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Abstract—A high-dimensional representation is required to
represent connected information that reflects real events and
caters to spatio-temporal dimension. Graph data structures
have shown potential for integration into smart city data
management frameworks and have evolved to handle
spatio-temporal data. To investigate the advanced techniques
used in managing spatio-temporal data in graph databases, a
systematic literature review of related research papers
published from 2019 to 2024 was conducted. The review
examines the evolution from basic graphs to specialized
structures like dynamic attributed graphs and fuzzy
spatio-temporal Resource Description Framework (RDF)
and also summarizes algorithms used—including graph
representation learning, pattern matching, clustering, and
centrality algorithms—that enable sophisticated multi-
domain analyses. The research provides five key
contributions: (1) the state of graph data structure
development and algorithms across various fields; (2)
insights on spatio-temporal data inputs used in graph
structures; (3) algorithms for spatio-temporal data
management and analytics; (4) spatio-temporal analyses
conducted using graph-structured databases; and (5) future
research trajectories. From the review, we identify challenges
in graph-based implementation with spatio-temporal data
such as structural graph complexity, temporal
representation, semantics, and data quality, while outlining
future directions in graph representation techniques,
temporal-semantic innovations, scalability solutions, and
comprehensive data management.

Keywords—graph  data  structure, graph database,
spatio-temporal data, algorithms, spatio-temporal analysis

I. INTRODUCTION

Spatio-temporal data includes spatial, temporal, and
attribute components. Recording an object’s temporal state
and positions over time provides information about real-
world events [1]. In this era of advanced technology,
spatio-temporal data can be generated from diverse
sources, including mobile devices, social media, sensors,
satellites, and remote sensing technologies, with daily logs
in the form of geotags and timestamps [2]. Additionally,
serial ordered timestamped locations can create
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spatio-temporal trajectories. Spatio-temporal data can be
categorised into events, georeferenced time-series, and
trajectories. Analysis of this data enables understanding of
object distribution and monitoring of attribute changes
over time. Time series data produced from these
technologies  provide research  opportunities in
environmental data management, forecasting, tracking,
predicting movements, and identifying trajectory patterns
at different scales.

However, storing various temporal data sources within
the same database presents challenges due to the continuity
of temporal data. Furthermore, spatio-temporal data can
have a high-dimensional structure that encompasses depth
in addition to location and time. Another challenge is the
inherent fuzziness in spatio-temporal data, which can
degrade the accuracy of data retrieval and analysis.
Addressing these challenges is crucial to enhance
spatio-temporal analysis. This will enable reasoning with
spatio-temporal data by extending temporal query
capabilities beyond simple date-based retrieval. Examples
of such reasoning include identifying congestion causes at
specific times and locations, tracing virus spread patterns,
and incorporating depth dimensions into analyses.

This highlights graph databases as platforms for
managing spatio-temporal data. The efficiency of data
analytics has been enhanced by the increased application
of graph databases, such as Neo4j, which utilise the
Labelled Property Graph (LPG) data model and graph-
structured algorithms. These algorithms include graph
embedding algorithms, graph neural networks, graph
convolutional  networks, and graph  attention
networks [1, 3-5]. Storing network-like data in graph
databases leverages the real-world features of the data’s
interconnectivity to produce valuable insights and perform
complex queries that other databases struggle with. In
addition to LPG, knowledge graph development heavily
utilises the Resource Description Framework (RDF).
Graph data structures, either in respect of databases or in
the form of algorithms, are gaining recognition in industry
and academia for data management applications.
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In our interconnected world, comprehensive insights
often require connecting information from diverse sources.
This is a concept well-aligned with graph databases and
graph-structured algorithms, which apply the same
network concept found in real-world information flows.
Colarusso et al. [6] demonstrated this by developing a
graph-based smart city platform to manage complex
networks with dynamic graphs, viewing smart cities as
“systems of systems” with each system consisting of
networked entities and relationships. Spatio-temporal
evolution information that assists in analysis, prediction,
and forecasting is obtained through the ability to query and
analyse complex relationships across  different
transportation modes, ocean depths [7], and maritime
trajectory networks at various spatio-temporal scales [8].
Directed, undirected, and weighted graphs, composed of
nodes, edges, and edge weights, are widely recognised
types of graphs. However, to accommodate real-world
complexity, basic graph types have evolved to better
represent complex networks. Das and Soylu [9] refer to
these as “special graphs,” including heterogeneous graphs,
multidimensional graphs, signed graphs, dynamic graphs,
and hypergraphs. Their special quality lies in their ability
to assign multiple cardinalities to nodes, support different
relationship types, and accommodate continuously
changing nodes and edges.

This systematic literature review has been motivated by
the evolution of graph data structures to address
information complexity with temporal dimensions. The
objective is to explore graph database applications in
managing spatio-temporal data and the algorithms used to
support data analytics. This research aims to investigate
graph data structures and algorithms in managing spatio-
temporal data in graph databases over the past six years.
This will be achieved by addressing spatio-temporal data
management issues, gaining an understanding of how such
data is stored in graph data structures, and providing future
directions for graph data structure applications that involve
spatio-temporal data.

This paper is organised into six sections. Section II
reviewed the related works; Section III describes the
methodology; Section IV provides the finding that include
statistical analysis of selected publications such as number
of publications by year, list of journals’ title by year,
keyword co-occurrence map summaries of the graph data
structures and algorithms used in previous research to store
and leverage spatio-temporal data. Section V follows and
discusses the suitability of graph data structures for
managing  spatio-temporal data across different
environments, introduces the concept of “spatio-temporal
graphs”, compiles spatio-temporal analyses from previous
research, and addresses challenges and future directions.
Section VI concludes the paper.

II. RELATED WORKS

Relational databases have dominated as data
management platforms for decades, particularly for
geospatial information at industrial levels due to their data
integrity, consistency, security, and spatial data support
capabilities. However, alternative database capabilities
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should be considered to handle aspects such as
heterogeneity, connectivity, and high-dimensional data,
like spatio-temporal information, as data volume increases
and geographical areas necessitate integration of multiple
data sources.

A review by Das and Ghosh [10] provided a
comprehensive survey of data-driven approaches for
spatio-temporal analysis, acknowledging that
spatio-temporal data has a highly interconnected nature,
where values at one location and time are influenced by
neighboring locations and previous time periods, requiring
handling of “complex relationships”. This perspective is
further supported by Breunig et al. [11], whose review
identified five key milestones in geospatial data
management research. Particularly relevant to our research,
they highlighted the revival of graph databases as a future
direction for supporting big geospatial data analysis.
However, they also acknowledged that “one of the major
topics within this research will be how to integrate known
geospatial-, spatio-temporal- or nD-access methods into
the property graph system,” indicating a significant
research gap in understanding how graph databases can be
practically applied to spatio-temporal data management.
This gap motivates our systematic review, which
investigates the current state of graph database
applications specifically for spatio-temporal data across
various domains and identifies the techniques and
challenges involved in this emerging field.

Several empirical studies on managing spatio-temporal
data have provided insights into the advantages of using
graph databases for this purpose. Effendi et al [2]
conducted an empirical study comparing graph databases
(TigerGraph and JanusGraph) with relational databases
(PostgreSQL) for managing spatio-temporal data. The
results indicated that TigerGraph provided faster response
times and notable horizontal scaling advantages that
improved querying of large data volumes. These findings
demonstrate the efficacy of graph databases to manage
spatio-temporal data through efficient query traversal
rather than the multi-join queries required by relational
databases. Sun and Sarwat [12] further demonstrated that
graph databases can be applied to geospatial data by
developing GEOEXPAND, a query operator involving
spatial predicates (e.g., within, range, and spatial join).
This operator benefits applications such as geospatial
knowledge  base  queries, point of interest
recommendations, and GeoSocial advertisements.
Although this research did not include spatio-temporal
aspects, it indicates the potential for extension with
temporal dimensions to advance graph-based geospatial
analytics.

While recent reviews have begun exploring graph-based
approaches for spatio-temporal data, existing reviews
remain limited in scope. Del Mondo ef al. [13] provided a
prospective study of spatio-temporal graphs and
knowledge graphs for geographical phenomena,
specifically using maritime transportation as a case study,
focusing primarily on theoretical modeling principles and
integration frameworks. Rakhmangulov et al. [14]
examined spatio-temporal graphs specifically for
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transportation, revealing significant growth in graph-based
deep learning approaches for traffic forecasting.

The growing recognition of graph-based approaches for
spatio-temporal data is further evidenced by domain-
specific algorithmic reviews. Bui et al. [15] provided a
comprehensive taxonomy of Spatio-Temporal Graph
Neural Networks (ST-GNNs) specifically for traffic
forecasting. While their focus was on predictive
algorithms rather than data storage and management, their
work demonstrates the inherent compatibility between
graph-theoretic approaches and spatio-temporal data
analysis. Additionally, Ma et al. [16] advanced the state of
research on spatio-temporal graphs by focusing on
computational efficiency in spatio-temporal prediction
algorithms. However, these studies primarily focus on
algorithm optimization rather than examining the
fundamental data management infrastructure.

These reviews adopt domain-specific approaches and
have not examined the unique requirements and
opportunities present in Geographical Information System
(GIS) and spatio-temporal data management contexts
across diverse application domains. This limitation
necessitates further investigation of spatio-temporal data
management  techniques in  graph  databases,
comprehensively examining both algorithms and graph
database data structures.

To accommodate various complex network needs,
graph data structures are constantly evolving. Previous
reviews have documented important aspects of graph
database evolution and applications, though from
perspectives outside the GIS domain. Das and Soylu [9]
provided a comprehensive review of “special graphs” from
a general data science perspective, cataloguing the
structural evolution from basic graphs to heterogeneous,
dynamic, and multidimensional variants that better
accommodate real-world complexity. While their focus
was on general complex network applications rather than
geospatial systems, their work established theoretical
foundations for understanding how graph structures can
assign multiple cardinalities to nodes, support different
relationship types, and accommodate continuously
changing nodes and edges. These principles are directly
applicable to spatio-temporal data management.

