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Abstract—In this study, we propose hedonic models for
valuing Non-Fungible Tokens (NFTs) from the Azuki
collection. We first analyze the NFT’s metadata and
introduce a market volatility-robust dependent variable.
Specific information of Azuki attributes is encoded via Term
Frequency-Inverse Document Frequency (TF-IDF) to reflect
both presence and collection-wide scarcity, yielding hundreds
of features for each token. Two hedonic models are
considered: a linear model and a squared model. To address
high dimensionality, we tailor three variable-selection
procedures—forward, backward, and stepwise—and
compare them with regularization benchmarks and machine-
learning methods. Using actual Azuki transaction data, we
evaluate performance on a train-validation partition. The
squared model overfits out of sample, while the linear model
generalizes better and is adopted as the baseline. Applying
variable selection to the linear baseline improves both
parsimony and predictive performance. Machine-learning
models exhibit very high training fit but notable performance
degradation on the validation set, indicating overfitting in
this setting. Overall, carefully specified hedonic models
combined with principled variable selection offer
competitive, interpretable, and more generalizable NFT
valuation.

Keywords—Non-Fungible Token (NFT), NFT valuation,
hedonic model, variable selection, high-dimensional data,
Term Frequency-Inverse Document Frequency (TF-IDF),
Azuki

I. INTRODUCTION

Over the past decade, blockchain technology has
undergone remarkable development, led by the emergence
of Bitcoin as the first widely recognized application.
Among the diverse innovations built upon blockchain, one
of the most prominent applications is the Non-Fungible
Token (NFT). While the concept of NFTs has been
discussed from various perspectives, a number of recent
studies suggest a broadly accepted definition: NFTs can be
regarded as tradeable digital assets, recorded in smart
contracts and managed through blockchain technology,
that grant ownership rights over physical or digital assets
such as videos, images, and artworks [1-3].
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During 2021 and 2022, the NFT market experienced an
extraordinary surge in trading volume. NFT sales volumes
soared from merely 94.9 million USD in 2020 to
approximately 24.9 billion USD in 2021, with the number
of wallets trading NFTs exploding from around 545,000 to
28.6 million USD [4]. However, beginning in 2022, the
market entered a pronounced contraction. According to
market research data provided by Statista [5], the downturn
following the market peak is evident in both aggregate
revenue and per-user metrics. Specifically, global NFT
revenue declined from approximately 1,581.3 million
USD in 2022 to 611.1 million USD in 2023 and has
remained at this lower level since then. A similar
downward trajectory is observed in the Average Revenue
per User (ARPU), which reached a high of 413 USD in
2021, but dropped to 181.1 USD in 2022 and further to
59.7USD in 2023. Even so, the NFT ecosystem has shown
resilience. Despite the downturn, some high-profile
collections have maintained their relevance and formed a
stabilizing backbone for the market. Furthermore, despite
widespread devaluation—some estimates suggest up to
95% of NFTs may have lost meaningful value—trading
activity continues to persist, with weekly volumes still
reaching tens of millions of dollars [6].

Despite the downturn, NFT trading remains an active
and meaningful segment of the digital asset market. In
such a highly volatile and speculation-driven environment,
establishing a rational framework for NFT valuation is
essential to mitigating risks faced by market participants.
According to a recent review paper on NFT [7], the two
most highly cited papers in the NFT literature are
Dowling’s works regarding the determinants of NFT
valuation [8, 9], which shows strong scholarly interest in
NFT valuation. This growing academic interest is also
reflected in a review study on NFT pricing [10]. This study
categorized the determinants of NFT prices into three
groups: external factors beyond the collection, internal
factors within the collection, and inter-collection factors.
In addition, the study further classified NFT into five
categories: art, gaming, collectibles, utilities, and
metaverse.
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In this study, we aim to propose and empirically validate
an NFT valuation model. In particular, we focus on Profile
Picture (PFP) NFT projects, which fall under the
collectibles category among the five NFT types introduced
above. PFP NFT projects include some of the most iconic
NFT projects such as CryptoPunks [11] and Bored Ape
Yacht Club [12]. As such, they represent the most familiar
and widely recognized form of NFTs to market
participants. Their importance is further identified by sales
volume statistics: according to the all-time rankings on
OpenSea [13], the leading NFT marketplace, four of the
top five projects by sales volume are PFP NFTs as shown
in Table I.

TABLE 1. ToP FIVE NFT COLLECTIONS ON OPENSEA IN TERMS OF
SALES VOLUME AS OF SEPTEMBER 5, 2025

Collection Category f’lr‘;z: Vii‘ll::le N“IIIIJ:EIS‘ of
gzﬁféﬂi PEP 9.14ETH 1SMETH 9,998
CryptoPunks PFP 48.00 ETH 13METH 9,994
Yuam e prp 138 LIMETH 19555
Azuki PFP 178 ETH 8]25‘%%( 10,000
Otél)i:}rlgf:i((lié‘or Metaverse 0.104 ETH 60E§1“.I7{K 36,263

Table I shows that, except for Otherdeed for
Otherside—a metaverse project—all of the listed
collections are classified as PFP NFTs. In terms of
cumulative trading volume, Bored Ape Yacht Club
(BAYC) leads the market; however, the floor price of
CryptoPunks is the highest, at approximately 50 ETH.
Most collections consist of approximately 10,000 tokens,
which has become a common standard for PFP NFTs.
Notably, Mutant Ape Yacht Club can be regarded as a
derivative of BAYC, reinforcing the central roles of
BAYC and CryptoPunks in the NFT market.

