-up shots are
directed towards the athletes, typically capturing their
faces or upper bodies, with the background primarily being
the competition field, as shown in Fig. 5.
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Fig. 5. Close-up shots in real match videos.

For external field shots, the main subjects in the frame
are often multiple people with complex -contours.
Therefore, by using an algorithm to extract the edges of
the image and calculate the proportion of edge pixels in the
entire image, close-up shots can be distinguished from
external field shots. The specific steps are as follows:

1) Apply the Canny edge detection algorithm to each
image to identify the edge areas and calculate the
proportion of edge pixels. The formula for this as Eq. (3):

ER(]) — D2(J)

wxh G)
where, D,(j) represents the number of edge pixels after
edge detection for the j-th frame, and ER(j) represents
the edge pixel ratio of that image. The denominator w X h
represents the total number of pixels of the image, which
makes ER(j) becomes a normalized ratio with a value
between 0 and 1 that is used to fairly compare the texture
complexity of images of different sizes.

2) Determine the threshold for the edge pixel ratio based
on analysis and experimentation, and use it to identify key
frames. If the edge pixel ratio is below this threshold, the
frame is considered a close-up frame; otherwise, it is
considered an external field frame.

3) Calculate the proportion of external field frames to
close-up frames within a shot. If there are more external
field frames, the shot is classified as an external field shot;
conversely, if there are more close-up frames, it is
classified as a close-up shot.

C. Human Object Detection

The key to player contour recognition is accurate and
stable object detection. Single-stage object detection
algorithms, as an efficient object detection framework, can
simultaneously predict the category and location of objects
in a single forward propagation, simplifying the object
detection process and accelerating inference speed. The
YOLO algorithm converts the object detection task into a
regression problem by dividing the input image into a grid
and predicting the bounding box and its class probability
in each grid cell, achieving rapid detection. The advantage
of this algorithm lies in its speed, which meets real-time
requirements, but it has shortcomings in small object
detection and image size adaptability. Therefore, based on
the YOLOvS8s algorithm, this paper uses the Feature
Pyramid Network (FPN) structure to effectively avoid
distortion and feature redundancy caused by image area
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operations, enhancing the ability to detect small objects.
For player detection in videos, given the scarcity of
volleyball domain datasets, data augmentation techniques
are used to expand the dataset to address the issue of
insufficient data.

The YOLOV8s object detection network mainly consists
of four parts: the input end, the backbone network, the
enhanced feature module, and the output end. Data
augmentation methods are used during the data input
phase, which helps to expand the dataset and prevent the
model from overfitting. The backbone network is
responsible for extracting image features. The enhanced
feature module, through the Feature Pyramid Network
(FPN), fuses high semantic information with low-level
information to achieve multi-scale feature training,
thereby improving the model’s ability to detect small
targets [38]. The output end is composed of decoupled
modules that predict the targets and their corresponding
bounding boxes.

Data augmentation Mosaic is a method to improve the
quality of samples. Its operation involves randomly
selecting four images from the training dataset, performing
cropping, flipping, and other operations on the images, and
then splicing and cropping the processed images back to
their original size. This operation enriches the information
of the target background. At this time, the Mixup method
is also used, which randomly selects two images and fuses
pixel values by direct interpolation. The computing

equaitons as Eqgs. (4) and (5):
Xn = /1xl- + (1 - A)XJ (4)
Yo = Ay + (1 - Dy; (%)
where, (x,,),) represents the fused pixel values,

(xi,x;) and (y;,y;) represent the pixel values of the
randomly selected images, and 4 is a preset parameter. The
parameter A is usually sampled from a beta distribution
and is used to control the degree of mixing. When 4 = 1,
the output is exactly equivalent to the first image, while
when A =0, it is exactly equivalent to the second image.

This operation forces the model to learn smoother decision
boundaries through linear interpolation, which improves
generalization.

Considering that features at different scales can provide
richer information, and due to the fact that the size of
players may vary under a single viewpoint, this paper
proposes the use of convolutional kernels of different sizes
in the deep feature extraction part of the model. Through a
bottom-up feature extraction process, even if the input is
of only one scale, a feature pyramid module with strong
semantic features at all levels can be constructed.

