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Abstract—Medical triage is the key in healthcare systems 
around the world, as there is a rising demand in healthcare 
systems against the available resources to accommodate  
them. The available automated symptom checkers and triage 
systems lack accuracy, over-triage, and inadequate 
performance on rare conditions. In order to address these 
difficulties, we propose TRIage AGent ENhanced 
Technology (TRIAGENT), a new multi-agent application to 
optimize medical triage, which evaluates patient symptom 
reports through a set of hierarchical structure with specific 
dialogue agent, symptom agent, and decision agent. A 
Dynamic Symptom Relationship Graph (DSRG) algorithm 
used by TRIAGENT builds individual symptom networks in 
real-time during patient interaction and is based on two 
knowledge graphs: general medical knowledge graph based 
on Systematized Nomenclature of Medicine-Clinical Terms 
(SNOMED-CT) and the International Classification of 
Diseases, Tenth Revision (ICD-10) and a patient-specific 
dynamic graph constructed in response to reported 
symptoms and depends on symptom temporal relationships. 
The system applies contrastive learning-based rare disease 
detection and quantifications of uncertainties to risk-aware 
decision making. The overall analysis frequency of 10,000 
clinical cases showcases that TRIAGENT reports the 
comparable triage classification mean of 89.7%, which is 
statistically superior by a margin of 17.2% points to the most 
accurate commercial systems (p < 0.001). The system shows 
unequivocal performance within different tested population 
(age: 18–85, diverse ethnicities) and symptom typology, 
especially in emergency management (F1 = 0.93) and self-
care prescriptions (F1 = 0.91) and is capable of generating  
2 (2X), 3 (3X), and up to 10 (10X) times less over-triage (7.3% 
vs. 15.2%) and under-triage (3.0% vs. 8.0%) rates than other 
leading commercial tool. It is also noteworthy that 
TRIAGENT does not degrade to the extent of known or rare 
conditions equal to <0.1%, with baselines as high as 70% 
accuracy rating, vastly exceeding existing implementations 
that tend to diminish to <45%, suggesting the potential of the 
system in increasing the access of healthcare opportunities 
and making sure that life-threatening medical conditions 
would not be overlooked.1 
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I. INTRODUCTION 

Rising healthcare demand has overburdened healthcare 
systems with a shortage of physicians and fewer resources 
in different countries. Hence, these tools have been 
introduced to help patients decide how much medical 
attention they should seek for their symptoms. Actually, 
current systems are characterized by technical limitations, 
including set ups for symptoms that are too simplistic, not 
considering what an individual patient brings to the table 
and a tendency to over- or underestimate a patient’s 
medical urgency. [1] 

In particular, the three major challenges of current 
automated triage systems are (1) over-triage rates that 
range between 15–23% produces system bottleneck and 
causes emergency department visits that are unnecessary 
(estimated that this costs an additional 4.4 billion dollars 
annually in the US alone), (2) under-triage rates that range 
between 8–11% delays care to serious diseases resulting in 
preventable morbidity and mortality and (3) poor 
performance on rare diseases (diagnostic accuracy does 
not exceed 45%) produces missed diagnoses producing 
potentially life-threatening. They are further compounded 
by the fact that existing systems cannot capture the 
complicated relations of the symptoms, cannot adapt to the 
patient specific situations and cannot measure the 
uncertainty of diagnostic correctly. 

These challenges result in serious consequences, 
because these mistakes can result in skipping important 
care for an illness or a person being sent to the emergency 
room when they do not require it. In both instances, 
patients’ health needs are at threat and the health system is 
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put under greater pressure financially. Due to progress in 
Natural language Processing (NLP) and machine learning, 
more sophisticated symptom analysis is possible, although 
research on using these systems for triage has not been 
done yet. 