Given the importance of PFP NFTs, it is not surprising
that much of the existing NFT valuation research has
focused on these collections, particularly CryptoPunks and
BAYC. Among them, CryptoPunks holds a particularly
important place, as it was launched in June 2017 by Larva
Labs and is widely regarded as one of the earliest and most
valuable NFT projects. Kong and Lin [ 14] analyzed 23,206
transactions of CryptoPunks conducted between June 2017
and December 2022, while Schaar and Kampakis [15]
investigated 11,864 transactions spanning June 2018 to
May 2021. Both studies employed hedonic regression
models to examine the determinants of CryptoPunks
prices, identifying how various attributes and rarity
contribute to valuation outcomes. The BAYC, launched by
Yuga Labs in April 2021, consists of 10,000 unique digital
ape images and several empirical studies have focused on
BAYC to explore its valuation mechanisms. Lee et al. [16]
applied Formal Concept Analysis (FCA) to analyze the
effect of rarity on BAYC prices, while Lee et al. [17]
proposed linear and quadratic hedonic pricing models to
evaluate its value. Koo et al. [18] employed Structural
Equation Modeling (SEM) together with multi-group

analysis to investigate causal relationships among
valuation determinants and to test differences across
investor types. Furthermore, Mekacher et al. [19]
examined rarity quantification and its impact on market
behavior across 410 PFP NFT collections, with
CryptoPunks and BAYC serving as the primary case
studies. Xiong et al. [20] broadened the scope of NFT
valuation research by analyzing data from PFP projects
such as Sappy Seals and Lazy Lions. Their study proposed
a hedonic regression model grounded in rare attributes
while also integrating market-level factors. In addition,
factor analysis was employed to assess the robustness and
improvement of the proposed pricing framework.
Recently, studies have begun incorporating visual
attributes of NFTs into price prediction models, leveraging
transfer learning and deep neural networks to capture
image-based rarity [21, 22].

In this study, we propose an NFT valuation model
focusing on the Azuki project. To the best of our
knowledge, no existing work has systematically
investigated valuation mechanisms for Azuki NFTs. The
Azuki collection, launched in January 2022 by Chiru Labs,
consists of 10,000 Japanese anime-inspired avatar
NFTs [2,23]. Aside from BAYC and CryptoPunks, Azuki
ranks highest in all-time sales volume and remains a top
performer in the NFT market, and it continues to rank
among the top performers in NFT sales [24]. Similar to
other PFP NFTs, Azuki items are generated from
combinations of multiple attributes; specifically, the
collection is characterized by 12 attributes—Type,
Special, Clothing, Offthand, Hair, Headgear, Face, Neck,
Eyes, Mouth, Ear, and Background. Table II presents
examples of some of the most expensive Azuki NFTs ever
traded [25]. In the table, the values of each attribute,
referred to as traits [19], thereby allowing us to identify
which attribute values (i.e., traits) contribute to higher
valuations

TABLE II. SELECTED ITEMS OF THE HIGHEST-PRICED AZUKI NFTS

Image and

Attribute Azuki #9605

Azuki #5172

Azuki #4666

Profile Picture

Type
Special Fireflies N/A Fireflies
Clothing N/A Azjuakcl kt;:lck White (Eﬁao with
Offhand  Golden shuriken ~ Hand wrap  Golden umbrella
> Hair Spirit fluffy Spirit spiky Spirit ponytail
g _Headgear N/A Ikz baseball cap N/A
g _ Face N/A N/A N/A
@ Golden Golden
Neck headphones N/A headphones
Eyes Chill White Striking
Mouth Pout Pout Grin
Ear Small hoop N/A N/A
Background Cool gray Red Dark purple

As shown in Table II, a common feature among these
highest-priced items is the Spirit type, which is one of the
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rarest and most valued attributes in the Azuki collection.
Each Azuki item is identified by a unique number, called
token ID, which serves as its identifier within the
collection. Note that not every item possesses values for
all attributes. For instance, token ID #9605 does not
contain entries for Clothing, Headgear, or Face, which are
denoted as “N/A” in the table. Despite such missing
attributes, these items exhibit combinations of highly
valued traits—most notably the Spirit type and golden
accessories—that substantially increase their market
prices. While these features reflect the general
characteristics of PFP NFTs, Azuki also exhibits
distinctive features. To show a comparative perspective,
Table III summarizes the key characteristics of
representative PFP NFT projects—CryptoPunks, BAYC,
and Azuki.

TABLE III. KEY CHARACTERISTICS OF CRYPTOPUNKS, BAYC, AND
AZUKINFT COLLECTIONS

Category CryptoPunks BAYC Azuki
# of items 9,904 9,998 10,000
# of attributes 2 7 12
1.Background (8)
2.Clothing (98)
1.Background 3.Ear (32)
®) 4.Eyes (27)
1. Accessory 2.Clothes (43) 5.Hair (123)
Attributes (9' 5) 3.Earring (6)  6.Face (19)
(# of traits) 2. Type (5) 4.Eyes (24) 7.Headgear (36)
L YP 5.Fur (19) 8.Mouth (33)
6.Hat (36) 9.Neck (15)
7Mouth (33)  10.Offhand (53)
11.Special (9)
12.Type (4)
Canhaveupto  Some attributes allow missing
Remarks -
7 accessories values

Table III provides a comparative summary of the key
characteristics of three representative PFP NFT
collections. Although all three collections consist of
approximately 10,000 items, they differ considerably in
terms of attribute structure and diversity. CryptoPunks is
defined by only two attribute categories, whereas BAYC
incorporates seven. Azuki further extends this complexity
by incorporating 12 attribute categories with a
significantly larger number of possible values, such as 123
distinct hair traits and 98 clothing options. This richer
attribute space results in a high-dimensional dataset,
making Azuki notably more complex and distinctive
compared to the other two leading PFP NFTs.

In this study, we propose a valuation model that
considers the distinctive characteristics of Azuki NFTs. As
noted in Table I, Azuki is one of the most actively traded
NFT collections, yet it has not been systematically studied
in prior literature. Moreover, compared with other PFP
NFT collections, Azuki exhibits a much higher degree of
feature dimensionality, which makes a variable-selection
process particularly important. Therefore, the present
study distinguishes itself from prior NFT valuation
research by (i) being the first to develop and validate a
hedonic pricing framework for Azuki, and (ii) addressing
the challenges of high-dimensional NFT metadata through
systematic feature-selection procedures. The remainder of
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this paper is organized as follows. Section II provides an
exploratory analysis of the Azuki NFT dataset. Section I11
introduces the hedonic modeling framework, including the
specification of the dependent variable and the
construction of independent variables. Section IV presents
three alternative methods for variable selection to address
the high-dimensional structure of the dataset. Section V
evaluates the performance of the proposed valuation
model, comparing it against benchmark approaches
through a series of empirical experiments. Finally,
Section VI concludes with a summary of findings,
practical implications, and directions for future research.