In most traditional network architectures, object
recognition and localization tasks are often designed to be
executed in parallel on a single feature map. However, this
design may not fully consider the essential differences in
the requirements of the two tasks: the recognition task
focuses more on identifying subtle differences between
sample features, while the localization task pays more
attention to the contour and shape features of the target
object. Therefore, YOLOv8 adjusts the channels of the
feature map through a decoupling module and then sends
them to two different task branches. In these two branches,
two 3x3 convolution operations are stacked separately to
perform classification and regression tasks, respectively.
The network structure is shown in Fig. 6. It is YOLOv8s
decoupling module network.

Fig. 6 depicts the decoupled head structure
implemented in the YOLOVSs architecture. In contrast to
traditional coupled designs that rely on shared
convolutional features for both classification and
localization, this conFig.uration employs two dedicated,
parallel branches. One branch specializes in classification
tasks—specifically identifying objects as “person”—while
the other focuses exclusively on regression tasks for
precise bounding box coordinate prediction. This
functional separation enables each branch to optimize its
parameters for distinct feature representations, thereby
enhancing localization precision and classification
reliability compared to earlier integrated head designs.

' voroos |
| Decoupling
| Module |
| 3x3 | 3x3 | 1x1 Ao
‘ | Cov Cov Cov €5 |
‘ |
| 150 HxWx256 |
in ' > Cov | | ‘
| 1x1 N
| " Cor o Reg | HxWx4 |
HxWx{1024,512,256}T| HxWx256 ol 3%3 ol 3X3 | |
| | Cov 7| Cov |
| N "C’;i ol obj | mxwxr |
| HxWx256 |
- - - - _ _ _ _ _ - _ —_— _ _ J

Fig. 6. YOLOv8s decoupling module network.
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The improved YOLO network architecture is as
follows:

1)  Lightweight feature extraction network

The backbone network of YOLOVS relies on the
CSPDarknet for feature extraction, which has shown good
performance in terms of object detection accuracy.
However, due to its complex network structure and large
number of parameters, the detection speed is affected. To
enable the model to adapt to different computing
environments, optimization becomes crucial. Currently,
researchers have proposed various methods to improve the
speed of deep learning models, including model
lightweighting, merging BN layers, network pruning and
quantization, and tensor decomposition techniques.

Regarding the merging of BN layers, it is commonly
used during training to prevent overfitting and promote
faster model convergence. However, this practice may
increase the computational cost of the model, thereby
slowing down the detection speed. Network pruning
techniques remove weights that have minimal impact on
model performance after training, especially those close to
zero. For convolutions with zero weights, dilated
convolutions can be applied as a solution. Given these
considerations, this paper proposes an improved scheme to
enhance detection efficiency by adopting a lightweight
feature extraction network to optimize the model.
GhostNet serves as this lightweight feature extraction
network, relying minimally on 3x3 convolutions to
construct the base layers and generating redundant feature
layers based on efficient linear operations. This method

qu ( Hc}

significantly reduces the model’s parameters while having
a minimal impact on detection results, thereby enabling
faster model operation.

2) Introducing an attention module

The Attention Mechanism (Attention Mechanism)
originates from the way the human brain processes
information [39]. It has been widely applied in
Convolutional Neural Networks (CNNs) for both Natural
Language Processing (NLP) and Computer Vision. This
mechanism enhances the role of critical information and
diminishes the impact of non-critical information by
assigning different weights to various pieces of
information, thereby improving the stability of the model.
Depending on the level at which attention is applied, it can
be categorized into three types: Channel Attention, Spatial
Attention, and Hybrid Attention.

The Channel Attention Mechanism (Channel Attention
Module, CAM) focuses on analyzing the interrelationships
among different channels in a feature map and evaluates
their importance by assigning different weights to each
channel. The Spatial Attention Mechanism (Spatial
Attention Module, SAM) emphasizes identifying key
pixel regions within a feature map. However, this focus
may sometimes cause the model to overlook non-critical
information such as the background.

The Squeeze-and-Excitation (SE) network is a classic
channel attention model, consisting of two parts: the
Squeeze Block and the Excitation Block. The network
structure is shown in Fig. 7 below.

AN

Fig. 7. SE network architecture.

