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Abstract—Forecasting gold prices is essential for supporting
informed decision-making among investors, policymakers,
and financial analysts. However, due to their non-linear and
volatile behavior influenced by complex economic and
geopolitical factors, predicting gold prices remains a
significant challenge. This study evaluates the forecasting
performance of three traditional machine learning
models—Random Forest (RF), Multi-Layer Perceptron
(MLP), and XGBoost—on a monthly dataset spanning from
January 1991 to December 2023, using macroeconomic and
commodity-related indicators obtained from IndexMundi.
To enhance predictive accuracy, RF and MLP were
optimized using metaheuristic algorithms including Particle
Swarm Optimization (PSO), Differential Evolution (DE),
Simulated Annealing (SA), and Genetic Algorithm (GA),
while XGBoost was fine-tuned using Grid Search. Two
ensemble strategies were developed to further improve
performance: a weighted ensemble based on inverse error
metrics and a boosting ensemble that sequentially combined
top-performing models. The results show that combining
traditional models with metaheuristic optimization
significantly improves forecasting accuracy. The best
performance was achieved by the boosting ensemble
integrating RF-PSO and optimized XGBoost, attaining an
R?0f 0.9654 and a Root Mean Square Error (RMSE) of 0.0433,
representing an improvement of 11.1% in RMSE over the
best single optimized model. This research demonstrates
that effective and scalable financial forecasting systems can
be developed wusing established machine learning
techniques, offering valuable decision-support tools in
dynamic financial markets.
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1. INTRODUCTION

Gold has long served as a strategic financial asset
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due to its scarcity, durability, and universal recognition
as a store of value. Particularly during periods of
economic instability, gold emerges as a preferred
investment, driving increased demand. Accurately
forecasting gold prices is therefore of great interest to
investors, central banks, and policymakers [1, 2].

However, forecasting gold prices remains a complex
challenge. Prices are influenced by a combination of
macroeconomic variables, including inflation and interest
rates, geopolitical events, and foreign exchange
fluctuations. These interrelated factors introduce high
levels of nonlinearity and volatility, complicating
predictive modeling [3].

Machine Learning (ML) models, with their ability to
capture complex and nonlinear data patterns, offer a
powerful alternative to traditional statistical approaches.
Algorithms such as Multi-Layer Perceptron (MLP),
Random Forest (RF), and XGBoost (XGB) have
demonstrated strong predictive capabilities in financial
time series forecasting [4—7]. Nevertheless, the
performance of these models heavily depends on optimal
hyperparameter tuning, which is often computationally
expensive and inefficient when approached using
conventional methods like grid or random search [8].

Recent studies have demonstrated that ensemble and
composite machine learning methods possess significant
potential for modeling highly nonlinear and complex
patterns across diverse research domains. For example,
Xu and Zhang [9] show how composite learning
strategies can effectively capture intricate dependencies
and improve predictive performance in heterogeneous
datasets. Such findings underscore the suitability of
ensemble-based approaches for financial forecasting
tasks, where market dynamics are inherently nonlinear
and influenced by multiple interdependent factors. This
motivates our integration of optimized base models into
both weighted and boosting ensemble frameworks for
robust gold price prediction.
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To address this, heuristic and metaheuristic
optimization algorithms have been increasingly adopted.
Techniques such as Differential Evolution (DE), Particle
Swarm Optimization (PSO), Genetic Algorithms (GA),
and Simulated Annealing (SA) offer efficient search
strategies for identifying optimal hyperparameter
configurations [10]. Integrating these optimization
methods with ML models enhances forecast accuracy
while maintaining computational efficiency.

This study aims to develop a robust forecasting
framework for gold price prediction by integrating ML
models with heuristic and metaheuristic optimization
techniques. The primary contributions of this research are
as follows: development of optimized ML models (MLP,
RF, XGB) using Grid Search, DE, PSO, SA, and GA
to improve forecasting accuracy and adaptability to
volatile market conditions; construction of ensemble
models, including a weighted ensemble (based on
inverse RMSE? weighting) and a boosting ensemble,
to enhance model robustness and generalization;
design of a hyperparameter tuning framework that
efficiently explores high-dimensional parameter spaces,
tailored specifically for gold price forecasting; and
implementation of a feature selection approach
combining statistical correlation and domain knowledge
to identify impactful technical and macroeconomic
indicators.