II. EXPLORATORY DATA ANALYSIS OF THE AZUKI

In this section, we conduct an exploratory statistical
analysis of the Azuki NFT dataset in order to better
understand its structural characteristics. Specifically, we
focus on frequency-based analyses of the 12 attributes that
define each Azuki token. Table IV summarizes the initial
statistics for each attribute, including the number of unique
values and the Gini indices to measure the homogeneity of
each attribute. The Gini index measures distributional
inequality, where values close to 1 indicate a highly
uneven distribution dominated by a small number of traits,
while values close to 0 suggest a more balanced
distribution.

TABLE IV. UNIQUE VALUE COUNTS AND GINI INDICES OF AZUKI NFT
ATTRIBUTES

Attribute Unique Value Unique Values' Gini Index Gini Index'

Type 4 4 0.669 0.669
Hair 124 123 0.241 0.235
Clothing 99 98 0.32 0314
Eyes 27 27 0.28 0.28
Mouth 30 30 0.301 0.301
Ofthand 54 53 0.656 0.533
Background 8 8 0.284 0.284
Neck 16 15 0.79 0.368
Headgear 37 36 0.723 0.292
Ear 33 32 0.839 0.292
Face 20 19 0.706 0.252
Special 10 9 0.844 0.127

Note: ! “N/A” is excluded.

Table IV reports the number of unique values and the
Gini indices for each of the 12 attributes. For each
attribute, results are reported both including and excluding
missing values (N/A). A total of 461 distinct trait values
are identified when including N/A categories, and 454
when they are excluded. Among these, Hair (123) and
Clothing (98) account for the largest numbers of unique
traits, thereby playing a dominant role in driving the high-
dimensional nature of the Azuki dataset. As the table
shows, with the exception of Type, Eyes, Mouth, and
Background, most attributes contain a substantial
proportion of missing values. Notably, attributes such as
Headgear, Ear, Face, and Special exhibit large differences
in their Gini indices depending on whether N/A values are
included. This indicates that, although these attributes
appear highly uneven when N/A is included, the remaining
non-missing traits are relatively evenly distributed across
items. In the next table, we further investigate these



Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

characteristics by presenting the most and least frequent
values for each attribute.

Table V presents the most and least frequent values for
each attribute, along with their corresponding counts.
Several patterns can be observed. First, for fundamental
traits such as Type and Background, the distributions are
highly skewed: the majority of tokens are categorized as
Human (9,018) and share Off White backgrounds, while
rare categories such as Spirit (97) or Dark Purple
backgrounds (463) are extremely scarce. Second,
attributes with a wide variety of categories, such as Hair
and Clothing, reveal a long-tailed distribution. While
common traits include Maroon Bun or Light Kimono,
some traits appear fewer than ten times, such as Black
Blonde Half Bun or Golden Cat Kigurumi. Third,
accessory-related attributes such as Ofthand, Neck,
Headgear, Ear, and Face contain a large proportion of
missing values, reflecting that many tokens do not feature
these traits. Within the non-missing subset, however, rare
traits such as Golden Zanbato (11), Golden Headphones
(35), and Red Bean (14) emerge as highly distinctive
identifiers of rarity. Finally, the Special attribute, which is
present in fewer than 10% of items, is dominated by N/A
values. Nonetheless, when present, traits such as Fireflies
(88) or Lightning (48) represent exceptionally rare and
visually distinctive features that often drive premium
valuations. As you can see, while some traits are broadly
shared and form the visual identity of the collection, others
are extremely rare and serve as critical drivers of scarcity
and valuation.

TABLE V. MOST AND LEAST FREQUENT VALUES OF EACH ATTRIBUTES

the distribution of individual traits. As noted above, the
Azuki collection comprises a total of 454 unique trait
values across its twelve attributes. To better capture the
rarity structure of these traits, we analyze the frequency
distribution of all unique values. Fig. 1 presents a pie chart
that groups trait frequencies.

400-500

. 500-600: 0.2%
s 600-700: 0.0%
s 700-800: 0.4%
800-900: 0.4%
N 1000+: 1.5%

300-400

200-300

100-200

Fig. 1. Pie chart of attribute frequency distributions in the Azuki NFT
collection. Frequencies of traits are grouped into bins of width 100, with
all frequencies above 1000 combined into a single category (“1000+”).

Fig. 1 illustrates the frequency distribution of the 454
unique Azuki trait values, grouped into bins of width 100.
The chart clearly demonstrates that traits with frequencies
below 200 account for more than 80% of all values, while
traits with fewer than 100 occurrences alone make up over
50%. Given that the Azuki collection consists of 10,000
items, any trait appearing fewer than 100 times would be
regarded as rare. However, more than half of all traits fall

Attribute Most 2nd Most Least 2nd Least . : ) . .
Frequent  Frequent Frequent Frequent into this category. This finding suggests that relying solely
Type Hgtgrllgn Blue (444)  Spirit 97)  Red (441) on raw frequency as an 1nd1f:ator of rar1ty may be
1\(4 ) 5 S ik Biomd insufficient for accurate valuation. Instead, it becomes
. aroon TOWn SPIKY ac. onde . ..
Hair 5 (150) (142) NA®)  HqalfBun (12) necessary to consider addltlongl context}lal factors, such as
Light the attribute category to which a trait belongs and its
Clothing  Kimono Maroon  — Golden Cat )\ 5y interactions with other traits
311) Yukata (221) Kigurumi (5) :
Eyes Closed  Determined  Lightning Fire (57) TABLE VI. LEAST AND MOST FREQUENT TRAITS OF AZUKI NFTS
(1551) (742) (46)
Mouth Reggzed Closed (812) Surglzsed Sleepg]?;ubble Least Frequent Traits Most Frequent Traits
(834) a4 (83) Trait Freq. Attribute Trait Freq. Attribute
Offhand nan (3165) Katana (439) _ Golden Siz:):tilfgd Golden Cat 5 Ciothing  Human 9018 Type
Zanbato (1) * (12) Kigurumi
Golden Sloth . .
Off White  Off White C_ Dark Purple  Cool Gray Kigaro 6 Clothing Off White D 1990 Background
Background igurumi
D (1990) (1962) (463) (483) Golden Red : :
N/A Chill Golden Sloth Panda Kigurumi 6  Clothing Off White C 1962 Background
Neck 7746 Headphones Headphones Headphones Golden Fro
(7746) (400) (35) (36) e ummig 10 Clothing Off White A 1814 Background
N/A IKZ Baseball Red Panda  Frog Beanie £
Headgear (6512) Cap (265) Beanie (28) (30) Golden Zanbato 11  Offhand Off White B 1758 Background
N/A Corded Red Bean Blue Bean .. .
Ear (8181)  Earbuds (164) (14) (16) Spirit Bob 12 Hair Closed 1551 Eyes
N/A Red Stripes Heart Eye  Lipstick Kiss Spirit Long 12 Hair Red 1006 Background
Face (6790) Face Paint Patch (65) (72) Black Blond
(290) HalfBon © 12 Hair Relaxed 834  Mouth
Special NA  Fireflies (88) L8NS \woer (49) T
(9371) (48) Golden Katana 12 Offhand Closed 812 Mouth
Golden Monkey ) 0nd  Determined 742 Eyes