Similarly, Xia et al. [5] extensively surveyed
graph-structured algorithms from an industrial asset
maintenance  perspective,  organizing  applications
according to maintenance workflows spanning from
anomaly detection to decision-making. Although their
domain focus was manufacturing systems rather than
geospatial applications, they demonstrated graph-
structured algorithms’ capacity to leverage complex
network data and temporal dependencies, providing
valuable insights for spatio-temporal analysis approaches.
Additionally, Wang et al. [17] conducted an investigation
on addressing spatio-temporal data management in
evolving graph networks, highlighting effective continual

learning approaches for traffic prediction using
pattern-based frameworks. Their work establishes
important ~ foundations for managing evolving
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spatio-temporal networks through pattern expansion and
consolidation mechanisms.

Building upon these domain-specific advances, this
systematic literature review extends the investigation to
encompass a broader range of spatio-temporal applications
and graph database technologies. This systematic
examination of existing literature reveals a critical gap in
spatio-temporal data management. While individual
components exist, such as spatio-temporal data as
interconnected networks [10, 11], graph database spatial
capabilities [12], temporal handling approaches [2],
spatio-temporal analytics techniques [13-16] and
structural evolution frameworks [9, 17], no comprehensive
synthesis exists of how graph data structures specifically
address  the  multidimensional  challenges  of
spatio-temporal data management across diverse
application domains. Current reviews either address
spatial OR temporal aspects separately with limited
relation to spatio-temporal scenarios.

This systematic literature review addresses this gap by
investigating the state of graph data structures and
algorithms in managing spatio-temporal data in graph
databases over the past six years. This will be achieved by
addressing spatio-temporal data management issues,
gaining an understanding of how such data is stored in
graph structures, and providing future directions for graph
data structure applications that involve spatio-temporal
data. The contributions of this paper include:

(1) Providing the state of research on graph data structure
development and graph-structured algorithms utilised
in managing spatio-temporal data across various fields
and applications.

Providing insights on the types of spatio-temporal
data inputs used in previous research for storage in
graph data structures.

Providing a list of algorithms used in previous
research for managing spatio-temporal data and
performing data analytics.

Providing insight on spatio-temporal analyses
conducted using graph-structured databases and
algorithms.

Providing the future research trajectories of the graph
database and  graph-based algorithms  with
spatio-temporal data.

2)

3)

(4)

©)

III. METHOD

A systematic literature review was implemented to
synthesise findings based on the four objectives defined
above. The review encompasses research conducted from
2019 to 2024. This six-year timeframe was selected
because it represents a critical period of maturity for graph
database technologies. Three credible databases, namely
Scopus, Science Direct, and Web of Science, were used to
search for papers using the keywords “Graph” and (“Data
Structure” or “Algorithm™) and (“spatio-temporal” or
“spatial-temporal” or “temporal”) and “Graph Database”.

This comprehensive keyword approach facilitated
acquiring research on graph data structures for databases,
graph-structured algorithms, algorithms used in graph
databases, and applications of graph databases in
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spatio-temporal contexts. The three databases yielded 120
articles as a result of the keyword search. Three filtering
phases were designed to obtain the most relevant papers.
The first phase resulted in the selection of 40 papers
based on the presence of keywords in the title and abstract.
In the second phase, articles were ranked using the
Ordinatio formula, which considers publication year,
citation count, and impact factor. This screening yielded
29 papers, which underwent full-text screening in the third

phase, resulting in 23 papers for synthesis. The remaining
six papers were excluded due to their lack of relevance to
the research scope. Most subject areas involved computer
science, engineering, earth and planetary sciences, and
mathematics. All selected publications were English-
language, full-access journal articles. Table I summarises
the filtration and review strategies, and Fig. 1 illustrates
the systematic review procedure.

TABLE I. FILTRATION AND REVIEW STRATEGIES

Filtration

First phase: Identification
and screening by title and
abstract

Initial Identification

Second phase: Identify
eligibility through Oridnatio

Third Phase: Full-Text Screening & Final

method Inclusion

Computed ranking using

Cogducted ReVIeW Reviewed title and abstract Ordlp at1‘0 formula -cor‘131der1ng Reviewed full articles
searching on the Strategies publication year, citations, and
databases using impact factor
de-ﬁr}ed keywords Filtration Included papers with defined Excluded papers not satisfying Ider}tlﬁed papers Wlthlp context of managing
within the 6 years . keywords in title and abstract, L spatio-temporal data with graph data structure
Details . Ordinatio parameters . .
removed duplicates and algorithm in a graph database
N‘;r‘ggf;‘)f 120 identified 40 identified 29 identified 23 identified

Research Aim

Database used: Scopus, Science

Investigate the graph data structure
and algorithm in  managing
spatio-temporal in graph database
within the period of 6 years

v

Direct and Web of Science

Criteria

Subject area: Computer science,
engineering, earth & planetary
sciences and mathematics,

Research Objectives

(1) Obtaining the spatio-temporal
data management issues.
Establishing the understanding
of how spatio-temporal
properties stored and manage
using graph data structure.
Addresing the future direction

@

3)

Literature source: Scopus and
Wos indexed Journal article,
English language, full access
papers, non-duplication document,
range 2019 until 2024

of graph data structure

v .
Defining keywords in databases
n=120

“Graph” AND (“Data Structure” OR
“Algorithm”) AND
(“spatio-temporal” OR  “spatial-
temporal” OR “temporal”’) AND
“Graph Database”

\ 4

Filtering Procedures

First Phase (n = 40):

Identification and Screening by

title and abstract

. Second Phase (n = 29):
Identify Eligibility through
Oridnatio method, Ranking the
papers according to
InOrdination calculation

. Third Phase (n = 23): Full text
screening

Synthesis the papers
(1) Identification of spatio-
temporal data stored in the
graph data structure
Identification on algorithm
used in managing spatio-
temporal data

@

Fig. 1. Systematic review procedure.

IV. FINDINGS

The six-year timeframe is considered to be the crucial
emergence of graph database technologies. Neo4j, a graph
database, underwent significant advancement during this
period. Spatial search trees (R-Trees) were employed as
spatial indexing, which is essential for geographic data.
This approach is valuable for managing complex
geospatial data [18]. The spatial functionality in the Neo4j
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graph database was available at least by 2018. Research
during this period also focussed on improving the
performance and scalability of graph databases and
reached a significant milestone, where the development of
high-performance graph databases could scale to hundreds
of thousands of cores [19], making graph databases
suitable for a wide range of applications and temporal data.

From an industry perspective, the graph database
landscape has evolved significantly. The rapid growth of
social networks and other graph data has created a high



Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

demand for graph technologies in the market, which led to
the emergence of various graph databases, systems, and
solution implementations. The global market for graph
databases is expected to grow by 21.7% from 2019 to
2027, reaching $4.6 billion by 2027 [20]. Furthermore, this
period has seen significant research and development
initiatives aimed at advancing graph database
technologies. For example, the development of
methodologies for knowledge discovery in labelled and
heterogenous graphs has demonstrated the ability to
effectively extract insights from graph-structured data
across various domains. This research was initiated with
considerable attention due to the exponential growth of
graph-modelled data, resulting in the expansion of the
scope of graph database applications [21].

The selected papers were sorted by year to analyse
research trends. Fig. 2 shows an alternate rise and fall in
publication counts, with 2022 having the highest count.
Early 2024 publications suggest a promising start to the
year. The initial search yielded 120 articles, but the final
inclusion of 23 shows that the intersection of graph
databases, spatio-temporal data, and GIS is still a
specialised research area in its early stages. Table II
illustrates this by showing how the publications are spread
across different journals, rather than concentrating them in
a specific area. The result suggests that interest is coming
from various fields rather than from an established
research community.

To understand research trends in managing
spatio-temporal data in graph databases, a keyword co-
occurrence map was generated using VOSViewer,
evaluating 23 papers. Fig. 3 shows five keyword clusters,
with “graphic methods” being the most common, followed
by “semantics”, “data mining”, “graph database”, and
“complex networks”. “Graphic methods” refer to
representing and visualising data using graph structures
composed of nodes and edges. Semantic data, often
managed in graph databases, enable complex queries and
reasoning. Network-like or complex network structures
are ideal for graph data management. Data mining is a key
technique for analysing network data.

power

networkianalysis

data visualization
complexpetworks

graph-based model visualigation

graph theory

bigidata

surface waters

data(mining

trajectory

12

@ 10

£ 10

B )
Z 6

v 4
g 4 ) 2

g 2 0

ERS N

2019 2020 2021 2022 2023 2024
Year

Fig. 2. Number of publications by year.

TABLE II. LIST OF JOURNAL TITLES BY YEAR OF PUBLICATION

Year Journal Title
2019 Geoinformatica
2021 Computers in Industry

Renewable and Sustainable Energy Reviews

Journal of Manufacturing Systems
Information Fusion

Expert Systems with Applications

Building and Environment
2022 Transportation Research Part C: Emerging Technologies
Future Generation Computer Systems
Remote Sensing
Data & Knowledge Engineering

Computers & Geosciences

International Journal of Digital Earth
Chemometrics and Intelligent Laboratory Systems
Neurocomputing
Applied Soft Computing

2023

SoftwareX
World Wide Web
Applied Soft Computing
Engineering
Expert Systems with Applications
Automation in Construction
Data & Knowledge Engineering
Information Systems

2024

internetiof things

heterogefieous data

<
graphigmethods

clusteringi@lgorithms

spatio-tempaoral dynamics semantics

> digitalstorage
graph database >
spatiotemp@ral analysis
datasset

query peocessing

long short-term memory

anomalyidetection

@

knowle@ge graph

decisiofigmaking
L 4

Fig. 3. Keyword co-occurrence map of managing spatio-temporal data using graph data structure and algorithm in graph database.
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It highlights the frequent use of “graphic methods” in
applications like surface waters network analysis and
anomaly detection, which exemplify complex networks.
The data types involved include trajectory, semantics, and
heterogeneous data. These data are used for digital storage,
visualisation, and creating knowledge graphs to facilitate
decision-making. Graph databases are an ideal platform
for managing such complex data structures, which aligns
with the rise of big data and the Internet of Things.
Additionally, the research explores utilising stored data for
further analysis through data mining and algorithms like
clustering and long short-term memory.

