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Abstract—Medical triage is the key in healthcare systems
around the world, as there is a rising demand in healthcare
systems against the available resources to accommodate
them. The available automated symptom checkers and triage
systems lack accuracy, over-triage, and inadequate
performance on rare conditions. In order to address these
difficulties, we propose TRIage AGent ENhanced
Technology (TRIAGENT), a new multi-agent application to
optimize medical triage, which evaluates patient symptom
reports through a set of hierarchical structure with specific
dialogue agent, symptom agent, and decision agent. A
Dynamic Symptom Relationship Graph (DSRG) algorithm
used by TRIAGENT builds individual symptom networks in
real-time during patient interaction and is based on two
knowledge graphs: general medical knowledge graph based
on Systematized Nomenclature of Medicine-Clinical Terms
(SNOMED-CT) and the International Classification of
Diseases, Tenth Revision (ICD-10) and a patient-specific
dynamic graph constructed in response to reported
symptoms and depends on symptom temporal relationships.
The system applies contrastive learning-based rare disease
detection and quantifications of uncertainties to risk-aware
decision making. The overall analysis frequency of 10,000
clinical cases showcases that TRIAGENT reports the
comparable triage classification mean of 89.7%, which is
statistically superior by a margin of 17.2% points to the most
accurate commercial systems (p < 0.001). The system shows
unequivocal performance within different tested population
(age: 18-85, diverse ethnicities) and symptom typology,
especially in emergency management (F1 = 0.93) and self-
care prescriptions (F1 = 0.91) and is capable of generating
2 (2X), 3 (3X), and up to 10 (10X) times less over-triage (7.3%
vs. 15.2%) and under-triage (3.0% vs. 8.0%) rates than other
leading commercial tool. It is also noteworthy that
TRIAGENT does not degrade to the extent of known or rare
conditions equal to <0.1%, with baselines as high as 70%
accuracy rating, vastly exceeding existing implementations
that tend to diminish to <45%, suggesting the potential of the
system in increasing the access of healthcare opportunities
and making sure that life-threatening medical conditions
would not be overlooked..
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1. INTRODUCTION

Rising healthcare demand has overburdened healthcare
systems with a shortage of physicians and fewer resources
in different countries. Hence, these tools have been
introduced to help patients decide how much medical
attention they should seek for their symptoms. Actually,
current systems are characterized by technical limitations,
including set ups for symptoms that are too simplistic, not
considering what an individual patient brings to the table
and a tendency to over- or underestimate a patient’s
medical urgency. [1]

In particular, the three major challenges of current
automated triage systems are (1) over-triage rates that
range between 15-23% produces system bottleneck and
causes emergency department visits that are unnecessary
(estimated that this costs an additional 4.4 billion dollars
annually in the US alone), (2) under-triage rates that range
between 8—11% delays care to serious diseases resulting in
preventable morbidity and mortality and (3) poor
performance on rare diseases (diagnostic accuracy does
not exceed 45%) produces missed diagnoses producing
potentially life-threatening. They are further compounded
by the fact that existing systems cannot capture the
complicated relations of the symptoms, cannot adapt to the
patient specific situations and cannot measure the
uncertainty of diagnostic correctly.

These challenges result in serious consequences,
because these mistakes can result in skipping important
care for an illness or a person being sent to the emergency
room when they do not require it. In both instances,
patients’ health needs are at threat and the health system is
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put under greater pressure financially. Due to progress in

Natural language Processing (NLP) and machine learning,

more sophisticated symptom analysis is possible, although

research on using these systems for triage has not been
done yet.

