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Abstract—A high-dimensional representation is required to 
represent connected information that reflects real events and 
caters to spatio-temporal dimension. Graph data structures 
have shown potential for integration into smart city data 
management frameworks and have evolved to handle  
spatio-temporal data. To investigate the advanced techniques 
used in managing spatio-temporal data in graph databases, a 
systematic literature review of related research papers 
published from 2019 to 2024 was conducted. The review 
examines the evolution from basic graphs to specialized 
structures like dynamic attributed graphs and fuzzy  
spatio-temporal Resource Description Framework (RDF) 
and also summarizes algorithms used—including graph 
representation learning, pattern matching, clustering, and 
centrality algorithms—that enable sophisticated multi-
domain analyses. The research provides five key 
contributions: (1) the state of graph data structure 
development and algorithms across various fields; (2) 
insights on spatio-temporal data inputs used in graph 
structures; (3) algorithms for spatio-temporal data 
management and analytics; (4) spatio-temporal analyses 
conducted using graph-structured databases; and (5) future 
research trajectories. From the review, we identify challenges 
in graph-based implementation with spatio-temporal data 
such as structural graph complexity, temporal 
representation, semantics, and data quality, while outlining 
future directions in graph representation techniques, 
temporal-semantic innovations, scalability solutions, and 
comprehensive data management. 
 
Keywords—graph data structure, graph database,  
spatio-temporal data, algorithms, spatio-temporal analysis1 
 

I. INTRODUCTION 

Spatio-temporal data includes spatial, temporal, and 
attribute components. Recording an object’s temporal state 
and positions over time provides information about real-
world events [1]. In this era of advanced technology, 
spatio-temporal data can be generated from diverse 
sources, including mobile devices, social media, sensors, 
satellites, and remote sensing technologies, with daily logs 
in the form of geotags and timestamps [2]. Additionally, 
serial ordered timestamped locations can create  
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spatio-temporal trajectories. Spatio-temporal data can be 
categorised into events, georeferenced time-series, and 
trajectories. Analysis of this data enables understanding of 
object distribution and monitoring of attribute changes 
over time. Time series data produced from these 
technologies provide research opportunities in 
environmental data management, forecasting, tracking, 
predicting movements, and identifying trajectory patterns 
at different scales.  

However, storing various temporal data sources within 
the same database presents challenges due to the continuity 
of temporal data. Furthermore, spatio-temporal data can 
have a high-dimensional structure that encompasses depth 
in addition to location and time. Another challenge is the 
inherent fuzziness in spatio-temporal data, which can 
degrade the accuracy of data retrieval and analysis. 
Addressing these challenges is crucial to enhance  
spatio-temporal analysis. This will enable reasoning with 
spatio-temporal data by extending temporal query 
capabilities beyond simple date-based retrieval. Examples 
of such reasoning include identifying congestion causes at 
specific times and locations, tracing virus spread patterns, 
and incorporating depth dimensions into analyses. 

This highlights graph databases as platforms for 
managing spatio-temporal data. The efficiency of data 
analytics has been enhanced by the increased application 
of graph databases, such as Neo4j, which utilise the 
Labelled Property Graph (LPG) data model and graph-
structured algorithms. These algorithms include graph 
embedding algorithms, graph neural networks, graph 
convolutional networks, and graph attention  
networks [1, 3–5]. Storing network-like data in graph 
databases leverages the real-world features of the data’s 
interconnectivity to produce valuable insights and perform 
complex queries that other databases struggle with. In 
addition to LPG, knowledge graph development heavily 
utilises the Resource Description Framework (RDF). 
Graph data structures, either in respect of databases or in 
the form of algorithms, are gaining recognition in industry 
and academia for data management applications. 
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In our interconnected world, comprehensive insights 
often require connecting information from diverse sources. 
This is a concept well-aligned with graph databases and 
graph-structured algorithms, which apply the same 
network concept found in real-world information flows. 
Colarusso et al. [6] demonstrated this by developing a 
graph-based smart city platform to manage complex 
networks with dynamic graphs, viewing smart cities as 
“systems of systems” with each system consisting of 
networked entities and relationships. Spatio-temporal 
evolution information that assists in analysis, prediction, 
and forecasting is obtained through the ability to query and 
analyse complex relationships across different 
transportation modes, ocean depths [7], and maritime 
trajectory networks at various spatio-temporal scales [8]. 
Directed, undirected, and weighted graphs, composed of 
nodes, edges, and edge weights, are widely recognised 
types of graphs. However, to accommodate real-world 
complexity, basic graph types have evolved to better 
represent complex networks. Das and Soylu [9] refer to 
these as “special graphs,” including heterogeneous graphs, 
multidimensional graphs, signed graphs, dynamic graphs, 
and hypergraphs. Their special quality lies in their ability 
to assign multiple cardinalities to nodes, support different 
relationship types, and accommodate continuously 
changing nodes and edges. 

This systematic literature review has been motivated by 
the evolution of graph data structures to address 
information complexity with temporal dimensions. The 
objective is to explore graph database applications in 
managing spatio-temporal data and the algorithms used to 
support data analytics. This research aims to investigate 
graph data structures and algorithms in managing spatio-
temporal data in graph databases over the past six years. 
This will be achieved by addressing spatio-temporal data 
management issues, gaining an understanding of how such 
data is stored in graph data structures, and providing future 
directions for graph data structure applications that involve 
spatio-temporal data. 

This paper is organised into six sections. Section II 
reviewed the related works; Section III describes the 
methodology; Section IV provides the finding that include 
statistical analysis of selected publications such as number 
of publications by year, list of journals’ title by year, 
keyword co-occurrence map summaries of the graph data 
structures and algorithms used in previous research to store 
and leverage spatio-temporal data. Section V follows and 
discusses the suitability of graph data structures for 
managing spatio-temporal data across different 
environments, introduces the concept of “spatio-temporal 
graphs”, compiles spatio-temporal analyses from previous 
research, and addresses challenges and future directions. 
Section VI concludes the paper. 

II. RELATED WORKS 

Relational databases have dominated as data 
management platforms for decades, particularly for 
geospatial information at industrial levels due to their data 
integrity, consistency, security, and spatial data support 
capabilities. However, alternative database capabilities 

should be considered to handle aspects such as 
heterogeneity, connectivity, and high-dimensional data, 
like spatio-temporal information, as data volume increases 
and geographical areas necessitate integration of multiple 
data sources.  

A review by Das and Ghosh [10] provided a 
comprehensive survey of data-driven approaches for 
spatio-temporal analysis, acknowledging that  
spatio-temporal data has a highly interconnected nature, 
where values at one location and time are influenced by 
neighboring locations and previous time periods, requiring 
handling of “complex relationships”. This perspective is 
further supported by Breunig et al. [11], whose review 
identified five key milestones in geospatial data 
management research. Particularly relevant to our research, 
they highlighted the revival of graph databases as a future 
direction for supporting big geospatial data analysis. 
However, they also acknowledged that “one of the major 
topics within this research will be how to integrate known 
geospatial-, spatio-temporal- or nD-access methods into 
the property graph system,” indicating a significant 
research gap in understanding how graph databases can be 
practically applied to spatio-temporal data management. 
This gap motivates our systematic review, which 
investigates the current state of graph database 
applications specifically for spatio-temporal data across 
various domains and identifies the techniques and 
challenges involved in this emerging field. 

Several empirical studies on managing spatio-temporal 
data have provided insights into the advantages of using 
graph databases for this purpose. Effendi et al. [2] 
conducted an empirical study comparing graph databases 
(TigerGraph and JanusGraph) with relational databases 
(PostgreSQL) for managing spatio-temporal data. The 
results indicated that TigerGraph provided faster response 
times and notable horizontal scaling advantages that 
improved querying of large data volumes. These findings 
demonstrate the efficacy of graph databases to manage 
spatio-temporal data through efficient query traversal 
rather than the multi-join queries required by relational 
databases. Sun and Sarwat [12] further demonstrated that 
graph databases can be applied to geospatial data by 
developing GEOEXPAND, a query operator involving 
spatial predicates (e.g., within, range, and spatial join). 
This operator benefits applications such as geospatial 
knowledge base queries, point of interest 
recommendations, and GeoSocial advertisements. 
Although this research did not include spatio-temporal 
aspects, it indicates the potential for extension with 
temporal dimensions to advance graph-based geospatial 
analytics. 

While recent reviews have begun exploring graph-based 
approaches for spatio-temporal data, existing reviews 
remain limited in scope. Del Mondo et al. [13] provided a 
prospective study of spatio-temporal graphs and 
knowledge graphs for geographical phenomena, 
specifically using maritime transportation as a case study, 
focusing primarily on theoretical modeling principles and 
integration frameworks. Rakhmangulov et al. [14] 
examined spatio-temporal graphs specifically for 
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transportation, revealing significant growth in graph-based 
deep learning approaches for traffic forecasting.  

The growing recognition of graph-based approaches for 
spatio-temporal data is further evidenced by domain-
specific algorithmic reviews. Bui et al. [15] provided a 
comprehensive taxonomy of Spatio-Temporal Graph 
Neural Networks (ST-GNNs) specifically for traffic 
forecasting. While their focus was on predictive 
algorithms rather than data storage and management, their 
work demonstrates the inherent compatibility between 
graph-theoretic approaches and spatio-temporal data 
analysis. Additionally, Ma et al. [16] advanced the state of 
research on spatio-temporal graphs by focusing on 
computational efficiency in spatio-temporal prediction 
algorithms. However, these studies primarily focus on 
algorithm optimization rather than examining the 
fundamental data management infrastructure. 

These reviews adopt domain-specific approaches and 
have not examined the unique requirements and 
opportunities present in Geographical Information System 
(GIS) and spatio-temporal data management contexts 
across diverse application domains. This limitation 
necessitates further investigation of spatio-temporal data 
management techniques in graph databases, 
comprehensively examining both algorithms and graph 
database data structures. 

