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Abstract—In this study, we propose hedonic models for 
valuing Non-Fungible Tokens (NFTs) from the Azuki 
collection. We first analyze the NFT’s metadata and 
introduce a market volatility-robust dependent variable. 
Specific information of Azuki attributes is encoded via Term 
Frequency-Inverse Document Frequency (TF-IDF) to reflect 
both presence and collection-wide scarcity, yielding hundreds 
of features for each token. Two hedonic models are 
considered: a linear model and a squared model. To address 
high dimensionality, we tailor three variable-selection 
procedures—forward, backward, and stepwise—and 
compare them with regularization benchmarks and machine-
learning methods. Using actual Azuki transaction data, we 
evaluate performance on a train-validation partition. The 
squared model overfits out of sample, while the linear model 
generalizes better and is adopted as the baseline. Applying 
variable selection to the linear baseline improves both 
parsimony and predictive performance. Machine-learning 
models exhibit very high training fit but notable performance 
degradation on the validation set, indicating overfitting in 
this setting. Overall, carefully specified hedonic models 
combined with principled variable selection offer 
competitive, interpretable, and more generalizable NFT 
valuation.   
 
Keywords—Non-Fungible Token (NFT), NFT valuation, 
hedonic model, variable selection, high-dimensional data, 
Term Frequency-Inverse Document Frequency (TF-IDF), 
Azuki  
 

I. INTRODUCTION 

Over the past decade, blockchain technology has 
undergone remarkable development, led by the emergence 
of Bitcoin as the first widely recognized application. 
Among the diverse innovations built upon blockchain, one 
of the most prominent applications is the Non-Fungible 
Token (NFT). While the concept of NFTs has been 
discussed from various perspectives, a number of recent 
studies suggest a broadly accepted definition: NFTs can be 
regarded as tradeable digital assets, recorded in smart 
contracts and managed through blockchain technology, 
that grant ownership rights over physical or digital assets 
such as videos, images, and artworks [1–3]. 

 
Manuscript received October 9, 2025; revised October 28, 2025; accepted 
November 11, 2025; published January 20, 2026.  

During 2021 and 2022, the NFT market experienced an 
extraordinary surge in trading volume. NFT sales volumes 
soared from merely 94.9 million USD in 2020 to 
approximately 24.9 billion USD in 2021, with the number 
of wallets trading NFTs exploding from around 545,000 to 
28.6 million USD [4]. However, beginning in 2022, the 
market entered a pronounced contraction. According to 
market research data provided by Statista [5], the downturn 
following the market peak is evident in both aggregate 
revenue and per-user metrics. Specifically, global NFT 
revenue declined from approximately 1,581.3 million 
USD in 2022 to 611.1 million USD in 2023 and has 
remained at this lower level since then. A similar 
downward trajectory is observed in the Average Revenue 
per User (ARPU), which reached a high of 413 USD in 
2021, but dropped to 181.1 USD in 2022 and further to 
59.7 USD in 2023. Even so, the NFT ecosystem has shown 
resilience. Despite the downturn, some high-profile 
collections have maintained their relevance and formed a 
stabilizing backbone for the market. Furthermore, despite 
widespread devaluation—some estimates suggest up to 
95% of NFTs may have lost meaningful value—trading 
activity continues to persist, with weekly volumes still 
reaching tens of millions of dollars [6]. 

Despite the downturn, NFT trading remains an active 
and meaningful segment of the digital asset market. In 
such a highly volatile and speculation-driven environment, 
establishing a rational framework for NFT valuation is 
essential to mitigating risks faced by market participants. 
According to a recent review paper on NFT [7], the two 
most highly cited papers in the NFT literature are 
Dowling’s works regarding the determinants of NFT 
valuation [8, 9], which shows strong scholarly interest in 
NFT valuation. This growing academic interest is also 
reflected in a review study on NFT pricing [10]. This study 
categorized the determinants of NFT prices into three 
groups: external factors beyond the collection, internal 
factors within the collection, and inter-collection factors. 
In addition, the study further classified NFT into five 
categories: art, gaming, collectibles, utilities, and 
metaverse. 
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In this study, we aim to propose and empirically validate 
an NFT valuation model. In particular, we focus on Profile 
Picture (PFP) NFT projects, which fall under the 
collectibles category among the five NFT types introduced 
above. PFP NFT projects include some of the most iconic 
NFT projects such as CryptoPunks [11] and Bored Ape 
Yacht Club [12]. As such, they represent the most familiar 
and widely recognized form of NFTs to market 
participants. Their importance is further identified by sales 
volume statistics: according to the all-time rankings on 
OpenSea [13], the leading NFT marketplace, four of the 
top five projects by sales volume are PFP NFTs as shown 
in Table I.  

TABLE I. TOP FIVE NFT COLLECTIONS ON OPENSEA IN TERMS OF 
SALES VOLUME AS OF SEPTEMBER 5, 2025 

Collection Category Floor 
Price 

Sales 
Volume 

Number of 
Items 

Bored Ape 
Yacht Club PFP 9.14 ETH 1.5M ETH 9,998 

CryptoPunks PFP 48.00 ETH 1.3M ETH 9,994 
Mutant Ape 
Yacht Club PFP 1.3548 

ETH 1.1M ETH 19,555 

Azuki PFP 1.78 ETH 824.8K 
ETH 10,000 

Otherdeed for 
Otherside Metaverse 0.104 ETH 605.7K 

ETH 36,263 

 
Table I shows that, except for Otherdeed for 

Otherside—a metaverse project—all of the listed 
collections are classified as PFP NFTs. In terms of 
cumulative trading volume, Bored Ape Yacht Club 
(BAYC) leads the market; however, the floor price of 
CryptoPunks is the highest, at approximately 50 ETH. 
Most collections consist of approximately 10,000 tokens, 
which has become a common standard for PFP NFTs. 
Notably, Mutant Ape Yacht Club can be regarded as a 
derivative of BAYC, reinforcing the central roles of 
BAYC and CryptoPunks in the NFT market. 