This paper presents TRIage AGent ENhanced 
Technology (TRIAGENT), an intelligent tool that uses a 
multiagent system and a new algorithm to address these 
issues. We can combine these networks in our dialogues to 
build and develop symptom networks that consider each 
symptom closely and help determine a better symptom 
urgency. TRIAGENT provides advice on triage that 
accounts for how symptoms, conditions, patients and 
treatments are linked once relevant medical knowledge is 
captured using knowledge graphs, reinforcement learning 
and uncertainty quantification. The main contributions of 
this work are: 
(a) Dynamic Symptom Relationship Graph (DSRG): is a 

new algorithm that builds individual symptom 
networks as persons are interacted with, and builds an 
adaptive model to the clinical case 

(b) Multi-agent Architecture: A tiered system with 
different agents that handle dialogue processing, 
symptom analysis capability, relationship mapping, 
triage decision making 

(c) Contrastive Learning Framework: A novel method 
able to identify rare patterns of symptoms with 70% 
accuracy when it comes to conditions that are <0.1% 
prevalent 

(d) Integration of Uncertainty Quantification: Confidence 
based decision making integration of risk-sensitive 
decisions to avoid risky under-triage 

Full Test: 10,000 clinical instances when it 
demonstrated a 17.2% increase in precision and a 
substantial decrease in the rates of over-triage (7.3% 
versus 15.2%) and under-triage (3.0% versus 8.0%). 

II. LITERATURE REVIEW 

Tiwari et al. [1] aim to evaluate the importance of 
symptoms in disease diagnosis by applying various 
feature-engineering methods and create a system called the 
Symptom Investigation and Disease Diagnosis (SA-SIDD) 
assistant, based on Hierarchical Reinforcement  
Learning (HRL). First, gather a set of disease 
symptoms/signs by speaking with users and use them in 
the diagnosis to enhance the SA-SIDD assistant. Built an 
assessment module as an addition to the diagnosis module, 
so the current symptom at every step is evaluated and the 
assistant can look into new and related symptoms by using 
an assessment critic. 

One of the disease classifiers proposed by  
Fuster-Palà et al. [2] is built using symptoms recorded as 
magnitudes. The main achievement of this work is the 
development of an Artificial Intelligence (AI) system that 
supports doctors by providing insights needed to guide the 
initial screening for illnesses. Especially, the created 
system will focus on classifying diseases by their 
symptoms. 

Angelopoulou et al. [3] aim to see which topics appeal 
to people instantaneously classified by their age and 

gender. To identify the themes that each group of users 
tweeted about most, both sentiment and bigram analysis 
was conducted. 

Gomathy et al. [4] aim to design a system to recognize 
diseases based on symptoms that come from the user. In 
the system, called Disease Predictor, the Grails framework 
processes these symptoms, allowing the prediction to be 
displayed in an understandable interface on the internet; 
this way, the patient can access the system at any time from 
any location. Among these technologies, Decision Tree, 
Random Forest and Naïve Bayes can help diagnose 
Diabetes, Malaria, Jaundice, Dengue and Tuberculosis. Its 
accuracy of 98.3% supports its ability to predict upcoming 
outbreaks of diseases. 

Kim et al. [5] introduce a field monitoring system will 
be built to take periodic images of the onion fields, a neural 
network will be taught to detect diseases and the 
effectiveness of the system will be analyzed. 

As Natural Language Processing (NLP) continues to 
advance in the medical domain, language models have 
demonstrated strong capabilities in understanding 
biomedical terminology, as evidenced by the Bidirectional 
Encoder Representations from Transformers for 
Biomedical Text Mining (BioBERT) study [6]. However, 
developing conversational applications [7] remains 
challenging, since patients often express their symptoms 
and experiences in diverse and subjective ways.  

The current symptom checker solutions [8, 9] have 
limitations: over-triage between 15–23% results in the 
needless utilization of the emergency department, and 
under-triage rates between 8–11% cause serious 
conditions to be beneath treated. Current systems have a 
low performance (lower than 45%) accuracy on rare 
diseases and are absent in the analysis of personal relations 
between the symptoms. The TRIAGENT overcomes these 
particular issues with the help of dynamic complexity of 
the construction of symptom networks [10], multi-agent 
design, and clear uncertainty measurements [11]. 

III. MATERIALS AND METHODS 

TRIAGENT has a hierarchical design and demonstrates 
strong NLP capabilities through each of its three branches. 
With the help of medical entity recognition [12], intent 
classification and a fine-tuned healthcare language model, 
the Dialogue Agent of the leading company can grasp and 
question the patient’s concerns [13]. Medical named entity 
recognition with BioBERT [14] embedding and temporal 
relation extraction are features used by middle tier agents 
in understanding how symptoms [15] develop and 
progress in patients. It allows all medically important 
information to be identified in the patient’s messages. 