This paper presents TRIlage AGent ENhanced
Technology (TRIAGENT), an intelligent tool that uses a
multiagent system and a new algorithm to address these
issues. We can combine these networks in our dialogues to
build and develop symptom networks that consider each
symptom closely and help determine a better symptom
urgency. TRIAGENT provides advice on triage that
accounts for how symptoms, conditions, patients and
treatments are linked once relevant medical knowledge is
captured using knowledge graphs, reinforcement learning
and uncertainty quantification. The main contributions of
this work are:

(a) Dynamic Symptom Relationship Graph (DSRGQG): is a
new algorithm that builds individual symptom
networks as persons are interacted with, and builds an
adaptive model to the clinical case

(b) Multi-agent Architecture: A tiered system with
different agents that handle dialogue processing,
symptom analysis capability, relationship mapping,
triage decision making

(¢) Contrastive Learning Framework: A novel method
able to identify rare patterns of symptoms with 70%
accuracy when it comes to conditions that are <0.1%
prevalent

(d) Integration of Uncertainty Quantification: Confidence
based decision making integration of risk-sensitive
decisions to avoid risky under-triage

Full Test: 10,000 clinical instances when it
demonstrated a 17.2% increase in precision and a
substantial decrease in the rates of over-triage (7.3%
versus 15.2%) and under-triage (3.0% versus 8.0%).

II. LITERATURE REVIEW

Tiwari et al. [1] aim to evaluate the importance of
symptoms in disease diagnosis by applying various
feature-engineering methods and create a system called the
Symptom Investigation and Disease Diagnosis (SA-SIDD)
assistant, based on Hierarchical Reinforcement
Learning (HRL). First, gather a set of disease
symptoms/signs by speaking with users and use them in
the diagnosis to enhance the SA-SIDD assistant. Built an
assessment module as an addition to the diagnosis module,
so the current symptom at every step is evaluated and the
assistant can look into new and related symptoms by using
an assessment critic.

One of the disease classifiers proposed by
Fuster-Pala ef al. [2] is built using symptoms recorded as
magnitudes. The main achievement of this work is the
development of an Artificial Intelligence (Al) system that
supports doctors by providing insights needed to guide the
initial screening for illnesses. Especially, the created
system will focus on classifying diseases by their
symptoms.

Angelopoulou ez al. [3] aim to see which topics appeal
to people instantaneously classified by their age and
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gender. To identify the themes that each group of users
tweeted about most, both sentiment and bigram analysis
was conducted.

Gomathy et al. [4] aim to design a system to recognize
diseases based on symptoms that come from the user. In
the system, called Disease Predictor, the Grails framework
processes these symptoms, allowing the prediction to be
displayed in an understandable interface on the internet;
this way, the patient can access the system at any time from
any location. Among these technologies, Decision Tree,
Random Forest and Naive Bayes can help diagnose
Diabetes, Malaria, Jaundice, Dengue and Tuberculosis. Its
accuracy of 98.3% supports its ability to predict upcoming
outbreaks of diseases.

Kim et al. [5] introduce a field monitoring system will
be built to take periodic images of the onion fields, a neural
network will be taught to detect diseases and the
effectiveness of the system will be analyzed.

As Natural Language Processing (NLP) continues to
advance in the medical domain, language models have
demonstrated strong capabilities in understanding
biomedical terminology, as evidenced by the Bidirectional
Encoder Representations from Transformers for
Biomedical Text Mining (BioBERT) study [6]. However,
developing conversational applications [7] remains
challenging, since patients often express their symptoms
and experiences in diverse and subjective ways.

The current symptom checker solutions [8, 9] have
limitations: over-triage between 15-23% results in the
needless utilization of the emergency department, and
under-triage rates between 8-11% cause serious
conditions to be beneath treated. Current systems have a
low performance (lower than 45%) accuracy on rare
diseases and are absent in the analysis of personal relations
between the symptoms. The TRIAGENT overcomes these
particular issues with the help of dynamic complexity of
the construction of symptom networks [10], multi-agent
design, and clear uncertainty measurements [11].