The so-called Squeeze Block has a core function of
compressing data containing multiple channels into a
single-dimensional ~ vector.  Subsequently,  matrix
calculations are performed using trainable weights
associated with this vector, with the aim of enhancing the
saliency of features. These weights are adjusted through
the backpropagation algorithm, enabling the model to
identify and retain important features. The computational
formula for the Squeeze Block as Eq. (6):

1

F_;'q (uo) = aw

?:1 Z‘]/V=1 uc(i,) (6)
where, u. represents the feature of the c-th input matrix
channel. The compressed vector is then fed into a neural

network, using the ReLU function as the activation
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function. The activation of the features is completed
through the Sigmoid function. Next, a scaling operation is
performed, where the resulting output vector is multiplied
element-wise with the original feature map to obtain a
weighted feature map. This step not only enhances the
important features but also weakens the impact of less
important features, making the final extracted features
more representative. The formula as Eq. (7):

Xe = Focare(Ue, Sc) = ¢ X U (7

In the field of object detection, the size of the bounding
box is crucial for the accuracy of object information.
However, the SE network fails to fully address the issue of
edge information loss during the feature compression
process.
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The CBAM network is composed of a spatial attention
module and a channel attention module [40]. Its network

structure is shown in Fig. 8. It is the structure of the CBAM
module.

Convolutional Block Attention Module

Attention
Module

Input Feature

Spatial
Attention
Module

Refined Feature

>

Fig. 8. The structure of the CBAM module.

Fig. 8 presents the detailed architecture of the
Convolutional Block Attention Module (CBAM)
integrated into our framework. This module progressively
refines intermediate feature maps through a structured
two-stage attention mechanism. Initially, the channel
attention component evaluates the significance of
individual feature channels, effectively determining
“what” contextual information merits emphasis.
Subsequently, the spatial attention component identifies
salient regions within the feature maps, establishing
“where” the model should concentrate its focus. This
sequential processing enables the network to selectively
amplify features associated with players while
simultaneously suppressing non-essential background
elements, thereby proving particularly advantageous for
interpreting  the complex visual environments
characteristic of volleyball matches.

Under the framework of channel attention mechanism,
global max pooling and average pooling operations are
first performed on the feature map to reduce the
dimensions in the width and height of the feature map.
Subsequently, the processed feature map is fed into a
multilayer perceptron network, which outputs two
different feature vectors. The corresponding elements of
these two vectors are added together and a Sigmoid
function is applied to generate a weight vector for the
channel features. Finally, this weight vector is used to
multiply with each channel of the original input feature
map, thereby enhancing the spatial attention of the feature
map and obtaining a map that highlights important features
more prominently. The expression as Eq. (8):

M.(F) = 6(MLP(AvgPool(F) + MLP(MaxPool(F)) (8)

In the spatial attention mechanism, when processing
feature maps, global max pooling and global average
pooling techniques are employed to capture global
information from the image. Subsequently, the results of
these two pooling methods are concatenated along the
spatial axis to integrate the information obtained from
different pooling strategies. Then, a 7x7 convolutional
layer is used to further refine the features, and a Sigmoid
activation function is applied to determine the importance
of the features. Ultimately, this process generates a feature
map that integrates spatial and channel attention
information, enabling the model to more accurately
identify key features. The expression as Eq. (9):

M (F) = a(f77 ([AvgPool(F); MaxPool(F)])) (9)

Using asymmetric convolution, 3%3 dilated convolution
is decomposed into two convolutions of 1x3 and 3x1 [41].

This operation retains only g of the parameters of a

regular convolution. The calculation of the compression
ratio as Eq. (10):

2

g=n=" (10)
where, m represents the number of parameters in a regular
convolution, while M represents the number of parameters
in an asymmetric convolution. Taking a 4x4 input as an
example, the computational comparison between the two
types of convolutions is shown in Fig. 9. It is
computational process comparison for asymmetric
convolution as Fig. 9a) based on asymmetric mode
1x3:3x1 and regular convolution as Fig. 9b) based on

regular window 3x3.

a)Asymmetric Convolution

b)Regular Convolution

Fig. 9. Computational process comparison for asymmetric convolution and regular convolution.
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The network structure of the improved model,
incorporating  the  aforementioned  optimization
techniques, is shown in Fig. 10.