Given the importance of PFP NFTs, it is not surprising 
that much of the existing NFT valuation research has 
focused on these collections, particularly CryptoPunks and 
BAYC. Among them, CryptoPunks holds a particularly 
important place, as it was launched in June 2017 by Larva 
Labs and is widely regarded as one of the earliest and most 
valuable NFT projects. Kong and Lin [14] analyzed 23,206 
transactions of CryptoPunks conducted between June 2017 
and December 2022, while Schaar and Kampakis [15] 
investigated 11,864 transactions spanning June 2018 to 
May 2021. Both studies employed hedonic regression 
models to examine the determinants of CryptoPunks 
prices, identifying how various attributes and rarity 
contribute to valuation outcomes. The BAYC, launched by 
Yuga Labs in April 2021, consists of 10,000 unique digital 
ape images and several empirical studies have focused on 
BAYC to explore its valuation mechanisms. Lee et al. [16] 
applied Formal Concept Analysis (FCA) to analyze the 
effect of rarity on BAYC prices, while Lee et al. [17] 
proposed linear and quadratic hedonic pricing models to 
evaluate its value. Koo et al. [18] employed Structural 
Equation Modeling (SEM) together with multi-group 

analysis to investigate causal relationships among 
valuation determinants and to test differences across 
investor types. Furthermore, Mekacher et al. [19] 
examined rarity quantification and its impact on market 
behavior across 410 PFP NFT collections, with 
CryptoPunks and BAYC serving as the primary case 
studies. Xiong et al. [20] broadened the scope of NFT 
valuation research by analyzing data from PFP projects 
such as Sappy Seals and Lazy Lions. Their study proposed 
a hedonic regression model grounded in rare attributes 
while also integrating market-level factors. In addition, 
factor analysis was employed to assess the robustness and 
improvement of the proposed pricing framework. 
Recently, studies have begun incorporating visual 
attributes of NFTs into price prediction models, leveraging 
transfer learning and deep neural networks to capture 
image-based rarity [21, 22]. 

In this study, we propose an NFT valuation model 
focusing on the Azuki project. To the best of our 
knowledge, no existing work has systematically 
investigated valuation mechanisms for Azuki NFTs. The 
Azuki collection, launched in January 2022 by Chiru Labs, 
consists of 10,000 Japanese anime-inspired avatar 
NFTs  [2, 23]. Aside from BAYC and CryptoPunks, Azuki 
ranks highest in all-time sales volume and remains a top 
performer in the NFT market, and it continues to rank 
among the top performers in NFT sales [24]. Similar to 
other PFP NFTs, Azuki items are generated from 
combinations of multiple attributes; specifically, the 
collection is characterized by 12 attributes—Type, 
Special, Clothing, Offhand, Hair, Headgear, Face, Neck, 
Eyes, Mouth, Ear, and Background. Table II presents 
examples of some of the most expensive Azuki NFTs ever 
traded [25]. In the table, the values of each attribute, 
referred to as traits [19], thereby allowing us to identify 
which attribute values (i.e., traits) contribute to higher 
valuations 

TABLE II. SELECTED ITEMS OF THE HIGHEST-PRICED AZUKI NFTS  

Image and 
Attribute Azuki #9605 Azuki #5172 Azuki #4666 

Profile Picture 

   

A
ttribute 

Type Spirit Spirit Spirit 
Special Fireflies N/A Fireflies 

Clothing N/A Azuki track 
jacket 

White qipao with 
fur 

Offhand Golden shuriken Hand wrap Golden umbrella 
Hair Spirit fluffy Spirit spiky Spirit ponytail 

Headgear N/A Ikz baseball cap N/A 
Face N/A N/A N/A 

Neck Golden 
headphones N/A Golden 

headphones 
Eyes Chill White Striking 

Mouth Pout Pout Grin 
Ear Small hoop N/A N/A 

Background Cool gray Red Dark purple 
 
As shown in Table II, a common feature among these 

highest-priced items is the Spirit type, which is one of the 
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rarest and most valued attributes in the Azuki collection. 
Each Azuki item is identified by a unique number, called 
token ID, which serves as its identifier within the 
collection. Note that not every item possesses values for 
all attributes. For instance, token ID #9605 does not 
contain entries for Clothing, Headgear, or Face, which are 
denoted as “N/A” in the table. Despite such missing 
attributes, these items exhibit combinations of highly 
valued traits—most notably the Spirit type and golden 
accessories—that substantially increase their market 
prices. While these features reflect the general 
characteristics of PFP NFTs, Azuki also exhibits 
distinctive features. To show a comparative perspective, 
Table III summarizes the key characteristics of 
representative PFP NFT projects—CryptoPunks, BAYC, 
and Azuki.  

TABLE III. KEY CHARACTERISTICS OF CRYPTOPUNKS, BAYC, AND 
AZUKI NFT COLLECTIONS 

Category CryptoPunks BAYC Azuki 
# of items 9,904 9,998 10,000 

# of attributes 2 7 12 

Attributes 
(# of traits) 

1.Accessory 
(95) 
2.Type (5) 

1.Background 
(8) 
2.Clothes (43) 
3.Earring (6) 
4.Eyes (24) 
5.Fur (19) 
6.Hat (36) 
7.Mouth (33) 

1.Background (8) 
2.Clothing (98) 
3.Ear (32) 
4.Eyes (27) 
5.Hair (123) 
6.Face (19) 
7.Headgear (36) 
8.Mouth (33) 
9.Neck (15) 
10.Offhand (53) 
11.Special (9) 
12.Type (4) 

Remarks Can have up to 
7 accessories 

Some attributes allow missing 
values 

 
Table III provides a comparative summary of the key 

characteristics of three representative PFP NFT 
collections. Although all three collections consist of 
approximately 10,000 items, they differ considerably in 
terms of attribute structure and diversity. CryptoPunks is 
defined by only two attribute categories, whereas BAYC 
incorporates seven. Azuki further extends this complexity 
by incorporating 12 attribute categories with a 
significantly larger number of possible values, such as 123 
distinct hair traits and 98 clothing options. This richer 
attribute space results in a high-dimensional dataset, 
making Azuki notably more complex and distinctive 
compared to the other two leading PFP NFTs. 

In this study, we propose a valuation model that 
considers the distinctive characteristics of Azuki NFTs. As 
noted in Table I, Azuki is one of the most actively traded 
NFT collections, yet it has not been systematically studied 
in prior literature. Moreover, compared with other PFP 
NFT collections, Azuki exhibits a much higher degree of 
feature dimensionality, which makes a variable-selection 
process particularly important. Therefore, the present 
study distinguishes itself from prior NFT valuation 
research by (i) being the first to develop and validate a 
hedonic pricing framework for Azuki, and (ii) addressing 
the challenges of high-dimensional NFT metadata through 
systematic feature-selection procedures. The remainder of 

this paper is organized as follows. Section II provides an 
exploratory analysis of the Azuki NFT dataset. Section III 
introduces the hedonic modeling framework, including the 
specification of the dependent variable and the 
construction of independent variables. Section IV presents 
three alternative methods for variable selection to address 
the high-dimensional structure of the dataset. Section V 
evaluates the performance of the proposed valuation 
model, comparing it against benchmark approaches 
through a series of empirical experiments. Finally, 
Section  VI concludes with a summary of findings, 
practical implications, and directions for future research. 

II. EXPLORATORY DATA ANALYSIS OF THE AZUKI  

In this section, we conduct an exploratory statistical 
analysis of the Azuki NFT dataset in order to better 
understand its structural characteristics. Specifically, we 
focus on frequency-based analyses of the 12 attributes that 
define each Azuki token. Table IV summarizes the initial 
statistics for each attribute, including the number of unique 
values and the Gini indices to measure the homogeneity of 
each attribute. The Gini index measures distributional 
inequality, where values close to 1 indicate a highly 
uneven distribution dominated by a small number of traits, 
while values close to 0 suggest a more balanced 
distribution. 