Building on the preceding descriptive analysis of Azuki
attributes, we now turn to a more detailed examination of
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Table VI presents a comparative summary of the least
and most frequent trait values within the Azuki collection.
Among the least frequent traits, a notable pattern is the
predominance of values containing the prefix “Golden”.
These rare values are concentrated within a limited set of
attributes, particularly Clothing, Hair, and Offhand. On the
other hand, the most frequent traits are dominated by
fundamental features. The Human type stands out with an
exceptionally large count of 9,018. In addition, several
values included in the Background attribute are also
among the most frequent.

To incorporate both attribute categories and individual
trait frequencies, we calculate the rarity score of each
Azuki token based on its constituent traits [19]. The rarity
score of a specific trait 1, is defined as:

1
Tt = G /10000) (1
where f; is frequency of trait ¢ out of 10,000, i.e., the
denominator represents the proportion of tokens in the
collection that contain the trait. The rarity score of token £,
Ry, is then obtained by summing the rarity scores of all
traits that the token possesses:

Ry = ZteTk Tt (2
where T} is the trait set of token k. A larger value of Ry,
indicates a higher level of rarity. Note that, in the
calculation of rarity scores, missing values were also taken
into account. For each attribute, the absence of a trait was
treated as a valid category and incorporated into the
computation. The next figure presents the histogram of
rarity scores across all 10,000 Azuki tokens.

1000

Number of Tokens.

0 500 1000 1500 2000

Rarity Score

2500 3000

Fig. 2. Histogram of rarity scores across all 10,000 Azuki tokens.

As you can see from Fig. 2, the rarity has a highly
skewed distribution, where the majority of tokens fall
within the lower score. Only a small fraction of tokens
achieve rarity scores above 1,000, and extremely rare cases
exceed 2,000 or even 3,000. In the following figure, we
compare two Azuki tokens that represent the extremes of
the distribution: the one with the highest rarity score and
the one with the lowest rarity score. Interestingly, the token
with the highest rarity score corresponds to Azuki #9605,
which was already introduced earlier in Table II as one of
the historically most expensive Azuki NFTs ever traded.
The following table provides a comparison of two tokens
with the highest and lowest rarity scores.

As shown in Table VII, Azuki #9605, which holds the
highest rarity score, is characterized by a distinctive
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science-fiction-like figure with golden accessories. In
contrast, Azuki #8546, with the lowest rarity score,
portrays a human figure dressed in a simple and ordinary
costume. The disparity in rarity scores is mirrored in their
market performance. A particularly noteworthy feature of
Azuki #9605 is its Clothing attribute, which is marked as
“N/A”. That is, the absence of clothing (‘“nude”)
significantly increases the trait rarity score, thereby
elevating the overall rarity of the token.

TABLE VII. COMPARISON BETWEEN TWO AZUKI TOKEN WITH THE
HIGHEST AND LOWEST RARITY SCORES

Image and

Value Azuki # 9605

Azuki #8546

Profile Picture

153.41

4080.89

Rarity Score

Last Sale Price 420.7 ETH 29 ETH

In this section, we have analyzed the metadata of the
Azuki collection, providing descriptive statistics of
attributes and trait values, as well as a systematic
assessment of rarity scores. These findings serve as a
critical foundation for the development of valuation
models in subsequent sections.

III. HEDONIC MODELS

In this section, we introduce the hedonic models
employed for the valuation of the Azuki collection. As
discussed in Section I, applications of hedonic modeling to
PFP NFTs are well-documented  in  the
literature [14, 15, 17, 20]. Beyond PFP NFTs, prior
research has also extended the use of hedonic models to
other categories such as art and metaverse NFTs [26-28].
The fundamental premise of the hedonic pricing model is
that the price of a heterogeneous asset is determined not
only by external market factors but also by the intrinsic
characteristics of the asset itself. Historically, this
framework has been widely applied in real estate and
traditional art markets [10]. Given that NFTs share the
feature of being highly heterogeneous digital assets in one
collection, hedonic models naturally provide an
appropriate and effective framework for analyzing NFT
valuations.

In the remainder of this section, we first describe how
the dependent and independent variables of the hedonic
model are constructed from the Azuki dataset. Following
this, we present the hedonic models that incorporate the
corresponding variables. The next subsection begins with
a detailed discussion of the dependent variable.

A. Dependent Variable

In this study, the goal of the hedonic model is to evaluate
the value of NFTs; therefore, the dependent variable must
be the economic value of each token, specifically its price.
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However, similar to other cryptocurrencies, NFT prices are
subject to extreme volatility [29]. To account for this
volatility, it is necessary to incorporate a dependent
variable that captures the relative value of each token while
neutralizing fluctuations caused by market-wide
dynamics. Following the previous studies [16, 17], we
adopt the Premium Ratio to measure the values of NFTs.
The Premium Ratio measures the relative value of an
individual token at the time of transaction, which can
offset price fluctuations caused by overall market
movements. For a transaction s of token %, the Premium
Ratio, mg, is defined as:

m — Dsk
sk ™ Ma20)g

3)
where pg, denotes the transaction price of token £ at
transaction s, and MA(20), represents the 20-day moving
average price of all Azuki tokens at the date of
transaction s. As such, the Premium Ratio reflects the
relative market value of the token within a 20-day window.
Since multiple transactions may exist for the same token,
the final dependent variable is derived by averaging the
Premium Ratios across all transactions of a given token.
Formally, the Average Premium Ratio (APR) for token £,
is defined as:

Msk

Mk = ZSE@k |0kl

4)

where 0, denotes the set of all transactions for token k.
The M, thus provides a normalized measure of the relative
value of each token, accounting for market-wide
fluctuations. In this study, the Average Premium Ratio is
used as the dependent variable in the hedonic model.
Given the substantial variation in values across tokens, the
dependent variable is log-transformed prior to model
estimation.