To accommodate various complex network needs, 
graph data structures are constantly evolving. Previous 
reviews have documented important aspects of graph 
database evolution and applications, though from 
perspectives outside the GIS domain. Das and Soylu [9] 
provided a comprehensive review of “special graphs” from 
a general data science perspective, cataloguing the 
structural evolution from basic graphs to heterogeneous, 
dynamic, and multidimensional variants that better 
accommodate real-world complexity. While their focus 
was on general complex network applications rather than 
geospatial systems, their work established theoretical 
foundations for understanding how graph structures can 
assign multiple cardinalities to nodes, support different 
relationship types, and accommodate continuously 
changing nodes and edges. These principles are directly 
applicable to spatio-temporal data management.  

Similarly, Xia et al. [5] extensively surveyed  
graph-structured algorithms from an industrial asset 
maintenance perspective, organizing applications 
according to maintenance workflows spanning from 
anomaly detection to decision-making. Although their 
domain focus was manufacturing systems rather than 
geospatial applications, they demonstrated graph-
structured algorithms’ capacity to leverage complex 
network data and temporal dependencies, providing 
valuable insights for spatio-temporal analysis approaches. 
Additionally, Wang et al. [17] conducted an investigation 
on addressing spatio-temporal data management in 
evolving graph networks, highlighting effective continual 
learning approaches for traffic prediction using  
pattern-based frameworks. Their work establishes 
important foundations for managing evolving  

spatio-temporal networks through pattern expansion and 
consolidation mechanisms. 

Building upon these domain-specific advances, this 
systematic literature review extends the investigation to 
encompass a broader range of spatio-temporal applications 
and graph database technologies. This systematic 
examination of existing literature reveals a critical gap in 
spatio-temporal data management. While individual 
components exist, such as spatio-temporal data as 
interconnected networks [10, 11], graph database spatial 
capabilities [12], temporal handling approaches [2], 
spatio-temporal analytics techniques [13–16] and 
structural evolution frameworks [9, 17], no comprehensive 
synthesis exists of how graph data structures specifically 
address the multidimensional challenges of  
spatio-temporal data management across diverse 
application domains. Current reviews either address 
spatial OR temporal aspects separately with limited 
relation to spatio-temporal scenarios. 

This systematic literature review addresses this gap by 
investigating the state of graph data structures and 
algorithms in managing spatio-temporal data in graph 
databases over the past six years. This will be achieved by 
addressing spatio-temporal data management issues, 
gaining an understanding of how such data is stored in 
graph structures, and providing future directions for graph 
data structure applications that involve spatio-temporal 
data. The contributions of this paper include: 
(1) Providing the state of research on graph data structure 

development and graph-structured algorithms utilised 
in managing spatio-temporal data across various fields 
and applications. 

(2) Providing insights on the types of spatio-temporal 
data inputs used in previous research for storage in 
graph data structures. 

(3) Providing a list of algorithms used in previous 
research for managing spatio-temporal data and 
performing data analytics. 

(4) Providing insight on spatio-temporal analyses 
conducted using graph-structured databases and 
algorithms. 

(5) Providing the future research trajectories of the graph 
database and graph-based algorithms with  
spatio-temporal data. 

III. METHOD 

A systematic literature review was implemented to 
synthesise findings based on the four objectives defined 
above. The review encompasses research conducted from 
2019 to 2024. This six-year timeframe was selected 
because it represents a critical period of maturity for graph 
database technologies. Three credible databases, namely 
Scopus, Science Direct, and Web of Science, were used to 
search for papers using the keywords “Graph” and (“Data 
Structure” or “Algorithm”) and (“spatio-temporal” or 
“spatial-temporal” or “temporal”) and “Graph Database”.  

This comprehensive keyword approach facilitated 
acquiring research on graph data structures for databases, 
graph-structured algorithms, algorithms used in graph 
databases, and applications of graph databases in  
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spatio-temporal contexts. The three databases yielded 120 
articles as a result of the keyword search. Three filtering 
phases were designed to obtain the most relevant papers.  

The first phase resulted in the selection of 40 papers 
based on the presence of keywords in the title and abstract. 
In the second phase, articles were ranked using the 
Ordinatio formula, which considers publication year, 
citation count, and impact factor. This screening yielded 
29 papers, which underwent full-text screening in the third 

phase, resulting in 23 papers for synthesis. The remaining 
six papers were excluded due to their lack of relevance to 
the research scope. Most subject areas involved computer 
science, engineering, earth and planetary sciences, and 
mathematics. All selected publications were English-
language, full-access journal articles. Table I summarises 
the filtration and review strategies, and Fig. 1 illustrates 
the systematic review procedure. 

TABLE I. FILTRATION AND REVIEW STRATEGIES 

Initial Identification 

Filtration 
First phase: Identification 
and screening by title and 

abstract 

Second phase: Identify 
eligibility through Oridnatio 

method 

Third Phase: Full-Text Screening & Final 
Inclusion 

Conducted 
searching on the 
databases using 

defined keywords 
within the 6 years 

Review 
Strategies Reviewed title and abstract 

Computed ranking using 
Ordinatio formula considering 
publication year, citations, and 

impact factor 

Reviewed full articles 

Filtration 
Details 

Included papers with defined 
keywords in title and abstract, 

removed duplicates 

Excluded papers not satisfying 
Ordinatio parameters 

Identified papers within context of managing 
spatio-temporal data with graph data structure 

and algorithm in a graph database 
Number of 

articles 120 identified 40 identified 29 identified 23 identified 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Systematic review procedure. 

IV. FINDINGS 

The six-year timeframe is considered to be the crucial 
emergence of graph database technologies. Neo4j, a graph 
database, underwent significant advancement during this 
period. Spatial search trees (R-Trees) were employed as 
spatial indexing, which is essential for geographic data. 
This approach is valuable for managing complex 
geospatial data [18]. The spatial functionality in the Neo4j 

graph database was available at least by 2018. Research 
during this period also focussed on improving the 
performance and scalability of graph databases and 
reached a significant milestone, where the development of 
high-performance graph databases could scale to hundreds 
of thousands of cores [19], making graph databases 
suitable for a wide range of applications and temporal data.  

From an industry perspective, the graph database 
landscape has evolved significantly. The rapid growth of 
social networks and other graph data has created a high 

Research Aim 

Investigate the graph data structure 
and algorithm in managing  
spatio-temporal in graph database 
within the period of 6 years 

 

Research Objectives 

(1) Obtaining the spatio-temporal 
data management issues. 

(2) Establishing the understanding 
of how spatio-temporal 
properties stored and manage 
using graph data structure. 

(3) Addresing the future direction 
of graph data structure 

Defining keywords in databases 
n = 120 

“Graph” AND (“Data Structure” OR 
“Algorithm”) AND  
(“spatio-temporal” OR “spatial-
temporal” OR “temporal”) AND 
“Graph Database” 

Database used: Scopus, Science 
Direct and Web of Science 

Criteria  
Subject area: Computer science, 
engineering, earth & planetary 
sciences and mathematics, 
Literature source: Scopus and 
Wos indexed Journal article, 
English language, full access 
papers, non-duplication document, 
range 2019 until 2024 

Filtering Procedures 
• First Phase (n = 40): 

Identification and Screening by 
title and abstract 

• Second Phase (n = 29): 
Identify Eligibility through 
Oridnatio method, Ranking the 
papers according to 
InOrdination calculation 

• Third Phase (n = 23): Full text 
screening 
 

Synthesis the papers 
 

(1) Identification of spatio-
temporal data stored in the 
graph data structure 

(2) Identification on algorithm 
used in managing spatio-
temporal data 
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demand for graph technologies in the market, which led to 
the emergence of various graph databases, systems, and 
solution implementations. The global market for graph 
databases is expected to grow by 21.7% from 2019 to 
2027, reaching $4.6 billion by 2027 [20]. Furthermore, this 
period has seen significant research and development 
initiatives aimed at advancing graph database 
technologies. For example, the development of 
methodologies for knowledge discovery in labelled and 
heterogenous graphs has demonstrated the ability to 
effectively extract insights from graph-structured data 
across various domains. This research was initiated with 
considerable attention due to the exponential growth of 
graph-modelled data, resulting in the expansion of the 
scope of graph database applications [21]. 

The selected papers were sorted by year to analyse 
research trends. Fig. 2 shows an alternate rise and fall in 
publication counts, with 2022 having the highest count. 
Early 2024 publications suggest a promising start to the 
year. The initial search yielded 120 articles, but the final 
inclusion of 23 shows that the intersection of graph 
databases, spatio-temporal data, and GIS is still a 
specialised research area in its early stages. Table II 
illustrates this by showing how the publications are spread 
across different journals, rather than concentrating them in 
a specific area. The result suggests that interest is coming 
from various fields rather than from an established 
research community. 

To understand research trends in managing  
spatio-temporal data in graph databases, a keyword co-
occurrence map was generated using VOSViewer, 
evaluating 23 papers. Fig. 3 shows five keyword clusters, 
with “graphic methods” being the most common, followed 
by “semantics”, “data mining”, “graph database”, and 
“complex networks”. “Graphic methods” refer to 
representing and visualising data using graph structures 
composed of nodes and edges. Semantic data, often 
managed in graph databases, enable complex queries and 
reasoning. Network-like or complex network structures 
are ideal for graph data management. Data mining is a key 
technique for analysing network data. 

 
Fig. 2. Number of publications by year. 

TABLE II. LIST OF JOURNAL TITLES BY YEAR OF PUBLICATION 

Year Journal Title 
2019 Geoinformatica 

2021 Computers in Industry 
Renewable and Sustainable Energy Reviews 

2022 

Journal of Manufacturing Systems 
Information Fusion 

Expert Systems with Applications 
Building and Environment 

Transportation Research Part C: Emerging Technologies 
Future Generation Computer Systems 

Remote Sensing 
Data & Knowledge Engineering 

Computers & Geosciences 

2023 

International Journal of Digital Earth 
Chemometrics and Intelligent Laboratory Systems 

Neurocomputing 
Applied Soft Computing 

2024 

SoftwareX 
World Wide Web 

Applied Soft Computing 
Engineering 

Expert Systems with Applications 
Automation in Construction 

Data & Knowledge Engineering 
Information Systems 

 

 
Fig. 3. Keyword co-occurrence map of managing spatio-temporal data using graph data structure and algorithm in graph database. 
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It highlights the frequent use of “graphic methods” in 
applications like surface waters network analysis and 
anomaly detection, which exemplify complex networks. 
The data types involved include trajectory, semantics, and 
heterogeneous data. These data are used for digital storage, 
visualisation, and creating knowledge graphs to facilitate 
decision-making. Graph databases are an ideal platform 
for managing such complex data structures, which aligns 
with the rise of big data and the Internet of Things. 
Additionally, the research explores utilising stored data for 
further analysis through data mining and algorithms like 
clustering and long short-term memory. 