TABLE IV. UNIQUE VALUE COUNTS AND GINI INDICES OF AZUKI NFT 
ATTRIBUTES 

Attribute Unique Value Unique Values1 Gini Index Gini Index1 
Type 4 4 0.669 0.669 
Hair 124 123 0.241 0.235 

Clothing 99 98 0.32 0.314 
Eyes 27 27 0.28 0.28 

Mouth 30 30 0.301 0.301 
Offhand 54 53 0.656 0.533 

Background 8 8 0.284 0.284 
Neck 16 15 0.79 0.368 

Headgear 37 36 0.723 0.292 
Ear 33 32 0.839 0.292 
Face 20 19 0.706 0.252 

Special 10 9 0.844 0.127 

Note: 1 “N/A” is excluded. 

Table IV reports the number of unique values and the 
Gini indices for each of the 12 attributes. For each 
attribute, results are reported both including and excluding 
missing values (N/A). A total of 461 distinct trait values 
are identified when including N/A categories, and 454 
when they are excluded. Among these, Hair (123) and 
Clothing (98) account for the largest numbers of unique 
traits, thereby playing a dominant role in driving the high-
dimensional nature of the Azuki dataset. As the table 
shows, with the exception of Type, Eyes, Mouth, and 
Background, most attributes contain a substantial 
proportion of missing values. Notably, attributes such as 
Headgear, Ear, Face, and Special exhibit large differences 
in their Gini indices depending on whether N/A values are 
included. This indicates that, although these attributes 
appear highly uneven when N/A is included, the remaining 
non-missing traits are relatively evenly distributed across 
items. In the next table, we further investigate these 
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characteristics by presenting the most and least frequent 
values for each attribute. 

Table V presents the most and least frequent values for 
each attribute, along with their corresponding counts. 
Several patterns can be observed. First, for fundamental 
traits such as Type and Background, the distributions are 
highly skewed: the majority of tokens are categorized as 
Human (9,018) and share Off White backgrounds, while 
rare categories such as Spirit (97) or Dark Purple 
backgrounds (463) are extremely scarce. Second, 
attributes with a wide variety of categories, such as Hair 
and Clothing, reveal a long-tailed distribution. While 
common traits include Maroon Bun or Light Kimono, 
some traits appear fewer than ten times, such as Black 
Blonde Half Bun or Golden Cat Kigurumi. Third, 
accessory-related attributes such as Offhand, Neck, 
Headgear, Ear, and Face contain a large proportion of 
missing values, reflecting that many tokens do not feature 
these traits. Within the non-missing subset, however, rare 
traits such as Golden Zanbato (11), Golden Headphones 
(35), and Red Bean (14) emerge as highly distinctive 
identifiers of rarity. Finally, the Special attribute, which is 
present in fewer than 10% of items, is dominated by N/A 
values. Nonetheless, when present, traits such as Fireflies 
(88) or Lightning (48) represent exceptionally rare and 
visually distinctive features that often drive premium 
valuations. As you can see, while some traits are broadly 
shared and form the visual identity of the collection, others 
are extremely rare and serve as critical drivers of scarcity 
and valuation. 

TABLE V. MOST AND LEAST FREQUENT VALUES OF EACH ATTRIBUTES 

Attribute Most 
Frequent 

2nd Most 
Frequent  

Least 
Frequent  

2nd Least 
Frequent 

Type Human 
(9018) Blue (444) Spirit (97) Red (441) 

Hair Maroon 
Bun (150) 

Brown Spiky 
(142) N/A (8) Black Blonde 

Half Bun (12) 

Clothing 
Light 

Kimono 
(311) 

Maroon 
Yukata (221) 

Golden Cat 
Kigurumi (5) N/A (5) 

Eyes Closed 
(1551) 

Determined 
(742) 

Lightning 
(46) Fire (57) 

Mouth Relaxed 
(834) Closed (812) Surprised 

(74) 
Sleep Bubble 

(88) 

Offhand nan (3165) Katana (439) Golden 
Zanbato (11) 

Golden 
Sheathed 

Katana (12) 

Background Off White 
D (1990) 

Off White C 
(1962) 

Dark Purple 
(463) 

Cool Gray 
(483) 

Neck N/A 
(7746) 

Chill 
Headphones 

(400) 

Golden 
Headphones 

(35) 

Sloth 
Headphones 

(36) 

Headgear N/A 
(6512) 

IKZ Baseball 
Cap (265) 

Red Panda 
Beanie (28) 

Frog Beanie 
(30) 

Ear N/A 
(8181) 

Corded 
Earbuds (164) 

Red Bean 
(14) 

Blue Bean 
(16) 

Face N/A 
(6790) 

Red Stripes 
Face Paint 

(290) 

Heart Eye 
Patch (65) 

Lipstick Kiss 
(72) 

Special N/A 
(9371) Fireflies (88) Lightning 

(48) Water (49) 

 
Building on the preceding descriptive analysis of Azuki 

attributes, we now turn to a more detailed examination of 

the distribution of individual traits. As noted above, the 
Azuki collection comprises a total of 454 unique trait 
values across its twelve attributes. To better capture the 
rarity structure of these traits, we analyze the frequency 
distribution of all unique values. Fig. 1 presents a pie chart 
that groups trait frequencies. 

 

 
Fig. 1. Pie chart of attribute frequency distributions in the Azuki NFT 
collection. Frequencies of traits are grouped into bins of width 100, with 
all frequencies above 1000 combined into a single category (“1000+”). 

Fig. 1 illustrates the frequency distribution of the 454 
unique Azuki trait values, grouped into bins of width 100. 
The chart clearly demonstrates that traits with frequencies 
below 200 account for more than 80% of all values, while 
traits with fewer than 100 occurrences alone make up over 
50%. Given that the Azuki collection consists of 10,000 
items, any trait appearing fewer than 100 times would be 
regarded as rare. However, more than half of all traits fall 
into this category. This finding suggests that relying solely 
on raw frequency as an indicator of rarity may be 
insufficient for accurate valuation. Instead, it becomes 
necessary to consider additional contextual factors, such as 
the attribute category to which a trait belongs and its 
interactions with other traits. 