The study utilizes historical data from 1991 to 2023,
incorporating  daily gold prices along  with
macroeconomic indicators such as inflation rates and
currency exchange rates. Technical indicators including
the Relative Strength Index (RSI) and Moving Average
Convergence Divergence (MACD) are also employed.
Three ML algorithms, MLP, RF, and XGB, are trained
and optimized using five different optimization
techniques. These optimized models are then integrated
into ensemble frameworks. Model evaluation is
conducted using statistical metrics such as Root Mean
Square Error (RMSE), Mean Squared Error (MSE), R’
standard deviation, and p-value. Visual tools such as line
plots and residual plots are employed for diagnostic
analysis.

The key contributions and novelty of this study are as
follows:

1) Combine Random Forest (RF), Multi-Layer
Perceptron (MLP), and XGBoost with four distinct
metaheuristic optimization algorithms, including
PSO, DE, SA, and GA, specifically for gold price
forecasting.

Design and evaluate two ensemble learning
approaches, including weighted ensemble and
boosting ensemble.

Combine statistical correlation analysis with domain
knowledge to retain the most predictive variables,
ensuring model interpretability and reducing
overfitting risk.

Assess model performance using multiple metrics
(RMSE, MSE, R?, standard deviation, p-value) and
support findings with residual and convergence
analyses for robustness verification.

2)

3)

4)
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While similar optimization-ensemble frameworks have
been applied in other domains, this study is the first to
combine RF, MLP, and XGBoost models with four
distinct metaheuristic optimizers and dual ensemble
strategies for gold price forecasting. This integration,
combined with a rigorous feature selection process and
comparative analysis against prior state-of-the-art
methods, underscores the study’s contribution to both
methodological efficiency and forecasting accuracy.

The remainder of the paper is structured as follows:
Section II reviews related literature. Section III outlines
the dataset, models, optimization methods, and ensemble
strategies. Section IV presents experimental results and
performance evaluation. Finally, Section V concludes the
study and suggests avenues for future research.

II. RELATED WORKS

Recent advancements in gold price forecasting have
increasingly focused on ML models enhanced by
optimization techniques. Traditional ML models, such as
RF, MLP, and XGBoost, have demonstrated high
predictive performance, rivaling more complex deep
learning methods like Long Short-Term Memory (LSTM)
and Convolutional Neural Networks (CNNs), particularly
when optimized through heuristic and metaheuristic
algorithms. These models can capture complex, nonlinear
patterns in financial time series data without requiring the
extensive computational resources often demanded by
deep learning approaches.

Early approaches to gold price prediction relied on
statistical models, such as Autoregressive Integrated
Moving Average (ARIMA) and Generalized Auto-
Regressive Conditional Heteroskedasticity (GARCH),
which were limited by their linear assumptions and
inability to model the volatility and nonlinearities
inherent in financial data [11, 12]. More recent research
has shifted toward data-driven ML techniques that better
account for the dynamics of gold markets. Studies have
shown that models like XGBoost, when paired with

interpretation  tools such as Shapley Additive
Explanations (SHAP), offer both accuracy and
transparency in financial forecasting [13, 14].

Similarly, RF and MLP have demonstrated strong
performance when properly tuned.

Deep learning models, especially LSTM and hybrid
Convolutional Neural Network (CNN)-LSTM
architectures, have also been explored due to their
strength in capturing temporal dependencies [15-17].
However, their success is often tempered by concerns
around overfitting, computational cost, and the need for
large-scale, high-quality datasets. While CNN-based
models have shown promise in financial forecasting,
their effectiveness heavily depends on the design of
model architecture and access to extensive data [18].

In contrast, optimized traditional machine learning
models provide a compelling balance between
interpretability,  performance, and computational
efficiency. Metaheuristic algorithms such as DE, PSO,
GA, SA, and Harris Hawks Optimization (HHO) have
been effectively applied for hyperparameter tuning in
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financial prediction tasks [19—22]. These algorithms help
ML models achieve better generalization and predictive
accuracy by exploring complex, high-dimensional
parameter spaces.

