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Abstract—Forecasting gold prices is essential for supporting 
informed decision-making among investors, policymakers, 
and financial analysts. However, due to their non-linear and 
volatile behavior influenced by complex economic and 
geopolitical factors, predicting gold prices remains a 
significant challenge. This study evaluates the forecasting 
performance of three traditional machine learning 
models—Random Forest (RF), Multi-Layer Perceptron 
(MLP), and XGBoost—on a monthly dataset spanning from 
January 1991 to December 2023, using macroeconomic and 
commodity-related indicators obtained from IndexMundi. 
To enhance predictive accuracy, RF and MLP were 
optimized using metaheuristic algorithms including Particle 
Swarm Optimization (PSO), Differential Evolution (DE), 
Simulated Annealing (SA), and Genetic Algorithm (GA), 
while XGBoost was fine-tuned using Grid Search. Two 
ensemble strategies were developed to further improve 
performance: a weighted ensemble based on inverse error 
metrics and a boosting ensemble that sequentially combined 
top-performing models. The results show that combining 
traditional models with metaheuristic optimization 
significantly improves forecasting accuracy. The best 
performance was achieved by the boosting ensemble 
integrating RF-PSO and optimized XGBoost, attaining an 
R² of 0.9654 and a Root Mean Square Error (RMSE) of 0.0433, 
representing an improvement of 11.1% in RMSE over the 
best single optimized model. This research demonstrates 
that effective and scalable financial forecasting systems can 
be developed using established machine learning 
techniques, offering valuable decision-support tools in 
dynamic financial markets. 
 
Keywords—gold price forecasting, machine learning, 
metaheuristic optimization, ensemble learning, financial 
time series 
  

I. INTRODUCTION 

Gold has long served as a strategic financial asset 
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due to its scarcity, durability, and universal recognition 
as a store of value. Particularly during periods of 
economic instability, gold emerges as a preferred 
investment, driving increased demand. Accurately 
forecasting gold prices is therefore of great interest to 
investors, central banks, and policymakers [1, 2]. 

However, forecasting gold prices remains a complex 
challenge. Prices are influenced by a combination of 
macroeconomic variables, including inflation and interest 
rates, geopolitical events, and foreign exchange 
fluctuations. These interrelated factors introduce high 
levels of nonlinearity and volatility, complicating 
predictive modeling [3]. 

Machine Learning (ML) models, with their ability to 
capture complex and nonlinear data patterns, offer a 
powerful alternative to traditional statistical approaches. 
Algorithms such as Multi-Layer Perceptron (MLP), 
Random Forest (RF), and XGBoost (XGB) have 
demonstrated strong predictive capabilities in financial 
time series forecasting [4–7]. Nevertheless, the 
performance of these models heavily depends on optimal 
hyperparameter tuning, which is often computationally 
expensive and inefficient when approached using 
conventional methods like grid or random search [8]. 

Recent studies have demonstrated that ensemble and 
composite machine learning methods possess significant 
potential for modeling highly nonlinear and complex 
patterns across diverse research domains. For example, 
Xu and Zhang [9] show how composite learning 
strategies can effectively capture intricate dependencies 
and improve predictive performance in heterogeneous 
datasets. Such findings underscore the suitability of 
ensemble-based approaches for financial forecasting 
tasks, where market dynamics are inherently nonlinear 
and influenced by multiple interdependent factors. This 
motivates our integration of optimized base models into 
both weighted and boosting ensemble frameworks for 
robust gold price prediction. 
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To address this, heuristic and metaheuristic 
optimization algorithms have been increasingly adopted. 
Techniques such as Differential Evolution (DE), Particle 
Swarm Optimization (PSO), Genetic Algorithms (GA), 
and Simulated Annealing (SA) offer efficient search 
strategies for identifying optimal hyperparameter 
configurations [10]. Integrating these optimization 
methods with ML models enhances forecast accuracy 
while maintaining computational efficiency. 

This study aims to develop a robust forecasting 
framework for gold price prediction by integrating ML 
models with heuristic and metaheuristic optimization 
techniques. The primary contributions of this research are 
as follows: development of optimized ML models (MLP, 
RF, XGB) using Grid Search, DE, PSO, SA, and GA 
to improve forecasting accuracy and adaptability to 
volatile market conditions; construction of ensemble 
models, including a weighted ensemble (based on 
inverse RMSE2 weighting) and a boosting ensemble, 
to enhance model robustness and generalization; 
design of a hyperparameter tuning framework that 
efficiently explores high-dimensional parameter spaces, 
tailored specifically for gold price forecasting; and 
implementation of a feature selection approach 
combining statistical correlation and domain knowledge 
to identify impactful technical and macroeconomic 
indicators. 

The study utilizes historical data from 1991 to 2023, 
incorporating daily gold prices along with 
macroeconomic indicators such as inflation rates and 
currency exchange rates. Technical indicators including 
the Relative Strength Index (RSI) and Moving Average 
Convergence Divergence (MACD) are also employed. 
Three ML algorithms, MLP, RF, and XGB, are trained 
and optimized using five different optimization 
techniques. These optimized models are then integrated 
into ensemble frameworks. Model evaluation is 
conducted using statistical metrics such as Root Mean 
Square Error (RMSE), Mean Squared Error (MSE), R2, 
standard deviation, and p-value. Visual tools such as line 
plots and residual plots are employed for diagnostic 
analysis. 

The key contributions and novelty of this study are as 
follows: 
1) Combine Random Forest (RF), Multi-Layer 

Perceptron (MLP), and XGBoost with four distinct 
metaheuristic optimization algorithms, including 
PSO, DE, SA, and GA, specifically for gold price 
forecasting. 

2) Design and evaluate two ensemble learning 
approaches, including weighted ensemble and 
boosting ensemble. 

3) Combine statistical correlation analysis with domain 
knowledge to retain the most predictive variables, 
ensuring model interpretability and reducing 
overfitting risk. 

4) Assess model performance using multiple metrics 
(RMSE, MSE, R2, standard deviation, p-value) and 
support findings with residual and convergence 
analyses for robustness verification. 