Fig. 4 shows the graph database relation map, which
demonstrates how spatio-temporal dynamics applies graph

networl@@nalysis

@
graph-based model

datajgining

trajegtory

spatio-temporal dynamicg semantics

® digitalglorage

graph *abaS.E

spatiotempgral analysis

datgset

query pi@icessing

databases with trajectory and semantic data inputs for
spatio-temporal analysis. We have observed alternating
trends in publication frequency with potential growth in
2024, as a result of these findings. The diverse journal
titles indicate multidisciplinary interest in this research
area. The five top keywords—graphic methods, semantics,
data mining, graph database, and complex networks—
provide additional insight into areas related to graph
applications. The final included papers underwent
synthesis to identify spatio-temporal data issues and
compile the ways in which graph data structures and
algorithms address these issues, as summarised in the
following subsections.

graph\‘thods

Fig. 4. Graph database keyword co-occurrence map.

A. Spatio-temporal Data Issues

Spatio-temporal data management challenges arise
from high data volumes and heterogeneity due to the
variety of data sources mentioned earlier. Elayam et al. [8]
emphasise that spatio-temporal data management
complexity stems from incoming data and associated
constraints spanning different dimensions, leading to large
data volumes. Despite the challenges this high-volume
scenario presents it should be viewed as an opportunity for
better analysis through data aggregation and fusion, which
enable data enrichment. However, achieving data
enrichment requires stable, highly scalable data handling
and storage infrastructure [2].

Temporal graph traversals face challenges in analysing
information diffusion in temporal networks due to the
limitation that the temporal networks are only valid at
specific times [22]. Since spatio-temporal data is organised
in sequential order, this limitation hinders the study of
spatio-temporal patterns, such as disease spread and traffic
forecasting. Additionally, the highly specific user query
selections make spatio-temporal data difficult to query in
RDF-structured graph databases. These challenges are
compounded when RDF-structured graph databases
encounter fuzzy aspects of spatio-temporal data, which are
typically the result of inherent vagueness or uncertainty in
spatio-temporal applications [23].
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These challenges have led to attempts to leverage
commonly used Labelled Property Graph data structures
and RDF with various modelling techniques to store
spatio-temporal data. Several research efforts have
extended basic graph data structures by adding new
elements to address spatio-temporal aspects. The next
section discusses these, including dynamic attributed
graphs and fuzzy spatio-temporal RDF data structures.

B.  Graph Data Structure in Managing Spatio-temporal
Data

Basic graph types include directed, undirected, and
weighted graphs. However, graph data structures have
adapted in response to the evolution of information
environments, from simple unidirectional relationships to
complex interconnections between entities, as well as the
development of technologies that provide capabilities to
gather more information over extended time periods. For
example, in oceanographic studies, Li ef al. [7] stored sea
surface temperature datasets, remote sensing images
gathered at different temporal intervals and spatial
resolutions, and historical climate records using Labelled
Property Graph structures in Neo4j, enabling queries of the
ocean’s evolutionary state. In disease contact tracing,
Chen et al. [24] utilised information from smart cards,
Automatic Vehicle Location systems, shift records, and
route schedules in the Resource Description Framework
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(RDF) format to identify disease spread sources in public
transportation.

When diverse resources are well-extracted and
translated into graph data structures, comprehensive
information  connectivity becomes possible. To
accommodate various data sources and network
complexity, researchers have adapted components of
graph data structure to meet specific application needs.
Several studies adopted Neo4j as their graph-based
platform [6, 7, 25]. Others adopted RDF data models to
establish knowledge graphs, as demonstrated by
Zhu et al. [23] and Chen et al. [24]. While there are also
other research that developed custom graph data structures
such as to store various data inputs such as temporal
reachability graph [3], hierarchical labelled property
graph [8], and risk knowledge graph [26].

The research fields using spatio-temporal and temporal-
only data include transportation networks, oceanography,
epidemiology, construction projects, information
networks, power systems, and railway maintenance. This
diversity demonstrates the importance of including
spatio-temporal data in analyses to enhance understanding
of changes through simulations, predictions, and
forecasting, as well as to manage complex systems and
phenomena over time. Some research using only temporal
data was included due to its potential extension to
spatio-temporal support. Table III provides details on
spatio-temporal and other data inputs and their
management in graph-structured approaches. Table IV
explains how spatio-temporal data is stored and managed
using graph data structures.

TABLE III. SUMMARY OF THE GRAPH DATA STRUCTURE IN VARIOUS FIELD AND APPLICATIONS

Field Application Summary Graph data structure approach
. Proposed a multi-dimensional network Applies directed graph. Edge/node assigned with weight
Railway . - . . .
Maintenance Risk Assessment [26]  topology graph (knowledge graph) to manage  with variable parameter to represent dynamic conditions

hazard-related entities

in static graph structure

Power system
management in
extreme events [4]

Power System

prediction

Proposed time-varying complex network graph ~Applies undirected graph. Nodes represent power system
approach to represent power system
information for simulation and resilience

components, edges represent time dimension, and layers
represent operational situations within specific time
periods

systems for storing
and analysing
temporal graphs [22]

Provides system architecture to resolve
temporal graph traversal challenges involving
temporal information diffusion analysis

Developed vertex (node) events and edge events where
both maintain key-value properties valid at specific times

Managing fuzzy

Developed six tuples from initial RDF data

Six tuples consist of directed edges, vertices

Information aspect in structure to improve efficiency and (with/without temporal or spatial information),
Network spatiotemporal spatio- effectiveness of querying fuzzy spatio-temporal information labels (text or temporal), and fuzzy
temporal data [23] RDF membership degree assigned to vertex and edge structure
Discussed methodologies for detecting events  Nodes represent users, locations and events with latitude,
Social Network [27]  from social networks by considering multiple longitude and timestamp properties. Edges represent
dimensions including spatio-temporal temporal relations with start/end time properties
. Construction project Proposed location- and time-depend.en‘t graph . . . -
Construction meta-model to manage schedule deviations and Project location and timestamp defined as node properties

management [28]

cost overruns using knowledge graph

Logistic and Production Logistic

Proposed dynamic spatio-temporal knowledge

Heterogeneous graph with nodes representing resource
locations and edges representing temporal activities and

Supply Chain [29] graph to manage fesource _allocatlon m costs. Spatial coordinates and timestamps dynamically
Management production logistics.
updated
Using LPG data structure to construct Directed graph with nodes representing passengers or
Epidemiology  Disease spread [24] knowledge graph for digital epidemic contact  vehicles; edges representing riding acts. Uses composite
tracing on large-scale network relationships for passengers with multiple trips
. . Proposed location- and time-dependent graph
. Construction project e . . . .
Construction management [20] meta-model to manage schedule deviations and Project location and timestamp defined as node properties
g cost overruns using knowledge graph
' Proposed event-process-centred dynamic Nodes represent taxi trajectory states, processes, points of
Traffic congestion . . interest. Temporal attributes stored as relationships
. . . model for urban traffic congestion using LPG . s
identification [23] labelled ‘Next/precedence’ between states and processes
data structure .
to represent sequential order.
Traffic forecasting [3] Proposed spatio-temporal reachablhty graph of N0€1§s represent road segments, edges represent
road network to forecast dynamic traffic flow  reachability between segments within given time periods
Transportation One-layer-directed multiattributed graph with static and
Network Traffic monitoring [6] Modelled complex smart city problems into dynamic nodes. Static nodes contain static attributes
g graph data structure (location/altitude) and dynamic attributes (average travel
speed). Dynamic nodes contain ID and timestamp
- - Used LPG data structure to represent moving Set of directed graphs with hlerarchlcal prope‘rtle.s. Two
Maritime mobility . . L node types: port (vessel dock location) and Significant
objects, trajectory, and activity patterns at : . . A ..
patterns [8] . Turning Point (trajectory direction change position).
various scales . .
Temporal attributes assigned as edges between nodes
Oceanographic Proposed ocean current-oriented graph model SD.( node types representing spatial locatlong at dlffe'r ent
. times/depths and four edge types representing spatio-
research [24] using LPG data structure . : . .
temporal information trajectories
Oceanography Four node types (process, sequence, linked, state)

Ocean monitoring [7]

Proposed process-oriented graph model using
LPG data structure to obtain marine knowledge
from time series raster data

representing marine objects and two edge types
(inclusionary and evolutionary) representing relationships
between objects
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TABLE IV. SUMMARY OF TEMPORAL AND SPATIO-TEMPORAL DATA INPUT AND ITS GRAPH-STRUCTURED DATA MANAGEMENT

Ref. Data Input Graph-based Data Management
Time and location are stored as an entity in the knowledge graph by the Named Entity Recognition
Historical accidents / incidents reports. (NER) algorithm to identify the location of an entity from the unstructured text information and
Matter extracted: incident cause, assign it in correct category. However, the algorithm has shown quite an error percentage when
[26] L . . L ¢ L I i
description, consequences, time, location extracting time information. The nodes indicate hazards-related entities and edges denotes linking
and running speed among entities. The degree of node represents the number of links the node has, and the weighted
degree of the node considers the weight of the edge
[4] Data network: power system, traffic Construct time-varying networks to capture implicit changes in the operational situation, which is
system and communication system helpful to enhance the situational awareness of power systems.
Construct an edge event and vertex event that enable information to be stored in a valid at a
Temporal Information Network such as specific time. Construct a gamma table that updates frequently whenever there are new nodes
[22] bitcoin, college Messege, and e-mail from added that related to the source (A), uses graph traversal to query the gamma table instead of the
standford network analysis project whole graph scan when want to query for specific vertix event. Like to see how one information

spreads from one person to another
In dealing with vagueness and uncertainty in spatio-temporal data, the RDF data extend its basis
[23] Fuzzy spatio-temporal data structure by including the fuzzy membership degree to indicate the likelihood of the existence of
the vertex in the relation.