Several studies have validated the effectiveness of
these optimization methods. For instance, HHO has been
used to optimize MLP architectures for gold forecasting,
resulting in increased stability and reduced prediction
error [23]. Other hybrid-based algorithms have also
proven effective for optimizing hybrid models in volatile
markets [21, 24]. These findings highlight the importance
of intelligent hyperparameter tuning in achieving robust
model performance.

Ensemble learning has gained popularity in financial
forecasting for its ability to reduce model variance and
bias. Techniques such as weighted averaging and
boosting have been employed to combine multiple base
learners, resulting in more reliable forecasts [25, 26].
Recent research further suggests that integrating
metaheuristic optimization with ensemble learning offers
significant gains in accuracy, stability, and convergence
speed. This hybrid approach has been particularly
effective in combining strengths of models like RF, MLP,
and XGBoost for gold price forecasting.

Despite these advancements, limitations remain. Many
studies either exclude optimization or rely solely on grid
search, which is computationally inefficient for large-
scale problems.

Moreover, deep learning models, while powerful,
often suffer from interpretability challenges and resource
constraints. Additionally, the integration of qualitative
data, such as geopolitical sentiment or financial news via
Natural Language Processing (NLP), remains
underexplored despite its potential to enhance forecasting
frameworks [27].

In summary, previous studies have demonstrated that
machine learning models such as RF, MLP, and
XGBoost, when combined with optimization techniques
including metaheuristics, can enhance gold price
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forecasting accuracy. Ensemble learning approaches have
also shown promise in reducing variance and improving
robustness. However, most prior works either focus on a
single optimization algorithm applied to one model
type, omit ensemble strategies, or do not provide direct
comparisons with recent state-of-the-art methods on the
same dataset. The integration of multiple optimizers with
diverse model architectures in a unified ensemble
framework remains underexplored. Furthermore, while
some studies have optimized deep learning models, their

practical deployment is often hindered by high
computational cost, overfitting risks, and limited
interpretability.

To address these gaps, this study proposes a multi-
model, multi-optimizer ensemble framework for gold
price forecasting. Specifically, three traditional ML
models (RF, MLP, and XGBoost) with four distinct
metaheuristic optimization algorithms (PSO, DE, SA,
GA) and two ensemble learning strategies (weighted and
boosting) are integrated. The proposed approach is
systematically evaluated against a recent HHO-optimized
MLP study on the same dataset, demonstrating superior
forecasting accuracy. This work not only validates the
effectiveness of combining well-established
metaheuristics with ensemble learning but also offers a
scalable, interpretable, and computationally efficient
solution for financial time series forecasting.

III. RESEARCH METHODOLOGY

This study proposes a forecasting framework for
gold price prediction by integrating advanced machine
learning models and heuristic/metaheuristic optimization
techniques. The methodology is built upon three core
machine learning models: MLP, RF, and XGBoost. These
models are selected for their ability to model non-linear
relationships  among  financial  variables  while
maintaining simplicity and interpretability.

Baseline XGBoost

Grid Search XGBoost

Methods:

valuation

Fig. 1. Workflow of the gold price forecasting framework with ensemble integration.
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To enhance the predictive performance and
generalization  capabilities of these models, a
combination of traditional and metaheuristic optimization
techniques is employed. Specifically, hyperparameter
tuning is conducted using Grid Search and four well-
established metaheuristic algorithms: GA, PSO, evaluation
is carried out using performance metrics including the
coefficient of determination (R?), RMSE, MSE, p-value,
and standard deviation.

The complete methodological workflow is illustrated
in Fig. 1, encompassing the preprocessing, modeling,
optimization, ensemble integration, and evaluation
stages.

A. Problem Definition

Gold price forecasting is inherently complex due to its
non-linearity, high dimensionality, and susceptibility to
economic, political, and market fluctuations. The
relationships between influencing variables and gold
prices are dynamic and non-linear, evolving over time in
response to global events. This volatility renders
traditional linear statistical models such as ARIMA or
linear regression insufficient for capturing underlying
patterns [28, 29].