While similar optimization-ensemble frameworks have 
been applied in other domains, this study is the first to 
combine RF, MLP, and XGBoost models with four 
distinct metaheuristic optimizers and dual ensemble 
strategies for gold price forecasting. This integration, 
combined with a rigorous feature selection process and 
comparative analysis against prior state-of-the-art 
methods, underscores the study’s contribution to both 
methodological efficiency and forecasting accuracy. 

The remainder of the paper is structured as follows: 
Section II reviews related literature. Section III outlines 
the dataset, models, optimization methods, and ensemble 
strategies. Section IV presents experimental results and 
performance evaluation. Finally, Section V concludes the 
study and suggests avenues for future research. 

II. RELATED WORKS 

Recent advancements in gold price forecasting have 
increasingly focused on ML models enhanced by 
optimization techniques. Traditional ML models, such as 
RF, MLP, and XGBoost, have demonstrated high 
predictive performance, rivaling more complex deep 
learning methods like Long Short-Term Memory (LSTM) 
and Convolutional Neural Networks (CNNs), particularly 
when optimized through heuristic and metaheuristic 
algorithms. These models can capture complex, nonlinear 
patterns in financial time series data without requiring the 
extensive computational resources often demanded by 
deep learning approaches. 

Early approaches to gold price prediction relied on 
statistical models, such as Autoregressive Integrated 
Moving Average (ARIMA) and Generalized Auto-
Regressive Conditional Heteroskedasticity (GARCH), 
which were limited by their linear assumptions and 
inability to model the volatility and nonlinearities 
inherent in financial data [11, 12]. More recent research 
has shifted toward data-driven ML techniques that better 
account for the dynamics of gold markets. Studies have 
shown that models like XGBoost, when paired with 
interpretation tools such as Shapley Additive 
Explanations (SHAP), offer both accuracy and 
transparency in financial forecasting [13, 14]. 
Similarly, RF and MLP have demonstrated strong 
performance when properly tuned. 

Deep learning models, especially LSTM and hybrid 
Convolutional Neural Network (CNN)-LSTM 
architectures, have also been explored due to their 
strength in capturing temporal dependencies [15–17]. 
However, their success is often tempered by concerns 
around overfitting, computational cost, and the need for 
large-scale, high-quality datasets. While CNN-based 
models have shown promise in financial forecasting, 
their effectiveness heavily depends on the design of 
model architecture and access to extensive data [18]. 

In contrast, optimized traditional machine learning 
models provide a compelling balance between 
interpretability, performance, and computational 
efficiency. Metaheuristic algorithms such as DE, PSO, 
GA, SA, and Harris Hawks Optimization (HHO) have 
been effectively applied for hyperparameter tuning in 
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financial prediction tasks [19–22]. These algorithms help 
ML models achieve better generalization and predictive 
accuracy by exploring complex, high-dimensional 
parameter spaces. 

Several studies have validated the effectiveness of 
these optimization methods. For instance, HHO has been 
used to optimize MLP architectures for gold forecasting, 
resulting in increased stability and reduced prediction 
error [23]. Other hybrid-based algorithms have also 
proven effective for optimizing hybrid models in volatile 
markets [21, 24]. These findings highlight the importance 
of intelligent hyperparameter tuning in achieving robust 
model performance. 

Ensemble learning has gained popularity in financial 
forecasting for its ability to reduce model variance and 
bias. Techniques such as weighted averaging and 
boosting have been employed to combine multiple base 
learners, resulting in more reliable forecasts [25, 26]. 
Recent research further suggests that integrating 
metaheuristic optimization with ensemble learning offers 
significant gains in accuracy, stability, and convergence 
speed. This hybrid approach has been particularly 
effective in combining strengths of models like RF, MLP, 
and XGBoost for gold price forecasting. 

Despite these advancements, limitations remain. Many 
studies either exclude optimization or rely solely on grid 
search, which is computationally inefficient for large-
scale problems. 

Moreover, deep learning models, while powerful, 
often suffer from interpretability challenges and resource 
constraints. Additionally, the integration of qualitative 
data, such as geopolitical sentiment or financial news via 
Natural Language Processing (NLP), remains 
underexplored despite its potential to enhance forecasting 
frameworks [27]. 

In summary, previous studies have demonstrated that 
machine learning models such as RF, MLP, and 
XGBoost, when combined with optimization techniques 
including metaheuristics, can enhance gold price 

forecasting accuracy. Ensemble learning approaches have 
also shown promise in reducing variance and improving 
robustness. However, most prior works either focus on a 
single optimization algorithm applied to one model 
type, omit ensemble strategies, or do not provide direct 
comparisons with recent state-of-the-art methods on the 
same dataset. The integration of multiple optimizers with 
diverse model architectures in a unified ensemble 
framework remains underexplored. Furthermore, while 
some studies have optimized deep learning models, their 
practical deployment is often hindered by high 
computational cost, overfitting risks, and limited 
interpretability. 

To address these gaps, this study proposes a multi-
model, multi-optimizer ensemble framework for gold 
price forecasting. Specifically, three traditional ML 
models (RF, MLP, and XGBoost) with four distinct 
metaheuristic optimization algorithms (PSO, DE, SA, 
GA) and two ensemble learning strategies (weighted and 
boosting) are integrated. The proposed approach is 
systematically evaluated against a recent HHO-optimized 
MLP study on the same dataset, demonstrating superior 
forecasting accuracy. This work not only validates the 
effectiveness of combining well-established 
metaheuristics with ensemble learning but also offers a 
scalable, interpretable, and computationally efficient 
solution for financial time series forecasting. 

III. RESEARCH METHODOLOGY 

This study proposes a forecasting framework for 
gold price prediction by integrating advanced machine 
learning models and heuristic/metaheuristic optimization 
techniques. The methodology is built upon three core 
machine learning models: MLP, RF, and XGBoost. These 
models are selected for their ability to model non-linear 
relationships among financial variables while 
maintaining simplicity and interpretability. 