Temporal data consists of the perception of
thermal comfort of the occupant, heart rate,
[1]  and near body temperature. Spatial data
consist of a BIM model of the building
converted into graph structure

Uses graph embedding to mesh element into a lower-dimensional vector and Graph Neural
Networks to extract comfort similarities between different locations in the building

The taxi trajectory breaks down into several nodes that represent processes, states, and point of
Data from the event history data of taxi interest (spatial) stored as nodes. Temporal attributes stored as relationships between nodes. It is
trajectory labelled “Next/precedence” in the relationship (edge) between states and processes to represent
sequential order from the location of the taxis to the movement of the taxis.
Using vehicle trajectory data to calculate spatio-temporal reachability between road segments. The
results are then sorted in a matrix, and the road structure is reconstructed based on the time
reachability matrix, which results in spatio-temporal reachability graph. Then, uses the spatio-
[3] Vehicle trajectory, road network temporal reachability graph with clustering algorithm to partition road segments into cluster. This
clustering approach helps capture regional information and organise road segments into groups,
which can improve the accuracy of traffic flow prediction by considering the spatial distribution of
road segments within the road network
The nodes represent homogeneous or heterogeneous city entities, and the edges represent the
existing relationship between the city entities. The properties of the graph data structure is a multi-
modal, multi-layer attributed time-varying network with hierarchical organisation of the nodes.
The nodes represent road intersections, edges represent road segments, the attributes of the road
intersections consists of a static attribute: unique identifier (osmID16), a latitude-longitude value,
[6] Road intersections. Road segments and their area name, while the static edges attribute includes linkID, fromNode, toNode, street
name, street length, speed limit, estimated free-flow speed, area name, and coordinates; fromNode
and toNode are the osmID of the adjacent nodes of an edge, and coordinates is its geometry. The
dynamic attribute consists of the link ID, the timestamp of the data aggregation time, and the
average travel time. The single layer of the graph composed of multiple subnetworks representing
different geographical area

[30]

Data set of sea surface temperature, remote
sensing images, and historical climate
records. Gathered at different intervals,
ranging from daily to annual, with spatial
resolutions varying from metres to
kilometres and even to global scales

From the time series of the raster formatted dataset, the snapshot objects were extracted, then the
process objects were reconstructed from the sequence object, and the evolutionary process was
identified from the process objects

(7]

This section outlines the process of storing networked  introduced in Section V, with the inclusion of previous
data, including spatio-temporal data, using a graph data  research that closely represents temporal graphs and how
structure. Most of the applications utilised the Neo4j graph it enhances spatio-temporal graph data analysis.
database, which uses a Labelled Property Graph (LPG)
data structure to store information. Although Neo4j is the
most used platform, the technique of modelling the Graph data structures demonstrate how to store and
spatio-temporal data into LPG was applied differently by retrieve data, whereas algorithms decipher the stored data
previous researchers based on their respective purpose. O solve specific problems. This section compiles and
The same applies for research that uses RDF in managing categorises algorithms associated with applications using
spatio-temporal data. However, few studies have focused spatio-temporal data inputs, as shown in Table V. Some of
on implying the spatio-temporal element into part of the the categories that assist graph data analytics in retrieving
graph data structure; several of them are on dynamic insights from spatio-temporal data are data representation,
graphs [31], on dynamic attributed graphs [32], and on  graph representation learning, graph pattern matching,
fuzzy spatio-temporal RDF [23], which will be explained ~ data  transformation and  representation learning,
in the next section. The term ‘temporal graph’ will be  pathfinding, and centrality algorithms.

C. Algorithms for Managing Spatio-temporal Data
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TABLE V. SUMMARY OF GRAPH-STRUCTURED ALGORITHMS AND ITS APPLICATION IN MANAGING SPATIO-TEMPORAL IN GRAPH DATABASES

Type of algorithm Algorithm Explanation Ref
Data representation Visibility Graph Constructs time-series data into complex networks‘and analyses operational data from [4]
topology perspective
Graphﬁ;r\;\;orl]?tlonal Type of graph neural network that skilfully transfers deep learning to graph data [3]
Graph Graph Attention Levergges attention mechanlsms to foqus on spe(:lﬁc. nodes/edges and captures complex
. relationships and dependencies allowing incorporation of spatio-temporal information [4]
representation Networks . . .
learnin in the analysis and prediction tasks.
& Performs convolution for signal features, generates high-order representation features, (5]
Graph Neural Network and aggregates processed features for prediction
Cluster data in spatial area of influence [1]
Graph pattern Path-based approximate Leverages spatio-temporal data to find query graph occurrences within data graphs, 23]
matching matching enabling retrieval of information based on spatio-temporal relationships
Data Reduces computational costs during graph data analytics and represents graphs in [1]
Transformation and . lower-dimensional space while preserving original data
. Graph embedding — - -
representation Detects anomalies in dynamic graphs by converting graph structure to vector space to (33]
learning analyze nodes based on structural similarity
Spectral clustering Cluster nodes based on graph topology and spatio-temporal connectivity
K-means Cluster nodes based on feature similarity 3]
Clustering . Hierarchical clustering method building nested clusters reflecting spatial proximity and
. Agglomerative SR
algorithm traffic similarity
Graph-based fuzzy Partitions graphs into highly connected subgraphs using node betweenness and edge 34]
clustering algorithm  connectivity, then applies fuzzy clustering to determine information membership values
. Traversal algorithm focusing on data structure depth, exploring graph network to
Pathfinding Depth-First-Search furthest path before backtracking 23]
algorithm Breadth-First-Search Traversal algorithm exploring neighbouring node pa‘ths b.efore‘movmg to next level,
commonly used for shortest path identification
Centrality Degree centrality Determines node importance in networks
) . . POTE [4]
algorithms Betweenness centrality Identifies nodes connecting different network parts
1) Data transformation and  graph  learning  3) Pathfinding algorithms

representation algorithms

In research about building occupant thermal comfort,
Abdelrahman et al. [1] constructing information from
multiple data types (occupant, environmental, and building
spatial data) in graph structure form required data
discretisation to convert continuous data to sample points
for computational analysis. For example, continuous
spatial space was converted into cells, then into nodes and
edges for graph data structure storage. Graph embedding
was necessary to represent the graph in lower-dimensional
space because building properties are pairwise related
(buildings consist of floors, and floors consist of rooms).
The discretisation of different data types resulted in
complex graph structures. Graph neural networks then
clustered the lower-dimensional data by identifying
similarities and grouping them into spatial areas of
influence.

2) Data representation
algorithms

and  graphical learning

Modern power systems, Ma et al. [4] demonstrate the
effective application of graph data structures for data
storage. As power systems involve many interconnected
entities, breakdowns due to extreme events can cause
power flow disruptions leading to productivity and
economic losses. Traditional time series data can be
converted into graph structures using Visibility Graph
algorithms. This enables data simulation and prediction
related to extreme events through graph analytics such as
Graph Attention Networks, which capture complex
relationships and dependencies by integrating spatial and
temporal elements for prediction tasks.
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Pathfinding algorithms identify optimal routes between
points by exploring and evaluating paths based on criteria
like distance and time. They are common in route network
applications that use graph structures, and they are also
used in digital contact tracing [24] to reconstruct possible
infection routes. This process starts with detected cases
and traverses backward to potential infection sources,
creating directed relationships that indicate infection flow
and result in comprehensive contact tracing knowledge
graphs.

4)  Graph pattern matching algorithms

Graph pattern matching finds subgraphs in a data graph
that match query graph patterns. For queries like
identifying traffic congestion-prone areas around 8 AM,
where “around” represents fuzziness, Zhu et al. [23]
applied path-based approximate matching. This technique
finds paths in the data graph similar to the requested
criteria, leveraging depth-first and breadth-first search
traversal algorithms to comprehensively explore possible
paths within the main graph.

5)  Clustering algorithms

Clustering algorithms group graph networks by criteria,
distance, or connectivity. For traffic forecasting
research [3], it was necessary to investigate route networks
using graph structures with spatio-temporal aspects in
order to address complex road structures like multi-level
highways, where Euclidean distance calculations are
inaccurate. For traffic prediction modelling, road segments
were grouped based on spatio-temporal reachability using
spectral and k-means algorithms. Spectral clustering
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grouped nodes by spatio-temporal connectivity, while
k-means clustered them by feature similarity to reflect
real-time traffic conditions. This combined approach
integrated spatio-temporal information to enhance the
capabilities of the traffic prediction model.

6) Centrality algorithms

Centrality algorithms identify nodes with the highest
importance and influence in networks. In modern power
system management during extreme events [4], graph data
structures enable the identification of which components
would be most impacted, using degree centrality and
betweenness centrality to prioritise planning and decision-
making for critical areas and components.

V. RESULT AND DISCUSSION

This section discusses graph data structure capabilities
in storing spatio-temporal data across various data
environments, explores the state of research on the
development of spatio-temporal graphs, compiles
spatio-temporal analyses conducted in previous research
using graph structures and algorithms, and addresses
challenges and future research directions. Spatio-temporal
graph can be defined as a type of graph that captures the
temporal patterns and spatial information of entities’ usage
events, where nodes represent locations, timestamps, and
the entity itself while edges represent relationships
between locations, timestamps, and specific entities based
on similarities and periodic patterns [35].