TABLE VI. LEAST AND MOST FREQUENT TRAITS OF AZUKI NFTS 

Least Frequent Traits  Most Frequent Traits  
Trait Freq. Attribute Trait Freq. Attribute 

Golden Cat 
Kigurumi 5 Clothing Human 9018 Type 

Golden Sloth 
Kigurumi 6 Clothing Off White D 1990 Background 

Golden Red 
Panda Kigurumi 6 Clothing Off White C 1962 Background 

Golden Frog 
Kigurumi 10 Clothing Off White A 1814 Background 

Golden Zanbato 11 Offhand Off White B 1758 Background 

Spirit Bob 12 Hair Closed 1551 Eyes 

Spirit Long 12 Hair Red 1006 Background 
Black Blonde 

Half Bun 12 Hair Relaxed 834 Mouth 

Golden Katana 12 Offhand Closed 812 Mouth 
Golden Monkey 

King Staff 12 Offhand Determined 742 Eyes 
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Table VI presents a comparative summary of the least 
and most frequent trait values within the Azuki collection. 
Among the least frequent traits, a notable pattern is the 
predominance of values containing the prefix “Golden”. 
These rare values are concentrated within a limited set of 
attributes, particularly Clothing, Hair, and Offhand. On the 
other hand, the most frequent traits are dominated by 
fundamental features. The Human type stands out with an 
exceptionally large count of 9,018. In addition, several 
values included in the Background attribute are also 
among the most frequent. 

To incorporate both attribute categories and individual 
trait frequencies, we calculate the rarity score of each 
Azuki token based on its constituent traits [19]. The rarity 
score of a specific trait 𝑟𝑟𝑡𝑡 is defined as: 

 𝑟𝑟𝑡𝑡 = 1
(𝑓𝑓𝑡𝑡/10000)

 (1) 

where 𝑓𝑓𝑡𝑡  is frequency of trait t out of 10,000, i.e., the 
denominator represents the proportion of tokens in the 
collection that contain the trait. The rarity score of token k, 
𝑅𝑅𝑘𝑘, is then obtained by summing the rarity scores of all 
traits that the token possesses: 

 𝑅𝑅𝑘𝑘 = ∑ 𝑟𝑟𝑡𝑡𝑡𝑡∈𝑇𝑇𝑘𝑘  (2) 

where 𝑇𝑇𝑘𝑘 is the trait set of token k. A larger value of 𝑅𝑅𝑘𝑘 
indicates a higher level of rarity. Note that, in the 
calculation of rarity scores, missing values were also taken 
into account. For each attribute, the absence of a trait was 
treated as a valid category and incorporated into the 
computation. The next figure presents the histogram of 
rarity scores across all 10,000 Azuki tokens. 

 

 
Fig. 2. Histogram of rarity scores across all 10,000 Azuki tokens. 

As you can see from Fig. 2, the rarity has a highly 
skewed distribution, where the majority of tokens fall 
within the lower score. Only a small fraction of tokens 
achieve rarity scores above 1,000, and extremely rare cases 
exceed 2,000 or even 3,000. In the following figure, we 
compare two Azuki tokens that represent the extremes of 
the distribution: the one with the highest rarity score and 
the one with the lowest rarity score. Interestingly, the token 
with the highest rarity score corresponds to Azuki #9605, 
which was already introduced earlier in Table II as one of 
the historically most expensive Azuki NFTs ever traded. 
The following table provides a comparison of two tokens 
with the highest and lowest rarity scores. 

As shown in Table VII, Azuki #9605, which holds the 
highest rarity score, is characterized by a distinctive 

science-fiction-like figure with golden accessories. In 
contrast, Azuki #8546, with the lowest rarity score, 
portrays a human figure dressed in a simple and ordinary 
costume. The disparity in rarity scores is mirrored in their 
market performance. A particularly noteworthy feature of 
Azuki #9605 is its Clothing attribute, which is marked as 
“N/A”. That is, the absence of clothing (“nude”) 
significantly increases the trait rarity score, thereby 
elevating the overall rarity of the token. 

TABLE VII. COMPARISON BETWEEN TWO AZUKI TOKEN WITH THE 
HIGHEST AND LOWEST RARITY SCORES 

Image and 
Value Azuki # 9605 Azuki #8546 

Profile Picture 

  
Rarity Score 4080.89 153.41 

Last Sale Price 420.7 ETH 29 ETH 
 
In this section, we have analyzed the metadata of the 

Azuki collection, providing descriptive statistics of 
attributes and trait values, as well as a systematic 
assessment of rarity scores. These findings serve as a 
critical foundation for the development of valuation 
models in subsequent sections. 

III. HEDONIC MODELS 

In this section, we introduce the hedonic models 
employed for the valuation of the Azuki collection. As 
discussed in Section I, applications of hedonic modeling to 
PFP NFTs are well-documented in the  
literature [14, 15, 17, 20]. Beyond PFP NFTs, prior 
research has also extended the use of hedonic models to 
other categories such as art and metaverse NFTs [26–28]. 
The fundamental premise of the hedonic pricing model is 
that the price of a heterogeneous asset is determined not 
only by external market factors but also by the intrinsic 
characteristics of the asset itself. Historically, this 
framework has been widely applied in real estate and 
traditional art markets  [10]. Given that NFTs share the 
feature of being highly heterogeneous digital assets in one 
collection, hedonic models naturally provide an 
appropriate and effective framework for analyzing NFT 
valuations. 

In the remainder of this section, we first describe how 
the dependent and independent variables of the hedonic 
model are constructed from the Azuki dataset. Following 
this, we present the hedonic models that incorporate the 
corresponding variables. The next subsection begins with 
a detailed discussion of the dependent variable.  

A. Dependent Variable 
In this study, the goal of the hedonic model is to evaluate 

the value of NFTs; therefore, the dependent variable must 
be the economic value of each token, specifically its price. 
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However, similar to other cryptocurrencies, NFT prices are 
subject to extreme volatility [29]. To account for this 
volatility, it is necessary to incorporate a dependent 
variable that captures the relative value of each token while 
neutralizing fluctuations caused by market-wide 
dynamics. Following the previous studies [16, 17], we 
adopt the Premium Ratio to measure the values of NFTs. 
The Premium Ratio measures the relative value of an 
individual token at the time of transaction, which can 
offset price fluctuations caused by overall market 
movements. For a transaction s of token k, the Premium 
Ratio, 𝑚𝑚𝑠𝑠𝑠𝑠, is defined as: 

 𝑚𝑚𝑠𝑠𝑠𝑠 = 𝑝𝑝𝑠𝑠𝑘𝑘
𝑀𝑀𝐴𝐴(20)𝑠𝑠

 (3) 

where 𝑝𝑝𝑠𝑠𝑘𝑘  denotes the transaction price of token k at 
transaction s, and 𝑀𝑀𝐴𝐴(20)s represents the 20-day moving 
average price of all Azuki tokens at the date of 
transaction s. As such, the Premium Ratio reflects the 
relative market value of the token within a 20-day window. 
Since multiple transactions may exist for the same token, 
the final dependent variable is derived by averaging the 
Premium Ratios across all transactions of a given token. 
Formally, the Average Premium Ratio (APR) for token k, 
is defined as: 

 𝑀𝑀𝑘𝑘 = ∑ 𝑚𝑚𝑠𝑠𝑠𝑠
|𝛩𝛩𝑘𝑘|𝑠𝑠∈𝛩𝛩𝑘𝑘  (4) 

where 𝛩𝛩𝑘𝑘 denotes the set of all transactions for token k. 
The 𝑀𝑀𝑘𝑘 thus provides a normalized measure of the relative 
value of each token, accounting for market-wide 
fluctuations. In this study, the Average Premium Ratio is 
used as the dependent variable in the hedonic model. 
Given the substantial variation in values across tokens, the 
dependent variable is log-transformed prior to model 
estimation.  