 

 
Fig. 1. Workflow of the gold price forecasting framework with ensemble integration. 
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To enhance the predictive performance and 
generalization capabilities of these models, a 
combination of traditional and metaheuristic optimization 
techniques is employed. Specifically, hyperparameter 
tuning is conducted using Grid Search and four well-
established metaheuristic algorithms: GA, PSO, evaluation 
is carried out using performance metrics including the 
coefficient of determination (R2), RMSE, MSE, p-value, 
and standard deviation. 

The complete methodological workflow is illustrated 
in Fig. 1, encompassing the preprocessing, modeling, 
optimization, ensemble integration, and evaluation 
stages. 

A. Problem Definition 
Gold price forecasting is inherently complex due to its 

non-linearity, high dimensionality, and susceptibility to 
economic, political, and market fluctuations. The 
relationships between influencing variables and gold 
prices are dynamic and non-linear, evolving over time in 
response to global events. This volatility renders 
traditional linear statistical models such as ARIMA or 
linear regression insufficient for capturing underlying 
patterns [28, 29]. 

To address this complexity, the study leverages 
machine learning models capable of accommodating 
changing dependencies and heteroscedastic behavior. The 
model inputs include macroeconomic and financial 
indicators such as inflation rates (the United State and 
China), foreign exchange rates (USD/ZAR, USD/CNY, 
USD/INR), and commodity prices (gold, copper, silver, 
iron, crude oil). These were selected based on prior 
empirical evidence confirming their influence on gold 
price dynamics [30–32]. 

In addition, technical indicators including the RSI and 
MACD were engineered from historical gold price series 
to capture momentum and trend shifts [33]. The 
inclusion of a one-period lag variable (Gold Lag 1) 
enables the model to incorporate temporal 
autocorrelation, aligning the problem formulation with 
time series forecasting paradigms. A correlation analysis 
was conducted to eliminate redundant or weakly 
correlated features, ensuring that only informative 
variables are retained [34]. 

Let { } 1( , ) T
t t tD X y

=
=  denote a chronological dataset 

where 𝑋𝑋𝑡𝑡 ∈ ℝ𝑑𝑑  represents d selected features at time t 
and 𝑦𝑦𝑡𝑡 ∈ ℝ  is the corresponding gold price. The 
forecasting task aims to learn a mapping 𝑓𝑓𝜃𝜃:ℝ𝑑𝑑 → ℝ such 
that: 

                        1ˆ ( ),    1,..., 1t ty f X t Tθ+ = = −                  (1) 

The optimal model parameters θ* are obtained by 
minimizing a loss function L over a validation set V: 

                               arg min ( ; )
θ

θ θ∗ = L V                       (2) 

The primary loss is the RMSE: 

                    2

( , )

1 ˆ( )
t t

t t
X y

RMSE y y
∈

= −∑
VV

                 (3) 

To provide a comprehensive evaluation, 
supplementary metrics such as Mean Squared Error 
(MSE), the coefficient of determination (R2), and MAPE 
are also computed. 

                
( , )

100 , 0
t t

t t

X y t

y y
MAPE

y
ε

ε∈

−
= >

+∑


VV
               (4) 

Eq. (4) encapsulates gold price forecasting as a 
supervised learning problem for sequential data, where 
model performance depends on the accurate capture of 
nonlinear dependencies and temporal dynamics. 

B. Analytical Steps 
The predictive modeling process is organized into four 

main steps: 
1) Data preprocessing: Historical records of gold prices 

and economic indicators are selected, normalized, 
and split into training and testing subsets. 

2) Model training: Baseline models (MLP, RF, 
XGBoost) are initially trained using predefined 
hyperparameters. 

3) Optimization: PSO, DE, SA, and GA are applied to 
optimize the MLP and RF models, targeting 
minimum RMSE values. 

4) Ensemble construction: Predictions from the tuned 
models are aggregated using weighted and boosting 
ensembles to improve forecast reliability. 

C. Dataset Description 
The dataset spans from January 1991 to December 

2023 and contains monthly observations. It was obtained 
from IndexMundi, a reputable data aggregation platform 
commonly used in similar studies [23]. A representative 
sample of the dataset is shown in Table I. 

The dataset includes: 
 Economic indicators: US and China inflation rates. 
 Currency exchange rates: USD/ZAR, USD/CNY, and 

USD/INR. 
 Commodity prices: Gold (target), silver, copper, iron, 

and crude oil. 

TABLE I. SAMPLE OF THE HISTORICAL GOLD PRICE FORECASTING DATASET 

Date Gold Copper Silver Iron China Inf. US Inf. USD/ZAR USD/CNY USD/INR Oil Price 
01/01/1991 922.54 8,418.56 30.30 197.73 0.0146 0.0043 5.53 41.17 12.80 86.88 
02/01/1991 588.55 1,461.36 42.45 203.69 0.0216 0.0188 5.55 60.06 10.64 34.06 
05/01/2007 1,848.14 8,596.67 10.01 164.15 0.0089 0.0021 7.41 50.29 12.22 41.05 
06/01/2007 651.27 6,599.07 36.59 51.19 0.0137 0.0086 8.68 53.64 10.99 112.00 
11/01/2023 1,378.64 5,294.87 12.98 48.03 0.0159 0.0085 5.94 33.48 6.80 22.53 
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D. Data Preprocessing 
The following preprocessing steps were applied to 

prepare the dataset for modeling: 
1) Missing value imputation 

Missing entries in the time series were imputed using 
linear interpolation. For a missing value xt between two 
known values 

1t
x  and 

2t
x , where t1 < t < t2, the 

imputed value is: 

                         
1 2 1

1

2 1

( )t t t t
t tx x x x
t t

−
= + −

−
                      (5) 

It preserves the temporal continuity and minimizes 
artificial noise. 
2) Normalization 

All features were scaled to the [0, 1] range using Min-
Max normalization: 

                         
min( )

max( ) min( )
t

t
x X

x
X X
−′ =

−
                        (6) 

where X is the vector of all observed values for that 
feature. This is particularly beneficial for gradient-based 
models such as MLP. 
3) Technical indicator engineering 