A. Managing the Versatility of Data Situations with
Graph Data Structure

To manage data heterogeneity, information schemas
must be converted to graph data models for storage in
graph structures. Algorithms expedite the conversion of
diverse data sources, resulting in heterogeneous graphs.
Many studies in Table IV exhibit heterogeneous graph
properties resulting from various data inputs, with several
extending to knowledge graphs.

Graph database structures allow the definition of new
node and edge types without the need to restructure the
entire database. This flexibility stems from the ability to
attach attributes to nodes and edges. Data enrichment is
facilitated by establishing relationships between nodes
with different attributes and contexts, which leads to
insightful knowledge graphs.

Data enrichment with temporal data is well
demonstrated in analysing power systems’ operational
resilience during extreme events [4] by converting
multiple operational datasets into time-varying networks.
These networks use nodes to represent power system
components, edges for time dimensions, and layers for
operational situations within specific time periods.

This capability has led to the recognition of graph data
structures in the management of complex networks.
Translating complex networks into graph structures
enables the understanding of the ways in which specific
nodes impact others by traversing established
relationships. Vulnerability points can be identified and
used to create intervention strategies and improved
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operational designs for applications in power systems,
transportation networks, and disease spread modelling.

Heterogeneity in geospatial data presents additional
challenges, as the dimensions of data sources may vary
depending on the instruments used. Some sources may be
three-dimensional (X, Y, Z), while others include
additional time dimensions, with Z potentially
representing  altitude or depth.  Spatio-temporal
information may contain sequences of timestamped
locations. To represent dynamic properties of spatio-
temporal trajectories, Elayam et al. [8] used spatio-
temporal directed graphs with sub-graphs composed of
spatio-temporal nodes and edges containing location and
timestamp information. Spatio-temporal graphs represent
entities as nodes and edges with semantic attributes, with
relationships reflecting spatial topology and temporal
relations.

B. Innovations and Applications in Moving towards
Construction of Spatio-Temporal Graphs

1)  State of temporal graphs

A Temporal Graph can be defined as a type of graph
structure that captures both spatial and temporal
dependencies among its features, commonly used in
spatio-temporal ~ data  analysis  for  long-term
forecasting [36]. Examples of temporal graphs include
dynamic graphs [31] and dynamic attributed graphs. In
2007, complex network concerns centred on topology
changes. Dynamic graphs were proposed to address
weights associated with vertices or edges that change with
time, thereby forming time series for each vertex and edge.
This weight variability helps identify trends in dynamic
graphs, such as in financial market applications.

Dynamic attributed graphs are defined by Fournier-
Viger et al. [32] as a type of graph structure that have the
capability of storing entities in the nodes with multiple
attributes and also representing relationships between
entities with their evolution over time. These graphs
operate using time-ordered sequences of snapshots, where
edges and nodes can be inserted or removed, and attribute
values may change at each timestamp.

Researchers have proposed their structure for studying
attribute evolution and mining frequent patterns [37]. This
research establishes a foundational concept for storing
evolving temporal attributes in graph structures, with
potential extension to spatio-temporal attributes. Fig. 5
displays the definitions related to dynamic attributed
graphs as discussed by He ef al [37] and
Fournier-Viger et al. [32]. This involves merging the
structures of the dynamic graph (Definition 2) and
attributed graph (Definition 3), both of which extend the
basic foundation of the graph data structure, originally
started with vertices and edges, as shown in Definition 1.

The capability of dynamic attributed graphs resulted in
it being proposed for studying attribute evolution, and its
structure is valuable for mining frequent patterns, as
demonstrated by He ef al. [37]. This research establishes a
foundational concept for storing evolving temporal
attributes in a graph data structure, which can be extended
to store spatio-temporal attributes.
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Def. 1
Graph Vis the set of vertices, E is
G = (V,E) the set of edges.
Def. 2 v
Dynamic Graph It is a sequence of graphs
Time series of graph || over time with n as
denoted as timestamps and each graph
G = (G,,Gy, ..., Gy) G, has its own set of
with 7 as time timestamps, vertices V; and edges E;.
where
Gi = (Vi'Ei)
Def. 3 It is a graph with additional
\ 4 attributes assigned to its
Attributed Graph vertices. V is the set of
Gisatuple G = = vertices; E is the set of
(V,E,A )¢ edges, A is the set of
attributes, and A :
¢ (V,A) = R isa function
Def. 4 v that maps attributes and
. . vertices to attribute values.
Dynamic Attributed

Graph
A dynamic attributed
graph G is a time series

It is a sequence of attributed

of attributed graphs graphs over time. The
G = (Gy, Gy, ..., Gy) l—{ vertex set V and attributes
with 11 Hmé'star'n 7; set A are constant but edges
here G = ps, E; and attribute functions A;
W VIV; efrle/l L) - changes over time.
yBi, A, A1) 1S an
attributed graph.

Fig. 5. Constructing the definition of dynamic attributed graph.

2)  Storing dynamic processes in labelled property graph
Constructing spatio-temporal graph data structures
enhances analysis capabilities beyond simple temporal
data queries (e.g., specific date or date range queries) by
enabling dynamic phenomena analysis to identify the
sources and reasons behind events. Dynamic attributed
graphs have previously demonstrated the potential to
uncover valuable patterns through frequent pattern mining.

In Labelled Property Graphs, He et al. [30] proposed a
spatio-temporal Event Process-Centred Dynamic Model
(EPCDM) to detect and identify causes of traffic
congestion. The model considers the taxi’s initial location
(state), motion (processes), and congestion occurrence
(event) structured as a Labelled Property Graph in Neo4j.
This research extended the congestion cause analysis by
systematically organising information as a dynamic
process to imitate real-life traffic congestion scenarios and
storing congestion events and taxi motions. It also
implemented a hierarchy for traffic events by associating
main jam events with subjam events.

Another application involves representing ocean
trajectories as hierarchical subtrajectories, sorted by space,
time, and depth. The challenge with Argo trajectory data is
that the representation is characterised by time-ordered
spatial locations that lack a clear distinction between sea
surface and parking depth trajectories. Cunjin et al. [38]
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adopted Labelled Property Graph structures to represent
Argo trajectories as subtrajectories at different depths,
assigning time-ordered relationships between
subtrajectories to represent hierarchical organisation. This
approach enabled chronological subtrajectory data
retrieval and release of trajectories at specific parking
depths.

3) Spatio-temporal reasoning through knowledge graph
using resource description framework

Spatio-temporal reasoning often uses knowledge graphs
built with Resource Description Framework (RDF), a
standard data interchange model using subject-predicate-
object triples. This structure enables complex reasoning by
representing entities as interrelated networks [20], making
data machine-readable and supporting semantic web and
knowledge reasoning applications.

In addition, knowledge graphs have been applied to
contact trace networks [24], built from public
transportation system data fusion to efficiently organise
large-scale  transportation data and  construct
high-resolution contact networks. This enables knowledge
reasoning beyond simple data retrieval, focusing on
deriving new information. The process of deriving new
knowledge from existing data is facilitated by the
extraction of edge structures, which helps identify entity
relationship  patterns, thereby enabling inference
development and the creation of new relationships. The
knowledge graph is constructed on a trip chaining model,
where spatio-temporal correlations between passenger
travel trips can be represented through passenger trip
chains reflecting continuous travel trajectories.

Knowledge reasoning is commonly associated with
RDF data models due to their semantic representation.
However, it can also be constructed using property graph
structures, as demonstrated by Chen et al. [24] who utilised
Neo4j to construct public transportation knowledge graphs
by considering knowledge graphs as information networks
of nodes and edges. Labelled property graphs provide
more flexible knowledge graph structures than RDF.

Subject s, predicate p, object o

v

G=(V,E,C,F, 8w
e  V=VstU V-stis a set of vertices, Vst represents vertices

with temporal or spatial information, and V-st represents
vertices without temporal or spatial information.

. Ec VxVisa setof directed edges.

e  Cisaset of information labels.

e Fisafunction V U E — C for assigning labels to vertices
and edges, including temporal, spatial, or text information.

e §is amembership function V U E — p to give vertex and

edge a fuzzy membership degree p, where p € (0, 1).

Fig. 6. Construction of the fuzzy spatiotemporal RDF data structure.

RDF faces acknowledged challenges with temporal
data, such as maintaining temporal interval consistency,
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handling multi-temporal data (valid time and transaction
time), and integrating contextual information.
Wau et al. [39] observed that the primary focus of current
temporal RDF research is to include valid time, transaction
time, and bitemporal information into RDF data structures
by employing models like Temporal Knowledge Base
(TKB) and multi-temporal RDF. Spatial and spatio-
temporal RDF support can be seen in various spatial
embedding extensions, such as Multi-Temporal RDF,
RDF+, stRDF, stRDFS, and YAGO 1/2, enabling more
complex spatial relationship and pattern analysis.

Beyond temporal challenges, the inherent fuzziness in
spatio-temporal applications further complicates RDF
handling of spatio-temporal data. As shown in Fig. 6,
Zhu et al. [23] extended the data structure to six tuples and
introduced fuzzy spatio-temporal RDF. The fuzzy
membership degree pu was uniquely added to indicate the

likelihood of a vertex’s existence in relationships. This
enables spatio-temporal knowledge reasoning queries to
include possibility and likelihood temporal queries.

4) Leveraging graph data structure for spatio-temporal
analysis

Various insightful spatio-temporal analyses are now
possible as a result of the previous discussions of graph
data structures for managing versatile data situations and
innovations such as dynamic attributed graphs and fuzzy
spatio-temporal RDF.