III. MATERIALS AND METHODS

TRIAGENT has a hierarchical design and demonstrates
strong NLP capabilities through each of its three branches.
With the help of medical entity recognition [12], intent
classification and a fine-tuned healthcare language model,
the Dialogue Agent of the leading company can grasp and
question the patient’s concerns [13]. Medical named entity
recognition with BioBERT [14] embedding and temporal
relation extraction are features used by middle tier agents
in understanding how symptoms [15] develop and
progress in patients. It allows all medically important
information to be identified in the patient’s messages.

TRIAGENT uses a multi-agent approach that has four
agents in different types, each type placed in one of three
tiers on the agent pyramid in Fig. 1. Its architecture is
reliable since it can process several medical details all at
once and ensure all components are in constant
communication. If a patient communicates with the
system, the system takes in their dialogue through the
Dialogue Agent and the specialized analysis agent looks
for various aspects of the medical problem in what was
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said. The conditions are converted into input for the
Dynamic Symptom Relationship Graph, where the
Relationship Graph Agent uses the DSRG algorithm to
identify important groups of conditions and main
relationships between them. The second is more
knowledge shared by the Context Analysis Agent that
analyzes the patient’s age, any medical history and
anything about their environment that may play a role in
making a diagnosis.
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Fig. 1. Hierarchical multiagent architecture of TRIAGENT.

Agents decsiption used in Fig. 1 are as follows:
Dialogue Agent (Natural Language Interface), Symptom
(Recognition Agent), Temporal (Analysis Agent), Context
(Analysis Agent), Additional (Specialized Agent),
Relationship (Graph-Agent DSRG), Triage (Decision
Agent) Triage Decison (& Recommendation).

Dynamic Symptom Relationship Graph (DSRG) is an
algorithm which works in three fundamental stages
initialization, dynamic evolution and evaluation processes.
In initialization, we create an initial graph G = (V, E, W),
V' is a set of nodes in the patient dialogue that constitute
symptom nodes, £ is an edge in the graph representing
relational ties between symptoms, and W is a context of
weights. The dynamic evolution step utilizes the real-time
graph updating that operates with reinforcement learning
and weight updating function:

((t+1))
W)

= axP(s;|sj)+ BxT(sis;)+ v xC(sis))
W is the weight matrix, ¢ is the time step, and i, j are
symptom indices. The formula updates edge weights
between symptoms i and j using three components: P(si|sj)
measures symptom co-occurrence probability, 7(si,sy)
captures temporal relationships, and C(si,sj) accounts for
patient context. Parameters o, S, y (0.4, 0.3, 0.3) weight
each component’s contribution to the updated weight at
time 7+1. Here o = 0.4, f# = 0.3, y = 0.3 are parameters
which are optimally determined through experimentation.
Subdivided into four agents specific to their field using
either named entity recognition or fine-tuned BioBERT as
a learning model (Dialogue Agent), DSRG as a structural
model (Relationship Graph Agent), and
demographic/temporal data as it assumes (Context
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Analysis Agent), the multi-agent architecture is based on
the following agents: Dialogue Agent (using fine-tuned
BioBERT), Symptom Analysis Agent (employing named
entity  recognition), Relationship ~ Graph  Agent
(implementing DSRG), and Context Analysis Agent
(processing demographic and temporal data).

Once all the details are gathered by the system, they
enter the Triage Decision Agent which merges all that data
and helps provide the right priority of care. Using both the
general and the specialized approach, TRIAGENT can
make quick and sensitive decisions about patient triage.

A lower tier agent delivers the information first and the
higher tier agent focuses on which direction the solution
will be sought. It involves a process where the system
continues to analyze the patient’s condition throughout the
course of the conversation.

1. DSRG Definition: DSRG stands for ‘“Dynamic
Symptom Relationship Graph” (not decentralized
stochastic recursive gradient). It is our novel algorithm
that constructs personalized, evolving symptom
networks during patient consultation.

Data Quality Assurance: We implement multiple
validation layers: (a) Semantic validation using
medical ontologies, (b) Consistency checking through
follow-up questions, (c) Cross-referencing with
established medical knowledge, and (d) Confidence
scoring for each patient input. Our evaluation used
clinically validated cases with expert-verified
diagnoses.