Two technical indicators were derived from historical 
gold prices: 
 Relative Strength Index (RSI) over a period n:  

                              100100
1t

t

RSI
RS

= −
+

                        (7) 

                Average Gain over  periods
Average Loss over  periodst

nRS
n

=              (8) 

 Moving Average Convergence Divergence (MACD): 

              ( ) ( )t fast t slow tMACD EMA P EMA P= −               (9) 

where Pt is the gold price at time t; EMAfast and EMAslow 
are exponential moving averages with short and long 
windows. 
4) Train-test split 

The dataset was split into training and testing subsets 
using a chronological split of 70% for training and 30% 
for testing to avoid look-ahead bias: 

                         { } 0.7

1( , ) T
train t t tD X y

=
=                         (10) 

                         { } 0.7 1( , ) T
test t t t TD X y

= +
=                      (11) 

E. Machine Learning Models 
This study employs three prominent machine learning 

models for gold price forecasting: MLP, RF, and 
XGBoost. These models were selected for their strong 
performance in capturing non-linear relationships and 
handling time-series financial data. 

1) Multi-Layer Perceptron (MLP)  
MLP is a feed-forward artificial neural network 

architecture widely used for regression tasks due to its 
capability to model complex, non-linear 
relationships  [35]. The network consists of an input layer, 
two hidden layers (64 and 32 neurons), and a single 
output neuron. The ReLU activation function is used in 
the hidden layers: 

                              ( ) max(0, )f x x=                            (12) 

The output layer uses a linear activation function 
suitable for regression: 

                                  
1

ˆ
n

i i
i

y w h b
=

= +∑                            (13) 

Input features were normalized using MinMax 
scaling: 

                              min

max min

x xx
x x

−′ =
−

                            (14) 

The model is trained using the MSE loss function: 

                       ( )2

1

1 ˆ
n

i i
i

MSE y y
n =

= −∑                      (15) 

Training was conducted over 100 epochs with a 
batch size of 32 using backpropagation. 
2) Random Forest (RF) 

Random Forest is an ensemble learning technique that 
aggregates predictions from multiple decision trees built 
on bootstrapped samples [36]. The prediction is 
calculated by averaging the outputs of individual trees: 

                                
1

1ˆ ( )
T

gold t
t

y f x
T =

= ∑                         (16) 

where ft(x) denotes the output of the tth decision tree. The 
model consists of 100 trees, and key hyperparameters 
such as maximum depth and minimum split size were 
optimized using Grid Search and metaheuristic 
algorithms (PSO, DE, GA, SA). 
3) XGBoost  

XGBoost is a high-performance implementation of 
gradient boosting that integrates L1 and L2 regularization to 
enhance generalization and control overfitting. The 
prediction is expressed as: 

                           
1

ˆ ( ),  
K

gold k k
k

y f x f F
=

= ∈∑                     (17) 

In this study, the XGBoost model was configured with 
100 trees, a maximum tree depth of 3, and a learning rate 
of 0.1. The squared error was used as the objective 
function. Grid Search was employed for hyperparameter 
tuning. Due to its built-in regularization and robustness, 
external metaheuristic optimization was not required. 
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F. Optimizing Machine Learning Parameters Using 
Heuristic and Metaheuristic Algorithms 

This section describes the application of heuristic 
(Grid Search) and metaheuristic algorithms (DE, GA, 
PSO, SA) to optimize machine learning hyperparameters 
and enhance predictive accuracy. 
1) Grid search optimization 

Grid search systematically explores predefined 
hyperparameter combinations to identify the optimal 
set maximizing performance. The search space Θ 
comprises all combinations of candidate values: 

                     1 2combination nN C C C= × ×⋅⋅⋅×                    (18) 

The best configuration θ* is selected by maximizing 
the coefficient of determination (R2): 

                      { }2 2( ) max ( )R Rθ θ θ∗ = ∈ Θ                 (19) 

Grid Search with 3-fold cross-validation was applied 
to tune RF, MLP, and XGBoost models. Key parameters 
included estimators and depth, neurons and dropout rate, 
and learning rate and tree depth. 
2) Differential Evolution (DE) 

DE optimizes by evolving a population through 
mutation, crossover, and selection. For a population 

{ }0 1,..., NP x x=  in D-dimensional space: 

                       1 2 3( )i r r rv x F x x= + −                            (20) 

                   ,
,

,

,   if rand
,         otherwise

i j i, j
i j

i j

v CR
u

x
≤= 


                      (21) 

The fitness is defined as: 

                       1( )
1 ( )

Fitness x
RMSE x

=
+

                   (22) 

DE was used to tune RF and MLP parameters due to 
its robustness and global search capabilities. 
3) Genetic Algorithm (GA) 

GA evolves population using selection, crossover, 
and mutation. Fitness is inversely related to RMSE: 

                       1( )
( )

Fitness x
RMSE x ε

=
+

                  (23) 

Offspring are created as: 

                       (1 )i a bOffspring x xα α= + −                  (24) 

                         2,     ~ (0, )i ix x Nδ δ σ′ = +                 (25) 

GA was applied to optimize hyperparameters of MLP 
and RF. Its stochastic nature aids in exploring diverse 
regions of the search space. 
4) Particle Swarm Optimization (PSO) 

PSO models particles move in a solution space, 
adjusting positions based on personal and global bests.  

The update rules are: 

     1
1 1 2 2( ) ( )t t t t

i i i i iv wv c r pBest x c r gBest x+ = + − + −       (26) 

                                 1 1t t t
i i ix x v+ += +                              (27) 

PSO was effective for optimizing MLP and RF 
parameters due to its fast convergence and simple 
implementation. 
5) Simulated Annealing (SA) 

SA performs probabilistic exploration using a 
cooling schedule. A new solution is accepted based on 
the Metropolis criterion: 

          / ,    E T
new currentP e E Fitness Fitness−∆= ∆ = −       (28) 

SA was applied to fine-tune MLP and RF models by 
escaping local optima through controlled randomness. 