The storage of diverse data sources, including spatio-
temporal data, in comprehensive network graphs with
algorithms to decipher the stored data enables
sophisticated analyses across multiple domains. Table VI
summarises key spatio-temporal analyses from the
reviewed literature.

TABLE VI. SUMMARY OF SPATIO-TEMPORAL ANALYSIS

Ref Field Analysis Explanation
. . . Applied graph-based deep learning algorithms (Graph Convolutional
Forecast \Z;ri(riefjlrenelz \%:r?teirrit;l)(:é ttso pereetve Network (QCN), Graph Attentioq Netwgrks (GAT)) to graph data
representing multiple wind turbines with spatio-temporal data.
Preventive strategies: Develop operational _Compute ggneration correlation; by mult‘iple wind/ Photovoltaic (PV)
strategies for power systems against stations tq obtain temporal and spatial couglmg pattems.of renewable energy
[4]  Power systems extreme events: Reallocate loads to generation. Ngtwork data captures coup.llng characteristics of traffic and
Electric Vehicle EEV) charging stations power flow; during extreme events, electric flow from traffic can supply EV
flow to balance power system demand.
Restorative Strategies: Gain insight into . . . .
disruption mechanisms and identify Manage spatiotemporal data by modghng coupling mech_amsms between
associated failurcs extreme events and cascading power system failures.
Information Generated information insights from _ Tempora! evo_lution shows ne_twork e\folution over time; temporal
[22] Network temporal data through temporal evolution  information diffusion shows how information spreads throughout networks
and information diffusion over time.
(23] Spatiotemporal Fuzzy spatiotemporal RDF data Beneficial for fuzzy spatio-temporal reasoning queries such as likelihood of
data management events at particular locations.
) Temporihﬁgiré (C)(f)rsriggl/gﬁsnmes of Evaluates construction time of specific building elements.
[28] Con:tryct;on iched knowled hb Detects modifications on building elements and identifies spatio-temporal
projee lir?lgflgeintrr;cc tZ q draltoe“;r? d %((:cgarteilgn dzta working areas and time-sensitive spots to und_erstand construction progress
and resource allocation.
[ I:fs;;:ﬁ:;ﬁlzlg Utilisat_ion o_f s_patio—temporal da'te.l for Uses graph embedding for l_ov_ver fi_imensional vectors and Qrgph Neur.al
quality predicting similar comfort conditions Networks to extract comfort similarities between different building locations.
[24]  Epidemiology Tracing i(r););scpaouri:tsigrﬁ :’11;;3 Osrpkr:admg mn Leverages multi-source data with spatiotemporal and temporal elements.
[25] Transportation Identify potential congestion causes Leverages spatio-temporal reasoning in graph databases by querying
network through point of interest distribution congestion direction and level.
3] Transportation Traffic flow forecasting Optimises prediction by considering temporal reachability to capture regional
network information
Obtain complete Argo trajectories Uses sequence edges to link surface and parking depth trajectory nodes.
[38]  Oceanography including sub-trajectories at different Enables obtaining sub-trajectories in chronological order, trajectories at
depths specific parking depths, and trajectories within various constraints.
Maritime F ine_—scale _trajectory grapl_u deﬁped as spatio-.tempc.)ral directed graph of i
8] transportation Historical maritime data analvsis semantllc spatio-temporal trajectories. These trajectories fOITl‘l §ubgraphs with
[ nelt)work ¥y spatio-temporal nodes and edges annotated with semantic information

describing evolving properties and context.

C. Challenges and Current Graph Data Structures’
Trade-offs

The analysis of the papers identified several challenges.
These challenges were categorised into several categories:
data representations and modelling, semantic and
contextual challenges, and data quality and acquisition
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challenges. However, these challenges do not imply that
they will persist indefinitely; instead, they provide new
opportunities for this research and drive it forward towards
improvement, which we will discuss further in future
directions. Fig. 7 illustrates the challenges and the
potential future research.
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Challenges Details Future Research Details
Data quality and "| Data quality and Data fusion techniques
acquisition e Limited geospatial data acquisition
availability
Fuzzy algorithms with
spatial capabilities
Semantic ambiguity
— Holistic spatio-temporal
—| Temporal volatility approach
Noise and uncertainty
Semantic and > Semantic Adaptive spatial zoning
contextual challenges | peapyre selection complexity innovation algorithms
Semantic mining
Real-world complexity algorithms
translation
» Contextual relationship
3 Optimal spatial granularit deli
= P P g y modeling
)
=
=
<
2
= Data repr esen?ations —Jf Temporal representation — Temporal Adaptive temporal
:§ and modeling algorithms representation
= e  RDF reification complexity
g e Causal relationship - |
= . Temporal granularity Spatlo—telmpora
g . Discrete versus continuous interpolation
2 phenomena
Ea Temporal algorithms
2 enhancement
S
<
2
)
> Structural limitations —p Advanced graph Sophisticated spatial
representation operators
e  Handling uncertain data
e  Multidimensional data Multi-type data storage
traversal L
optimization
. Heterogenous data
integration
Scalability challenges v Semantic Hierarchical abstractions
innovation

Information loss across scales

Computational bottlenecks

Processing large networs

Distributed graph
processing

Incremental processing
methods

Fig. 7. Summaries of challenges and future research direction of graph database application with spatio-temporal data.

1)  Data representation and modelling

This category addresses the

complexity of

2)  Structural limitations in graph complexity

Creating graph representations from heterogeneous data

spatio-temporal information that is accurately, efficiently,
and meaningfully captured by graph database structures.
These challenges emerge from the inherent complexity of
representing multidimensional relationships that evolve
across space and time. It can further be discussed in the
aspect of structural limitations in graph complexity and
temporal representation challenges.
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sources presents significant challenges [5, 23, 33].
Designing appropriate schemas for heterogeneous
spatio-temporal data from multiple sources is complex,
particularly when modelling hierarchical structures with
temporal aspects. Relationship modelling across time
requires domain expertise and consideration of
performance implications.
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Besides that, the challenges intensify as the data volume
increases, which results in the emergence of scalability
issues, particularly for temporal pattern matching. This
highlights the necessity to enhance the graph database
capability; attention should be diverted to the matter of the
databases’ ability to scale efficiently as temporal data
accumulates, which requires focussed strategies for
partitioning, archiving, and summarising temporal data
that maintain its accessibility during data retrieval.
Moreover, another issue that remains a challenge is
integrating heterogenous data from different sources in
unified graph models due to their varying structures.

However, the technical ability to solve these issues will
later bring immense advantages and advance research on
graph databases to another significant milestone because
of the current interest in integrating data in various
domains for the application of knowledge graphs, which
requires a stable heterogenous graph. Additionally, there
are challenges in handling uncertain and missing data.
Zhu et al. [23] addressed data integration complexity with
a six-tuple model that captured vertices, edges,
information labels, labelling functions, membership
functions, and fuzzy degrees, though efficient storage
remains challenging.

Furthermore, the storage of data with multidimensional
structures, such as spatio-temporal, can result in
significant performance bottlenecks due to the inherent
complexity —of multidimensional data traversal.
Chen et al. [24] and He et al. [30] consistently highlighted
the computational challenges in processing spatio-
temporal relationships. The fundamental complexity of
representing  real-world  relationships in  graph
computational systems is revealed by the structural
challenges in graph databases, which represent more than
technical obstacles. Current limitations expose a critical
frontier in data science, where the ability to capture
multidimensional, heterogeneous information becomes a
key research challenge.

3)  Temporal representation in graph database

The temporal representation in graph databases exposes
the critical point of computational limitation, as the
database models are unable to accurately capture the
temporal continuity of the phenomena. The existing graph
database models struggle to bridge the gap between
discrete computational representations and the dynamics
of temporal processes. Researchers face an immense
challenge in conceptualising and capturing the temporal
dimensions of complex systems. In the Labelled Property
Graph model, He et al. [30] highlighted limitations in
representing geographic object change processes; the
model relies on discrete state sequences rather than
continuous temporal changes. For geographical situations
with embedded spatio-temporal and semantic information,
graph database modelling increases management
complexity, as the challenge in determining appropriate
temporal granularity remains unsolved with no established
method for adapting temporal representations across
different scales.

Additionally, Li et al. [7] used a hierarchical graph
model to address data representation challenges by
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modelling oceanic dynamics as process-oriented graph
structures rather than discrete observations. Despite the
innovative approach, challenges persist in representing
spatio-temporal continuity and capturing complex
relationships between phenomena. Their research
demonstrates the potential of graph databases to model
spatio-temporal dynamics, which also highlights the need
for further optimisation across diverse conditions.

Next, the algorithm aspect presents additional
complexities in managing temporal data. The storage of
temporal data in dynamic attributed graphs demands
sophisticated algorithmic support. For example, the
Credible Attributed Rules (CAR-Miner) for dynamic
attributed graphs is capable of identifying patterns in
evolving networks; however, it cannot handle time series
patterns spanning multiple sequential time points. Its
approach is limited to analysing changes between
consecutive timestamps, struggling to identify patterns
across multiple periods and establish temporal causality
chains.

Besides temporal representation in LPG, representing it
in RDF graph models presents complexities including
reification, which increases triple count and query
complexity, the inadequacy of RDF’s binary structure to
capture higher-order temporal relationships, and the high
storage and processing overhead. These challenges have
created fragmented temporal RDF extensions with
inconsistent semantic interpretations and performance
bottlenecks. At its core, the challenge in representing
temporal data in a graph database lies in the representation
of this continuous phenomenon through discrete nodes and
relationships. The discrete observation and storage
systems inevitably lead to information loss between
temporal observations, which makes establishing causal
relationships difficult and creates a mismatch between
discrete sampling intervals and continuous process
evolution.