Fig. 4 shows the graph database relation map, which 
demonstrates how spatio-temporal dynamics applies graph 

databases with trajectory and semantic data inputs for 
spatio-temporal analysis. We have observed alternating 
trends in publication frequency with potential growth in 
2024, as a result of these findings. The diverse journal 
titles indicate multidisciplinary interest in this research 
area. The five top keywords—graphic methods, semantics, 
data mining, graph database, and complex networks—
provide additional insight into areas related to graph 
applications. The final included papers underwent 
synthesis to identify spatio-temporal data issues and 
compile the ways in which graph data structures and 
algorithms address these issues, as summarised in the 
following subsections. 

 

 
Fig. 4. Graph database keyword co-occurrence map. 

A. Spatio-temporal Data Issues 
Spatio-temporal data management challenges arise 

from high data volumes and heterogeneity due to the 
variety of data sources mentioned earlier. Elayam et al. [8] 
emphasise that spatio-temporal data management 
complexity stems from incoming data and associated 
constraints spanning different dimensions, leading to large 
data volumes. Despite the challenges this high-volume 
scenario presents it should be viewed as an opportunity for 
better analysis through data aggregation and fusion, which 
enable data enrichment. However, achieving data 
enrichment requires stable, highly scalable data handling 
and storage infrastructure [2]. 

Temporal graph traversals face challenges in analysing 
information diffusion in temporal networks due to the 
limitation that the temporal networks are only valid at 
specific times [22]. Since spatio-temporal data is organised 
in sequential order, this limitation hinders the study of 
spatio-temporal patterns, such as disease spread and traffic 
forecasting. Additionally, the highly specific user query 
selections make spatio-temporal data difficult to query in 
RDF-structured graph databases. These challenges are 
compounded when RDF-structured graph databases 
encounter fuzzy aspects of spatio-temporal data, which are 
typically the result of inherent vagueness or uncertainty in 
spatio-temporal applications [23]. 

These challenges have led to attempts to leverage 
commonly used Labelled Property Graph data structures 
and RDF with various modelling techniques to store 
spatio-temporal data. Several research efforts have 
extended basic graph data structures by adding new 
elements to address spatio-temporal aspects. The next 
section discusses these, including dynamic attributed 
graphs and fuzzy spatio-temporal RDF data structures. 

B. Graph Data Structure in Managing Spatio-temporal 
Data 

Basic graph types include directed, undirected, and 
weighted graphs. However, graph data structures have 
adapted in response to the evolution of information 
environments, from simple unidirectional relationships to 
complex interconnections between entities, as well as the 
development of technologies that provide capabilities to 
gather more information over extended time periods. For 
example, in oceanographic studies, Li et al. [7] stored sea 
surface temperature datasets, remote sensing images 
gathered at different temporal intervals and spatial 
resolutions, and historical climate records using Labelled 
Property Graph structures in Neo4j, enabling queries of the 
ocean’s evolutionary state. In disease contact tracing,  
Chen et al. [24] utilised information from smart cards, 
Automatic Vehicle Location systems, shift records, and 
route schedules in the Resource Description Framework 
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(RDF) format to identify disease spread sources in public 
transportation. 

When diverse resources are well-extracted and 
translated into graph data structures, comprehensive 
information connectivity becomes possible. To 
accommodate various data sources and network 
complexity, researchers have adapted components of 
graph data structure to meet specific application needs. 
Several studies adopted Neo4j as their graph-based 
platform [6, 7, 25]. Others adopted RDF data models to 
establish knowledge graphs, as demonstrated by  
Zhu et al. [23] and Chen et al. [24]. While there are also 
other research that developed custom graph data structures 
such as to store various data inputs such as temporal 
reachability graph [3], hierarchical labelled property 
graph  [8], and risk knowledge graph [26]. 

The research fields using spatio-temporal and temporal-
only data include transportation networks, oceanography, 
epidemiology, construction projects, information 
networks, power systems, and railway maintenance. This 
diversity demonstrates the importance of including  
spatio-temporal data in analyses to enhance understanding 
of changes through simulations, predictions, and 
forecasting, as well as to manage complex systems and 
phenomena over time. Some research using only temporal 
data was included due to its potential extension to  
spatio-temporal support. Table III provides details on 
spatio-temporal and other data inputs and their 
management in graph-structured approaches. Table IV 
explains how spatio-temporal data is stored and managed 
using graph data structures. 

TABLE III. SUMMARY OF THE GRAPH DATA STRUCTURE IN VARIOUS FIELD AND APPLICATIONS 

Field Application Summary Graph data structure approach 

Railway 
Maintenance Risk Assessment [26] 

Proposed a multi-dimensional network 
topology graph (knowledge graph) to manage 

hazard-related entities 

Applies directed graph. Edge/node assigned with weight 
with variable parameter to represent dynamic conditions 

in static graph structure 

Power System 
Power system 

management in 
extreme events [4] 

Proposed time-varying complex network graph 
approach to represent power system 

information for simulation and resilience 
prediction 

Applies undirected graph. Nodes represent power system 
components, edges represent time dimension, and layers 

represent operational situations within specific time 
periods 

Information 
Network 

systems for storing 
and analysing 

temporal graphs [22] 

Provides system architecture to resolve 
temporal graph traversal challenges involving 

temporal information diffusion analysis 

Developed vertex (node) events and edge events where 
both maintain key-value properties valid at specific times 

Managing fuzzy 
aspect in 

spatiotemporal spatio-
temporal data [23] 

Developed six tuples from initial RDF data 
structure to improve efficiency and 

effectiveness of querying fuzzy spatio-temporal 
RDF 

Six tuples consist of directed edges, vertices 
(with/without temporal or spatial information), 
information labels (text or temporal), and fuzzy 

membership degree assigned to vertex and edge structure 

Social Network [27] 
Discussed methodologies for detecting events 
from social networks by considering multiple 

dimensions including spatio-temporal 

Nodes represent users, locations and events with latitude, 
longitude and timestamp properties. Edges represent 

temporal relations with start/end time properties 

Construction Construction project 
management [28] 

Proposed location- and time-dependent graph 
meta-model to manage schedule deviations and 

cost overruns using knowledge graph 
Project location and timestamp defined as node properties 

Logistic and 
Supply Chain 
Management 

Production Logistic 
[29] 

Proposed dynamic spatio-temporal knowledge 
graph to manage resource allocation in 

production logistics. 

Heterogeneous graph with nodes representing resource 
locations and edges representing temporal activities and 
costs. Spatial coordinates and timestamps dynamically 

updated 

Epidemiology Disease spread [24] 
Using LPG data structure to construct 

knowledge graph for digital epidemic contact 
tracing on large-scale network 

Directed graph with nodes representing passengers or 
vehicles; edges representing riding acts. Uses composite 

relationships for passengers with multiple trips 

Construction Construction project 
management [20] 

Proposed location- and time-dependent graph 
meta-model to manage schedule deviations and 

cost overruns using knowledge graph 
Project location and timestamp defined as node properties 

Transportation 
Network 

Traffic congestion 
identification [23] 

Proposed event-process-centred dynamic 
model for urban traffic congestion using LPG 

data structure 

Nodes represent taxi trajectory states, processes, points of 
interest. Temporal attributes stored as relationships 

labelled ‘Next/precedence’ between states and processes 
to represent sequential order. 

Traffic forecasting [3] Proposed spatio-temporal reachability graph of 
road network to forecast dynamic traffic flow 

Nodes represent road segments, edges represent 
reachability between segments within given time periods 

Traffic monitoring [6] Modelled complex smart city problems into 
graph data structure 

One-layer-directed multiattributed graph with static and 
dynamic nodes. Static nodes contain static attributes 

(location/altitude) and dynamic attributes (average travel 
speed). Dynamic nodes contain ID and timestamp 

Maritime mobility 
patterns [8] 

Used LPG data structure to represent moving 
objects, trajectory, and activity patterns at 

various scales 

Set of directed graphs with hierarchical properties. Two 
node types: port (vessel dock location) and Significant 
Turning Point (trajectory direction change position). 
Temporal attributes assigned as edges between nodes 

Oceanography 

Oceanographic 
research [24] 

Proposed ocean current-oriented graph model 
using LPG data structure 

Six node types representing spatial locations at different 
times/depths and four edge types representing spatio-

temporal information trajectories 

Ocean monitoring [7] 
Proposed process-oriented graph model using 

LPG data structure to obtain marine knowledge 
from time series raster data 

Four node types (process, sequence, linked, state) 
representing marine objects and two edge types 

(inclusionary and evolutionary) representing relationships 
between objects 
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TABLE IV. SUMMARY OF TEMPORAL AND SPATIO-TEMPORAL DATA INPUT AND ITS GRAPH-STRUCTURED DATA MANAGEMENT 

Ref. Data Input Graph-based Data Management 

[26] 

Historical accidents / incidents reports. 
Matter extracted: incident cause, 

description, consequences, time, location 
and running speed 

Time and location are stored as an entity in the knowledge graph by the Named Entity Recognition 
(NER) algorithm to identify the location of an entity from the unstructured text information and 
assign it in correct category. However, the algorithm has shown quite an error percentage when 

extracting time information. The nodes indicate hazards-related entities and edges denotes linking 
among entities. The degree of node represents the number of links the node has, and the weighted 

degree of the node considers the weight of the edge 

[4] Data network: power system, traffic 
system and communication system 

Construct time-varying networks to capture implicit changes in the operational situation, which is 
helpful to enhance the situational awareness of power systems. 