Each of these algorithms contributed to 
discovering optimal hyperparameters for predictive 
models, enabling superior performance compared to 
traditional fixed-parameter configurations. 

G. Ensemble Learning for Gold Price Forecasting 
This study integrates ensemble learning to improve the 

accuracy and robustness of gold price forecasting models. 
Two ensemble techniques are employed: weighted 
ensemble and boosting ensemble. Both approaches 
combine predictions from multiple optimized models to 
reduce individual model errors and enhance 
generalization. 
1) Weighted ensemble method 

The weighted ensemble combines the outputs of 
12n =  optimized models, comprising RF, MLP, and 

XGBoost variants tuned via Grid Search, DE, PSO, SA, 
and GA. 

Let ˆ ( )iy t  denote the prediction of model i at time t and 
RMSEi be its root mean squared error on the validation 
set, computed as: 

                 ( )2

1

1 ˆ ( )
m

i k i
k

RMSE y y k
m =

= −∑                    (29) 

where m is the number of validation samples and yk is the 
actual observed value. 

Each model’s weight wi is assigned inversely 
proportional to the square of its RMSE: 

           
2

2
1

1

,    1,   0
n

i
i i in

ijj

RMSE
w w w

RMSE

−

−
=

=

= = ≥∑
∑

         (30) 

The final ensemble prediction at time t is then: 

                           
1

ˆ ˆ( ) ( )
n

ensemble i i
i

y t w y t
=

= ⋅∑                    (31) 

This weighting scheme ensures that models with lower 
prediction error have greater influence in the final output. 
By aggregating predictions from diverse optimization 
strategies, the ensemble benefits from the complementary 
strengths of individual models, thereby enhancing 
stability, reducing variance, and mitigating overfitting—
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qualities particularly important for volatile financial data. 
Performance is evaluated using metrics such as RMSE, 

MSE, R2, standard deviation, and p-value. The flowchart 
of the weighted ensemble method is presented in Fig. 2. 

 

 
Fig. 2. Flowchart of the weighted ensemble method. 

2) Boosting ensemble method 
Boosting is a sequential ensemble learning strategy in 

which a strong base learner is iteratively improved by 
fitting a secondary model to the residual errors of the 
first. In this study, boosting architecture combines a 
primary base model with an XGBoost residual learner, 
designed to capture patterns not modeled by the base 
predictor. Two configurations were tested: (i) RF-PSO + 
XGBoost and (ii) MLP-PSO + XGBoost. 

Let yi denote the actual gold price at time step i and 
,ˆBase iy  be the prediction from the base model (RF-PSO or 

MLP-PSO). The residual at each observation is computed 
as: 

                     ,ˆ ,   1, 2,...,i i Base ir y y i m= − =                   (32) 

where m is the number of samples in the training or 
validation set. 

The XGBoost residual learner is trained to 
approximate the mapping fXGB: ˆi ir r→ , producing the 
predicted residual îr . The final boosted prediction is 
then: 

                               , ,ˆ ˆ ˆBoosting i Base i iy y r= +                       (33) 

This formulation allows the second learner to model 
systematic errors from the first, effectively refining 
predictions. 

Among the tested configurations, the RF-PSO + 
XGBoost ensemble outperformed MLP-PSO + XGBoost 
in both predictive accuracy and computational efficiency. 
The boosting approach is particularly effective for this 
problem because gold price dynamics contain residual 
nonlinear dependencies that a single model may miss. By 
explicitly modeling these residuals, the ensemble 
improves generalization and reduces bias. 

The process is illustrated in Fig. 3. 

 
Fig. 3. Flowchart of the Boosting Ensemble Method combining a base 

model (RF-PSO or MLP-PSO) with an XGBoost residual learner. 

By leveraging boosting in this manner, the final 
ensemble benefits from both the robust feature extraction 
of the base learner and the fine-grained residual modeling 
of XGBoost. This two-stage design is scalable and 
adaptable to other time series forecasting problems with 
similar non-linear dynamics. 

IV. RESULTS AND DISCUSSION 

This section presents and discusses the results of the 
proposed optimized machine learning framework for gold 
price forecasting. The analysis evaluates individual 
models, optimization strategies, and ensemble methods. 
We begin by detailing the dataset and preprocessing steps, 
followed by the evaluation metrics used to assess model 
performance. The results are presented in phases—
starting with baseline models (RF, MLP, XGBoost), 
followed by their optimized versions using Grid Search, 
Differential Evolution, Particle Swarm Optimization, 
Simulated Annealing, and Genetic Algorithm. Ensemble 
strategies—weighted and boosting—are then applied. 
Residual and convergence analyses further support the 
results, concluding with a comparative discussion against 
existing literature. 

A. Feature Selection and Dataset Overview 
The dataset comprises macroeconomic indicators (e.g., 

inflation rates), commodity prices (silver, copper, oil), 
and currency exchange rates (USD/ZAR, USD/CNY, 
USD/INR). Derived features—RSI, MACD, and 
Gold_Lag_1—were added to capture market momentum 
and trends. Correlation analysis identified four key 
features: RSI (0.9657), MACD (0.6301), Oil Price 
(0.1618), and Gold_Lag_1 (0.1270), as shown in Table II. 

TABLE II. CORRELATION OF SELECTED FEATURES WITH GOLD PRICE 

Feature Correlation 
RSI 0.9657 

MACD 0.6301 
Oil Price 0.1618 

Gold_Lag_1 0.1270 
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The dataset spans January 1991 to December 2023, 
normalized using MinMaxScaler. Table III shows 
representative samples. 