4)  Semantic and contextual challenges

Semantic representation in graph databases exposes a
fundamental challenge of translating complex real-world
relationships into computationally meaningful structures.
The complicated task of capturing contextual expressions
extends beyond simple data connection, demanding
sophisticated approaches to understand the underlying
meaning and significance of relationships. This results in
the graph database facing a critical challenge in extracting
meaningful insights from complex datasets where the
context itself is as important as the data.

Semantic and contextual challenges emerge in feature
selection, where the primary objective is to identify
relevant analysis features and extract meaningful
contextual information from the complex datasets.
Pramanik et al. [34] demonstrated this complexity through
a graph-based fuzzy clustering algorithm for categorising
crime reports. Although their research acknowledged the
limitations of cluster labelling and semantic
representation, it brings the graph-based algorithm
research to a significant intelligent milestone. This
highlights the profound difficulties in translating complex
information into structured and interpretable formats.
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Next, the determination of optimal spatial granularity
stands as a critical consideration in graph database design,
as it is crucial for correct data retrieval and analysis.
Abdelrahman et al. [1] explored this challenge through
their work on capturing building spatial relationships for
occupant thermal comfort using Graph Neural Networks.
Their research highlighted the limitations in Neo4j’s
clustering method, which requires fixed clustering
parameters for spatial zoning, underscoring the rigidity of
current database computational approaches to contextual

representation.
The challenges in semantic and contextual
representation  within  graph databases reveal a

fundamental complexity that extends far beyond simple
data storage and retrieval. The complex, multidimensional
nature of contextual information is difficult to capture
using current computational approaches, which results in
significant barriers to meaningful data interpretation. The
gap between computational representation and real-world
complexity demands innovative approaches that can
bridge semantic understanding with computational
efficiency.

5)  Data quality and acquisition challenges

The current research landscape reveals significant
barriers to effectively capturing and utilising location-
based data, highlighting the gap between the potential of
spatial data and the ability of graph databases to
comprehensively represent it. Limited geospatial data
application within graph databases may result from
research focusing on non-spatial relationships, data quality
challenges, and manufacturing domain interests
prioritising temporal over spatial aspects.
Afyouni et al. [27] addresses this challenge by noting that
only 1-3% of social media posts contain explicit geo-
tagging, which reveals the geographical information in
current data ecosystems. Besides the data acquisition
challenges that are highlighted by the lesser applicability
of geographical information in data ecosystems, other
challenges such as data quality issues, include significant
noise and uncertainty, particularly in social media and IoT-
based systems.

Other than that, the heterogenous data sources introduce
other complications such as semantic ambiguity,
contextual inconsistency, and temporal volatility.
Chen et al. [24] addressed these challenges through their
investigation of spatio-temporal transportation data,
revealing limitations in handling noisy spatio-temporal
transportation data, including incomplete trip records and
lack of uncertainty quantification. The challenges in
geospatial data acquisition and quality represent more than
technical limitations; they expose fundamental gaps in our
approach to understanding complex spatial information.
The complex, dynamic nature of location-based data is
difficult to capture by current computational systems,
creating significant barriers to comprehensive spatial
analysis.
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6) Comparison of the trade-offs between labelled
property graph and resource description framework

From the literature findings, LPG and RDF are
popularly used in managing data in graph databases. In
general, the flexibility of LPG offers more advantages in
organizing complex network data, while RDF is rich with
semantic libraries, making it excel in knowledge graph and
reasoning queries. However, there are approaches that
utilize both of cabilities, such as He et al. [25] and
He et al [30] The review further synthesizes the
capabilities of these graph data structure in terms of spatio-
temporal  capabilities, examining spatio-temporal
representation, dynamic topology handling, query
capability, semantic spatial reasoning, and temporal
reasoning.

In terms of spatial data representation, LPG
demonstrates superior spatial representation capabilities
across all dimensions due to its core architectural strengths
previously outlined. Specifically, property embedding
without reification overhead, flexible hierarchical
modeling through native relationship structures, direct
coordinate access eliminating complex query patterns, and
multi-resolution  support through adaptable graph
structures enable LPG to excel in spatial data handling.
While RDF’s spatial limitations directly result from its
fundamental architectural constraints, which due to the
binary relationship restrictions, it limit the complex spatial
representations, reification overhead for multi-attribute
spatial properties, and lack of native spatial indexing
requiring external extensions.

In terms of temporal data representation reasoning,
LPG’s operational efficiency advantages enable superior
performance in direct timestamp storage, natural sequence
modeling, and state transition representation. However,
LPG’s absence of semantic reasoning frameworks
severely limits complex temporal relationships.
Conversely, RDF’s semantic foundation and standardized
ontological frameworks enable sophisticated temporal
reasoning through temporal logic support, interval
reasoning, and complex temporal constraints. These
capabilities directly stem from RDF’s formal semantic
architecture and access to comprehensive temporal
ontologies like Web Ontology Language (OWL)-Time.

Next, in terms of dynamic topology capabilities reflect
each paradigm’s core architectural characteristics. LPG’s
flexible schema evolution and native relationship
modeling enable real-time topology updates [6, 8, 9],
evolutionary change tracking [2, 5, 9], and dynamic
relationship creation [2, 6, 9]. RDF’s static semantic
framework creates inherent challenges for real-time
topology modifications [23, 39], with changes requiring
complex reification patterns and computational overhead.

In aspect of query capabilities, LPG’s direct property
access architecture eliminates join overhead, enables
efficient graph traversals for spatial proximity operations,
provides unified data modeling that avoids impedance
mismatch, and supports real-time processing for
continuous analytics.
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RDF’s query limitations stem directly from its semantic
processing overhead: quadratic computational complexity
for graph operations, reification patterns for temporal
operations, complex join requirements for spatio-temporal
correlation, and high overhead in temporal
extensions [23, 39]. However, RDF’s semantic reasoning
capabilities enable complex spatial reasoning through
standardized vocabularies and semantic validation of
query results.

However, semantic reasoning represents RDF’s primary
domain of superiority, directly enabled by its formal
semantic foundation. RDF’s comprehensive spatial
ontologies, advanced inference engines, standardized
vocabularies, and semantic web interoperability all stem
from its core semantic architecture. LPG’s limitations in
this domain are fundamental partly due to absence of built-
in ontological frameworks, limited inference capabilities
requiring custom implementation, and lack of standardized
semantic vocabularies. These limitations directly result
from LPG’s operational design philosophy that prioritizes
performance over semantic sophistication.

The comparison synthesis from existing research
reveals that LPG and RDF represent fundamentally
different architectural philosophies rather than competing
technologies. LPG’s operational efficiency philosophy

enables superior performance for direct data manipulation,
real-time processing, and dynamic topology handling.
RDF’s semantic sophistication philosophy enables
superior reasoning, standardized interoperability, and
complex inference capabilities. While hybrid architectures
emerge as the optimal solution for comprehensive spatio-
temporal applications by strategically combining each
paradigm’s core strengths.

The literature demonstrates that hybrid implementations
using tools like NeoSemantics plugin successfully
leverage LPG’s operational efficiency for spatial data
representation, temporal data handling, dynamic topology
management, and query processing, while accessing
RDF’s semantic reasoning capabilities for complex
inference, standardized vocabularies, and sophisticated
temporal logic when required. This architectural approach
addresses the full spectrum of spatio-temporal data
management requirements—f{rom  high-performance
operational tasks to complex semantic analysis—while
minimizing each paradigm’s individual limitations.
Table VII summarizes the state of the capability level (H
= High Capability, M = Medium Capability, and L
represent Low Capability) between LPG, RDF and hybrid
approach in various range of spatio-temporal aspect.

TABLE VII. COMPARISON OF GRAPH DATA STRUCTURE CAPABILITIES ACROSS SPATIO-TEMPORAL ASPECTS

Spatio-Temporal Aspect

LPG RDF LPG+ RDF

Direct coordinate storage
Hierarchical spatial organization
Spatial property embedding
Multi-resolution spatial indexing

Spatial Data
Representation

H H

Timestamp as node properties

Temporal Data Temporal sequence modeling

Representation State transition representation
Complex temporal relationships

Real-Time Topology Updates

Dynamic Topology Evolutionary change tracking

Handling Dynamic relationship creation

Topological transformation support

Spatial proximity queries
Temporal range queries
Spatio-temporal joins
Real-time analytics

Query Capabilities

Spatial ontology support
Spatial inference capabilities
Standardized spatial vocabularies

Semantic Spatial
Reasoning

Temporal logic support
Temporal interval reasoning
Complex temporal constraints

Temporal Reasoning

sl el all | enlll enll qull fe ol a sille sillen] K@i slia siian] [ quliianliasiian] fanlaniast
jasliasiian] laslieslies] Il N ol ol [l cldial ik olid ol ik
jasiiasiian] jasilianlian] faniiasiiaiian] E-qiiasiiasiicn] jasliaiiaslias] fanliasiian

D. Future Research Directions in Spatio-Temporal
Graph Databases

The challenges explored in previous sections demand a
comprehensive, multi-faceted approach to advancing
spatio-temporal graph database technologies. The path
forward requires innovative strategies that address the
fundamental limitations in data representation,
computational efficiency, and semantic understanding.

1)  Advanced graph representation techniques

Addressing the complex challenges of spatio-temporal
data representation requires investigating the capabilities
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of graph databases, including their data structure, data
storage, and indexing. Research opportunities include
enabling graph databases to store spatio-temporal data that
support multiple data types while maintaining
performance. Zhu et al. [23] defined five temporal
relationship types—meet, overlap, contain, equal, and
separate—suggesting the implementation of sophisticated
spatial queries using operators like adjacency, intersects,
contains, and other proximity-based operators to be used
with spatial data that have geometry information.