[22] 
Temporal Information Network such as 

bitcoin, college Messege, and e-mail from 
standford network analysis project 

Construct an edge event and vertex event that enable information to be stored in a valid at a 
specific time. Construct a gamma table that updates frequently whenever there are new nodes 

added that related to the source (A), uses graph traversal to query the gamma table instead of the 
whole graph scan when want to query for specific vertix event. Like to see how one information 

spreads from one person to another 

[23] Fuzzy spatio-temporal data 
In dealing with vagueness and uncertainty in spatio-temporal data, the RDF data extend its basis 
structure by including the fuzzy membership degree to indicate the likelihood of the existence of 

the vertex in the relation. 

[1] 

Temporal data consists of the perception of 
thermal comfort of the occupant, heart rate, 

and near body temperature. Spatial data 
consist of a BIM model of the building 

converted into graph structure 

Uses graph embedding to mesh element into a lower-dimensional vector and Graph Neural 
Networks to extract comfort similarities between different locations in the building 

[30] Data from the event history data of taxi 
trajectory 

The taxi trajectory breaks down into several nodes that represent processes, states, and point of 
interest (spatial) stored as nodes. Temporal attributes stored as relationships between nodes. It is 
labelled “Next/precedence” in the relationship (edge) between states and processes to represent 

sequential order from the location of the taxis to the movement of the taxis. 

[3] Vehicle trajectory, road network 

Using vehicle trajectory data to calculate spatio-temporal reachability between road segments. The 
results are then sorted in a matrix, and the road structure is reconstructed based on the time 

reachability matrix, which results in spatio-temporal reachability graph. Then, uses the spatio-
temporal reachability graph with clustering algorithm to partition road segments into cluster. This 
clustering approach helps capture regional information and organise road segments into groups, 

which can improve the accuracy of traffic flow prediction by considering the spatial distribution of 
road segments within the road network 

[6] Road intersections. Road segments 

The nodes represent homogeneous or heterogeneous city entities, and the edges represent the 
existing relationship between the city entities. The properties of the graph data structure is a multi-

modal, multi-layer attributed time-varying network with hierarchical organisation of the nodes. 
The nodes represent road intersections, edges represent road segments, the attributes of the road 

intersections consists of a static attribute: unique identifier (osmID16), a latitude-longitude value, 
and their area name, while the static edges attribute includes linkID, fromNode, toNode, street 

name, street length, speed limit, estimated free-flow speed, area name, and coordinates; fromNode 
and toNode are the osmID of the adjacent nodes of an edge, and coordinates is its geometry. The 

dynamic attribute consists of the link ID, the timestamp of the data aggregation time, and the 
average travel time. The single layer of the graph composed of multiple subnetworks representing 

different geographical area 

[7] 

Data set of sea surface temperature, remote 
sensing images, and historical climate 

records. Gathered at different intervals, 
ranging from daily to annual, with spatial 

resolutions varying from metres to 
kilometres and even to global scales 

From the time series of the raster formatted dataset, the snapshot objects were extracted, then the 
process objects were reconstructed from the sequence object, and the evolutionary process was 

identified from the process objects 

 
 

This section outlines the process of storing networked 
data, including spatio-temporal data, using a graph data 
structure. Most of the applications utilised the Neo4j graph 
database, which uses a Labelled Property Graph (LPG) 
data structure to store information. Although Neo4j is the 
most used platform, the technique of modelling the  
spatio-temporal data into LPG was applied differently by 
previous researchers based on their respective purpose. 
The same applies for research that uses RDF in managing 
spatio-temporal data. However, few studies have focused 
on implying the spatio-temporal element into part of the 
graph data structure; several of them are on dynamic 
graphs [31], on dynamic attributed graphs [32], and on 
fuzzy spatio-temporal RDF [23], which will be explained 
in the next section. The term ‘temporal graph’ will be 

introduced in Section V, with the inclusion of previous 
research that closely represents temporal graphs and how 
it enhances spatio-temporal graph data analysis. 

C. Algorithms for Managing Spatio-temporal Data 
Graph data structures demonstrate how to store and 

retrieve data, whereas algorithms decipher the stored data 
to solve specific problems. This section compiles and 
categorises algorithms associated with applications using 
spatio-temporal data inputs, as shown in Table V. Some of 
the categories that assist graph data analytics in retrieving 
insights from spatio-temporal data are data representation, 
graph representation learning, graph pattern matching, 
data transformation and representation learning, 
pathfinding, and centrality algorithms. 
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TABLE V. SUMMARY OF GRAPH-STRUCTURED ALGORITHMS AND ITS APPLICATION IN MANAGING SPATIO-TEMPORAL IN GRAPH DATABASES 

Type of algorithm Algorithm Explanation Ref 

Data representation Visibility Graph Constructs time-series data into complex networks and analyses operational data from 
topology perspective [4] 

Graph 
representation 

learning 

Graph Convolutional 
Network Type of graph neural network that skilfully transfers deep learning to graph data [3] 

Graph Attention 
Networks 

Leverages attention mechanisms to focus on specific nodes/edges and captures complex 
relationships and dependencies allowing incorporation of spatio-temporal information 

in the analysis and prediction tasks. 
[4] 

Graph Neural Network 
Performs convolution for signal features, generates high-order representation features, 

and aggregates processed features for prediction [5] 

Cluster data in spatial area of influence [1] 
Graph pattern 

matching 
Path-based approximate 

matching 
Leverages spatio-temporal data to find query graph occurrences within data graphs, 

enabling retrieval of information based on spatio-temporal relationships [23] 

Data 
Transformation and 

representation 
learning 

Graph embedding 

Reduces computational costs during graph data analytics and represents graphs in 
lower-dimensional space while preserving original data [1] 

Detects anomalies in dynamic graphs by converting graph structure to vector space to 
analyze nodes based on structural similarity [33] 

Clustering 
algorithm 

Spectral clustering Cluster nodes based on graph topology and spatio-temporal connectivity 

[3] K-means Cluster nodes based on feature similarity 

Agglomerative Hierarchical clustering method building nested clusters reflecting spatial proximity and 
traffic similarity 

Graph-based fuzzy 
clustering algorithm 

Partitions graphs into highly connected subgraphs using node betweenness and edge 
connectivity, then applies fuzzy clustering to determine information membership values [34] 

Pathfinding 
algorithm 

Depth-First-Search Traversal algorithm focusing on data structure depth, exploring graph network to 
furthest path before backtracking [23] 

Breadth-First-Search Traversal algorithm exploring neighbouring node paths before moving to next level, 
commonly used for shortest path identification 

Centrality 
algorithms 

Degree centrality Determines node importance in networks [4] Betweenness centrality Identifies nodes connecting different network parts 
 

1) Data transformation and graph learning 
representation algorithms 

In research about building occupant thermal comfort, 
Abdelrahman et al. [1] constructing information from 
multiple data types (occupant, environmental, and building 
spatial data) in graph structure form required data 
discretisation to convert continuous data to sample points 
for computational analysis. For example, continuous 
spatial space was converted into cells, then into nodes and 
edges for graph data structure storage. Graph embedding 
was necessary to represent the graph in lower-dimensional 
space because building properties are pairwise related 
(buildings consist of floors, and floors consist of rooms). 
The discretisation of different data types resulted in 
complex graph structures. Graph neural networks then 
clustered the lower-dimensional data by identifying 
similarities and grouping them into spatial areas of 
influence. 
2) Data representation and graphical learning 

algorithms 
Modern power systems, Ma et al. [4] demonstrate the 

effective application of graph data structures for data 
storage. As power systems involve many interconnected 
entities, breakdowns due to extreme events can cause 
power flow disruptions leading to productivity and 
economic losses. Traditional time series data can be 
converted into graph structures using Visibility Graph 
algorithms. This enables data simulation and prediction 
related to extreme events through graph analytics such as 
Graph Attention Networks, which capture complex 
relationships and dependencies by integrating spatial and 
temporal elements for prediction tasks. 

3) Pathfinding algorithms 
Pathfinding algorithms identify optimal routes between 

points by exploring and evaluating paths based on criteria 
like distance and time. They are common in route network 
applications that use graph structures, and they are also 
used in digital contact tracing [24] to reconstruct possible 
infection routes. This process starts with detected cases 
and traverses backward to potential infection sources, 
creating directed relationships that indicate infection flow 
and result in comprehensive contact tracing knowledge 
graphs. 
4) Graph pattern matching algorithms 

Graph pattern matching finds subgraphs in a data graph 
that match query graph patterns. For queries like 
identifying traffic congestion-prone areas around 8 AM, 
where “around” represents fuzziness, Zhu et al. [23] 
applied path-based approximate matching. This technique 
finds paths in the data graph similar to the requested 
criteria, leveraging depth-first and breadth-first search 
traversal algorithms to comprehensively explore possible 
paths within the main graph. 
5) Clustering algorithms 

Clustering algorithms group graph networks by criteria, 
distance, or connectivity. For traffic forecasting  
research [3], it was necessary to investigate route networks 
using graph structures with spatio-temporal aspects in 
order to address complex road structures like multi-level 
highways, where Euclidean distance calculations are 
inaccurate. For traffic prediction modelling, road segments 
were grouped based on spatio-temporal reachability using 
spectral and k-means algorithms. Spectral clustering 
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grouped nodes by spatio-temporal connectivity, while  
k-means clustered them by feature similarity to reflect 
real-time traffic conditions. This combined approach 
integrated spatio-temporal information to enhance the 
capabilities of the traffic prediction model. 
6) Centrality algorithms 

Centrality algorithms identify nodes with the highest 
importance and influence in networks. In modern power 
system management during extreme events [4], graph data 
structures enable the identification of which components 
would be most impacted, using degree centrality and 
betweenness centrality to prioritise planning and decision-
making for critical areas and components. 

V. RESULT AND DISCUSSION 

This section discusses graph data structure capabilities 
in storing spatio-temporal data across various data 
environments, explores the state of research on the 
development of spatio-temporal graphs, compiles  
spatio-temporal analyses conducted in previous research 
using graph structures and algorithms, and addresses 
challenges and future research directions. Spatio-temporal 
graph can be defined as a type of graph that captures the 
temporal patterns and spatial information of entities’ usage 
events, where nodes represent locations, timestamps, and 
the entity itself while edges represent relationships 
between locations, timestamps, and specific entities based 
on similarities and periodic patterns [35]. 