B. Independent Variables 
In a hedonic pricing model, the explanatory variables 

should represent the intrinsic characteristics of the assets 
under consideration. For Azuki NFTs, these characteristics 
correspond to the trait values of each attribute. Since these 
traits are expressed as categorical string values, it is 
necessary to transform them into numerical 
representations suitable for regression modeling. A 
straightforward approach would be to apply one-hot 
encoding, which creates binary indicators for the presence 
of each trait. However, in this study we employ Term 
Frequency-Inverse Document Frequency (TF-IDF), to 
better capture the informational content of traits. TF-IDF 
is widely used in text mining to evaluate the importance of 
terms within a corpus by balancing their frequency within 
a document against their overall rarity across the entire 
collection. 

Here, each Azuki token is treated as a “document”, and 
its attribute-trait combinations are regarded as “terms”. 
Using the TF-IDF method, traits that appear frequently 
across the collection receive lower weights, whereas rare 
traits are assigned higher weights, thereby emphasizing 
their contribution to uniqueness. The implementation was 

carried out using the TfidfVectorizer function from 
Python’s scikit-learn library. 

The resulting feature space consists of 461 dimensions, 
each corresponding to a unique attribute-trait pair 
identified across the 10,000 tokens. Thus, every Azuki 
token is represented as a sparse 461-dimensional TF-IDF 
vector. This representation not only reflects the richness of 
the Azuki dataset but also highlights the high-dimensional 
structure of PFP NFTs. Importantly, by leveraging the 
weighting mechanism inherent in TF-IDF, the independent 
variables capture both the presence of traits and their 
relative rarity within the collection, providing a robust 
numerical foundation for the subsequent hedonic 
regression analysis.  

C. Linear Model 
With the APR defined in Section III.A and the TF-IDF 

variables prepared in Section III.B, we now construct 
hedonic pricing models for the Azuki collection. In this 
study, we propose two hedonic models. The first is a linear 
hedonic regression model that includes all 461 TF-IDF 
variables as first-order terms. The second, which will be 
introduced in the next subsection, extends the specification 
by adding squared terms resulting in 922 independent 
variables in the model. 

The linear model assumes that each attribute-trait pair 
contributes additively and proportionally to the NFT’s 
value. Its mathematical form is given as follows: 

 𝑙𝑙𝑜𝑜𝑜𝑜(𝑀𝑀) = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖∈𝑇𝑇𝑇𝑇 + 𝜖𝜖 (5) 

where M denotes the APR introduced in Eq. (4), 𝛽𝛽0 is the 
intercept, 𝛽𝛽𝑖𝑖 is the coefficient associated with the i-th TF-
IDF variable, TF represents the set of 461 TF-IDF 
variables, 𝑑𝑑𝑖𝑖 is the TF-IDF score of the i-th trait, and 𝜖𝜖 is 
the error term capturing unobserved influences. This linear 
specification provides a straightforward benchmark to 
assess the explanatory power of trait-level features. By 
assuming a purely linear relationship, it enables us to 
evaluate the direct marginal effects of each attribute-trait 
pair on NFT valuation. This serves as the baseline before 
introducing nonlinear extensions, which are presented in 
the next subsection.  

D. Squared Model 
The second hedonic specification is the squared model, 

which extends the linear framework by incorporating 
quadratic terms. The motivation for this extension lies in 
the speculative nature of NFT markets, where certain traits 
may exert disproportionately large effects on token 
valuations. To capture such potential nonlinearities, the 
squared model augments the 451 first-order TF-IDF 
variables with their squared counterparts, resulting in a 
total of 902 explanatory variables. Formally, the squared 
hedonic model is expressed as: 

 𝑙𝑙𝑜𝑜𝑜𝑜(𝑀𝑀) = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖∈𝑇𝑇𝑇𝑇 + ∑ 𝛾𝛾𝑖𝑖𝑑𝑑𝑖𝑖2𝑖𝑖∈𝑇𝑇𝑇𝑇 + 𝜖𝜖 (6) 

where 𝛾𝛾𝑖𝑖  denotes the coefficient associated with the 
squared term of the i-th TF-IDF variable, and the 
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remaining notation is identical to that in Eq. (5). By 
allowing for nonlinear effects, this model provides a richer 
representation of the relationship between trait 
characteristics and NFT valuations. In particular, it enables 
the analysis of whether rare or distinctive traits have an 
amplified impact on prices, beyond the proportional 
contribution assumed in the linear model. This extended 
specification thus serves as a crucial step in examining 
how high-dimensional trait structures influence the 
valuation of Azuki NFTs. 

IV. VARIABLE SELECTION 

As discussed in the previous section, the inclusion of 
squared terms in the hedonic model results in a high-
dimensional representation of the Azuki dataset. 
Compared to other prominent PFP NFT projects such as 
CryptoPunks or BAYC, the Azuki collection exhibits a 
much larger number of unique attribute-trait combinations, 
as presented in Table III. High-dimensional datasets of this 
kind are increasingly common in modern statistical 
applications, and variable selection has become an 
essential process to enhance model interpretability and 
predictive performance [30]. In this section, we introduce 
three well-known variable selection procedures—forward 
selection, backward elimination, and stepwise selection—
and adapt them to the context of our hedonic models. The 
following subsections describe these procedures in detail. 

A. Forward Selection 
The first variable selection method employed in this 

study is the forward selection procedure. As the name 
suggests, this approach begins with an intercept-only 
model that contains no independent variables (i.e., 
features). Variables are then added one by one, based on 
their statistical significance and contribution to model fit, 
thereby gradually expanding the model. At each step, only 
the variable that provides a certain amount of improvement 
in explanatory power is included, and this process 
continues until no further meaningful improvement can be 
achieved. The detailed procedure is summarized in the 
below. 

 
Forward Selection Procedure 
Input:  Dependent variable and feature set 
Output: Selected feature subset 
Step 1: Rank all candidate features by their p-values from 

the full model. 
Step 2: Start with an intercept-only model (no features) and 

compute adjusted R². 
Step 3: Sequentially test features in ranked order: 
 Temporarily add one feature at a time to the current 

model. 
 If adjusted R² improves, keep the feature and update 

the model. 
 Otherwise, count as a failure. Stop the procedure 

when the number of consecutive failures exceeds a 
threshold. 

Step 4: Return the final set of selected features. 
 