To address this complexity, the study leverages
machine learning models capable of accommodating
changing dependencies and heteroscedastic behavior. The
model inputs include macroeconomic and financial
indicators such as inflation rates (the United State and
China), foreign exchange rates (USD/ZAR, USD/CNY,
USD/INR), and commodity prices (gold, copper, silver,
iron, crude oil). These were selected based on prior
empirical evidence confirming their influence on gold
price dynamics [30-32].

In addition, technical indicators including the RSI and
MACD were engineered from historical gold price series
to capture momentum and trend shifts [33]. The
inclusion of a one-period lag variable (Gold_Lag_1)
enables the model to incorporate temporal
autocorrelation, aligning the problem formulation with
time series forecasting paradigms. A correlation analysis
was conducted to eliminate redundant or weakly
correlated features, ensuring that only informative
variables are retained [34].

Let D={(X,, y,)}lT:1 denote a chronological dataset
where X, € R? represents d selected features at time ¢

and y, € R is the corresponding gold price. The

forecasting task aims to learn a mapping fp: R — R such
that:

Vi =fr(X,), t=1.,T-1 ()

The optimal model parameters §° are obtained by
minimizing a loss function L over a validation set V-

6" =argminlL (6;V) 2)
0

The primary loss is the RMSE:

1 A
RMSE = \/— > -3) 3)
|V| (X, 3)eV
To  provide a  comprehensive  evaluation,

supplementary metrics such as Mean Squared Error
(MSE), the coefficient of determination (R?), and MAPE
are also computed.

MAPE = 100

|V| (X,,y)eV

yt_.;t
yte

,£>0 @)

Eq. (4) encapsulates gold price forecasting as a
supervised learning problem for sequential data, where
model performance depends on the accurate capture of
nonlinear dependencies and temporal dynamics.

B.  Analytical Steps

The predictive modeling process is organized into four
main steps:

1) Data preprocessing: Historical records of gold prices
and economic indicators are selected, normalized,
and split into training and testing subsets.

2) Model training: Baseline models (MLP, REF,
XGBoost) are initially trained using predefined
hyperparameters.

3) Optimization: PSO, DE, SA, and GA are applied to
optimize the MLP and RF models, targeting
minimum RMSE values.

4) Ensemble construction: Predictions from the tuned
models are aggregated using weighted and boosting
ensembles to improve forecast reliability.

C. Dataset Description

The dataset spans from January 1991 to December
2023 and contains monthly observations. It was obtained
from IndexMundi, a reputable data aggregation platform
commonly used in similar studies [23]. A representative
sample of the dataset is shown in Table L.

The dataset includes:
® Economic indicators: US and China inflation rates.
® Currency exchange rates: USD/ZAR, USD/CNY, and

USD/INR.
® Commodity prices: Gold (target), silver, copper, iron,
and crude oil.

TABLE 1. SAMPLE OF THE HISTORICAL GOLD PRICE FORECASTING DATASET

Date Gold Copper Silver Iron China Inf. US Inf. USD/ZAR USD/CNY USD/INR Qil Price
01/01/1991 922.54 8,418.56 30.30 197.73 0.0146 0.0043 5.53 41.17 12.80 86.88
02/01/1991 588.55 1,461.36 4245 203.69 0.0216 0.0188 5.55 60.06 10.64 34.06
05/01/2007 1,848.14  8,596.67 10.01 164.15 0.0089 0.0021 7.41 50.29 12.22 41.05
06/01/2007 651.27 6,599.07 36.59 51.19 0.0137 0.0086 8.68 53.64 10.99 112.00
11/01/2023 1,378.64  5,294.87 12.98 48.03 0.0159 0.0085 5.94 33.48 6.80 22.53
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D. Data Preprocessing

The following preprocessing steps were applied to
prepare the dataset for modeling:
1)  Missing value imputation

Missing entries in the time series were imputed using

linear interpolation. For a missing value x; between two
known values x, and x_, where #i < ¢t < 0, the

0

imputed value is:

_[1

(x, &)

_xt,)

2 1
It preserves the temporal continuity and minimizes
artificial noise.
2)  Normalization
All features were scaled to the [0, 1] range using Min-
Max normalization:
, X, —min(X)
" max(X)—min(X)

(6)

where X is the vector of all observed values for that
feature. This is particularly beneficial for gradient-based
models such as MLP.