Next, the development of temporal algorithms in
dynamic attributed graphs presents a critical research
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frontier. Temporal algorithms in dynamic attributed
graphs could be enhanced by adapting sequential pattern
mining algorithms, and incorporating spatial awareness
would allow discovering patterns influenced by
geographic proximity for transportation, urban planning,
and epidemic monitoring applications. This can extend the
graph database capabilities to create intelligent systems
that can discover complex patterns influenced by
geographic proximity, detect region-specific trends,
recognise spatial anomalies, and enable multi-scale
analysis.

2)  Temporal and semantic representation innovation

Wu et al. [39] addressed the ongoing implementation of
Bitemporal RDF (BiTRDF) models incorporating valid
and transaction times into RDF frameworks without
reification. Currently, spatial dimension is not discussed in
RDF applications and also BiTRDF. Addressing temporal
granularity in graph databases, which is highly crucial for
storing spatio-temporal phenomena research, presents new
research opportunities for the development of adaptive
temporal representation methods with flexible granularity
adjustment mechanisms. The challenge lies in creating
computational models that can dynamically adjust to the
complex, evolving nature of spatiotemporal data.

Furthermore, the research direction further branches out
to mining semantic information, such as converting stored
data into insights using algorithms like CAR-miner and
Named Entity Recognition, which demonstrate a
promising direction to mine semantic information. On top
of that, addressing spatial granularity challenges offers
opportunities for developing data-driven adaptive spatial
zoning algorithms that can capture the contextual
relationships inherent in complex geographical datasets.
For specialised domains that involve spatio-temporal data
continuity, like oceanic research, future work should invest
in developing spatio-temporal interpolation techniques
with robust uncertainty quantification. Adaptive
interpolation techniques for graph databases can estimate
missing states between observations while quantifying
uncertainty assessment.

Besides that, additional future directions include
handling dynamic graph structure evolution without
performance degradation, implementing time-versioning
for graph models, and addressing scalability challenges
with increasing attribute numbers.

3)  Scalability and processing challenges

Ma et al. [4] proposed decomposing large networks
through community detection algorithms and leveraging
graph computing approaches, such as bulk synchronous
parallel computing models for large-scale data processing.
This approach presents a promising solution to overcome
the computational bottleneck when processing large power
networks. It opens up a new research area to integrate this
algorithm with graph databases. In addressing the
scalability and processing challenges, future research
should address ways to improve distributed graph
processing through better partitioning algorithms and
developing incremental processing methods, as well as
avoiding full graph recomputation.
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Distributed  processing techniques can address
spatio-temporal data through targeted partitioning
strategies. For temporal dimensions, time-window

partitioning can leverage temporal metrics to organize
graph structures [3], while spatial partitioning can divide
networks geographically to enable parallel processing and
optimize data flow for local relevance [6]. Community
detection and hierarchical representation approaches can
manage spatio-temporal data across multiple abstraction
levels [8]. BSP computing models can handle time-varying
networks that capture spatio-temporal relations between
components [4].

These techniques can be applied to various
spatio-temporal scenarios such as traffic flow forecasting
where temporal metrics organize road network graphs [3],
maritime transportation networks requiring hierarchical
mobility data representation [8], city infrastructure
management through geographic network partitioning [6],
power system resilience analysis using time-varying
network models [4], production logistics resource
allocation with dynamic spatio-temporal tracking [29], and
oceanic dynamics analysis across multiple temporal
scales [7].

Other important considerations concerning the
scalability and processing challenges include the effect of
data detail on query performance. Storing and querying at
the most detailed level (micro-scale) leads to prohibitive
computational costs, as addressed by Elayam et al. [8],
which represents the oceanic dynamic representation at
various spatio-temporal scales using hierarchical graphs.
Representing the hierarchical relationships between
different abstraction levels significantly increases the
complexity of the graph structure.

Selecting appropriate temporal granularities across
abstraction levels is crucial for both performance and
meaningful analysis. Consequently, it is necessary to
continuously explore methods that integrate spatio-
temporal, and semantic dimensions simultaneously and
improve the abstraction functions that transform data
between hierarchical levels in a graph database, thereby
enabling the graph data structures to adapt with different
time periods.

Moreover, Li et al. [7] addressed a research limitation
that involves information loss within spatio-temporal data.
They provide insights in developing a spatio-temporal
interpolation with uncertainty quantification that is
specifically designed for graph databases. This can
estimate the missing spatio-temporal information between
the dynamic observations and strengthen the capability of
graph databases to model evolutionary relationships by
developing adaptive graph database structures that can
represent the continuous evolution of the spatio-temporal
data rather than connecting it as discrete snapshots. This
will eventually enable the graph database to accommodate
spatio-temporal data across space and various temporal
scales.

4) Comprehensive data management strategies

The research trajectory must shift from an isolated
temporal or spatial focus to a holistic approach that equally
prioritises both dimensions. These findings will also
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enhance the research area of urban development and
spatial-related forecasting. It is crucial to identify spatial
queries that leverage the interconnectedness of graph data
structures. Subsequently, the research area can progress by
determining the best way to store spatial data alongside
temporal and create spatio-temporal relationships within
the graph data structure. This will create new avenues in
discovering, storing, and extracting hierarchical structures
in graph databases and graph-based algorithms.

Furthermore, addressing the challenges with distributed
graph approaches can optimise spatio-temporal data
processing. This draws the attention of future research to
exploring the data fusion approach for graph databases.
Moreover, spatial proximity must be integrated into
analyses involving geospatial aspects, such as
epidemiology, to address data coverage issues. Although
fuzzy algorithms have been developed in existing research,
these approaches require extension through spatial
operators to enable reliable data identification in spatial
void areas.

Extending fuzzy algorithms with enhanced spatial
capabilities offers a comprehensive solution to address
data voids. This approach leverages advanced techniques,
including probabilistic modelling, spatial interpolation,
clustering, multi-resolution adaptability, and temporal-
spatial correlations. By doing so, knowledge graphs can
effectively represent uncertain spatial relationships,
maintain robust tracing capabilities, and clearly
communicate confidence levels to decision-makers.

5)  Broader technological implementations

Although the graph database is the most suitable
platform to cater to the diversity and dynamic nature of the
data, it can be too much to handle at some point. This issue
prompts another research in developing Multi-Model
Databases (MMDB) that are natively capable of storing
and accessing data in several models, including relational-
based, document-based, and graph-based, to manage
multidimensional elements that are compatible with the
current big data environment. MMDB was applied by
Bimonte et al. [40] in a case study on the management of
complex phenomena in agroecology, where it enabled the
analysis of the spatio-temporal dynamics of diseases, the
investigation of field and landscape factors affecting
disease propagation, the organisation of observation tasks,
and the provision of easily understandable indicators to
farmers.

Data mining, which is currently emerging, is a soaring
application utilised to assist in data analytics upon
completion of the comprehensive database platform.
Another area of research that focusses on utilising
spatio-temporal data is the effective conduct of data
mining when it is stored in a graph data structure. Chen et
al. [24] proposed that their knowledge graph for epidemic
contact tracking could be extended with spatio-temporal
correlation analysis by relating it to another knowledge
graph about built environments that will help to mine
connections between travel sequences in the transportation
system with the underlying land use types.

Having an accurate graph data structure is important to
achieve causal inference capability within a graph
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database. The realisation of this capability would require a
substantial amount of temporal data, which has resulted in
the significant topic of continuously evolving graph
structures. A key area of interest in this context is Dynamic
Knowledge Graph due to its capability in constructing
connections to new entities. This further emphasised the
potential direction of research towards solving the
evolution of graph structures [5].

The literature synthesis process has revealed that there
are several areas that are gaining momentum in the study
of spatio-temporal applications with graph data structures
that would require continuous attention. These include the
integration of graph-based components in multimodal
databases to accommodate big data environments,
enabling spatio-temporal reasoning within these
environments, creating data models that can predict and
reason with big data, mining spatio-temporal graphs, and
effectively storing spatio-temporal data that encompass
multiple events. These areas represent key opportunities to
advance the field and address the challenges posed by
increasingly complex and large-scale spatio-temporal data.
Fig 8. illustrates the potential future research in graph
databases.

Future Graph Databases System

Causal inference capabilities

Spatio-temporal data mining
Multi-modal databases
Dynamic knowledge graphs

Complex phenomena modeling

Cross domain integration

Fig. 8. Potential future graph database application research.

VI. CONCLUSION

The keyword co-occurrence map reflects the emergence
of several key concepts that can be empirically applied to
spatio-temporal graph data structures during the synthesis
process. First, complex networks originate from situations
with time-changing entities interacting through multiple
complex time-changing relationships, where both entities
and relationships appear, disappear, and change attributes
over time. Next, the geographic scene model was extended
through the Event-Process-Centred Dynamic Model
(EPCDM) for spatio-temporal evolution structure. The
geographic scene model organised spatio-temporal
dynamics into hierarchical nesting to facilitate
management of multiple interacting geographic changes in
complex phenomena. These research approaches
demonstrate  spatio-temporal  data’s  network-like
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properties and hierarchical representation, making graph
databases suitable management platforms.

This research investigated graph data structures and
algorithms for managing spatio-temporal data in graph
databases over six years, building knowledge about graph
database suitability by providing evidence of graph data
structure utilisation for storing spatio-temporal data and
algorithms for extracting insights and improving
management efficiency. The paper provides the state of
research on graph data structure development and graph-
structured algorithms for managing spatio-temporal data
across various applications, lists algorithms used for
managing spatio-temporal data and analytics, offers
insights on spatio-temporal data input types used for graph
data structure storage, and examines spatio-temporal
analyses conducted using graph-structured databases and
algorithms.

The relevance of this review remains strong in 2025,
even though it extends to mid-2024. The fundamental
graph-based concepts and algorithms identified in this
review form the building blocks for geospatial data
management systems. Additionally, the insights and
challenges identified provide valuable direction for
ongoing research and development in this emerging field.
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