B. Independent Variables

In a hedonic pricing model, the explanatory variables
should represent the intrinsic characteristics of the assets
under consideration. For Azuki NFTs, these characteristics
correspond to the trait values of each attribute. Since these
traits are expressed as categorical string values, it is
necessary to transform them into  numerical
representations suitable for regression modeling. A
straightforward approach would be to apply one-hot
encoding, which creates binary indicators for the presence
of each trait. However, in this study we employ Term
Frequency-Inverse Document Frequency (TF-IDF), to
better capture the informational content of traits. TF-IDF
is widely used in text mining to evaluate the importance of
terms within a corpus by balancing their frequency within
a document against their overall rarity across the entire
collection.

Here, each Azuki token is treated as a “document”, and
its attribute-trait combinations are regarded as “terms”.
Using the TF-IDF method, traits that appear frequently
across the collection receive lower weights, whereas rare
traits are assigned higher weights, thereby emphasizing
their contribution to uniqueness. The implementation was
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carried out using the TfidfVectorizer function from
Python’s scikit-learn library.

The resulting feature space consists of 461 dimensions,
each corresponding to a unique attribute-trait pair
identified across the 10,000 tokens. Thus, every Azuki
token is represented as a sparse 461-dimensional TF-IDF
vector. This representation not only reflects the richness of
the Azuki dataset but also highlights the high-dimensional
structure of PFP NFTs. Importantly, by leveraging the
weighting mechanism inherent in TF-IDF, the independent
variables capture both the presence of traits and their
relative rarity within the collection, providing a robust
numerical foundation for the subsequent hedonic
regression analysis.

C. Linear Model

With the APR defined in Section III.A and the TF-IDF
variables prepared in Section III.B, we now construct
hedonic pricing models for the Azuki collection. In this
study, we propose two hedonic models. The first is a linear
hedonic regression model that includes all 461 TF-IDF
variables as first-order terms. The second, which will be
introduced in the next subsection, extends the specification
by adding squared terms resulting in 922 independent
variables in the model.

The linear model assumes that each attribute-trait pair
contributes additively and proportionally to the NFT’s
value. Its mathematical form is given as follows:

log(M) = o + Xierr Bid; + € (5)
where M denotes the APR introduced in Eq. (4), 8, is the
intercept, f5; is the coefficient associated with the i-th TF-
IDF variable, TF represents the set of 461 TF-IDF
variables, d; is the TF-IDF score of the i-th trait, and € is
the error term capturing unobserved influences. This linear
specification provides a straightforward benchmark to
assess the explanatory power of trait-level features. By
assuming a purely linear relationship, it enables us to
evaluate the direct marginal effects of each attribute-trait
pair on NFT valuation. This serves as the baseline before
introducing nonlinear extensions, which are presented in
the next subsection.

D. Squared Model

The second hedonic specification is the squared model,
which extends the linear framework by incorporating
quadratic terms. The motivation for this extension lies in
the speculative nature of NFT markets, where certain traits
may exert disproportionately large effects on token
valuations. To capture such potential nonlinearities, the
squared model augments the 451 first-order TF-IDF
variables with their squared counterparts, resulting in a
total of 902 explanatory variables. Formally, the squared
hedonic model is expressed as:

log(M) = fo + Zierr Bidi + Zierrvidi + € (6)
where y; denotes the coefficient associated with the
squared term of the i-th TF-IDF variable, and the
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remaining notation is identical to that in Eq. (5). By
allowing for nonlinear effects, this model provides a richer
representation of the relationship between trait
characteristics and NFT valuations. In particular, it enables
the analysis of whether rare or distinctive traits have an
amplified impact on prices, beyond the proportional
contribution assumed in the linear model. This extended
specification thus serves as a crucial step in examining
how high-dimensional trait structures influence the
valuation of Azuki NFTs.

IV. VARIABLE SELECTION

As discussed in the previous section, the inclusion of
squared terms in the hedonic model results in a high-
dimensional representation of the Azuki dataset.
Compared to other prominent PFP NFT projects such as
CryptoPunks or BAYC, the Azuki collection exhibits a
much larger number of unique attribute-trait combinations,
as presented in Table III. High-dimensional datasets of this
kind are increasingly common in modern statistical
applications, and variable selection has become an
essential process to enhance model interpretability and
predictive performance [30]. In this section, we introduce
three well-known variable selection procedures—forward
selection, backward elimination, and stepwise selection—
and adapt them to the context of our hedonic models. The
following subsections describe these procedures in detail.

A. Forward Selection

The first variable selection method employed in this
study is the forward selection procedure. As the name
suggests, this approach begins with an intercept-only
model that contains no independent variables (i.c.,
features). Variables are then added one by one, based on
their statistical significance and contribution to model fit,
thereby gradually expanding the model. At each step, only
the variable that provides a certain amount of improvement
in explanatory power is included, and this process
continues until no further meaningful improvement can be
achieved. The detailed procedure is summarized in the
below.

Forward Selection Procedure

Input:  Dependent variable and feature set

Output: Selected feature subset

Step 1: Rank all candidate features by their p-values from
the full model.

Start with an intercept-only model (no features) and
compute adjusted R2.

Sequentially test features in ranked order:

Temporarily add one feature at a time to the current
model.

If adjusted R? improves, keep the feature and update
the model.

Otherwise, count as a failure. Stop the procedure
when the number of consecutive failures exceeds a
threshold.

Step 4: Return the final set of selected features.

Step 2:

Step 3:

In the context of this study, the initial set of candidate
features corresponds to the set of independent variables

147

defined in the hedonic models. Specifically, for the linear
model in Eq. (5), 461 first-order TF-IDF variables are
considered, while for the squared model in Eq. (6), the pool
expands to 922 variables, including both first-order and
quadratic terms. The forward selection process continues
until no improvement in adjusted R? is observed for 10
consecutive candidate features, which is set as the stopping
threshold.