Fig. 10 illustrates the complete architecture of our
proposed Pro-YOLOv8s model, highlighting three
primary modifications to the baseline YOLOvSs
framework. The backbone network incorporates GhostNet
to reduce computational complexity and parameter count
through efficient linear operations. The enhanced features
are subsequently processed by a Convolutional Block
Attention Module (CBAM), which selectively emphasizes
meaningful spatial and channel information. For bounding
box regression, the conventional Complete Intersection
over Union (ClIoU) loss is replaced by the SIoU function
to improve localization accuracy. Collectively, these
optimizations yield a model that achieves superior
detection performance while maintaining a reduced
computational footprint, rendering it particularly suitable
for deployment in real-time sports analytic applications.

The improved loss function is as follows: The
calculation of the loss function is an essential part of object
detection algorithms. The regression loss function for the
prediction box in the YOLOVSs algorithm is CloU, which
takes into account the overlap area, the distance between
the centers, and the aspect ratio of the predicted bounding
box and the ground truth box. The specific formula for
CloU as Egs. (11)—(13):

pz Bpred‘Bgt
Lesou = ToU — (% +av) (11)
4 _ gt _ wbred
v =2(tan" ¥ — tan™1 ) (12)
v
- (a-IoU) +v (13)

where, a is abalancing coefficient, v is used to measure
the length and width ratio, and p?(BP"®¢, B9%) represents
the Euclidean distance between the centers of the predicted
box and the ground truth box.
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Fig. 10. The improved YOLOVS network architecture.

However, the description of the aspect ratio in CloU is
somewhat subjective, which introduces a degree of
uncertainty and ignores the directional differences
between the ground truth box and the predicted box.
Therefore, this paper proposes replacing CloU with SloU
to improve training and convergence speed. The
calculation of SIoU is divided into four parts: IoU loss,
angle loss, distance loss, and shape loss. The formula for
calculating the angle loss as Eq. (14):

where, siny is the sine value of the angle between the
centers of the predicted box and the ground truth box,

6 = cos (2 X (sin‘l(siny) —%

N—

(14)
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calculated based on the differences in width and height of
the centers. The formula for calculating the distance loss
as Eq. (15):

(15)

where, p, and p, are the normalized values of the width
and height differences between the centers, respectively,
and f isthe adjustment coefficient for the angle loss. The
formula for calculating the shape loss as Eq. (16):

P =2—exp(B X py) — exp(ﬁ x py)

0 =1 -exp(-w,))* + (1 —exp(-wp))*  (16)

where, w, and wj are the normalized differences in
width and height between the predicted box and the ground
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truth box, respectively. IoU, as a scale-invariant metric,
can measure the similarity between two rectangles of
different shapes. The calculation formula for IoU as
Eq. (17):

_ llanBI _ 11l
loUnp = 12551 = o a7

where, 4 and B are the boundary boxes of the predicted box
and the ground truth box, respectively. Symbol||A N B|
calculates the intersection area between the predicted box
and the true box, while [|A N B|| computes the area of their
union. As a scale invariant index, IoU has a range of [0, 1],
1 for perfect coincidence and 0 for perfect no overlap, which
directly measures the accuracy of localization. / denotes the
intersection, and U denotes the union.

Combining the four parts mentioned above, the

expression for the SIoU loss function as Eq. (18):

Py+0

: (s)

Loy = 1 — DIoU +

D. Experimental Setup

The experiments in this paper were conducted on the
Ubuntu 22.04 operating system, using an NVIDIA RTX
4070 GPU. The environment includes CUDA 12.3,
PyTorch 1.13.1, and Python 3.11 [44—48]. The YOLOv8s
model was used as the baseline, following the default
conFig.uration of v8. The hyper-parameters used during
training are shown in Table I. The images were resized to
640%640 pixels, and data augmentation techniques such as
Mosaic and Mixup were employed. The initial number of
training iterations was set to 500, and after model
lightweighting, the number of iterations was reduced to
100.

TABLE I. HYPER-PARAMETER SETTINGS

Parameter Meanin Default
Name g Value
learning_rate Initial Learning Rate 0.01
momentum Learning Rate Momentum 0.937
weight decay Weight Decay Coefficient 0.0005
epoch Number of Training Epochs 500
Number of Training Epochs after
Iw_epoch Model Lightweighting 100
batchsize The number of samples used in 16

one iteration

E.  Experimental Dataset

Datasets are crucial for deep learning algorithms, not
only ensuring fair comparisons between algorithms but
also bringing new challenges to algorithm research
through continuous expansion and improvement. The
PASCAL VOC 2012 dataset is a publicly available dataset
that provides a unified data format, high-quality images,
and detailed annotations. It covers 20 categories, including
people, animals, and vehicles, and contains approximately
11,000 images and 27,000 annotated objects. By writing a
Python script to filter images labeled with “person,” we
obtained a training set of 1994 images and a validation set
of 2093 images. We then randomly selected 1006 images

from the validation set to add to the training set, leaving
the remaining 1087 images for validation [49—52].