A. Managing the Versatility of Data Situations with 
Graph Data Structure 

To manage data heterogeneity, information schemas 
must be converted to graph data models for storage in 
graph structures. Algorithms expedite the conversion of 
diverse data sources, resulting in heterogeneous graphs. 
Many studies in Table IV exhibit heterogeneous graph 
properties resulting from various data inputs, with several 
extending to knowledge graphs. 

Graph database structures allow the definition of new 
node and edge types without the need to restructure the 
entire database. This flexibility stems from the ability to 
attach attributes to nodes and edges. Data enrichment is 
facilitated by establishing relationships between nodes 
with different attributes and contexts, which leads to 
insightful knowledge graphs. 

Data enrichment with temporal data is well 
demonstrated in analysing power systems’ operational 
resilience during extreme events [4] by converting 
multiple operational datasets into time-varying networks. 
These networks use nodes to represent power system 
components, edges for time dimensions, and layers for 
operational situations within specific time periods. 

This capability has led to the recognition of graph data 
structures in the management of complex networks. 
Translating complex networks into graph structures 
enables the understanding of the ways in which specific 
nodes impact others by traversing established 
relationships. Vulnerability points can be identified and 
used to create intervention strategies and improved 

operational designs for applications in power systems, 
transportation networks, and disease spread modelling. 

Heterogeneity in geospatial data presents additional 
challenges, as the dimensions of data sources may vary 
depending on the instruments used. Some sources may be 
three-dimensional (X, Y, Z), while others include 
additional time dimensions, with Z potentially 
representing altitude or depth. Spatio-temporal 
information may contain sequences of timestamped 
locations. To represent dynamic properties of spatio-
temporal trajectories, Elayam et al. [8] used spatio-
temporal directed graphs with sub-graphs composed of 
spatio-temporal nodes and edges containing location and 
timestamp information. Spatio-temporal graphs represent 
entities as nodes and edges with semantic attributes, with 
relationships reflecting spatial topology and temporal 
relations. 

B. Innovations and Applications in Moving towards 
Construction of Spatio-Temporal Graphs 

1) State of temporal graphs 
A Temporal Graph can be defined as a type of graph 

structure that captures both spatial and temporal 
dependencies among its features, commonly used in 
spatio-temporal data analysis for long-term  
forecasting [36]. Examples of temporal graphs include 
dynamic graphs [31] and dynamic attributed graphs. In 
2007, complex network concerns centred on topology 
changes. Dynamic graphs were proposed to address 
weights associated with vertices or edges that change with 
time, thereby forming time series for each vertex and edge. 
This weight variability helps identify trends in dynamic 
graphs, such as in financial market applications.  

Dynamic attributed graphs are defined by Fournier-
Viger et al. [32] as a type of graph structure that have the 
capability of storing entities in the nodes with multiple 
attributes and also representing relationships between 
entities with their evolution over time. These graphs 
operate using time-ordered sequences of snapshots, where 
edges and nodes can be inserted or removed, and attribute 
values may change at each timestamp.  

Researchers have proposed their structure for studying 
attribute evolution and mining frequent patterns [37]. This 
research establishes a foundational concept for storing 
evolving temporal attributes in graph structures, with 
potential extension to spatio-temporal attributes. Fig. 5 
displays the definitions related to dynamic attributed 
graphs as discussed by He et al. [37] and  
Fournier-Viger et al. [32]. This involves merging the 
structures of the dynamic graph (Definition 2) and 
attributed graph (Definition 3), both of which extend the 
basic foundation of the graph data structure, originally 
started with vertices and edges, as shown in Definition 1. 

The capability of dynamic attributed graphs resulted in 
it being proposed for studying attribute evolution, and its 
structure is valuable for mining frequent patterns, as 
demonstrated by He et al. [37]. This research establishes a 
foundational concept for storing evolving temporal 
attributes in a graph data structure, which can be extended 
to store spatio-temporal attributes. 
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Fig. 5. Constructing the definition of dynamic attributed graph. 

2) Storing dynamic processes in labelled property graph 
Constructing spatio-temporal graph data structures 

enhances analysis capabilities beyond simple temporal 
data queries (e.g., specific date or date range queries) by 
enabling dynamic phenomena analysis to identify the 
sources and reasons behind events. Dynamic attributed 
graphs have previously demonstrated the potential to 
uncover valuable patterns through frequent pattern mining. 

In Labelled Property Graphs, He et al. [30] proposed a 
spatio-temporal Event Process-Centred Dynamic Model 
(EPCDM) to detect and identify causes of traffic 
congestion. The model considers the taxi’s initial location 
(state), motion (processes), and congestion occurrence 
(event) structured as a Labelled Property Graph in Neo4j. 
This research extended the congestion cause analysis by 
systematically organising information as a dynamic 
process to imitate real-life traffic congestion scenarios and 
storing congestion events and taxi motions. It also 
implemented a hierarchy for traffic events by associating 
main jam events with subjam events. 

Another application involves representing ocean 
trajectories as hierarchical subtrajectories, sorted by space, 
time, and depth. The challenge with Argo trajectory data is 
that the representation is characterised by time-ordered 
spatial locations that lack a clear distinction between sea 
surface and parking depth trajectories. Cunjin et al. [38] 

adopted Labelled Property Graph structures to represent 
Argo trajectories as subtrajectories at different depths, 
assigning time-ordered relationships between 
subtrajectories to represent hierarchical organisation. This 
approach enabled chronological subtrajectory data 
retrieval and release of trajectories at specific parking 
depths. 
3) Spatio-temporal reasoning through knowledge graph 

using resource description framework 
Spatio-temporal reasoning often uses knowledge graphs 

built with Resource Description Framework (RDF), a 
standard data interchange model using subject-predicate-
object triples. This structure enables complex reasoning by 
representing entities as interrelated networks [20], making 
data machine-readable and supporting semantic web and 
knowledge reasoning applications. 

In addition, knowledge graphs have been applied to 
contact trace networks [24], built from public 
transportation system data fusion to efficiently organise 
large-scale transportation data and construct  
high-resolution contact networks. This enables knowledge 
reasoning beyond simple data retrieval, focusing on 
deriving new information. The process of deriving new 
knowledge from existing data is facilitated by the 
extraction of edge structures, which helps identify entity 
relationship patterns, thereby enabling inference 
development and the creation of new relationships. The 
knowledge graph is constructed on a trip chaining model, 
where spatio-temporal correlations between passenger 
travel trips can be represented through passenger trip 
chains reflecting continuous travel trajectories. 

Knowledge reasoning is commonly associated with 
RDF data models due to their semantic representation. 
However, it can also be constructed using property graph 
structures, as demonstrated by Chen et al. [24] who utilised 
Neo4j to construct public transportation knowledge graphs 
by considering knowledge graphs as information networks 
of nodes and edges. Labelled property graphs provide 
more flexible knowledge graph structures than RDF. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Construction of the fuzzy spatiotemporal RDF data structure. 

RDF faces acknowledged challenges with temporal 
data, such as maintaining temporal interval consistency, 

Graph 
𝐺𝐺 =  (𝑉𝑉,𝐸𝐸) 

Dynamic Graph 
Time series of graph 

denoted as 
𝒢𝒢 = (𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑛𝑛) 

with n as time timestamps, 
where 

𝐺𝐺𝑖𝑖 = (𝑉𝑉𝑖𝑖 ,𝐸𝐸𝑖𝑖) 
 

Attributed Graph 
G is a tuple 𝐺𝐺 =

 (𝑉𝑉,𝐸𝐸,𝐴𝐴, 𝜆𝜆)𝑐𝑐 

Dynamic Attributed 
Graph 

A dynamic attributed 
graph G is a time series 

of attributed graphs 
𝒢𝒢 = (𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑛𝑛) 
with 𝑛𝑛 timestamps, 

where 𝐺𝐺𝑖𝑖 =
(𝑉𝑉,𝐸𝐸𝑖𝑖 ,𝐴𝐴, 𝜆𝜆𝑖𝑖) is an 
attributed graph.  

V is the set of vertices, E is 
the set of edges. 

It is a sequence of graphs 
over time with n as 
timestamps and each graph 
𝐺𝐺𝑖𝑖 has its own set of 
vertices 𝑉𝑉𝑖𝑖 and edges 𝐸𝐸𝑖𝑖. 

It is a graph with additional 
attributes assigned to its 
vertices. V is the set of 
vertices; E is the set of 
edges, 𝐴𝐴 is the set of 
attributes, and 𝜆𝜆 ∶
 (𝑉𝑉,𝐴𝐴)  →  𝑅𝑅 is a function 
that maps attributes and 
vertices to attribute values. 

 

It is a sequence of attributed 
graphs over time. The 
vertex set V and attributes 
set A are constant but edges 
𝐸𝐸𝑖𝑖 and attribute functions 𝜆𝜆𝑖𝑖 
changes over time. 

Def. 1 

Def. 2 

Def. 3 

Def. 4 

Subject s, predicate p, object o 

G = (V, E, C, F, δ, μ) 
• V = Vst ∪ V-st is a set of vertices, Vst represents vertices 

with temporal or spatial information, and V-st represents 

vertices without temporal or spatial information.  

• E ⊂ V × V is a  set of directed edges.  

• C is a set of information labels.  

• F is a function V ∪ E → C for assigning labels to vertices 

and edges, including temporal, spatial, or text information.  

• δ is a membership function V ∪ E → μ to give vertex and 

edge a fuzzy membership degree μ, where μ ∈ (0, 1). 
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handling multi-temporal data (valid time and transaction 
time), and integrating contextual information.  
Wu et al. [39] observed that the primary focus of current 
temporal RDF research is to include valid time, transaction 
time, and bitemporal information into RDF data structures 
by employing models like Temporal Knowledge Base 
(TKB) and multi-temporal RDF. Spatial and spatio-
temporal RDF support can be seen in various spatial 
embedding extensions, such as Multi-Temporal RDF, 
RDF+, stRDF, stRDFS, and YAGO 1/2, enabling more 
complex spatial relationship and pattern analysis. 