In the context of this study, the initial set of candidate 
features corresponds to the set of independent variables 

defined in the hedonic models. Specifically, for the linear 
model in Eq. (5), 461 first-order TF-IDF variables are 
considered, while for the squared model in Eq. (6), the pool 
expands to 922 variables, including both first-order and 
quadratic terms. The forward selection process continues 
until no improvement in adjusted R² is observed for 10 
consecutive candidate features, which is set as the stopping 
threshold. 

B. Backward Selection 
The second variable selection method is backward 

selection, which operates in the opposite way of forward 
selection. Instead of starting from an empty model, the 
backward procedure begins with the full model that 
includes all candidate features. At each step, a feature 
presumed the least important is considered for removal. 
The model is then refitted without this feature, and if the 
explanatory power of the model does not decrease, the 
feature is permanently eliminated. This iterative process 
continues until no further improvements can be made. The 
detailed procedure is summarized in the below. 

 
Backward Selection Procedure 
Input: Dependent variable and feature set 
Output: Selected feature subset 
Step 1: Start with a full model including all candidate 

features. 
Step 2: Fit the model. Compute adjusted R² and compute p-

values for all features. 
Step 3: Identify the feature with the largest p-value. 
Step 4: Temporarily remove that feature and refit the 

model. 
 If adjusted R² does not decrease, remove the feature 

permanently. 
 Otherwise, retain the feature and count as a non-

removal. 
Step 5: Repeat Steps 2–4 until no feature removal occurs for 

a fixed number of consecutive iterations. 
Step 6: Return the final set of selected features. 
 
In this study, the termination criterion for the backward 

selection procedure is set based on consecutive non-
removals of a candidate feature. Specifically, if no feature 
is removed for a fixed number of iterations, the procedure 
is stopped. For our implementation, this threshold is set to 
10 consecutive iterations without removal. 

C. Stepwise Selection 
The final method, stepwise selection, combines the 

logic of forward and backward selection into an iterative 
procedure. The basic structure of this approach is to 
alternate between adding features and removing features, 
thereby refining the model in both directions. Detailed 
steps of this process are outlined below. 

 
Stepwise Selection Procedure 
Input: Dependent variable and candidate feature set; initial 

model. 
Output: Final selected feature subset 
Step 1: Fit the initial model, compute adjusted R². 
Step 2: (Forward step) 
 For a randomly selected feature not yet in the model: 
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 Temporarily add the feature to the current 
model. 

  Refit and compute adjusted R². 
  If adjusted R² improves, keep the feature, 

update the model 
 Otherwise, Do not add the feature. 
 End forward step if no feature addition occurs for a 

fixed number of consecutive times. 
Step 3: (Backward step) 
 For a randomly selected feature currently in the 

model: 
 Temporarily remove the feature. 
 Refit and compute adjusted R². 
 If adjusted R² does not decrease, Remove the 

feature, update the model. 
 Otherwise, Keep the feature. 
 End backward step if no feature removal occurs for 

a fixed number of consecutive times. 
Step 4: If neither Step 2 nor Step 3 changes the model in the 

current iteration, Stop; Otherwise go to Step 2 
Step 5: Return the final set of selected features. 
 
In this study, the initial model for the stepwise 

procedure is taken from the result of the forward selection 
process. While forward and backward selection rely on  
p-values from model fitting to determine candidate 
features for inclusion or removal, the stepwise procedure 
adopts a randomized choice of candidate features in order 
to broaden the search space and reduce potential bias 
toward early-ranked variables. Within the stepwise 
framework, the forward step terminates when no 
additional feature is accepted for ten consecutive trials, and 
similarly, the backward step terminates when no feature 
can be removed for ten consecutive iterations. 

V. COMPUTATION EXPERIMENTS 

In this section, we present the computational 
experiments conducted to evaluate the performance of the 
proposed hedonic models and variable selection 
procedures. To this end, we compare our approach against 
several benchmark methods and report the results.  

A. Data 
We begin by describing the dataset used in this study 

and the procedure for constructing the training and 
validation sets. The transaction data were collected from 
Dune Analytics (dune.com), a blockchain analytics 
platform that provides publicly accessible dashboards and 
query-based data extraction from on-chain sources. The 
SQL query used to extract the Azuki transaction data is 
provided in Appendix A. The dataset covers the period 
from January 12, 2022, to May 24, 2024, comprising a 
total of 30,114 transactions. For robust estimation, we 
limited the analysis to tokens with more than one 
transaction, resulting in 7,143 tokens out of the 10,000 in 
the Azuki collection being included in the experiments.  

The dataset was then partitioned into training and 
validation sets for fair comparison and to avoid overfitting. 
The partition has been done with a 70:30 ratio using 
stratified sampling. Stratification was necessary because 
the attribute Special has very few unique values and is 
predominantly represented by N/A entries, as observed 

earlier in Table IV. Without stratification, simple random 
sampling could lead to situations where rare trait values 
are absent in either the training or validation set. By 
ensuring proportional representation of the Special traits, 
the stratified partitioning provides a more reliable 
evaluation framework for the proposed models. 

B. Metrics 
To assess how well the proposed models and 

benchmarks explain NFT valuations, we employ several 
statistical fitness measures. The primary measure is the 
coefficient of determination, 𝑅𝑅2, which captures the 
proportion of variance in the dependent variable explained 
by the model. However, since the Azuki dataset is high-
dimensional with a large number of independent variables, 
the adjusted 𝑅𝑅2 is used as the essential metric. Unlike the 
plain 𝑅𝑅2, adjusted 𝑅𝑅2 penalizes the inclusion of non-
informative variables, thereby providing a more reliable 
indicator of explanatory power in high-dimensional 
settings. The mathematical formulas of the two metrics are 
as follows: 

 𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

 (7) 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅2 = 1 − � 𝑛𝑛−1
𝑛𝑛−𝑝𝑝−1

� �1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

�  (8) 

where n denotes the number of observations, p is the 
number of estimated coefficients, 𝑦𝑦𝑖𝑖 represents the actual 
value of log(𝑀𝑀), and 𝑦𝑦�𝑖𝑖  is the predicted value. In addition, 
we adopt two widely used information criteria: the Akaike 
Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC). Both AIC and BIC balance model fit 
against model complexity, but they emphasize different 
goals. AIC prioritizes predictive accuracy, even for 
complex models, whereas BIC applies stronger penalties 
for complexity and thus favors simpler, more 
parsimonious models [31]. The formulas of these two 
criteria are as follows: 

 𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙 �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
� + 2𝑝𝑝 (9) 

 𝐵𝐵𝐵𝐵𝐵𝐵 =  𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙 �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
� + 𝑝𝑝 ∙ 𝑙𝑙𝑙𝑙(𝑛𝑛)   (10) 

where the notations are the same as those in Eqs. (7) 
and  (8). 