The COCO (Common Objects in Context) dataset
provides a large-scale, diverse, and practical benchmark
for image recognition and object detection, containing
330,000 training images, 35,000 validation images, and
50,000 test images. By writing a Python script to filter
images labeled with the “person” tag in the COCO dataset,
we identified 64,115 images in the training set and 2693
images with corresponding labels in the validation set.
These images will be used in this study.

F. Evaluation Metrics

The Volleyball dataset is a specialized dataset for
volleyball match videos. It is the only publicly available
dataset for multi-person action recognition and is currently
the largest dataset for group activity recognition. The
dataset consists of 55 volleyball match videos and 4,830
annotated frames [53-58]. Among these, 24 video
sequences are used for training, 15 for validation, and 16
for testing. Each frame is annotated with bounding boxes
and coordinates of the players, as well as nine individual
action labels (waiting, passing, diving, falling, spiking,
blocking, jumping, moving, and standing) and eight group
activity labels (right pass, right spike, right reception, right
score, left score, left pass, left spike, and left reception).

To evaluate the performance of player detection
algorithms, appropriate evaluation metrics are necessary.
The Fl-score is a metric that takes into account both
precision and recall. Average Precision (AP) is calculated
by measuring the area under the Precision-Recall (PR)
curve, typically using the 101-point interpolation method.
This involves taking 101 points with a step size of 0.01 in
the recall range from 0 to 1, and for each point, the
precision value is the maximum value to its right. AP50 is
the average precision calculated at an Intersection over
Union (IoU) threshold of 0.5, meaning that a detection is
considered correct if the overlap between the predicted
box and the ground-truth box exceeds 50%. The mean
Average Precision (mAP) is obtained by averaging the
individual AP values and is also used for model evaluation.
However, in this study, we focus primarily on the “person”
category label, so its mAP value is essentially the AP
value. The formulas for calculating precision, recall, and
F1-score as Egs. (19—(21):

Precision = —— (19)
TP + FP
Recall = ——— (20)
TP + FN

Precision X Recall

Fl1=2x Precision + Recall (21)
where, True Positive (7P) represents the number of samples
that are predicted as positive by the model and are actually
positive. False Positive (FP) is the number of samples that
are predicted as positive by the model but are actually
negative. False Negative (FN) is the number of samples that
are predicted as negative by the model but are actually
positive.
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IV. RESULT AND DISCUSSION

A.  Experimental Results and Comparative Analysis

The Precision-Recall (P-R) curve of the improved
YOLOVS8s shows high precision and recall, with an mAP
value reaching 84.8%. The fullness of the curve indicates
good robustness.

To evaluate the practical performance of the improved
model, this paper compares the improved YOLOv8s with
Faster R-CNN, YOLOv3, YOLOvVS5s, YOLOv7-tiny, and
the original YOLOv8s models on the filtered datasets and
analyzes their performance [42, 43]. The experimental
results on the VOC dataset are shown in Table II, it is
comparison of experimental performance on the PASCAL
VOC 2012 Validation Set on our cared relative parameters.
The results on the COCO dataset are shown in Table III, it
is comparison of experimental performance on COCO
Validation Set on our cared relative parameters. And the
results on the Volleyball dataset are shown in Table IV, it
is comparison of experimental performance on the
Volleyball Validation Set on our cared relative parameters.