Patient Expression Variability: We address this
through: (a) Multi-stage NLP pipeline with domain-
adapted models, (b) Paraphrasing detection, (c) Active
learning for new expressions, and (d) Dynamic
vocabulary expansion.

Language Limitations: Currently, TRIAGENT
operates in English only. We acknowledge this as a
significant limitation and discuss future multi-language
development

A.  Graph Method for Dynamic Symptom Relationship

Our method is innovative because it establishes and
keeps updating a graph of personalized symptoms for each
patient. Unlike classic decision trees and fixed Bayesian
networks, the DSRG responds to new details and keeps
improving how we manage symptoms.

e Generation and creation of the graph

The result is a graph G made up of V, E and W, with V'
for symptom nodes and £ and W for contextual factors.
Relationships between diseases in W are shown by E and
the associated weights specify how close the diseases are
linked, starting with the main symptoms and associated
similar ones reported in the knowledge base.

B.  Dynamic Evolution

If a patient reports each new symptom s, add s to their
set of symptoms, V, if it isn’t already there. Using the
medical graph, change the relationship edges and their
assigned weights.

We rely on symptom reinforcement, which uses the
function:
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P(si|s2) gives the probability of symptom s as you
observe symptom s..

Temporal relationship strength is represented by 7(sy, s2)
and contextual modification by C(ss, s2).

The parameters for learning which are reinforcable by
the algorithm, are a, £ and .

Graph pruning and reinforcement are methods of I
matrix are included.
E'= {edge in E that has a weight higher than 6} should be
done periodically. Make the edges between confirmed
symptoms stronger. A graph attention mechanism is
implemented to pick the highest-impact symptom clusters.

C. Evaluation

Estimate the importance of every node by applying a
PageRank inspired algorithm. Use observed clinical
patterns and note the set of key findings to determine
disease. / is a matrix made up of ones in the row (or
column) for every vertex v and v is counted with a 1 if it is
an ingoing vertex or a 0 if it is outgoing. We sum each
weighted variable to obtain the urgency score:

U =2U@) X S))

The significance of node v is known by (v). U refers to
uncertainity.

The score assigned to symptom v reflects the severity
and this score is: S(v).

Talking with the patient helps the Relationship Graph
Agent to get better and use reinforcement learning to
change the weights in the graph when the patient confirms
or disagrees with the scores issued by the DSRG.

D. How Contrastive Learning Approaches for Rare
Disease Diagnosis

TRIAGENT utilizes contrastive learning techniques to
identify rare symptom patterns by analyzing paired
symptom data when vital signs show symptoms of a severe
medical condition. It carries out several functions, as
mentioned below.

1. Makes embeddings of patterns of symptoms from
medical papers.

2. The model uses a contrastive loss function to identify
when pictures show either a common or a rare disease.

3. Posseses a “red flag” system that causes further
questioning when potentially serious problems are
noticed

The contrastive learning approach is written as:

L_contrastive = —log (exp (sim(z_i,z_j)/7)
/2 (exp (sim(z_i, z_k)/7)))

where: z i and z j are embeddings of related symptom
clusters; z_k represents all other symptom clusters in the
batch; sim() is the cosine similarity function; 7 is the
temperature parameter.

TRIAGENT benefits from this method by detecting rare
yet essential symptom patterns without creating
unnecessary false alerts. TRIAGENT makes use of this
strategy to detect important rare conditions without
leading to false notifications.
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E.  Uncertainty Quantification and Risk Stratification

One of the innovations in our method is explicit
uncertainty quantification during triage. For every possible
diagnosis and urgency rating, TRIAGENT estimates
confidence intervals with:

1)  Bayesian uncertainty estimation

a) Estimates posterior probability distributions over
possible diagnoses.

b) Uses Monte Carlo dropout during inference to quantify
model uncertainty.

c) Estimates  uncertainty
recommendations.