Beyond temporal challenges, the inherent fuzziness in 
spatio-temporal applications further complicates RDF 
handling of spatio-temporal data. As shown in Fig. 6,  
Zhu et al. [23] extended the data structure to six tuples and 
introduced fuzzy spatio-temporal RDF. The fuzzy 
membership degree μ was uniquely added to indicate the 

likelihood of a vertex’s existence in relationships. This 
enables spatio-temporal knowledge reasoning queries to 
include possibility and likelihood temporal queries. 
4) Leveraging graph data structure for spatio-temporal 

analysis 
Various insightful spatio-temporal analyses are now 

possible as a result of the previous discussions of graph 
data structures for managing versatile data situations and 
innovations such as dynamic attributed graphs and fuzzy 
spatio-temporal RDF. 

The storage of diverse data sources, including spatio-
temporal data, in comprehensive network graphs with 
algorithms to decipher the stored data enables 
sophisticated analyses across multiple domains. Table VI 
summarises key spatio-temporal analyses from the 
reviewed literature. 

TABLE VI. SUMMARY OF SPATIO-TEMPORAL ANALYSIS 

Ref Field Analysis Explanation 

[4] Power systems 

Forecast wind farm generation to perceive 
extreme event impacts 

Applied graph-based deep learning algorithms (Graph Convolutional 
Network (GCN), Graph Attention Networks (GAT)) to graph data 

representing multiple wind turbines with spatio-temporal data. 

Preventive strategies: Develop operational 
strategies for power systems against 
extreme events; Reallocate loads to 

Electric Vehicle (EV) charging stations 

Compute generation correlations by multiple wind/ Photovoltaic (PV) 
stations to obtain temporal and spatial coupling patterns of renewable energy 

generation. Network data captures coupling characteristics of traffic and 
power flow; during extreme events, electric flow from traffic can supply EV 

flow to balance power system demand. 
Restorative Strategies: Gain insight into 

disruption mechanisms and identify 
associated failures 

Manage spatiotemporal data by modeling coupling mechanisms between 
extreme events and cascading power system failures. 

[22] Information 
Network 

Generated information insights from 
temporal data through temporal evolution 

and information diffusion 

Temporal evolution shows network evolution over time; temporal 
information diffusion shows how information spreads throughout networks 

over time. 

[23] Spatiotemporal 
data management Fuzzy spatiotemporal RDF data Beneficial for fuzzy spatio-temporal reasoning queries such as likelihood of 

events at particular locations. 

[28] Construction 
project 

Temporal query of start/end times of 
building components Evaluates construction time of specific building elements. 

Query enriched knowledge graph by 
linking extracted date and location data 

Detects modifications on building elements and identifies spatio-temporal 
working areas and time-sensitive spots to understand construction progress 

and resource allocation. 

[1] 
Indoor building 
environmental 

quality 

Utilisation of spatio-temporal data for 
predicting similar comfort conditions 

Uses graph embedding for lower dimensional vectors and Graph Neural 
Networks to extract comfort similarities between different building locations. 

[24] Epidemiology Tracing root causes of virus spreading in 
transportation networks Leverages multi-source data with spatiotemporal and temporal elements. 

[25] Transportation 
network 

Identify potential congestion causes 
through point of interest distribution 

Leverages spatio-temporal reasoning in graph databases by querying 
congestion direction and level. 

[3] Transportation 
network Traffic flow forecasting Optimises prediction by considering temporal reachability to capture regional 

information 

[38] Oceanography 
Obtain complete Argo trajectories 

including sub-trajectories at different 
depths 

Uses sequence edges to link surface and parking depth trajectory nodes. 
Enables obtaining sub-trajectories in chronological order, trajectories at 

specific parking depths, and trajectories within various constraints. 

[8] 
Maritime 

transportation 
network 

Historical maritime data analysis 

Fine-scale trajectory graph defined as spatio-temporal directed graph of 
semantic spatio-temporal trajectories. These trajectories form subgraphs with 

spatio-temporal nodes and edges annotated with semantic information 
describing evolving properties and context. 

 

C. Challenges and Current Graph Data Structures’ 
Trade-offs 

The analysis of the papers identified several challenges. 
These challenges were categorised into several categories: 
data representations and modelling, semantic and 
contextual challenges, and data quality and acquisition 

challenges. However, these challenges do not imply that 
they will persist indefinitely; instead, they provide new 
opportunities for this research and drive it forward towards 
improvement, which we will discuss further in future 
directions. Fig. 7 illustrates the challenges and the 
potential future research. 
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Fig. 7. Summaries of challenges and future research direction of graph database application with spatio-temporal data. 

1) Data representation and modelling 
This category addresses the complexity of  

spatio-temporal information that is accurately, efficiently, 
and meaningfully captured by graph database structures. 
These challenges emerge from the inherent complexity of 
representing multidimensional relationships that evolve 
across space and time. It can further be discussed in the 
aspect of structural limitations in graph complexity and 
temporal representation challenges. 

2) Structural limitations in graph complexity 
Creating graph representations from heterogeneous data 

sources presents significant challenges [5, 23, 33]. 
Designing appropriate schemas for heterogeneous  
spatio-temporal data from multiple sources is complex, 
particularly when modelling hierarchical structures with 
temporal aspects. Relationship modelling across time 
requires domain expertise and consideration of 
performance implications.  

Limited geospatial data 
availability 

Semantic ambiguity 

Temporal volatility 

Noise and uncertainty 

Data fusion techniques 

Fuzzy algorithms with 
spatial capabilities 

Holistic spatio-temporal 
approach 

 

Feature selection complexity 

Real-world complexity 
translation 

Optimal spatial granularity 

Adaptive spatial zoning 
algorithms 

Semantic mining 
algorithms 

Contextual relationship 
modeling 

Data representations 
and modeling 

Temporal representation 
 

• RDF reification complexity 
• Causal relationship 
• Temporal granularity 
• Discrete versus continuous 

phenomena 

Structural limitations 

• Handling uncertain data 
• Multidimensional data 

traversal 
• Heterogenous data 

integration 

Adaptive temporal 
representation 

Spatio-temporal 
interpolation 

Temporal algorithms 
enhancement 

Sophisticated spatial 
operators 

Multi-type data storage 
optimization 

Scalability challenges 

Information loss across scales 
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Besides that, the challenges intensify as the data volume 
increases, which results in the emergence of scalability 
issues, particularly for temporal pattern matching. This 
highlights the necessity to enhance the graph database 
capability; attention should be diverted to the matter of the 
databases’ ability to scale efficiently as temporal data 
accumulates, which requires focussed strategies for 
partitioning, archiving, and summarising temporal data 
that maintain its accessibility during data retrieval. 
Moreover, another issue that remains a challenge is 
integrating heterogenous data from different sources in 
unified graph models due to their varying structures.  

However, the technical ability to solve these issues will 
later bring immense advantages and advance research on 
graph databases to another significant milestone because 
of the current interest in integrating data in various 
domains for the application of knowledge graphs, which 
requires a stable heterogenous graph. Additionally, there 
are challenges in handling uncertain and missing data.  
Zhu et al. [23] addressed data integration complexity with 
a six-tuple model that captured vertices, edges, 
information labels, labelling functions, membership 
functions, and fuzzy degrees, though efficient storage 
remains challenging. 

Furthermore, the storage of data with multidimensional 
structures, such as spatio-temporal, can result in 
significant performance bottlenecks due to the inherent 
complexity of multidimensional data traversal.  
Chen et al. [24] and He et al. [30] consistently highlighted 
the computational challenges in processing spatio-
temporal relationships. The fundamental complexity of 
representing real-world relationships in graph 
computational systems is revealed by the structural 
challenges in graph databases, which represent more than 
technical obstacles. Current limitations expose a critical 
frontier in data science, where the ability to capture 
multidimensional, heterogeneous information becomes a 
key research challenge. 
3) Temporal representation in graph database 

The temporal representation in graph databases exposes 
the critical point of computational limitation, as the 
database models are unable to accurately capture the 
temporal continuity of the phenomena. The existing graph 
database models struggle to bridge the gap between 
discrete computational representations and the dynamics 
of temporal processes. Researchers face an immense 
challenge in conceptualising and capturing the temporal 
dimensions of complex systems. In the Labelled Property 
Graph model, He et al. [30] highlighted limitations in 
representing geographic object change processes; the 
model relies on discrete state sequences rather than 
continuous temporal changes. For geographical situations 
with embedded spatio-temporal and semantic information, 
graph database modelling increases management 
complexity, as the challenge in determining appropriate 
temporal granularity remains unsolved with no established 
method for adapting temporal representations across 
different scales.  

Additionally, Li et al. [7] used a hierarchical graph 
model to address data representation challenges by 

modelling oceanic dynamics as process-oriented graph 
structures rather than discrete observations. Despite the 
innovative approach, challenges persist in representing 
spatio-temporal continuity and capturing complex 
relationships between phenomena. Their research 
demonstrates the potential of graph databases to model 
spatio-temporal dynamics, which also highlights the need 
for further optimisation across diverse conditions.  

Next, the algorithm aspect presents additional 
complexities in managing temporal data. The storage of 
temporal data in dynamic attributed graphs demands 
sophisticated algorithmic support. For example, the 
Credible Attributed Rules (CAR-Miner) for dynamic 
attributed graphs is capable of identifying patterns in 
evolving networks; however, it cannot handle time series 
patterns spanning multiple sequential time points. Its 
approach is limited to analysing changes between 
consecutive timestamps, struggling to identify patterns 
across multiple periods and establish temporal causality 
chains.  

Besides temporal representation in LPG, representing it 
in RDF graph models presents complexities including 
reification, which increases triple count and query 
complexity, the inadequacy of RDF’s binary structure to 
capture higher-order temporal relationships, and the high 
storage and processing overhead. These challenges have 
created fragmented temporal RDF extensions with 
inconsistent semantic interpretations and performance 
bottlenecks. At its core, the challenge in representing 
temporal data in a graph database lies in the representation 
of this continuous phenomenon through discrete nodes and 
relationships. The discrete observation and storage 
systems inevitably lead to information loss between 
temporal observations, which makes establishing causal 
relationships difficult and creates a mismatch between 
discrete sampling intervals and continuous process 
evolution. 
4) Semantic and contextual challenges 

Semantic representation in graph databases exposes a 
fundamental challenge of translating complex real-world 
relationships into computationally meaningful structures. 
The complicated task of capturing contextual expressions 
extends beyond simple data connection, demanding 
sophisticated approaches to understand the underlying 
meaning and significance of relationships. This results in 
the graph database facing a critical challenge in extracting 
meaningful insights from complex datasets where the 
context itself is as important as the data. 