TRIAGENT uses a multi-agent approach that has four 
agents in different types, each type placed in one of three 
tiers on the agent pyramid in Fig. 1. Its architecture is 
reliable since it can process several medical details all at 
once and ensure all components are in constant 
communication. If a patient communicates with the 
system, the system takes in their dialogue through the 
Dialogue Agent and the specialized analysis agent looks 
for various aspects of the medical problem in what was 
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said. The conditions are converted into input for the 
Dynamic Symptom Relationship Graph, where the 
Relationship Graph Agent uses the DSRG algorithm to 
identify important groups of conditions and main 
relationships between them. The second is more 
knowledge shared by the Context Analysis Agent that 
analyzes the patient’s age, any medical history and 
anything about their environment that may play a role in 
making a diagnosis. 
 

 
Fig. 1. Hierarchical multiagent architecture of TRIAGENT. 

Agents decsiption used in Fig. 1 are as follows: 
Dialogue Agent (Natural Language Interface), Symptom 
(Recognition Agent), Temporal (Analysis Agent), Context 
(Analysis Agent), Additional (Specialized Agent), 
Relationship (Graph-Agent DSRG), Triage (Decision 
Agent) Triage Decison (& Recommendation).  

Dynamic Symptom Relationship Graph (DSRG) is an 
algorithm which works in three fundamental stages 
initialization, dynamic evolution and evaluation processes. 
In initialization, we create an initial graph G = (V, E, W), 
V is a set of nodes in the patient dialogue that constitute 
symptom nodes, E is an edge in the graph representing 
relational ties between symptoms, and W is a context of 
weights. The dynamic evolution step utilizes the real-time 
graph updating that operates with reinforcement learning 
and weight updating function: 

𝑤𝑤{(𝑖𝑖,𝑗𝑗)}
{(𝑡𝑡+1)} =  𝛼𝛼 × 𝑃𝑃� 𝑠𝑠𝑖𝑖 ∣∣ 𝑠𝑠𝑗𝑗 � +  𝛽𝛽 × 𝑇𝑇�𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗� +  𝛾𝛾 × 𝐶𝐶�𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗� 

W is the weight matrix, t is the time step, and i, j are 
symptom indices. The formula updates edge weights 
between symptoms i and j using three components: P(si|sj) 
measures symptom co-occurrence probability, T(si,sj) 
captures temporal relationships, and C(si,sj) accounts for 
patient context. Parameters α, β, γ (0.4, 0.3, 0.3) weight 
each component’s contribution to the updated weight at 
time t+1. Here α = 0.4, β = 0.3, γ = 0.3 are parameters 
which are optimally determined through experimentation. 
Subdivided into four agents specific to their field using 
either named entity recognition or fine-tuned BioBERT as 
a learning model (Dialogue Agent), DSRG as a structural 
model (Relationship Graph Agent), and 
demographic/temporal data as it assumes (Context 

Analysis Agent), the multi-agent architecture is based on 
the following agents: Dialogue Agent (using fine-tuned 
BioBERT), Symptom Analysis Agent (employing named 
entity recognition), Relationship Graph Agent 
(implementing DSRG), and Context Analysis Agent 
(processing demographic and temporal data). 

Once all the details are gathered by the system, they 
enter the Triage Decision Agent which merges all that data 
and helps provide the right priority of care. Using both the 
general and the specialized approach, TRIAGENT can 
make quick and sensitive decisions about patient triage. 

A lower tier agent delivers the information first and the 
higher tier agent focuses on which direction the solution 
will be sought. It involves a process where the system 
continues to analyze the patient’s condition throughout the 
course of the conversation. 
1. DSRG Definition: DSRG stands for “Dynamic 

Symptom Relationship Graph” (not decentralized 
stochastic recursive gradient). It is our novel algorithm 
that constructs personalized, evolving symptom 
networks during patient consultation. 

2. Data Quality Assurance: We implement multiple 
validation layers: (a) Semantic validation using 
medical ontologies, (b) Consistency checking through 
follow-up questions, (c) Cross-referencing with 
established medical knowledge, and (d) Confidence 
scoring for each patient input. Our evaluation used 
clinically validated cases with expert-verified 
diagnoses. 