B. Backward Selection

The second variable selection method is backward
selection, which operates in the opposite way of forward
selection. Instead of starting from an empty model, the
backward procedure begins with the full model that
includes all candidate features. At each step, a feature
presumed the least important is considered for removal.
The model is then refitted without this feature, and if the
explanatory power of the model does not decrease, the
feature is permanently eliminated. This iterative process
continues until no further improvements can be made. The
detailed procedure is summarized in the below.

Backward Selection Procedure
Input: Dependent variable and feature set

Output: Selected feature subset
Step 1:  Start with a full model including all candidate
features.
Step 2:  Fit the model. Compute adjusted R? and compute p-
values for all features.
Step 3:  Identify the feature with the largest p-value.
Step 4: Temporarily remove that feature and refit the
model.
If adjusted R? does not decrease, remove the feature
permanently.
Otherwise, retain the feature and count as a non-
removal.
Step 5:  Repeat Steps 2—4 until no feature removal occurs for
a fixed number of consecutive iterations.
Step 6:  Return the final set of selected features.

In this study, the termination criterion for the backward
selection procedure is set based on consecutive non-
removals of a candidate feature. Specifically, if no feature
is removed for a fixed number of iterations, the procedure
is stopped. For our implementation, this threshold is set to
10 consecutive iterations without removal.

C. Stepwise Selection

The final method, stepwise selection, combines the
logic of forward and backward selection into an iterative
procedure. The basic structure of this approach is to
alternate between adding features and removing features,
thereby refining the model in both directions. Detailed
steps of this process are outlined below.

Stepwise Selection Procedure

Input:  Dependent variable and candidate feature set; initial
model.

Output: Final selected feature subset

Step 1:  Fit the initial model, compute adjusted R2.

Step 2:  (Forward step)

For a randomly selected feature not yet in the model:
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Temporarily add the feature to the current
model.
Refit and compute adjusted R?.
If adjusted R? improves, keep the feature,
update the model
Otherwise, Do not add the feature.
End forward step if no feature addition occurs for a
fixed number of consecutive times.
(Backward step)
For a randomly selected feature currently in the
model:
Temporarily remove the feature.
Refit and compute adjusted R2.
If adjusted R? does not decrease, Remove the
feature, update the model.
Otherwise, Keep the feature.
End backward step if no feature removal occurs for
a fixed number of consecutive times.
If neither Step 2 nor Step 3 changes the model in the
current iteration, Stop; Otherwise go to Step 2
Return the final set of selected features.

Step 3:

Step 4:

Step 5:

In this study, the initial model for the stepwise
procedure is taken from the result of the forward selection
process. While forward and backward selection rely on
p-values from model fitting to determine candidate
features for inclusion or removal, the stepwise procedure
adopts a randomized choice of candidate features in order
to broaden the search space and reduce potential bias
toward early-ranked variables. Within the stepwise
framework, the forward step terminates when no
additional feature is accepted for ten consecutive trials, and
similarly, the backward step terminates when no feature
can be removed for ten consecutive iterations.

V. COMPUTATION EXPERIMENTS

In this section, we present the computational
experiments conducted to evaluate the performance of the
proposed hedonic models and variable selection
procedures. To this end, we compare our approach against
several benchmark methods and report the results.

A. Data

We begin by describing the dataset used in this study
and the procedure for constructing the training and
validation sets. The transaction data were collected from
Dune Analytics (dune.com), a blockchain analytics
platform that provides publicly accessible dashboards and
query-based data extraction from on-chain sources. The
SQL query used to extract the Azuki transaction data is
provided in Appendix A. The dataset covers the period
from January 12, 2022, to May 24, 2024, comprising a
total of 30,114 transactions. For robust estimation, we
limited the analysis to tokens with more than one
transaction, resulting in 7,143 tokens out of the 10,000 in
the Azuki collection being included in the experiments.

The dataset was then partitioned into training and
validation sets for fair comparison and to avoid overfitting.
The partition has been done with a 70:30 ratio using
stratified sampling. Stratification was necessary because
the attribute Special has very few unique values and is
predominantly represented by N/A entries, as observed
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earlier in Table IV. Without stratification, simple random
sampling could lead to situations where rare trait values
are absent in either the training or validation set. By
ensuring proportional representation of the Special traits,
the stratified partitioning provides a more reliable
evaluation framework for the proposed models.

B. Metrics

To assess how well the proposed models and
benchmarks explain NFT valuations, we employ several
statistical fitness measures. The primary measure is the
coefficient of determination, R?, which captures the
proportion of variance in the dependent variable explained
by the model. However, since the Azuki dataset is high-
dimensional with a large number of independent variables,
the adjusted R? is used as the essential metric. Unlike the
plain R?, adjusted R? penalizes the inclusion of non-
informative variables, thereby providing a more reliable
indicator of explanatory power in high-dimensional
settings. The mathematical formulas of the two metrics are
as follows:

2 _ 4 _ L 0i=9)?
R 1 Z?:l(yi_y)z (7)
] 2_q_ (1 _ z?=1<yi-:vi)2)
Adjusted R* = 1 (n—p—l) (1 o) &

where n denotes the number of observations, p is the
number of estimated coefficients, y; represents the actual
value of log(M), and y; is the predicted value. In addition,
we adopt two widely used information criteria: the Akaike
Information Criterion (AIC) and the Bayesian Information
Criterion (BIC). Both AIC and BIC balance model fit
against model complexity, but they emphasize different
goals. AIC prioritizes predictive accuracy, even for
complex models, whereas BIC applies stronger penalties
for complexity and thus favors simpler, more
parsimonious models [31]. The formulas of these two
criteria are as follows:

n .52
AIC = n-in (2220 4 9p 9)

n 52
BIC = n-in (3222 0) 4 pm@m)  (10)

where the notations are the same as those in Egs. (7)
and (8).

C. Benchmarks

Next, we introduce the benchmark methods used for
comparative experiments. The benchmarks are divided
into two categories. The first category consists of
regularization-based methods, which are widely applied to
high-dimensional datasets and inherently perform
embedded variable selection. In this study, we include
LASSO and Elastic Net as representatives of this class.
The second category comprises machine learning
approaches, which are among the most widely used
techniques for predictive modeling in structured and
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unstructured data domains. Specifically, we employ
Random Forest, Support Vector Regression, XGBoost,
and LightGBM as benchmarks. In total, six benchmark
methods are considered, providing a broad comparative
framework against which the performance of the proposed
hedonic models can be evaluated.