2)  Risk stratification

a) Uses asymmetric loss function that penalizes false
negatives (missing serious conditions) more than false
positives.

b) Depends on adjusting thresholds of triage under
varying levels of uncertainty.

¢) Recommends raising levels when uncertainty is above
safety limits.

The risk-aware decision function is given by:

bounds on  urgency

D(x) = argmax_c X [P(c|x) — A x U(c|x) X R(c)]

D(x) represents the risk-aware decision function-it’s the
triage decision for a given patient input x.
More specifically:
e D(x) = The optimal urgency class/triage level selected
for patient input x.
o It works by finding the class ¢ that maximizes the risk-
adjusted probability.
where: P(c|x) is the probability of urgency class ¢ given
input x; U(c|x) is the uncertainty in classification; R(c) is
the risk factor related to class c; A is the risk aversion factor.

F.  Implementation Details

TRIAGENT is
components:

implemented with the following

1) Language understanding

a) Fine-tuned MedBERT model
medical language.

b) Domain-specific entity recognition for extracting
symptoms.

¢) Sentiment analysis to identify severity expressions.

for understanding

2) Knowledge integration

a) Medical knowledge graph built from Systematized
Nomenclature of  Medicine-Clinical Terms
(SNOMED-CT), International Classification of
Diseases, Tenth Revision (ICD-10), and medical texts.

b) Temporal reasoning engine for analysis of symptom
progression.

¢) Demographic and contextual factor database.

3)  Reinforcement learning framework
a) The reinforcement learning framework employs
Proximal Policy Optimization (PPO) for continuous

improvement of agent policy learning.
b) Reward function for correct urgency classification.
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¢) Exploration strategy based on Thompson sampling for
uncertain cases.

4)  Triage classification

a) Five-level urgency grading system consistent with
Emergency Severity Index (ESI).

Optimization of decision threshold using precision-
recall analysis.

¢) Explainable recommendation generation.

5)  Patient input validation and data quality assurance

In the framework of the essential issue that patient-
centered data might not be accurate enough to be capable
of making a reliable diagnosis, TRIAGENT achieves a
multi-level data quality control system:

1. Semantic and Medical verification: The medical
ontologies of SNOMED-CT are validated in the
description of all the symptoms of the patients with
94.2% of precision. Informal terms are counted to
generalised medical terms (e.g. chest tightness to chest
pain,  pressure-type).  Practically unique or
incompatible arranges of symptoms alert robotized
procedure of clarification.

2. Temporal and Logical Consistency Checking: The
system uses the consistency algorithms that identify
duplicated information. Follow-ups requests are
automated in cases when inconsistencies can be
discovered (e.g. severe pain vs. mild discomfort).
Time-related patterns of symptoms are corroborated to
known medical trends.

3. Cross Reference-Medical Knowledge: Each of the
reported symptoms is then cross-referenced against
known symptom-disease relations [16] in our graph of
medical knowledge. Hard to come by combinations of
symptoms also raise alarms and more questions are
posed to ensure accuracy. Any given presentation that
is dramatically different than the patterns known in
medicine is marked by the system.

4. Uncertainty Quantification and Confidence Scoring:
Each patient input is assigned a confidence score (0—1)
depending on: the linguistically defined confidence
markers, consistency with established medical
knowledge, and the coherence of replies across
different inputs. Inputs with low-confidence scores
(less than 0.6) are automatically flagged and cued to
follow clarification procedures. The system is
distinctive, in that it systematically measures
diagnostic uncertainty and actively integrates those
measurements into clinical triage recommendations,
ensuring that ambiguous or unclear cases receive
appropriately cautious medical attention and are
escalated for further evaluation when necessary.