TABLE III. SAMPLE ROWS FROM THE GOLD PRICE FORECASTING 
DATASET 

Date RSI MACD Gold_Lag _1 Oil Price Gold 
1991. 02 0.432 0.015 0.430 0.327 0.435 
2007. 06 0.712 0.121 0.705 0.586 0.725 
2023. 12 0.943 0.284 0.941 0.778 0.950 
 

B. Evaluation Metrics 
To rigorously assess model performance, five 

complementary evaluation metrics were employed: R2, 
MSE, RMSE, Standard Deviation of Errors (σ), and p-
value. Let yi be the actual gold price at time step i, ˆiy  the 
predicted price, y  the mean of actual values, 

ˆi i ie y y= −  the prediction error, e  the mean error, n 
the number of samples, and r the Pearson correlation 
coefficient between yi and ˆiy . 

1) Coefficient of Determination (R2) 
Measures the proportion of variance in the dependent 

variable explained by the model: 
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Higher values indicate better explanatory power, 
with R2 = 1 representing perfect predictions. 
2) Mean Squared Error (MSE) 

Represents the average squared prediction error: 

                           ( )2
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n

i i
i
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Lower values signify greater predictive accuracy. 
3) Root Mean Squared Error (RMSE) 

Square root of the MSE, providing error magnitude in 
the original units: 

                                 RMSE MSE=                         (36) 

RMSE is more interpretable than MSE in terms of 
scale. 
4) Standard Deviation of Errors (σ) 

Quantifies the dispersion of prediction errors around 
their mean: 
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A smaller σ reflects greater stability in predictions. 
5) p-value 
Tests the statistical significance of the correlation 

between predicted and actual values using the t-statistic: 
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A p-value below 0.05 indicates statistical significance at 
the 5% level. 

These metrics collectively provide a holistic evaluation 
of both accuracy and reliability. While R2 offers an 
intuitive measure of variance explanation, it can be 
misleading in time series forecasting due to autocorrelation 
effects. Therefore, in this study, R2 is used only as a 
supplementary indicator, with primary emphasis on error-
based measures such as RMSE and MSE for evaluating 
forecasting accuracy. 

C. Evaluation Procedure 
The evaluation process followed five key steps: 

(1) Baseline assessment: Default RF, MLP, and 
XGBoost were evaluated. 

(2) Optimization: Grid Search and metaheuristics (PSO, 
DE, SA, GA) were used to tune models. XGBoost 
was optimized via Grid Search only. 

(3) Comparison: Models were evaluated and compared 
using R2, MSE, RMSE, standard deviation, and p-
value. 

(4) Ensemble methods: Top models were integrated using 
weighted and boosting ensembles. 

(5) Validation: Residual and convergence analyses con- 
firmed model robustness. 

The following sections present the results and insights 
from each evaluation stage. 

D. Experimental Results and Analysis 
This section presents the experimental outcomes and 

analysis of the machine learning models applied to gold 
price forecasting. The models are evaluated both before 
and after optimization to assess the impact on accuracy 
and generalization. 
1) Baseline model performance 

The initial analysis evaluates the default (non-
optimized) configurations of RF, MLP, and XGBoost. 
These baseline results establish reference points for 
measuring the effectiveness of subsequent optimization. 

Table IV summarizes the performance of each model 
based on R2, MSE, RMSE, standard deviation, and p-
value. Among the models, RF demonstrates the strongest 
baseline performance, with the highest R2 (0.8537), 
lowest MSE (0.0091), and RMSE (0.0955). XGBoost 
shows comparable but slightly inferior results. In contrast, 
MLP exhibits the weakest performance, indicating a need 
for hyperparameter tuning. 

TABLE IV. BASELINE PERFORMANCE OF MACHINE LEARNING 
MODELS 

Model R2 MSE RMSE Std Dev p-value 
RF 0.8537 0.0091 0.0955 0.2576 1.735e−57 

Multi-Layer 
Perceptron 0.5469 0.0283 0.1681 0.2206 2.438e−39 

XGBoost 0.8525 0.0092 0.0959 0.2578 4.103e−58 
 
These results highlight RF as the strongest baseline 

model, with XGBoost showing potential pending 
optimization. MLP’s poor performance reinforces the 
need for hyperparameter tuning to improve predictive 
accuracy. 
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2) Model performance after optimization 
This section evaluates the performance of machine 

learning models after applying hyperparameter 
optimization using both heuristic and metaheuristic 
techniques. RF and MLP were tuned using Grid Search, 
DE, PSO, SA, and GA. XGBoost was optimized solely 
through Grid Search due to its inherent boosting and 
internal optimization structure. 

RF achieved its best results with PSO, yielding the 
highest R2 (0.8564) and lowest RMSE (0.0946), 
indicating enhanced predictive precision and consistency 
across all optimization methods, as presented in Table V. 

The PSO-optimized MLP model achieved the highest  
 

accuracy among all tuning methods, with an R2 of 0.8193 
and RMSE of 0.1062, showing substantial improvement 
over its baseline performance, as shown in Table VI. 

In Table VII, XGBoost showed only marginal gains 
after Grid Search tuning, reinforcing the strength of its 
built-in optimization. Nevertheless, slight improvements 
in error metrics were observed. 

Among all optimized models, RF-PSO demonstrated 
the best overall performance, followed closely by 
XGBoost and MLP-PSO, as presented in Table VIII. 
These models are selected for ensemble integration to 
leverage their complementary strengths for improved 
forecasting accuracy. 

TABLE V. PERFORMANCE OF OPTIMIZED RF MODELS 

Model R2 MSE RMSE Std Dev p-value 
RF Grid Search 0.8540 0.0091 0.0954 0.2569 1.295e−57 

RF-DE 0.8563 0.0090 0.0947 0.2569 5.473e−58 
RF-PSO 0.8564 0.0090 0.0946 0.2568 5.157e−58 
RF-SA 0.8563 0.0090 0.0947 0.2569 5.442e−58 
RF-GA 0.8560 0.0090 0.0948 0.2571 6.266e−58 

TABLE VI. PERFORMANCE OF OPTIMIZED MLP MODELS 

Model R2 MSE RMSE Std Dev p-value 
MLP Grid Search 0.7920 0.0130 0.1139 0.2375 1.803e−54 