Least Absolute Shrinkage and Selection Operator
(LASSO) introduces an L; regularization term on
regression coefficients, which penalizes their absolute
magnitudes. This constraint not only prevents overfitting
but also performs embedded variable selection by
shrinking some coefficients to exactly zero, thereby
identifying the most influential predictors among high-
dimensional features [32]. Similarly, Elastic Net combines
the L; penalty of LASSO with the L, penalty of ridge
regression, allowing it to handle correlated predictors more
effectively and maintain stability in cases where multiple
variables exhibit multicollinearity [33]. Random Forest
(RF) is an ensemble method that builds a large number of
decision trees, typically through averaging in regression
tasks, which enhances predictive accuracy and reduces the
risk of overfitting compared to single-tree methods [34].
Support Vector Regression (SVR) extends the principles
of Support Vector Machines (SVM) to continuous
outcomes. It constructs an optimal regression hyperplane
that fits most observations within a defined margin, while
kernel functions enable the modeling of nonlinear
relationships between predictors and outcomes [35].
Extreme Gradient Boosting (XGBoost) is a powerful
gradient boosting algorithm that iteratively builds an
ensemble of weak learners by minimizing a regularized
loss function. It incorporates second-order gradient
information for optimization, making it computationally
efficient and highly scalable for structured data [36].
Finally, Light Gradient Boosting Machine (LightGBM)
represents an improved variant of gradient boosting. It uses
histogram-based algorithms and leaf-wise tree growth to
significantly accelerate training speed, reduce memory
usage, and enhance scalability. Its design is particularly

Together, these six benchmark methods provide a strong
comparative foundation against which the proposed
hedonic models can be assessed in terms of both
explanatory power and predictive performance.

D. Preliminary Test

Before conducting the comparative experiments, we
first carried out a preliminary test to determine which of
the two hedonic specifications introduced earlier—the
linear model or the squared model—should be adopted as
the baseline framework. The purpose of this step is
twofold. First, it provides a consistent foundation for the
subsequent variable selection procedures by fixing a single
model structure. Second, it ensures fairness in
benchmarking, as all alternative methods are evaluated
using the same feature set derived from the chosen baseline
model. In the following Table VIII, the results of the
preliminary test are summarized.

As you can see from the table, on the training dataset,
the squared model outperforms the linear specification
across all measures, with higher R? and adjusted R, as well
as lower AIC and BIC values, suggesting that the inclusion
of quadratic terms substantially improves in-sample
explanatory power. However, the validation results reveal
a different pattern. While the linear model maintains
relatively stable performance with R? and adjusted R?, the
squared model exhibits significant overfitting, achieving
much lower out-of-sample R?> and adjusted R2
Furthermore, the AIC and BIC values of the squared model
are also worse on the validation dataset.

These findings indicate that although the squared model
can better capture nonlinearities in-sample, its
generalization ability is weaker due to the increased
complexity and high-dimensionality. Considering the
principle of parsimony, and given that the linear model
achieves comparable performance with only about half the
number of variables, it is adopted as the baseline
specification for subsequent variable selection and
benchmarking experiments.

suitable for large, high-dimensional datasets [37].
TABLE VIII. COMPARISON OF LINEAR AND SQUARED HEDONIC MODELS
Baseline Model Train Set Validation Set
R? Adj.R*>  AIC BIC R:  Adj.R* AIC BIC
Linear Model 0.7243 0.6972 -5677 2751 0.717 0.6422 —7281 —4735
Squared Model 0.7979 0.7541 —6342 -523 0.558 0.4411 -5437 -374
. variable selection methods, two regularization methods
E.  Main Test ’ g :

In this subsection, we report the results of the main
computational experiments designed to evaluate the
performance of the proposed hedonic models combined
with variable selection procedures, compared against the
six benchmark methods introduced earlier. The baseline
model for variable selection is the linear specification
described in Section V.D. First, the results of applying the
proposed variable selection procedures and the six
benchmark methods to the training set are summarized in
Table IX.

Table IX summarizes the comparative performance on
training set of the baseline only, baseline with three
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and six machine learning benchmark models. Across all
evaluation metrics, the machine learning methods
delivered the strongest performance. In particular,
Random Forest achieved R? and adjusted R*> values
exceeding 0.9, while also attaining substantially lower
AIC and BIC scores compared to the hedonic and
regularization-based models. However, such large
performance gaps observed on the training set raise
concerns about potential overfitting. To further investigate
this possibility, we next turn to the validation set results,
which provide a more reliable benchmark for assessing the
generalization performance of each method.
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TABLE IX. COMPARATIVE RESULTS OF THE TESTED MODELS ON

TRAINING SET
Method  # of vars. R? Adj. R? AIC BIC
Baseline 461 07243 0.6972 5677 2751
Forward 136 0.6921  0.6835  —5749  —4856
Selection
Backward 5, 07235 0.6981  -5715  —2958
Selection
Stepwise )4 0.7142  0.7008  -5946  —4486
Selection
LASSO 353 07192 0.6979 5777 3477
Elastic Net 363 07194  0.6975  —5760  —3394
Random ¢, 0.9407 09346 27522  —24518
Forest
SVR 461 0.8841  0.8724 24176 21172
XGBoost 461 0.8768  0.8643 23869  —20864
LightGBM 461 07649  0.741 20638 17633

Table X presents the comparative results of all tested
models on the validation set. The performance degradation
of machine learning methods is particularly notable in the
validation set. Their previously strong results on the
training set appear to be a consequence of overfitting, as
evidenced by the sharp decline in adjusted R>. The two
regularization methods also achieve reasonable results
with reduced feature sets, but the proposed variable
selection procedures consistently outperform them.
Applying variable selection to the baseline model not only
enhances performance but also improves interpretability.
Among the proposed methods, stepwise selection achieves
the highest adjusted R?, while forward selection delivers
the best performance in terms of AIC and BIC. Notably,
forward selection accomplishes this using only 136
variables—substantially fewer than the baseline or other
approaches—demonstrating that it is the most suitable
method for valuing the Azuki collection. The following
table illustrates how effectively the model obtained
through forward selection has mitigated multicollinearity.