C. Benchmarks 
Next, we introduce the benchmark methods used for 

comparative experiments. The benchmarks are divided 
into two categories. The first category consists of 
regularization-based methods, which are widely applied to 
high-dimensional datasets and inherently perform 
embedded variable selection. In this study, we include 
LASSO and Elastic Net as representatives of this class. 
The second category comprises machine learning 
approaches, which are among the most widely used 
techniques for predictive modeling in structured and 
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unstructured data domains. Specifically, we employ 
Random Forest, Support Vector Regression, XGBoost, 
and LightGBM as benchmarks. In total, six benchmark 
methods are considered, providing a broad comparative 
framework against which the performance of the proposed 
hedonic models can be evaluated. 

Least Absolute Shrinkage and Selection Operator 
(LASSO) introduces an L1 regularization term on 
regression coefficients, which penalizes their absolute 
magnitudes. This constraint not only prevents overfitting 
but also performs embedded variable selection by 
shrinking some coefficients to exactly zero, thereby 
identifying the most influential predictors among high-
dimensional features [32]. Similarly, Elastic Net combines 
the L1 penalty of LASSO with the L2 penalty of ridge 
regression, allowing it to handle correlated predictors more 
effectively and maintain stability in cases where multiple 
variables exhibit multicollinearity [33]. Random Forest 
(RF) is an ensemble method that builds a large number of 
decision trees, typically through averaging in regression 
tasks, which enhances predictive accuracy and reduces the 
risk of overfitting compared to single-tree methods [34]. 
Support Vector Regression (SVR) extends the principles 
of Support Vector Machines (SVM) to continuous 
outcomes. It constructs an optimal regression hyperplane 
that fits most observations within a defined margin, while 
kernel functions enable the modeling of nonlinear 
relationships between predictors and outcomes [35]. 
Extreme Gradient Boosting (XGBoost) is a powerful 
gradient boosting algorithm that iteratively builds an 
ensemble of weak learners by minimizing a regularized 
loss function. It incorporates second-order gradient 
information for optimization, making it computationally 
efficient and highly scalable for structured data [36]. 
Finally, Light Gradient Boosting Machine (LightGBM) 
represents an improved variant of gradient boosting. It uses 
histogram-based algorithms and leaf-wise tree growth to 
significantly accelerate training speed, reduce memory 
usage, and enhance scalability. Its design is particularly 
suitable for large, high-dimensional datasets [37]. 

Together, these six benchmark methods provide a strong 
comparative foundation against which the proposed 
hedonic models can be assessed in terms of both 
explanatory power and predictive performance. 

D. Preliminary Test 
Before conducting the comparative experiments, we 

first carried out a preliminary test to determine which of 
the two hedonic specifications introduced earlier—the 
linear model or the squared model—should be adopted as 
the baseline framework. The purpose of this step is 
twofold. First, it provides a consistent foundation for the 
subsequent variable selection procedures by fixing a single 
model structure. Second, it ensures fairness in 
benchmarking, as all alternative methods are evaluated 
using the same feature set derived from the chosen baseline 
model. In the following Table VIII, the results of the 
preliminary test are summarized. 

As you can see from the table, on the training dataset, 
the squared model outperforms the linear specification 
across all measures, with higher 𝑅𝑅2 and adjusted 𝑅𝑅2, as well 
as lower AIC and BIC values, suggesting that the inclusion 
of quadratic terms substantially improves in-sample 
explanatory power. However, the validation results reveal 
a different pattern. While the linear model maintains 
relatively stable performance with 𝑅𝑅2 and adjusted 𝑅𝑅2, the 
squared model exhibits significant overfitting, achieving 
much lower out-of-sample 𝑅𝑅2 and adjusted 𝑅𝑅2. 
Furthermore, the AIC and BIC values of the squared model 
are also worse on the validation dataset.  

These findings indicate that although the squared model 
can better capture nonlinearities in-sample, its 
generalization ability is weaker due to the increased 
complexity and high-dimensionality. Considering the 
principle of parsimony, and given that the linear model 
achieves comparable performance with only about half the 
number of variables, it is adopted as the baseline 
specification for subsequent variable selection and 
benchmarking experiments. 

TABLE VIII. COMPARISON OF LINEAR AND SQUARED HEDONIC MODELS 

Baseline Model 
Train Set Validation Set 

R2 Adj. R2 AIC BIC R2 Adj. R2 AIC BIC 
Linear Model 0.7243 0.6972 −5677 −2751 0.717 0.6422 −7281 −4735 

Squared Model 0.7979 0.7541 −6342 −523 0.558 0.4411 −5437 −374 
 

E. Main Test 
In this subsection, we report the results of the main 

computational experiments designed to evaluate the 
performance of the proposed hedonic models combined 
with variable selection procedures, compared against the 
six benchmark methods introduced earlier. The baseline 
model for variable selection is the linear specification 
described in Section V.D. First, the results of applying the 
proposed variable selection procedures and the six 
benchmark methods to the training set are summarized in 
Table IX. 

Table IX summarizes the comparative performance on 
training set of the baseline only, baseline with three 

variable selection methods, two regularization methods, 
and six machine learning benchmark models. Across all 
evaluation metrics, the machine learning methods 
delivered the strongest performance. In particular, 
Random Forest achieved R² and adjusted R² values 
exceeding 0.9, while also attaining substantially lower 
AIC and BIC scores compared to the hedonic and 
regularization-based models. However, such large 
performance gaps observed on the training set raise 
concerns about potential overfitting. To further investigate 
this possibility, we next turn to the validation set results, 
which provide a more reliable benchmark for assessing the 
generalization performance of each method. 
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TABLE IX. COMPARATIVE RESULTS OF THE TESTED MODELS ON 
TRAINING SET 

Method # of vars. R2 Adj. R2 AIC BIC 
Baseline 461 0.7243 0.6972 −5677 −2751 
Forward 
Selection 136 0.6921 0.6835 −5749 −4856 

Backward 
Selection 432 0.7235 0.6981 −5715 −2958 

Stepwise 
Selection 223 0.7142 0.7008 −5946 −4486 

LASSO 353 0.7192 0.6979 −5777 −3477 
Elastic Net 363 0.7194 0.6975 −5760 −3394 

Random 
Forest 461 0.9407 0.9346 −27522 −24518 

SVR 461 0.8841 0.8724 −24176 −21172 
XGBoost 461 0.8768 0.8643 −23869 −20864 

LightGBM 461 0.7649 0.741 −20638 −17633 
 
Table X presents the comparative results of all tested 

models on the validation set. The performance degradation 
of machine learning methods is particularly notable in the 
validation set. Their previously strong results on the 
training set appear to be a consequence of overfitting, as 
evidenced by the sharp decline in adjusted R². The two 
regularization methods also achieve reasonable results 
with reduced feature sets, but the proposed variable 
selection procedures consistently outperform them. 
Applying variable selection to the baseline model not only 
enhances performance but also improves interpretability. 
Among the proposed methods, stepwise selection achieves 
the highest adjusted R², while forward selection delivers 
the best performance in terms of AIC and BIC. Notably, 
forward selection accomplishes this using only 136 
variables—substantially fewer than the baseline or other 
approaches—demonstrating that it is the most suitable 
method for valuing the Azuki collection. The following 
table illustrates how effectively the model obtained 
through forward selection has mitigated multicollinearity. 