TABLE II. COMPARISON OF EXPERIMENTAL PERFORMANCE ON THE
PASCAL VOC 2012 VALIDATION SET

Method GFLOPs  F1/% mAP@50/%  FPS/s
Faster RCNN 180 80 78.8 39
YOLOv3 85 72 71.5 44
YOLOv5 53 84 81.5 76
YOLOv7-tiny 23 72 78.3 103
YOLOv8s 53 91 83.3 71
Pro-YOLOv8s 19 90 84.8 87

TABLE III. COMPARISON OF EXPERIMENTAL PERFORMANCE ON COCO
VALIDATION SET

Method GFLOPs F1/% mAP@50/% FPS/s
Faster RCNN 180 68 58.7 37
YOLOv3 85 43 42.1 43
YOLOv5 53 90 66.7 80
YOLOv7-tiny 23 76 51.2 107
YOLOv8s 53 70 81.8 88
Pro-YOLOv8s 19 71 81.7 93

TABLE IV. COMPARISON OF EXPERIMENTAL PERFORMANCE ON THE
VOLLEYBALL VALIDATION SET

Method GFLOPs F1/% mAP@50/%
Faster RCNN 180 71 71.5
YOLOV3 85 55 753
YOLOv5 53 73 82.5
YOLOV7-tiny 23 72 80.7
YOLOvV8s 53 83 84.6
Pro-YOLOVS8s 19 84 85.4

By analyzing the experimental results mentioned above,
the optimized YOLOv8s model outperforms other models
in terms of average precision and meets the requirement
for real-time processing, achieving a balance between
accuracy and speed. Compared with the original version,
the optimized model reduces the number of parameters
and computational load while maintaining a similar
average precision and improving detection speed.
Although its detection speed is slightly slower than that of
YOLOV7-tiny, its accuracy is significantly higher, which
meets the requirements for subsequent tasks.
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B.  Ablation Study

To verify whether the introduction of attention
mechanisms improves performance, SE and CBAM
attention modules were added respectively after the
network’s feature extraction, and the results were
compared. The specific comparison results are shown in
Table V, it is comparison of Experiments with Different
Attention Mechanisms on our cared relative parameters,
such as Precision, Recall, mAP@50/%.

TABLE V. COMPARISON OF EXPERIMENTS WITH DIFFERENT
ATTENTION MECHANISMS

Method Precision/%  Recall/% mAP@50/%
YOLOVSs 83.7 74.3 83.3
YOLOv8s+SE 85.4 75.6 83.0
YOLOv8s+CBAM 85.5 76.5 83.9

Compared with YOLOv8s, the model performance
decreased after adding the SE module, which implies that
the SE mechanism may not always be effective across
different datasets. The CBAM attention mechanism, which
focuses on both channel and spatial dimensions
simultaneously, led to a 0.5 percentage point increase in
the model’s mAP and achieved the best performance in
both detection precision and recall, demonstrating that the
addition of CBAM had the most significant impact. Table
VI shows the comparison results of the ablation study,
where the first and second groups represent the effects of
using the CBAM module and the SIoU loss function
individually, while the third group presents the final
detection model combining both. It is Ablation Study
Results of the Optimized YOLOVS8s on our cared relative
parameters, such as Precision, Recall, mAP@50/%.

TABLE VI. ABLATION STUDY RESULTS OF THE OPTIMIZED YOLOVS8S

Method Module  Precision/% Recall/% mAP@50/%
YOLOVSs - 83.7 74.3 83.3
1 CBAM 85.4 75.6 83.0
2 SloU 84.8 76.7 83.7
3 CBAM+SIoU 85.5 76.5 83.9

As shown in Table VI, YOLOvS8 uses the CIoU loss
function. Group 1 involves adding the CBAM module but
retaining the original CloU loss function, while Group 2
uses the SIoU loss function without the CBAM module.
Both groups have lower precision and recall compared to
Group 3, which combines the CBAM module and the
SIoU loss function in the optimized YOLOWVSs.

The precision, recall, and mAP of the optimized
YOLOVS8s are improved by 1.7%, 3.8%, and 1.6%,
respectively. This validates that the introduction of the
CBAM module and the SIoU loss function positively
impacts the model’s performance, enabling better
detection of human bodies in motion and thus providing a
solid foundation for the subsequent tasks in this study.
Table VI does NOT include the impact of these
modifications on speed (FPS) and computational load
(GFLOPs) because of these modifications are minor
impact for speed (FPS) and computational load (GFLOPs),
and are no need for discussion in our cared relative
parameters.
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Fig. 11. Comparison of visualization effects on the VOC & COCO datasets.