IV. RESULT AND DISCUSSION

The assessment of TRIAGENT included 10,000 cases
made up of: 7000 old records taken from jointly collected
hospital series and 3000 additional, specially created
examples to cover unusual and demographically diverse
conditions. Each example involves the patient’s own
complaints, natural symptoms, age and sex of the subject,
their medical background and the level of urgency
classified as ground truth by their physician. We randomly
created 70% of the data for training, 15% for validation
and 15% for testing, all with the same balance of urgency
levels and demographic groups. In our comparison in
Table I, we compared TRIAGENT against three baseline
systems: (1) BaselineRule: a classical rule-based symptom
checker, (2) BaselineML: a Random Forest classifier, and
(3) CommercialSystem: leading commercial symptom
checkers.

System performance was checked by looking at
accuracy, precision, recall, F1 score, weighted average of
F1 score, skew to 0, Area Under the Receiver Operating
Characteristic Curve (AU-ROC) curve, the proportion of
patients who need more attention than they actually
required (over-triage rate) and the proportion of patients
who required less attention than expected (under-triage
rate).

All the other systems came nowhere close to
TRIAGENT’s superiority in every area measured. There
was the most improvement because both the over-triage
(7.3% vs 15.2%) and under-triage (3.0% vs 8.0%) rates
were lower.

From Table I, Statistical Significance: Paired t-tests
(» <0.001) and the Confidence Interval (CI) was 95% used
statistically to determine the significance of gathered data.
Baseline systems are: (1) Baseline Rule, a rule based
symptomchecker based on decision trees (note: a rule
based symptom checker is a common heuristic-based
approach to this diagnostic task), (2) BaselineML, a
Random Forest classifier with Term Frequency-Inverse
Document Frequency (TF-IDF) features, and (3)
CommercialSystem, a group of performance metrics taken
over published evaluations of the leading commercial
systems (Babylon Health, Ada Health) on similar datasets.
The increase in our accuracy rate of 17.2% is a statistically
confident increase (CI: 14.8-19.6%, p < 0.001) compared
to that of the best commercial system which can be
observed in Fig. 2.

From Table II, it can be observed that, the system
maintained excellent performance in all urgency ranges,
with particularly high results for emergent cases (F1: 0.93)
and cases related to self-care (F1: 0.91).

TABLE I. OVERALL PERFORMANCE COMPARISION

System Accuracy F1 Score AUROC Over-triage Rate Under-triage Rate
BaselineRule 65.3% 0.63 0.71 23.7% 11.0%
BaselineML 72.1% 0.70 0.79 18.4% 9.5%

Commercial System 76.8% 0.75 0.83 15.2% 8.0%
TRIAGENT 89.7% 0.88 0.94 7.3% 3.0%

Note: Area Under Receiver Operating Charecteristic Curve (AUROC).
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Fig. 2. Overall performance.

TABLE II. PERFORMANCE ACROSS URGENCY LEVELS

Urgency Level Precision Recall F1 Score
Emergent 0.92 0.95 0.93
Urgent 0.88 0.91 0.89
Semi-urgent 0.87 0.89 0.88
Non-urgent 0.91 0.87 0.89
Self-care 0.93 0.90 0.91

A. Performance on Rare vs. Common Conditions

Fig. 3 shows the new TRIAGENT system delivers
excellent stability and scores about 70% accuracy for
common and rare symptoms, while other methods usually
do not do well on rare diseases (their average performance

is below 45% on these situations). This new method which
uses contrastive learning and maps symptom relationships,
helps healthcare providers find rare but important
conditions when they first meet a patient.

Performance across Urgency Levels
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& &
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Q/&
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Fig. 3. Performance across urgency levels.

B.  Accuracy by Condition Prevalence (%)

Table III shows test handled with different prior
conditions to measure the disparity in benchmarks.
TRIAGENT remains knowledgeable even with rare
diseases (prevalence < 0.1%) unlike other systems where
knowledge and performance reduce with the inclusion of
rare diseases.