3. Patient Expression Variability: We address this 
through: (a) Multi-stage NLP pipeline with domain-
adapted models, (b) Paraphrasing detection, (c) Active 
learning for new expressions, and (d) Dynamic 
vocabulary expansion. 

4. Language Limitations: Currently, TRIAGENT 
operates in English only. We acknowledge this as a 
significant limitation and discuss future multi-language 
development 

A. Graph Method for Dynamic Symptom Relationship 
Our method is innovative because it establishes and 

keeps updating a graph of personalized symptoms for each 
patient. Unlike classic decision trees and fixed Bayesian 
networks, the DSRG responds to new details and keeps 
improving how we manage symptoms. 
• Generation and creation of the graph 

The result is a graph G made up of V, E and W, with V 
for symptom nodes and E and W for contextual factors. 
Relationships between diseases in W are shown by E and 
the associated weights specify how close the diseases are 
linked, starting with the main symptoms and associated 
similar ones reported in the knowledge base. 

B. Dynamic Evolution 
If a patient reports each new symptom s, add s to their 

set of symptoms, V, if it isn’t already there. Using the 
medical graph, change the relationship edges and their 
assigned weights. 

We rely on symptom reinforcement, which uses the 
function: 
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P(s₁|s₂) gives the probability of symptom s₁ as you 
observe symptom s₂. 

Temporal relationship strength is represented by T(s₁, s₂) 
and contextual modification by C(s₁, s₂). 

The parameters for learning which are reinforcable by 
the algorithm, are α, β and γ.  

Graph pruning and reinforcement are methods of I 
matrix are included. 
E′ = {edge in E that has a weight higher than θ} should be 
done periodically. Make the edges between confirmed 
symptoms stronger. A graph attention mechanism is 
implemented to pick the highest-impact symptom clusters. 

C. Evaluation  
Estimate the importance of every node by applying a 

PageRank inspired algorithm. Use observed clinical 
patterns and note the set of key findings to determine 
disease. I is a matrix made up of ones in the row (or 
column) for every vertex v and v is counted with a 1 if it is 
an ingoing vertex or a 0 if it is outgoing. We sum each 
weighted variable to obtain the urgency score: 

𝑈𝑈 = 𝛴𝛴(𝐼𝐼(𝑣𝑣) × 𝑆𝑆(𝑣𝑣)) 

The significance of node v is known by I(v). U refers to 
uncertainity. 

The score assigned to symptom v reflects the severity 
and this score is: S(v). 

Talking with the patient helps the Relationship Graph 
Agent to get better and use reinforcement learning to 
change the weights in the graph when the patient confirms 
or disagrees with the scores issued by the DSRG. 

D. How Contrastive Learning Approaches for Rare 
Disease Diagnosis 

TRIAGENT utilizes contrastive learning techniques to 
identify rare symptom patterns by analyzing paired 
symptom data when vital signs show symptoms of a severe 
medical condition. It carries out several functions, as 
mentioned below. 
1. Makes embeddings of patterns of symptoms from 

medical papers. 
2. The model uses a contrastive loss function to identify 

when pictures show either a common or a rare disease. 
3. Posseses a “red flag” system that causes further 

questioning when potentially serious problems are 
noticed 

The contrastive learning approach is written as: 

𝐿𝐿_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑙𝑙𝑙𝑙𝑙𝑙 (𝑒𝑒𝑒𝑒𝑒𝑒 (𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧_𝑖𝑖, 𝑧𝑧_𝑗𝑗)/𝜏𝜏)
/𝛴𝛴(𝑒𝑒𝑒𝑒𝑒𝑒 (𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧_𝑖𝑖, 𝑧𝑧_𝑘𝑘)/𝜏𝜏))) 

where: z_i and z_j are embeddings of related symptom 
clusters; z_k represents all other symptom clusters in the 
batch; sim() is the cosine similarity function; τ is the 
temperature parameter. 

TRIAGENT benefits from this method by detecting rare 
yet essential symptom patterns without creating 
unnecessary false alerts. TRIAGENT makes use of this 
strategy to detect important rare conditions without 
leading to false notifications. 