MLP-DE 0.6958 0.0190 0.1377 0.2316 9.717e−56 
MLP-PSO 0.8193 0.0113 0.1062 0.2422 6.425e−56 
MLP-SA 0.7382 0.0163 0.1278 0.2414 5.633e−53 
MLP-GA 0.5782 0.0263 0.1622 0.2298 1.609e−54 

TABLE VII. PERFORMANCE OF XGBOOST BEFORE AND AFTER GRID SEARCH OPTIMIZATION 

Model R2 MSE RMSE Std Dev p-value 
XGBoost (Baseline) 0.8525 0.0092 0.0959 0.2578 4.103e−58 

XGBoost (Optimized) 0.8543 0.0091 0.0953 0.2570 1.549e−58 

TABLE VIII. TOP PERFORMING OPTIMIZED MODELS 

Model R2 MSE RMSE Std Dev p-value 
RF-PSO 0.8564 0.0090 0.0946 0.2568 5.157e−58 

MLP-PSO 0.8193 0.0113 0.1062 0.2422 6.425e−56 
XGBoost (Optimized) 0.8543 0.0091 0.0953 0.2570 1.549e−58 

 

3) Ensemble learning results 
To further enhance forecasting accuracy, two 

ensemble strategies were implemented: a weighted 
ensemble and a boosting ensemble. These approaches 
combine the strengths of individually optimized models 
to improve robustness and reduce prediction errors. 

The weighted ensemble aggregates predictions based 
on the inverse of RMSE values, giving greater weight to 
models with lower errors. As shown in Table IX, this 
method yields moderate improvements over individual 

models, achieving R2 = 0.8333 and RMSE = 0.1020. 
In contrast, boosting ensembles significantly improves 

performance by sequentially combining optimized 
models. Two configurations were tested: (1) MLP-PSO 
with XGBoost, and (2) RF-PSO with XGBoost. As 
shown in Table X, both configurations outperform 
individual models, with the RF-PSO + XGBoost 
combination achieving the highest accuracy (R2 = 0.9617, 
RMSE = 0.0489). 

TABLE IX. PERFORMANCE OF WEIGHTED ENSEMBLE 

Model R2 MSE RMSE Std Dev p-value 
Weighted Ensemble 0.8333 0.0104 0.1020 0.2505 1.866e−57 

TABLE X. COMPARISON OF BOOSTING ENSEMBLE METHODS 

Ensemble Model R2 MSE RMSE Std Dev p-value 
Boosting (MLP-PSO + XGBoost) 0.9102 0.0045 0.0672 0.2461 2.127e−63 
Boosting (RF-PSO + XGBoost) 0.9617 0.0024 0.0489 0.2438 4.475e−79 
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TABLE XI. COMPARISON OF ENSEMBLE METHODS 

Ensemble Model R2 MSE RMSE Std Dev p-value 
Weighted Ensemble 0.8333 0.0104 0.1020 0.2505 1.866e−57 

Boosting (MLP-PSO + XGBoost) 0.9102 0.0045 0.0672 0.2461 2.127e−63 
Boosting (RF-PSO + XGBoost) 0.9617 0.0024 0.0489 0.2438 4.475e−79 

 
Table XI summarizes the performance of all ensemble 

methods. While the weighted ensemble offers modest 
gains, boosting ensembles—particularly RF-PSO + 
XGBoost—demonstrate superior forecasting capabilities 
by effectively merging complementary model strengths. 

These results confirm that ensemble learning, 
particularly through boosting, substantially enhances 
model accuracy and reliability in gold price forecasting 
tasks. 

4) Residual analysis 
Residual analysis was conducted to evaluate model 

accuracy and error distribution. Residuals—the 
differences between actual and predicted values—should 
ideally be randomly scattered around zero to indicate a 
well-fitted model. Fig. 4 presents residual plots for 
baseline, optimized, and ensemble models. 
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Fig. 4. Residual plots for baseline, optimized, and ensemble models. 

The results show that optimized models exhibit more 
tightly clustered residuals around zero compared to their 
baseline versions. This indicates enhanced accuracy and 
reduces bias due to optimization. Among all models, the 
boosting ensemble demonstrated the least residual 
variation, confirming its superior predictive precision. 
5) Convergence analysis 

Convergence analysis was used to assess the efficiency 
and stability of the metaheuristic algorithms. The fitness 
curves in Figs. 5 and 6 illustrate the reduction in 
prediction error across iterations for RF and MLP models.  

Fig. 5. Convergence curve for RF under metaheuristic optimization. 
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Fig. 6. Convergence curve for MLP under metaheuristic optimization. 

PSO and SA demonstrated faster and smoother 
convergence compared to DE and GA. PSO achieved 
rapid error reduction in early iterations, while SA 
maintained steady progress. DE and GA required more 
iterations to reach similar error levels, indicating slower 
convergence. These results highlight the training 
efficiency of PSO and SA in optimization. 

6) Summary of best results 
The RF model outperformed other baseline models. 

After optimization, PSO delivered the best improvements 
for RF, while SA showed the highest gains for MLP. 
Although XGBoost exhibited marginal improvement after 
Grid Search, its performance remained strong. 

Boosting ensembles significantly enhanced forecast 
accuracy. The best performance was achieved by 
combining RF-PSO and optimized XGBoost, resulting in 
the highest R2 and lowest RMSE, confirming the 
ensemble’s ability to capture gold price variation with 
high fidelity. The SA-MLP model, despite improvement, 
was excluded from the final ensemble due to slightly 
lower accuracy, which could diminish ensemble strength. 

Fig. 7 presents the predicted vs actual gold price 
trajectories for the top-performing models. The boosting 
ensemble closely tracks actual prices, outperforming all 
other models. 
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Fig. 7. Predicted vs actual gold prices for RF-PSO, MLP-PSO, XGBoost, and boosting ensemble. 

 
Fig. 8. Comparison of forecasts: predicted vs actual gold prices for all models. 

Finally, Fig. 8 compares all models predicted values 
against actual gold prices. It visually confirms the 
superior accuracy of ensemble techniques, particularly 
the boosting approach. 