TABLE III. ACCURACY BY CONDITION PREVALENCE

System <0.01% 0.01-0.1% 0.1-1% 1-10% >10%
TRIAGENT 70% 76% 84.3% 92% 95%
Commercial System 42% 54% 62.7% 74% 80%
BaselineML 32% 42% 54% 61% 65%
BaselineRule 14% 26% 32% 38% 40%

Accuracy by condition Prevalence

<0.01% 0.01-0.1% 0.1-1% 1-10% >10%

100%
90%
80%
70%
60%
50%
40
30
20
10
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XXX R

B TRIAGENT = CommercialSystem & BaselineML i BaselineRule

Fig. 4. Accuracy by condition prevalence.

Fig. 4 shows TRIAGENT showed superior performance
even in rare cases (occurring less than 1% of the time): its
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accuracy was 84.3%, higher than the 62.7% found in
Commercial System. It demonstrates that our method can
successfully pick up rare symptoms. TRIAGENT was
tested in several demographic conditions: age 18-85
(mean = 42.3, SD = 16.7), males and females (52 female,
48 male) and ethnicities (35 Caucasian, 28 Asian, 22
Hispanic, 15 African American). The smallest variations
between groups could be noted in performances (accuracy
values: 87.2-91.4). The system is however running on
English alone and needs to be built up on other languages.
The limitations are associated with lower performance
among  patients  with  various  comorbidities
(>5 comorbidities), having communication impairments.

C. Abalation Study

We did an ablation experiment to find out how
important each component is for the overall result which
can be shown in Table IV.

Fig. 5 shows the analysis indicates that every method
plays an important role in the system and the DSRG
algorithm contributed most (10.5% decrease in accuracy).
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TABLE IV. ABALATION STUDY

System Configuration Accuracy F1 Score
Full TRIAGENT 89.7% 0.88
w/o DSRG Algorithm 79.2% 0.77
w/o Contrastive Learning 85.3% 0.84
w/o Uncertainty Quantification 83.8% 0.82
w/o Multi-Agent Architecture 76.5% 0.74
Abalation study
100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
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30.00%
20.00%
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Fig. 5. Abalation study.

Dropping the multi-agent architecture led to a 13.2%
point decrease in performance, after TC removing
peripheral algorithms.

TRIAGENT s results are highly comparable to those of
existing SCs.

When compared to top commercial systems,
TRIAGENT advised with far fewer unnecessary
emergency responses, which likely translated to fewer
crowds in emergency departments and fewer healthcare
bills.

(i) Better skills at accurately triaging cases by the 5% drop
in under-triage gives patients who are in greatest need
of help a chance for survival.

By including lots of differences in the algorithm, DSRG
is more flexible than a simple decision tree approach to
assessing patients.

(i1) The graphical methods highlight and demonstrate
triaging in a way that is more natural to see, more open
and may make users feel more trusting.

V. CONCLUSION

This work introduces a new symptom checker and triage
approach known as TRIAGENT that has a multi-agent
structure that includes its Dynamic Symptom Relationship
Graph algorithm. We provide much more accurate and safe
results than other systems, while personalizing the
recommendations for triage.

Personalized networks that change as we keep talking
with a patient provide significant insights into the patient’s
symptoms and how urgently certain ones may need
attention. In addition, contrastive learning is used to help
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find unusual symptoms and uncertainty is explicitly
explained to strengthen the system’s medical reliability.

Our dataset of 10,000 clinical cases enabled us to
experimentally demonstrate that TRIAGENT achieves
89.7% accuracy in classifying urgent situations, improving
on the previous results by 17.2%. Triage rates were
improved greatly by the new system, meaning there could
be more cost-efficient use of healthcare resources and
improved results for patients.

Given there is more demand for healthcare and less
supply of resources, systems everywhere can now use
triage systems, like TRIAGENT, to make sure people get
the care required at the right clinics or hospitals. Future
progress is planned to add multiple types of data entry,
train the system over time and connect it with current
healthcare data systems to better use the clinical features.
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