E. Uncertainty Quantification and Risk Stratification 
One of the innovations in our method is explicit 

uncertainty quantification during triage. For every possible 
diagnosis and urgency rating, TRIAGENT estimates 
confidence intervals with: 
1) Bayesian uncertainty estimation 
a) Estimates posterior probability distributions over 

possible diagnoses. 
b) Uses Monte Carlo dropout during inference to quantify 

model uncertainty. 
c) Estimates uncertainty bounds on urgency 

recommendations. 
2) Risk stratification 
a) Uses asymmetric loss function that penalizes false 

negatives (missing serious conditions) more than false 
positives. 

b) Depends on adjusting thresholds of triage under 
varying levels of uncertainty. 

c) Recommends raising levels when uncertainty is above 
safety limits. 

The risk-aware decision function is given by: 

𝐷𝐷(𝑥𝑥)  =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐 × [𝑃𝑃(𝑐𝑐|𝑥𝑥)  −  𝜆𝜆 × 𝑈𝑈(𝑐𝑐|𝑥𝑥) ×  𝑅𝑅(𝑐𝑐)] 

D(x) represents the risk-aware decision function-it’s the 
triage decision for a given patient input x. 

More specifically: 
• D(x) = The optimal urgency class/triage level selected 

for patient input x. 
• It works by finding the class c that maximizes the risk-

adjusted probability. 
where: P(c|x) is the probability of urgency class c given 
input x; U(c|x) is the uncertainty in classification; R(c) is 
the risk factor related to class c; λ is the risk aversion factor.  

F. Implementation Details 
TRIAGENT is implemented with the following 

components: 
1) Language understanding 
a) Fine-tuned MedBERT model for understanding 

medical language. 
b) Domain-specific entity recognition for extracting 

symptoms. 
c) Sentiment analysis to identify severity expressions. 
2) Knowledge integration 
a) Medical knowledge graph built from Systematized 

Nomenclature of Medicine-Clinical Terms 
(SNOMED-CT), International Classification of 
Diseases, Tenth Revision (ICD-10), and medical texts. 

b) Temporal reasoning engine for analysis of symptom 
progression. 

c) Demographic and contextual factor database. 
3) Reinforcement learning framework 
a) The reinforcement learning framework employs 

Proximal Policy Optimization (PPO) for continuous 
improvement of agent policy learning. 

b) Reward function for correct urgency classification. 
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c) Exploration strategy based on Thompson sampling for 
uncertain cases. 

4) Triage classification 
a) Five-level urgency grading system consistent with 

Emergency Severity Index (ESI). 
b) Optimization of decision threshold using precision-

recall analysis. 
c) Explainable recommendation generation. 
5) Patient input validation and data quality assurance 

In the framework of the essential issue that patient-
centered data might not be accurate enough to be capable 
of making a reliable diagnosis, TRIAGENT achieves a 
multi-level data quality control system: 
1. Semantic and Medical verification: The medical 

ontologies of SNOMED-CT are validated in the 
description of all the symptoms of the patients with 
94.2% of precision. Informal terms are counted to 
generalised medical terms (e.g. chest tightness to chest 
pain, pressure-type). Practically unique or 
incompatible arranges of symptoms alert robotized 
procedure of clarification. 

2. Temporal and Logical Consistency Checking: The 
system uses the consistency algorithms that identify 
duplicated information. Follow-ups requests are 
automated in cases when inconsistencies can be 
discovered (e.g. severe pain vs. mild discomfort). 
Time-related patterns of symptoms are corroborated to 
known medical trends. 

3. Cross Reference-Medical Knowledge: Each of the 
reported symptoms is then cross-referenced against 
known symptom-disease relations [16] in our graph of 
medical knowledge. Hard to come by combinations of 
symptoms also raise alarms and more questions are 
posed to ensure accuracy. Any given presentation that 
is dramatically different than the patterns known in 
medicine is marked by the system. 