TABLE X. COMPARATIVE RESULTS OF THE TESTED MODELS ON 
VALIDATION SET 

Method # of vars. R2 Adj. R2 AIC BIC 
Baseline 461 0.717 0.6422 −7280.6 −4734.8 
Forward 
Selection 136 0.7024 0.6823 −7796.8 −7020.0 

Backward 
Selection 432 0.7178 0.6466 −7318.7 −4863.6 

Stepwise 
Selection 223 0.7176 0.6847 −7734.5 −6464.4 

LASSO 353 0.7172 0.6613 −7471.5 −5464.3 
Elastic Net 363 0.7169 0.6592 −7449.8 −5386.0 

Random 
Forest 461 0.6162 0.5109 −6603.1 −3989.3 

SVR 461 0.608 0.5006 −6558.3 −3944.5 
XGBoost 461 0.6392 0.5403 −6736.0 −4122.1 

LightGBM 461 0.6427 0.5447 −6756.8 −4142.9 
 
Table XI presents the distribution of Variance Inflation 

Factor (VIF) values for the baseline model and the forward 
selection model. The results clearly show that 
multicollinearity has been substantially reduced after 
variable selection. In the baseline model, all 461 variables 
exhibit VIF values greater than 10, indicating severe 

multicollinearity. In contrast, the forward selection model 
retains 136 variables, among which 133 have VIF values 
below 5 and only one exceeds 10. This confirms that the 
forward selection procedure effectively eliminates 
redundant predictors. In the following figure, actual and 
predicted log (APR) values on the validation set using the 
hedonic model obtained through forward selection are 
demonstrated. 

TABLE XI. VARIANCE INFLATION FACTOR (VIF) DISTRIBUTIONS 
BETWEEN BASELINE AND FORWARD SELECTION MODEL 

Range of VIFs Baseline Forward Selection 
VIF ≤ 5 0 133 

5 < VIF ≤ 10 0 2 
10 < VIF 461 1 

 
In Fig. 3, the blue dots represent individual Azuki 

tokens, while the red dashed line indicates the 45-degree 
line where predicted values would perfectly match actual 
outcomes. The results show that most observations cluster 
around the diagonal, suggesting that the model achieves a 
generally good predictive fit. However, deviations become 
more pronounced for tokens with higher log (APR) values, 
reflecting the difficulty of fully capturing the extreme 
volatility associated with rare and highly priced traits. 

 

 
Fig. 3. Scatter plot of actual versus predicted values for the validation 

set using the forward selection model. 

Fig. 4 illustrates the number of traits selected for each 
attribute through the forward selection procedure. For 
comparison, the total number of traits within each attribute 
is also shown, allowing the proportion of selected traits to 
be easily identified. The exact selection ratio is displayed 
to the right of each orange bar. As shown in the figure, 
“Type” and “Special” attributes have all their traits 
selected (100%), indicating their dominant importance in 
determining NFT value. The “Offhand” attribute, although 
only 40% of its traits were selected, contributes the largest 
number of traits overall, suggesting its strong explanatory 
power across multiple trait combinations. In contrast, 
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“Hair” and “Clothing” exhibit very low selection ratios 
(3% and 7%, respectively), implying that despite their 
large number of traits, these attributes play a relatively 
minor role in valuation. 

 

 
Fig. 4. Comparison of the number of total and selected traits across 
attributes in the Azuki dataset. The percentages indicate the proportion of 
traits selected within each attribute by the forward selection procedure. 

VI. CONCLUSION 

This study proposed and empirically validated hedonic 
valuation models for the Azuki NFT as a high-dimensional 
case study. We first conducted an extensive exploratory 
analysis of Azuki’s metadata, documenting 12 attributes 
and 454 distinct trait values. Building on these insights, we 
specified NFT value via a volatility-robust dependent 
variable and constructed trait-level features with TF-IDF 
to reflect both presence and collection-wide scarcity. We 
then introduced two hedonic specifications (linear and 
squared) and three tailored variable-selection procedures 
(forward, backward, and stepwise). A preliminary 
comparison showed that the squared model overfit out of 
sample, whereas the linear model generalized better and 
was therefore adopted as the baseline. In the main 
experiments, applying variable selection to the linear 
baseline consistently improved performance and 
parsimony relative to both the unselected baseline and 
regularization benchmarks. Among the proposed 
procedures, stepwise selection achieved the highest 
adjusted 𝑅𝑅2 on the validation set, while forward selection 
delivered the best AIC/BIC with only 136 variables, 
demonstrating a favorable accuracy-complexity trade-off. 
By contrast, machine-learning benchmarks attained very 
high training fit but experienced marked degradation on 
the validation set—clear evidence of overfitting in this 
setting. Overall, these results indicate that carefully crafted 
hedonic models, paired with principled variable selection, 
can provide competitive and interpretable NFT valuation 
with stronger generalization. 

Several avenues remain open for future research. First, 
while this study focused on Azuki as a representative case, 
the proposed hedonic valuation framework can be 

extended and validated across other NFT collections. Such 
cross-collection analyses would help assess the 
generalizability and robustness of the framework. Second, 
in this study the intrinsic value of NFTs was extracted from 
attribute-trait names using TF-IDF, a widely adopted text 
vectorization technique. Future work could explore 
alternative feature engineering approaches, including more 
advanced text vectorization or word embedding methods, 
which may better capture semantic similarities across traits 
and thus improve explanatory power. Third, given that 
PFP NFTs inherently convey uniqueness through visual 
representation, future research could enhance the proposed 
framework by integrating image-derived features, thereby 
providing a more holistic understanding of NFT valuation 
dynamics. Finally, unlike prior studies on BAYC, the 
quadratic terms in the Azuki dataset did not yield 
meaningful gains and even resulted in overfitting. A 
comparative investigation across collections is needed to 
clarify under what structural conditions nonlinear terms 
contribute to valuation accuracy. Such work may also shed 
light on the interplay between attribute richness, market 
behavior, and model specification.  

APPENDIX A: SQL QUERY FOR EXTRACTING AZUKI 
TRANSACTION DATA 

The Azuki transaction dataset used in this study was 
obtained from Dune Analytics (dune.com). The following 
SQL query was used to extract all transaction records 
associated with the official Azuki smart contract deployed 
on the Ethereum blockchain. The contract address 
corresponds to the verified Azuki collection 
(0xED5AF388653567Af2F388E6224dC7C4b3241C544). 

 
SQL Query for Extracting Azuki Transaction Data 
SELECT * 
FROM nft.trades 
WHERE 
  blockchain = 'ethereum' 
  AND nft_contract_address = 
0xED5AF388653567Af2F388E6224dC7C4b3241C544; 
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