TABLE X. COMPARATIVE RESULTS OF THE TESTED MODELS ON
VALIDATION SET

Method  # of vars. R? Adj. R? AIC BIC
Baseline 461 0.717 0.6422  —7280.6 -4734.8
Forward 136 07024  0.6823  -7796.8 —-7020.0
Selection
Backward 5, 0.7178  0.6466  —7318.7 —4863.6
Selection
Stepwise )4 0.7176  0.6847  —7734.5 —6464.4
Selection
LASSO 353 07172 0.6613  —7471.5 54643
Elastic Net 363 07169  0.6592 —7449.8 —5386.0
Random 461 0.6162 05109  —6603.1 —3989.3
Forest
SVR 461 0.608 0.5006 —6558.3 —3944.5
XGBoost 461 0.6392 05403  —6736.0 —4122.1
LightGBM 461 0.6427 05447 —6756.8 41429

Table XI presents the distribution of Variance Inflation
Factor (VIF) values for the baseline model and the forward
selection model. The results clearly show that
multicollinearity has been substantially reduced after
variable selection. In the baseline model, all 461 variables
exhibit VIF values greater than 10, indicating severe

multicollinearity. In contrast, the forward selection model
retains 136 variables, among which 133 have VIF values
below 5 and only one exceeds 10. This confirms that the
forward selection procedure effectively eliminates
redundant predictors. In the following figure, actual and
predicted log (APR) values on the validation set using the
hedonic model obtained through forward selection are
demonstrated.

TABLE XI. VARIANCE INFLATION FACTOR (VIF) DISTRIBUTIONS
BETWEEN BASELINE AND FORWARD SELECTION MODEL

Range of VIFs Baseline Forward Selection
VIF <5 0 133
S5<VIF<10 0 2
10 < VIF 461 1
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In Fig. 3, the blue dots represent individual Azuki
tokens, while the red dashed line indicates the 45-degree
line where predicted values would perfectly match actual
outcomes. The results show that most observations cluster
around the diagonal, suggesting that the model achieves a
generally good predictive fit. However, deviations become
more pronounced for tokens with higher log (APR) values,
reflecting the difficulty of fully capturing the extreme
volatility associated with rare and highly priced traits.

2.0

0.5

Predicted Values

0.0 °

-0.5 0.0 0.5 1.0 15 2.0
Actual Values

Fig. 3. Scatter plot of actual versus predicted values for the validation
set using the forward selection model.

Fig. 4 illustrates the number of traits selected for each
attribute through the forward selection procedure. For
comparison, the total number of traits within each attribute
is also shown, allowing the proportion of selected traits to
be easily identified. The exact selection ratio is displayed
to the right of each orange bar. As shown in the figure,
“Type” and “Special” attributes have all their traits
selected (100%), indicating their dominant importance in
determining NFT value. The “Ofthand” attribute, although
only 40% of its traits were selected, contributes the largest
number of traits overall, suggesting its strong explanatory
power across multiple trait combinations. In contrast,
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“Hair” and “Clothing” exhibit very low selection ratios
(3% and 7%, respectively), implying that despite their
large number of traits, these attributes play a relatively
minor role in valuation.

mm Total Traits
Selected Traits

neck
mouth
headgear

hair

Attribute

face

clothing

background

60 80 100 120
Number of Traits

20 40

Fig. 4. Comparison of the number of total and selected traits across
attributes in the Azuki dataset. The percentages indicate the proportion of
traits selected within each attribute by the forward selection procedure.

VI. CONCLUSION

This study proposed and empirically validated hedonic
valuation models for the Azuki NFT as a high-dimensional
case study. We first conducted an extensive exploratory
analysis of Azuki’s metadata, documenting 12 attributes
and 454 distinct trait values. Building on these insights, we
specified NFT value via a volatility-robust dependent
variable and constructed trait-level features with TF-IDF
to reflect both presence and collection-wide scarcity. We
then introduced two hedonic specifications (linear and
squared) and three tailored variable-selection procedures
(forward, backward, and stepwise). A preliminary
comparison showed that the squared model overfit out of
sample, whereas the linear model generalized better and
was therefore adopted as the baseline. In the main
experiments, applying variable selection to the linear
baseline consistently improved performance and
parsimony relative to both the unselected baseline and
regularization benchmarks. Among the proposed
procedures, stepwise selection achieved the highest
adjusted R? on the validation set, while forward selection
delivered the best AIC/BIC with only 136 variables,
demonstrating a favorable accuracy-complexity trade-off.
By contrast, machine-learning benchmarks attained very
high training fit but experienced marked degradation on
the validation set—clear evidence of overfitting in this
setting. Overall, these results indicate that carefully crafted
hedonic models, paired with principled variable selection,
can provide competitive and interpretable NFT valuation
with stronger generalization.

Several avenues remain open for future research. First,
while this study focused on Azuki as a representative case,
the proposed hedonic valuation framework can be
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extended and validated across other NFT collections. Such
cross-collection analyses would help assess the
generalizability and robustness of the framework. Second,
in this study the intrinsic value of NFTs was extracted from
attribute-trait names using TF-IDF, a widely adopted text
vectorization technique. Future work could explore
alternative feature engineering approaches, including more
advanced text vectorization or word embedding methods,
which may better capture semantic similarities across traits
and thus improve explanatory power. Third, given that
PFP NFTs inherently convey uniqueness through visual
representation, future research could enhance the proposed
framework by integrating image-derived features, thereby
providing a more holistic understanding of NFT valuation
dynamics. Finally, unlike prior studies on BAYC, the
quadratic terms in the Azuki dataset did not yield
meaningful gains and even resulted in overfitting. A
comparative investigation across collections is needed to
clarify under what structural conditions nonlinear terms
contribute to valuation accuracy. Such work may also shed
light on the interplay between attribute richness, market
behavior, and model specification.

APPENDIX A: SQL QUERY FOR EXTRACTING AZUKI
TRANSACTION DATA

The Azuki transaction dataset used in this study was
obtained from Dune Analytics (dune.com). The following
SQL query was used to extract all transaction records
associated with the official Azuki smart contract deployed
on the Ethereum blockchain. The contract address
corresponds to the verified Azuki collection
(0XED5SAF388653567Af2F388E6224dC7C4b3241C544).

SQL Query for Extracting Azuki Transaction Data
SELECT *

FROM nft.trades
WHERE
blockchain = 'ethereum'
AND nft contract address =

0XxEDS5AF388653567Af2F388E6224dC7C4b3241C544;
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