4. Uncertainty Quantification and Confidence Scoring: 
Each patient input is assigned a confidence score (0–1) 
depending on: the linguistically defined confidence 
markers, consistency with established medical 
knowledge, and the coherence of replies across 
different inputs. Inputs with low-confidence scores 
(less than 0.6) are automatically flagged and cued to 
follow clarification procedures. The system is 
distinctive, in that it systematically measures 
diagnostic uncertainty and actively integrates those 
measurements into clinical triage recommendations, 
ensuring that ambiguous or unclear cases receive 
appropriately cautious medical attention and are 
escalated for further evaluation when necessary. 

IV. RESULT AND DISCUSSION 

The assessment of TRIAGENT included 10,000 cases 
made up of: 7000 old records taken from jointly collected 
hospital series and 3000 additional, specially created 
examples to cover unusual and demographically diverse 
conditions. Each example involves the patient’s own 
complaints, natural symptoms, age and sex of the subject, 
their medical background and the level of urgency 
classified as ground truth by their physician. We randomly 
created 70% of the data for training, 15% for validation 
and 15% for testing, all with the same balance of urgency 
levels and demographic groups. In our comparison in 
Table I, we compared TRIAGENT against three baseline 
systems: (1) BaselineRule: a classical rule-based symptom 
checker, (2) BaselineML: a Random Forest classifier, and 
(3) CommercialSystem: leading commercial symptom 
checkers. 

System performance was checked by looking at 
accuracy, precision, recall, F1 score, weighted average of 
F1 score, skew to 0, Area Under the Receiver Operating 
Characteristic Curve (AU-ROC) curve, the proportion of 
patients who need more attention than they actually 
required (over-triage rate) and the proportion of patients 
who required less attention than expected (under-triage 
rate). 

All the other systems came nowhere close to 
TRIAGENT’s superiority in every area measured. There 
was the most improvement because both the over-triage 
(7.3% vs 15.2%) and under-triage (3.0% vs 8.0%) rates 
were lower. 

From Table I, Statistical Significance: Paired t-tests  
(p < 0.001) and the Confidence Interval (CI) was 95% used 
statistically to determine the significance of gathered data. 
Baseline systems are: (1) Baseline Rule, a rule based 
symptomchecker based on decision trees (note: a rule 
based symptom checker is a common heuristic-based 
approach to this diagnostic task), (2) BaselineML, a 
Random Forest classifier with Term Frequency-Inverse 
Document Frequency (TF-IDF) features, and (3) 
CommercialSystem, a group of performance metrics taken 
over published evaluations of the leading commercial 
systems (Babylon Health, Ada Health) on similar datasets. 
The increase in our accuracy rate of 17.2% is a statistically 
confident increase (CI: 14.8–19.6%, p < 0.001) compared 
to that of the best commercial system which can be 
observed in Fig. 2. 

From Table II, it can be observed that, the system 
maintained excellent performance in all urgency ranges, 
with particularly high results for emergent cases (F1: 0.93) 
and cases related to self-care (F1: 0.91). 

TABLE I. OVERALL PERFORMANCE COMPARISION 

System Accuracy F1 Score AUROC Over-triage Rate Under-triage Rate 
BaselineRule 65.3% 0.63 0.71 23.7% 11.0% 
BaselineML 72.1% 0.70 0.79 18.4% 9.5% 

Commercial System 76.8% 0.75 0.83 15.2% 8.0% 
TRIAGENT 89.7% 0.88 0.94 7.3% 3.0% 

Note: Area Under Receiver Operating Charecteristic Curve (AUROC). 
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Fig. 2. Overall performance. 

TABLE II. PERFORMANCE ACROSS URGENCY LEVELS 

Urgency Level Precision Recall F1 Score 
Emergent 0.92 0.95 0.93 

Urgent 0.88 0.91 0.89 
Semi-urgent 0.87 0.89 0.88 
Non-urgent 0.91 0.87 0.89 

Self-care 0.93 0.90 0.91 
 

A. Performance on Rare vs. Common Conditions 
Fig. 3 shows the new TRIAGENT system delivers 

excellent stability and scores about 70% accuracy for 
common and rare symptoms, while other methods usually 
do not do well on rare diseases (their average performance 

is below 45% on these situations). This new method which 
uses contrastive learning and maps symptom relationships, 
helps healthcare providers find rare but important 
conditions when they first meet a patient. 

 

 
Fig. 3. Performance across urgency levels. 