E. Comparison with Previous Work 
This study utilizes the same dataset as the research 

titled “Enhancing MLP using Archive-based Harris 
Hawks Optimizer to Predict Gold Prices” [23]. The 
referenced work focused on improving the performance 
of MLP by optimizing its parameters using the Archive-
based HHO, resulting in significant performance gains 
over the baseline MLP, as presented in Table XII. 

TABLE XII. COMPARISON WITH RESULTS FORM [23] 

Method R2 RMSE 
HHO-Optimized MLP (from [23]) 0.8500 0.1020 
Boosting Ensemble (This Study) 0.9654 0.0433 

In contrast, the current study adopts a broader strategy 
by applying traditional machine learning models—RF, 
MLP, and XGBoost—and enhancing them using several 
metaheuristic optimization algorithms: PSO, DE, SA, and 
GA. Additionally, ensemble learning techniques, namely 
weighted and boosting ensembles, were implemented to 
further improve forecasting accuracy. 

The findings demonstrate that simpler and well-
established metaheuristic optimizers, when combined 
with traditional models, can outperform more complex 
approaches like HHO. In particular, the boosting 
ensemble model developed in this study achieved higher 
accuracy with a greater R2 and lower RMSE than the 
HHO-optimized MLP. This highlights that high 
forecasting precision can be achieved through careful 
optimization and ensemble integration, without relying 
on newer or more complex algorithms. 
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F. Discussion 
This study provides key insights into the effectiveness 

of various machine learning and optimization approaches 
for gold price prediction. The baseline analysis showed 
that traditional models such as RF and XGBoost already 
deliver strong performance, even without hyperparameter 
tuning. 

Model performance improved substantially after 
applying heuristic and metaheuristic optimization 
algorithms. PSO consistently enhanced the accuracy of 
the RF model, while SA yielded the highest gains for 
MLP. These findings underscore the importance of 
selecting suitable optimization strategies tailored to the 
model architecture. 

Ensemble learning further boosted forecasting 
performance. While the weighted ensemble stabilized 
predictions, the boosting ensemble significantly 
outperformed all other methods across evaluation metrics. 
It effectively combined the strengths of the best-
optimized models (RF-PSO and XGBoost), resulting in 
the most accurate and reliable forecasts. 

Notably, this research shows that well-established 
metaheuristic algorithms, when thoughtfully applied to 
traditional models, can exceed the performance of more 
complex and newer approaches such as the HHO. This 
supports the notion that practical and flexible 
techniques—rather than complexity alone—are key to 
achieving high accuracy in financial forecasting tasks. 

V. CONCLUSION AND FUTURE WORK 

This study proposed a robust forecasting framework 
for gold price prediction by integrating traditional 
machine learning models with metaheuristic optimization 
and ensemble learning strategies. Three primary models, 
including RF, MLP, and XGBoost, were evaluated for 
their predictive capabilities. To enhance model 
performance, hyperparameter tuning was conducted 
using four metaheuristic algorithms: PSO, DE, SA, and 
GA. XGBoost, due to its inherent optimization 
mechanisms, was fine-tuned using Grid Search. 

Performance evaluation relied on multiple statistical 
metrics including the coefficient of determination (R2), 
MSE, RMSE, standard deviation, and p-value. The PSO-
optimized RF model (RF-PSO) achieved the best 
performance among individual models with an R2 of 
0.8150 and RMSE of 0.1000. XGBoost showed 
consistent performance before and after optimization. 

To further boost accuracy and stability, two ensemble 
methods were introduced. The weighted ensemble 
combined predictions from RF, MLP, and XGBoost 
using inverse RMSE-squared weighting. While this 
approach yielded stable forecasts, the boosting ensemble
— formed by sequentially combining RF-PSO and 
XGBoost—achieved the best results, with an R2 of 
0.9654 and RMSE of 0.0433, outperforming all other 
models. 

Residual and convergence analyses confirmed that 
metaheuristic optimization enhanced both accuracy and 
consistency. The proposed framework effectively 

modeled the complex and nonlinear behavior of gold 
prices, offering practical implications for financial 
analysts, policymakers, and investors. The study 
successfully met its objectives: assessing the 
performance of key machine learning models for gold 
price prediction, improving these models through 
optimization techniques, and designing ensemble 
strategies that leverage the strengths of individual models. 

Despite these contributions, several constraints should 
be acknowledged. The dataset did not incorporate 
sentiment or geopolitical indicators, which are known to 
influence real-world gold price dynamics. The scope of 
optimization was limited to four metaheuristic 
algorithms, omitting potentially competitive alternatives 
such as Ant Colony Optimization, Firefly Algorithm, or 
Grey Wolf Optimizer. Similarly, advanced deep learning 
architectures like LSTM, GRU, or Transformer-based 
models were not investigated, which could offer 
additional advantages in modeling temporal 
dependencies. The framework lacked online learning or 
real-time retraining mechanisms, which are essential for 
adapting to sudden market changes. Furthermore, 
explainability techniques such as SHAP or LIME were 
not implemented, limiting interpretability for 
stakeholders in high-stakes decision-making 
environments. 

Future research can address these limitations in several 
ways. First, integrating macroeconomic, sentiment-based, 
and qualitative geopolitical features could provide a 
richer representation of market conditions. In particular, 
incorporating multi-modal data sources—such as 
financial news, social media sentiment, and policy 
announcements—processed via NLP could capture 
market psychology and event-driven fluctuations more 
effectively. Second, expanding the optimization phase to 
include a broader range of metaheuristics or hybrid 
approaches may uncover more efficient hyperparameter 
configurations. Third, experimenting with advanced deep 
learning and hybrid architectures could improve the 
capacity to model long-range dependencies. Fourth, 
implementing adaptive, online learning mechanisms 
would allow the framework to adjust continuously to 
evolving market conditions. Finally, extending the 
evaluation framework to include scale-independent 
performance metrics such as the Relative Root Mean 
Square Error (RRMSE) would facilitate fairer 
comparisons across datasets and forecasting horizons, 
enhancing the generalizability and robustness of the 
proposed approach. 
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