To visually compare the optimized model with other
models in human target detection on the same images, a
visualization is presented in Fig. 11. The first row of
images is from the PASCAL VOC 2012 training set, the
second row from the PASCAL VOC 2012 validation set,
the third row from the COCO training set, the fourth row
from the COCO validation set, and the fifth and sixth rows
are both from the Volleyball validation set. By examining
Fig. 11, it can be observed that the optimized model Pro-
YOLOVSs (as the 1rt column) maintains consistency with
YOLOVSs (as the 2nd column) in detection performance.
In scenes with multiple people, both outperform the
YOLOvV7-tiny (as the 3rd column) model, effectively
reducing computational load while minimizing missed
detection.
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C. Experimental Results on Real Competition Videos

The video materials used in the experiment were taken
from the live broadcasts of the 2023 FIVB Volleyball
Women’s World League. As an international high-level
competition, the production quality ensures the
professionalism and standardization of the videos. From
the 128 preliminary matches, 16 matches featuring the
Chinese women’s volleyball team were selected, and four
matches were randomly chosen for analysis. These
included the matches between China and Brazil (Japan
leg), China and Canada (Hong Kong leg), China and Korea
(Korea leg), and China and Japan (Japan leg) When
processing the videos, the audio tracks were first removed,
and then non-essential information such as commercials
was manually edited out to ensure that only the key parts
were retained. Subsequently, a shot segmentation
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algorithm was applied to these selected videos, and the
experimental results are shown in Table VII. It is
experimental results of video shot segmentation on our
cared relative parameters, such as Real Shot, Predicted Shot,
Segmentation Time.

TABLE VII. EXPERIMENTAL RESULTS OF VIDEO SHOT SEGMENTATION

compared with other algorithms, and the relevant
experimental results are shown in Table X. It is the
experimental performance comparison was conducted on
real match videos.

TABLE X. THE EXPERIMENTAL PERFORMANCE COMPARISON WAS
CONDUCTED ON REAL MATCH VIDEOS

. . Real Predicted Segmentation
Match Name Time/min Shot Shot Time/s
China-Brazil 27 202 200 162
China-Canada 29 219 215 163
China-Korea 30 223 213 180
China-Japan 25 189 185 145

Table VII summarizes the quantitative performance of
the proposed shot segmentation algorithm across four
actual match recordings. The results demonstrate a close
correspondence between the number of predicted shots
and the ground truth annotations across all test cases. For
instance, in the China-Brazil match, the algorithm
identified 200 shots against a manual annotation of 202.
This high level of agreement confirms the segmentation
reliability. Furthermore, the computational overhead
remains practical for real-world deployment, with a
27-min video processed in 162 s, underscoring the
feasibility of integrating this preprocessing stage into a
complete analysis pipeline.

From the selected four volleyball matches, logo images
were extracted and used as templates to compare the
similarity with keyframes of potential logo shots. If the
similarity exceeds 70%, the shot is determined to be a logo
shot. The results are shown in Table VIIIL. It is the Results
of Identifying Logo Shots. Table IX presents the semantic
annotation status of the volleyball match videos. It is the
Results of Identifying Logo Shots.

TABLE VIII. THE RESULTS OF IDENTIFYING LOGO SHOTS

Match Name Badge Count FP FN Recall/% Accuracy/%
China-Brazil 38 0 0 100 96.1
China-Canada 46 0 5 89.1 95.8
China-Korea 42 0 1 97.6 96.9
China-Japan 40 0 3 92.5 95.4

TABLE IX. THE RESULTS OF IDENTIFYING LOGO SHOTS

Match Total Replay Medium Long Close-up External
Name Shot Shot Shot Shot Shot Shot
China- ) 19 82 62 29 10
Brazil

China- 4 23 36 65 34 11

Canada

China- )3 5 89 67 36 10
Korea

China- ¢ 20 76 56 28 9
Japan

The data in the table shows that after detecting the logos
and replay shots in four complete matches, the accuracy
obtained is high, and the recall rate is also quite high, with
almost no missed detection. This indicates that the
semantic annotation of the relevant shots using the method
proposed in this paper is truly effective.