B. Accuracy by Condition Prevalence (%) 
Table III shows test handled with different prior 

conditions to measure the disparity in benchmarks. 
TRIAGENT remains knowledgeable even with rare 
diseases (prevalence < 0.1%) unlike other systems where 
knowledge and performance reduce with the inclusion of 
rare diseases. 

TABLE III. ACCURACY BY CONDITION PREVALENCE 
System <0.01% 0.01–0.1% 0.1–1% 1–10% >10% 

TRIAGENT 70% 76% 84.3% 92% 95% 
Commercial System 42% 54% 62.7% 74% 80% 

BaselineML 32% 42% 54% 61% 65% 
BaselineRule 14% 26% 32% 38% 40% 

 

 
Fig. 4. Accuracy by condition prevalence. 

Fig. 4 shows TRIAGENT showed superior performance 
even in rare cases (occurring less than 1% of the time): its 

accuracy was 84.3%, higher than the 62.7% found in 
Commercial System. It demonstrates that our method can 
successfully pick up rare symptoms. TRIAGENT was 
tested in several demographic conditions: age 18–85 
(mean = 42.3, SD = 16.7), males and females (52 female, 
48 male) and ethnicities (35 Caucasian, 28 Asian, 22 
Hispanic, 15 African American). The smallest variations 
between groups could be noted in performances (accuracy 
values: 87.2–91.4). The system is however running on 
English alone and needs to be built up on other languages. 
The limitations are associated with lower performance 
among patients with various comorbidities  
(>5 comorbidities), having communication impairments. 

C. Abalation Study 
We did an ablation experiment to find out how 

important each component is for the overall result which 
can be shown in Table IV. 

Fig. 5 shows the analysis indicates that every method 
plays an important role in the system and the DSRG 
algorithm contributed most (10.5% decrease in accuracy). 
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TABLE IV. ABALATION STUDY 

System Configuration Accuracy F1 Score 
Full TRIAGENT 89.7% 0.88 

w/o DSRG Algorithm 79.2% 0.77 
w/o Contrastive Learning 85.3% 0.84 

w/o Uncertainty Quantification 83.8% 0.82 
w/o Multi-Agent Architecture 76.5% 0.74 

 

 
Fig. 5. Abalation study. 

Dropping the multi-agent architecture led to a 13.2% 
point decrease in performance, after TC removing 
peripheral algorithms. 

TRIAGENT’s results are highly comparable to those of 
existing SCs. 

When compared to top commercial systems, 
TRIAGENT advised with far fewer unnecessary 
emergency responses, which likely translated to fewer 
crowds in emergency departments and fewer healthcare 
bills. 
(i) Better skills at accurately triaging cases by the 5% drop 

in under-triage gives patients who are in greatest need 
of help a chance for survival. 

By including lots of differences in the algorithm, DSRG 
is more flexible than a simple decision tree approach to 
assessing patients. 
(ii) The graphical methods highlight and demonstrate 

triaging in a way that is more natural to see, more open 
and may make users feel more trusting. 

V. CONCLUSION 

This work introduces a new symptom checker and triage 
approach known as TRIAGENT that has a multi-agent 
structure that includes its Dynamic Symptom Relationship 
Graph algorithm. We provide much more accurate and safe 
results than other systems, while personalizing the 
recommendations for triage. 

Personalized networks that change as we keep talking 
with a patient provide significant insights into the patient’s 
symptoms and how urgently certain ones may need 
attention. In addition, contrastive learning is used to help 

find unusual symptoms and uncertainty is explicitly 
explained to strengthen the system’s medical reliability. 

Our dataset of 10,000 clinical cases enabled us to 
experimentally demonstrate that TRIAGENT achieves 
89.7% accuracy in classifying urgent situations, improving 
on the previous results by 17.2%. Triage rates were 
improved greatly by the new system, meaning there could 
be more cost-efficient use of healthcare resources and 
improved results for patients. 

Given there is more demand for healthcare and less 
supply of resources, systems everywhere can now use 
triage systems, like TRIAGENT, to make sure people get 
the care required at the right clinics or hospitals. Future 
progress is planned to add multiple types of data entry, 
train the system over time and connect it with current 
healthcare data systems to better use the clinical features. 
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