Semantic and contextual challenges emerge in feature 
selection, where the primary objective is to identify 
relevant analysis features and extract meaningful 
contextual information from the complex datasets. 
Pramanik et al. [34] demonstrated this complexity through 
a graph-based fuzzy clustering algorithm for categorising 
crime reports. Although their research acknowledged the 
limitations of cluster labelling and semantic 
representation, it brings the graph-based algorithm 
research to a significant intelligent milestone. This 
highlights the profound difficulties in translating complex 
information into structured and interpretable formats.  
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Next, the determination of optimal spatial granularity 
stands as a critical consideration in graph database design, 
as it is crucial for correct data retrieval and analysis. 
Abdelrahman et al. [1] explored this challenge through 
their work on capturing building spatial relationships for 
occupant thermal comfort using Graph Neural Networks. 
Their research highlighted the limitations in Neo4j’s 
clustering method, which requires fixed clustering 
parameters for spatial zoning, underscoring the rigidity of 
current database computational approaches to contextual 
representation.  

The challenges in semantic and contextual 
representation within graph databases reveal a 
fundamental complexity that extends far beyond simple 
data storage and retrieval. The complex, multidimensional 
nature of contextual information is difficult to capture 
using current computational approaches, which results in 
significant barriers to meaningful data interpretation. The 
gap between computational representation and real-world 
complexity demands innovative approaches that can 
bridge semantic understanding with computational 
efficiency. 
5) Data quality and acquisition challenges 

The current research landscape reveals significant 
barriers to effectively capturing and utilising location-
based data, highlighting the gap between the potential of 
spatial data and the ability of graph databases to 
comprehensively represent it. Limited geospatial data 
application within graph databases may result from 
research focusing on non-spatial relationships, data quality 
challenges, and manufacturing domain interests 
prioritising temporal over spatial aspects.  
Afyouni et al. [27] addresses this challenge by noting that 
only 1–3% of social media posts contain explicit geo-
tagging, which reveals the geographical information in 
current data ecosystems. Besides the data acquisition 
challenges that are highlighted by the lesser applicability 
of geographical information in data ecosystems, other 
challenges such as data quality issues, include significant 
noise and uncertainty, particularly in social media and IoT-
based systems.  

Other than that, the heterogenous data sources introduce 
other complications such as semantic ambiguity, 
contextual inconsistency, and temporal volatility.  
Chen et al. [24] addressed these challenges through their 
investigation of spatio-temporal transportation data, 
revealing limitations in handling noisy spatio-temporal 
transportation data, including incomplete trip records and 
lack of uncertainty quantification. The challenges in 
geospatial data acquisition and quality represent more than 
technical limitations; they expose fundamental gaps in our 
approach to understanding complex spatial information. 
The complex, dynamic nature of location-based data is 
difficult to capture by current computational systems, 
creating significant barriers to comprehensive spatial 
analysis. 

 
 

6) Comparison of the trade-offs between labelled 
property graph and resource description framework 

From the literature findings, LPG and RDF are 
popularly used in managing data in graph databases. In 
general, the flexibility of LPG offers more advantages in 
organizing complex network data, while RDF is rich with 
semantic libraries, making it excel in knowledge graph and 
reasoning queries. However, there are approaches that 
utilize both of cabilities, such as He et al. [25] and  
He et al. [30] The review further synthesizes the 
capabilities of these graph data structure in terms of spatio-
temporal capabilities, examining spatio-temporal 
representation, dynamic topology handling, query 
capability, semantic spatial reasoning, and temporal 
reasoning. 

In terms of spatial data representation, LPG 
demonstrates superior spatial representation capabilities 
across all dimensions due to its core architectural strengths 
previously outlined. Specifically, property embedding 
without reification overhead, flexible hierarchical 
modeling through native relationship structures, direct 
coordinate access eliminating complex query patterns, and 
multi-resolution support through adaptable graph 
structures enable LPG to excel in spatial data handling. 
While RDF’s spatial limitations directly result from its 
fundamental architectural constraints, which due to the 
binary relationship restrictions, it limit the complex spatial 
representations, reification overhead for multi-attribute 
spatial properties, and lack of native spatial indexing 
requiring external extensions.  

In terms of temporal data representation reasoning, 
LPG’s operational efficiency advantages enable superior 
performance in direct timestamp storage, natural sequence 
modeling, and state transition representation. However, 
LPG’s absence of semantic reasoning frameworks 
severely limits complex temporal relationships. 
Conversely, RDF’s semantic foundation and standardized 
ontological frameworks enable sophisticated temporal 
reasoning through temporal logic support, interval 
reasoning, and complex temporal constraints. These 
capabilities directly stem from RDF’s formal semantic 
architecture and access to comprehensive temporal 
ontologies like Web Ontology Language (OWL)-Time.  

Next, in terms of dynamic topology capabilities reflect 
each paradigm’s core architectural characteristics. LPG’s 
flexible schema evolution and native relationship 
modeling enable real-time topology updates [6, 8, 9], 
evolutionary change tracking [2, 5, 9], and dynamic 
relationship creation [2, 6, 9]. RDF’s static semantic 
framework creates inherent challenges for real-time 
topology modifications [23, 39], with changes requiring 
complex reification patterns and computational overhead.  

In aspect of query capabilities, LPG’s direct property 
access architecture eliminates join overhead, enables 
efficient graph traversals for spatial proximity operations, 
provides unified data modeling that avoids impedance 
mismatch, and supports real-time processing for 
continuous analytics. 
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RDF’s query limitations stem directly from its semantic 
processing overhead: quadratic computational complexity 
for graph operations, reification patterns for temporal 
operations, complex join requirements for spatio-temporal 
correlation, and high overhead in temporal  
extensions [23, 39]. However, RDF’s semantic reasoning 
capabilities enable complex spatial reasoning through 
standardized vocabularies and semantic validation of 
query results. 

However, semantic reasoning represents RDF’s primary 
domain of superiority, directly enabled by its formal 
semantic foundation. RDF’s comprehensive spatial 
ontologies, advanced inference engines, standardized 
vocabularies, and semantic web interoperability all stem 
from its core semantic architecture. LPG’s limitations in 
this domain are fundamental partly due to absence of built-
in ontological frameworks, limited inference capabilities 
requiring custom implementation, and lack of standardized 
semantic vocabularies. These limitations directly result 
from LPG’s operational design philosophy that prioritizes 
performance over semantic sophistication. 

The comparison synthesis from existing research 
reveals that LPG and RDF represent fundamentally 
different architectural philosophies rather than competing 
technologies. LPG’s operational efficiency philosophy 

enables superior performance for direct data manipulation, 
real-time processing, and dynamic topology handling. 
RDF’s semantic sophistication philosophy enables 
superior reasoning, standardized interoperability, and 
complex inference capabilities. While hybrid architectures 
emerge as the optimal solution for comprehensive spatio-
temporal applications by strategically combining each 
paradigm’s core strengths.  

The literature demonstrates that hybrid implementations 
using tools like NeoSemantics plugin successfully 
leverage LPG’s operational efficiency for spatial data 
representation, temporal data handling, dynamic topology 
management, and query processing, while accessing 
RDF’s semantic reasoning capabilities for complex 
inference, standardized vocabularies, and sophisticated 
temporal logic when required. This architectural approach 
addresses the full spectrum of spatio-temporal data 
management requirements—from high-performance 
operational tasks to complex semantic analysis—while 
minimizing each paradigm’s individual limitations.  
Table VII summarizes the state of the capability level (H 
= High Capability, M = Medium Capability, and L 
represent Low Capability) between LPG, RDF and hybrid 
approach in various range of spatio-temporal aspect. 

TABLE VII. COMPARISON OF GRAPH DATA STRUCTURE CAPABILITIES ACROSS SPATIO-TEMPORAL ASPECTS 

Spatio-Temporal Aspect LPG RDF LPG+ RDF 

Spatial Data 
Representation 

Direct coordinate storage H M H 
Hierarchical spatial organization H M H 

Spatial property embedding H L H 
Multi-resolution spatial indexing H L H 

Temporal Data 
Representation 

Timestamp as node properties H M H 
Temporal sequence modeling H L H 
State transition representation H M H 

Complex temporal relationships L H H 

Dynamic Topology 
Handling 

Real-Time Topology Updates H L H 
Evolutionary change tracking H M H 
Dynamic relationship creation H L H 

Topological transformation support M L M 

Query Capabilities 

Spatial proximity queries H L H 
Temporal range queries H L H 
Spatio-temporal joins H L H 
Real-time analytics H L H 

Semantic Spatial 
Reasoning 

Spatial ontology support L H H 
Spatial inference capabilities L H H 

Standardized spatial vocabularies L H H 

Temporal Reasoning 
Temporal logic support L H H 

Temporal interval reasoning L H H 
Complex temporal constraints L H H 

 

D. Future Research Directions in Spatio-Temporal 
Graph Databases 

The challenges explored in previous sections demand a 
comprehensive, multi-faceted approach to advancing 
spatio-temporal graph database technologies. The path 
forward requires innovative strategies that address the 
fundamental limitations in data representation, 
computational efficiency, and semantic understanding. 
1) Advanced graph representation techniques 

Addressing the complex challenges of spatio-temporal 
data representation requires investigating the capabilities 

of graph databases, including their data structure, data 
storage, and indexing. Research opportunities include 
enabling graph databases to store spatio-temporal data that 
support multiple data types while maintaining 
performance. Zhu et al. [23] defined five temporal 
relationship types—meet, overlap, contain, equal, and 
separate—suggesting the implementation of sophisticated 
spatial queries using operators like adjacency, intersects, 
contains, and other proximity-based operators to be used 
with spatial data that have geometry information.  