On the validation set composed of real volleyball match
videos, the improved algorithm proposed in this paper was
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Method GFLOPs  F1/%  mAP@50/% FPS/s
Faster RCNN 180 60 69.1 20
YOLOV3 85 49 65.7 27
YOLOv5 53 66 70.7 50
YOLOV7-tiny 23 63 68.9 69
YOLOVSs 53 78 77.4 55
Pro-YOLOv8s 19 78 78.2 60

Table X presents the detection performance of the
proposed Pro-YOLOvS8s framework when processing
high-resolution broadcast footage under real-world
conditions. Although a reduction in frame rate is observed
across all models due to the substantial input dimensions,
our approach achieves the highest detection accuracy with
a mAP@50 of 78.2% while maintaining a processing
speed of 60 FPS. Notably, the model accomplishes this
performance with significantly lower computational
demand, requiring only 19 GFLOPs.

Human target detection was performed on the same
image using the optimized model and other models for
comparison, and the results were visually displayed. By
observing the comparison of the visual effects, it can be
seen that the optimized model performs better in real
match videos.

D. Discussion

Based on experimental results, we can know how the
optimized model achieves a balance between accuracy,
computational load, and processing speed during real
match video analysis. Because through the analysis of the
experimental results, it can be seen that when processing
real match videos, the high resolution of the input images
generally leads to a decrease in the processing speed of
various models. But the improved model proposed in this
paper still maintains a certain processing speed, and the
accuracy remains high, which is sufficient to meet
requirements of subsequent tasks. These results validate
that the architectural optimizations successfully reconcile
the competing objectives of precision and efficiency,
fulfilling a core prerequisite for practical implementation
in resource -constrained environments. In terms of video
processing, this paper performs shot segmentation and
key-frame extraction on videos with audio removed.
Through a semantic annotation method, the video is
described as a sequence of shots composed of long shots,
medium shots, close-ups, replays, and off-court shots,
laying the groundwork for the subsequent extraction of
player position information from the video.

In order to clarify why these specific components are
particularly suitable for the volleyball video scenario, our
explanation is as follows: the proposed algorithm in this
paper performs well on two object detection datasets of the
volleyball video scenario. Compared with the original
model, it has fewer parameters and lower computational
load, and is suit for meeting the requirements of efficiency
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and accuracy in subsequent pose estimation of the
volleyball video scenario.

While the rule-based and threshold-driven decision tree
method is effective, its generalization capability may be
limited, so its limitations is existing, such as how to build
the rules based on knowledge databases, how to self-
tuning threshold and so on. In the future work, we will
continue to study relative machine learning method to deal
with it.

V. CONCLUSION

The standard YOLOv8s network performs well in
human detection. However, its large parameter count and
high computational load hinder practical deployment. To
address this, we implemented a lightweight design.
Therefore, this paper achieves model lightweighting by
integrating the Ghost network with the backbone network
and introduces the CBAM module to enhance the semantic
information of the lightweight model, thereby improving
model accuracy. The proposed algorithm in this paper
performs well on two object detection datasets. Compared
with the original model, it has fewer parameters and lower
computational load, and is capable of meeting the
requirements for efficiency and accuracy in subsequent
pose estimation. Ultimately, this work demonstrates the
significant practical potential of optimized deep learning
solutions in transforming volleyball match analysis, with
immediate applications in coaching decision-support and
live broadcast enhancement.

While the proposed framework demonstrates
competitive performance, its current form suggests several
meaningful avenues for future development. Building on
the lightweight architecture and video understanding
pipeline established in this study, subsequent research will
pursue three key directions. First, we aim to incorporate
multi-modal data streams by integrating visual analysis
with physiological metrics—such as heart rate variability
and electro- myography signals—alongside tactical match
statistics. This integrated approach would enable a more
comprehensive assessment of athlete performance and
fatigue patterns. Second, to enhance the practical utility of
the system, we plan to implement explainable Al
techniques that provide transparent rationale for the
model’s outputs. Generating interpretable feedback is
essential for fostering trust among coaches and sports
analysts who rely on these systems for strategic decisions.

Complementing these technical focuses, a third
direction involves developing a unified, real-time analysis
platform that seamlessly integrates player detection,
kinematic analysis, and tactical evaluation. Such an end-
to- end system could offer immediate insights during both
training sessions and competitive matches. The
methodologies presented in this paper, (particularly the
efficient model design and structured video parsing
framework), provide a solid foundation for these future
endeavors. Ultimately, this work not only offers a
functional tool for volleyball analytics but also illustrates
a viable approach for deploying optimized deep learning
solutions in dynamic sports environments, contributing to
the evolving landscape of sports intelligence systems.
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