Next, the development of temporal algorithms in 
dynamic attributed graphs presents a critical research 
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frontier. Temporal algorithms in dynamic attributed 
graphs could be enhanced by adapting sequential pattern 
mining algorithms, and incorporating spatial awareness 
would allow discovering patterns influenced by 
geographic proximity for transportation, urban planning, 
and epidemic monitoring applications. This can extend the 
graph database capabilities to create intelligent systems 
that can discover complex patterns influenced by 
geographic proximity, detect region-specific trends, 
recognise spatial anomalies, and enable multi-scale 
analysis. 
2) Temporal and semantic representation innovation 

Wu et al. [39] addressed the ongoing implementation of 
Bitemporal RDF (BiTRDF) models incorporating valid 
and transaction times into RDF frameworks without 
reification. Currently, spatial dimension is not discussed in 
RDF applications and also BiTRDF. Addressing temporal 
granularity in graph databases, which is highly crucial for 
storing spatio-temporal phenomena research, presents new 
research opportunities for the development of adaptive 
temporal representation methods with flexible granularity 
adjustment mechanisms. The challenge lies in creating 
computational models that can dynamically adjust to the 
complex, evolving nature of spatiotemporal data.  

Furthermore, the research direction further branches out 
to mining semantic information, such as converting stored 
data into insights using algorithms like CAR-miner and 
Named Entity Recognition, which demonstrate a 
promising direction to mine semantic information. On top 
of that, addressing spatial granularity challenges offers 
opportunities for developing data-driven adaptive spatial 
zoning algorithms that can capture the contextual 
relationships inherent in complex geographical datasets. 
For specialised domains that involve spatio-temporal data 
continuity, like oceanic research, future work should invest 
in developing spatio-temporal interpolation techniques 
with robust uncertainty quantification. Adaptive 
interpolation techniques for graph databases can estimate 
missing states between observations while quantifying 
uncertainty assessment.  

Besides that, additional future directions include 
handling dynamic graph structure evolution without 
performance degradation, implementing time-versioning 
for graph models, and addressing scalability challenges 
with increasing attribute numbers. 
3) Scalability and processing challenges 

Ma et al. [4] proposed decomposing large networks 
through community detection algorithms and leveraging 
graph computing approaches, such as bulk synchronous 
parallel computing models for large-scale data processing. 
This approach presents a promising solution to overcome 
the computational bottleneck when processing large power 
networks. It opens up a new research area to integrate this 
algorithm with graph databases. In addressing the 
scalability and processing challenges, future research 
should address ways to improve distributed graph 
processing through better partitioning algorithms and 
developing incremental processing methods, as well as 
avoiding full graph recomputation.  

Distributed processing techniques can address  
spatio-temporal data through targeted partitioning 
strategies. For temporal dimensions, time-window 
partitioning can leverage temporal metrics to organize 
graph structures [3], while spatial partitioning can divide 
networks geographically to enable parallel processing and 
optimize data flow for local relevance [6]. Community 
detection and hierarchical representation approaches can 
manage spatio-temporal data across multiple abstraction 
levels [8]. BSP computing models can handle time-varying 
networks that capture spatio-temporal relations between 
components [4]. 

These techniques can be applied to various  
spatio-temporal scenarios such as traffic flow forecasting 
where temporal metrics organize road network graphs [3], 
maritime transportation networks requiring hierarchical 
mobility data representation [8], city infrastructure 
management through geographic network partitioning [6], 
power system resilience analysis using time-varying 
network models [4], production logistics resource 
allocation with dynamic spatio-temporal tracking [29], and 
oceanic dynamics analysis across multiple temporal  
scales [7]. 

Other important considerations concerning the 
scalability and processing challenges include the effect of 
data detail on query performance. Storing and querying at 
the most detailed level (micro-scale) leads to prohibitive 
computational costs, as addressed by Elayam et al. [8], 
which represents the oceanic dynamic representation at 
various spatio-temporal scales using hierarchical graphs. 
Representing the hierarchical relationships between 
different abstraction levels significantly increases the 
complexity of the graph structure. 

Selecting appropriate temporal granularities across 
abstraction levels is crucial for both performance and 
meaningful analysis. Consequently, it is necessary to 
continuously explore methods that integrate spatio-
temporal, and semantic dimensions simultaneously and 
improve the abstraction functions that transform data 
between hierarchical levels in a graph database, thereby 
enabling the graph data structures to adapt with different 
time periods.  

Moreover, Li et al. [7] addressed a research limitation 
that involves information loss within spatio-temporal data. 
They provide insights in developing a spatio-temporal 
interpolation with uncertainty quantification that is 
specifically designed for graph databases. This can 
estimate the missing spatio-temporal information between 
the dynamic observations and strengthen the capability of 
graph databases to model evolutionary relationships by 
developing adaptive graph database structures that can 
represent the continuous evolution of the spatio-temporal 
data rather than connecting it as discrete snapshots. This 
will eventually enable the graph database to accommodate 
spatio-temporal data across space and various temporal 
scales. 
4) Comprehensive data management strategies 

The research trajectory must shift from an isolated 
temporal or spatial focus to a holistic approach that equally 
prioritises both dimensions. These findings will also 
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enhance the research area of urban development and 
spatial-related forecasting. It is crucial to identify spatial 
queries that leverage the interconnectedness of graph data 
structures. Subsequently, the research area can progress by 
determining the best way to store spatial data alongside 
temporal and create spatio-temporal relationships within 
the graph data structure. This will create new avenues in 
discovering, storing, and extracting hierarchical structures 
in graph databases and graph-based algorithms.  

Furthermore, addressing the challenges with distributed 
graph approaches can optimise spatio-temporal data 
processing. This draws the attention of future research to 
exploring the data fusion approach for graph databases. 
Moreover, spatial proximity must be integrated into 
analyses involving geospatial aspects, such as 
epidemiology, to address data coverage issues. Although 
fuzzy algorithms have been developed in existing research, 
these approaches require extension through spatial 
operators to enable reliable data identification in spatial 
void areas. 

Extending fuzzy algorithms with enhanced spatial 
capabilities offers a comprehensive solution to address 
data voids. This approach leverages advanced techniques, 
including probabilistic modelling, spatial interpolation, 
clustering, multi-resolution adaptability, and temporal-
spatial correlations. By doing so, knowledge graphs can 
effectively represent uncertain spatial relationships, 
maintain robust tracing capabilities, and clearly 
communicate confidence levels to decision-makers. 
5) Broader technological implementations 

Although the graph database is the most suitable 
platform to cater to the diversity and dynamic nature of the 
data, it can be too much to handle at some point. This issue 
prompts another research in developing Multi-Model 
Databases (MMDB) that are natively capable of storing 
and accessing data in several models, including relational-
based, document-based, and graph-based, to manage 
multidimensional elements that are compatible with the 
current big data environment. MMDB was applied by 
Bimonte et al. [40] in a case study on the management of 
complex phenomena in agroecology, where it enabled the 
analysis of the spatio-temporal dynamics of diseases, the 
investigation of field and landscape factors affecting 
disease propagation, the organisation of observation tasks, 
and the provision of easily understandable indicators to 
farmers.  

Data mining, which is currently emerging, is a soaring 
application utilised to assist in data analytics upon 
completion of the comprehensive database platform. 
Another area of research that focusses on utilising  
spatio-temporal data is the effective conduct of data 
mining when it is stored in a graph data structure. Chen et 
al. [24] proposed that their knowledge graph for epidemic 
contact tracking could be extended with spatio-temporal 
correlation analysis by relating it to another knowledge 
graph about built environments that will help to mine 
connections between travel sequences in the transportation 
system with the underlying land use types. 

Having an accurate graph data structure is important to 
achieve causal inference capability within a graph 

database. The realisation of this capability would require a 
substantial amount of temporal data, which has resulted in 
the significant topic of continuously evolving graph 
structures. A key area of interest in this context is Dynamic 
Knowledge Graph due to its capability in constructing 
connections to new entities. This further emphasised the 
potential direction of research towards solving the 
evolution of graph structures [5]. 

The literature synthesis process has revealed that there 
are several areas that are gaining momentum in the study 
of spatio-temporal applications with graph data structures 
that would require continuous attention. These include the 
integration of graph-based components in multimodal 
databases to accommodate big data environments, 
enabling spatio-temporal reasoning within these 
environments, creating data models that can predict and 
reason with big data, mining spatio-temporal graphs, and 
effectively storing spatio-temporal data that encompass 
multiple events. These areas represent key opportunities to 
advance the field and address the challenges posed by 
increasingly complex and large-scale spatio-temporal data. 
Fig 8. illustrates the potential future research in graph 
databases. 
 

 
Fig. 8. Potential future graph database application research. 

VI. CONCLUSION 

The keyword co-occurrence map reflects the emergence 
of several key concepts that can be empirically applied to 
spatio-temporal graph data structures during the synthesis 
process. First, complex networks originate from situations 
with time-changing entities interacting through multiple 
complex time-changing relationships, where both entities 
and relationships appear, disappear, and change attributes 
over time. Next, the geographic scene model was extended 
through the Event-Process-Centred Dynamic Model 
(EPCDM) for spatio-temporal evolution structure. The 
geographic scene model organised spatio-temporal 
dynamics into hierarchical nesting to facilitate 
management of multiple interacting geographic changes in 
complex phenomena. These research approaches 
demonstrate spatio-temporal data’s network-like 
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properties and hierarchical representation, making graph 
databases suitable management platforms. 

This research investigated graph data structures and 
algorithms for managing spatio-temporal data in graph 
databases over six years, building knowledge about graph 
database suitability by providing evidence of graph data 
structure utilisation for storing spatio-temporal data and 
algorithms for extracting insights and improving 
management efficiency. The paper provides the state of 
research on graph data structure development and graph-
structured algorithms for managing spatio-temporal data 
across various applications, lists algorithms used for 
managing spatio-temporal data and analytics, offers 
insights on spatio-temporal data input types used for graph 
data structure storage, and examines spatio-temporal 
analyses conducted using graph-structured databases and 
algorithms. 

The relevance of this review remains strong in 2025, 
even though it extends to mid-2024. The fundamental 
graph-based concepts and algorithms identified in this 
review form the building blocks for geospatial data 
management systems. Additionally, the insights and 
challenges identified provide valuable direction for 
ongoing research and development in this emerging field. 
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