3) Technical indicator engineering

Two technical indicators were derived from historical

gold prices:
® Relative Strength Index (RSI) over a period n:
RSI, =100 - 100 @)
1+RS,
RS, = Average Gain over 7 periods ®)

Average Loss over n periods

® Moving Average Convergence Divergence (MACD):
MACD, = EMA,,,(P)~ EMA,,,(P) ©

“fast
where P; is the gold price at time ¢; EMAy and EMAgiow
are exponential moving averages with short and long
windows.

4)  Train-test split

The dataset was split into training and testing subsets
using a chronological split of 70% for training and 30%
for testing to avoid look-ahead bias:

Dz‘ruin = {(Xt’yt)}

T

Dy = {(Xt’yt)}:=\o.7r\+1

E.  Machine Learning Models

This study employs three prominent machine learning
models for gold price forecasting: MLP, RF, and
XGBoost. These models were selected for their strong
performance in capturing non-linear relationships and
handling time-series financial data.

[0.77]
t=1

(10)

(11)
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1)  Multi-Layer Perceptron (MLP)

MLP is a feed-forward artificial neural network
architecture widely used for regression tasks due to its
capability to model complex, non-linear
relationships [35]. The network consists of an input layer,
two hidden layers (64 and 32 neurons), and a single
output neuron. The ReLU activation function is used in
the hidden layers:

£(x) = max(0, x) (12)

The output layer uses a linear activation function
suitable for regression:

p=2wh+b (13)
i=1
Input features were normalized using MinMax
scaling:

(14)
_xmi

max n

The model is trained using the MSE loss function:

1 n R
MSE==>"(5,-»)

n iz

(15)

Training was conducted over 100 epochs with a
batch size of 32 using backpropagation.

2)  Random Forest (RF)

Random Forest is an ensemble learning technique that
aggregates predictions from multiple decision trees built
on bootstrapped samples [36]. The prediction is
calculated by averaging the outputs of individual trees:

- 1<

ygold :_th(x) (16)
i

where f/(x) denotes the output of the # decision tree. The

model consists of 100 trees, and key hyperparameters

such as maximum depth and minimum split size were

optimized wusing Grid Search and metaheuristic
algorithms (PSO, DE, GA, SA).

3) XGBoost

XGBoost is a high-performance implementation of
gradient boosting that integrates L; and L, regularization to
enhance generalization and control overfitting. The
prediction is expressed as:

Pootd = ka(x),fk eF (17)

In this study, the XGBoost model was configured with
100 trees, a maximum tree depth of 3, and a learning rate
of 0.1. The squared error was used as the objective
function. Grid Search was employed for hyperparameter
tuning. Due to its built-in regularization and robustness,
external metaheuristic optimization was not required.
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F.  Optimizing Machine Learning Parameters Using
Heuristic and Metaheuristic Algorithms

This section describes the application of heuristic
(Grid Search) and metaheuristic algorithms (DE, GA,
PSO, SA) to optimize machine learning hyperparameters
and enhance predictive accuracy.

1)  Grid search optimization

Grid search systematically explores predefined
hyperparameter combinations to identify the optimal
set maximizing performance. The search space ©
comprises all combinations of candidate values:

N,

combination

=C xC,x---xC, (18)

The best configuration 8" is selected by maximizing
the coefficient of determination (R?):

R*(0") = max {R*(6)|0 < ©} (19)
Grid Search with 3-fold cross-validation was applied
to tune RF, MLP, and XGBoost models. Key parameters
included estimators and depth, neurons and dropout rate,
and learning rate and tree depth.
2) Differential Evolution (DE)
DE optimizes by evolving a population through
mutation, crossover, and selection. For a population
By ={x,...xy} in D-dimensional space:

v,=x,+F(x,-x,) (20)
-, ifrand, . <CR
Y- v, ;, ifrand,; . 1)
o X otherwise
The fitness is defined as:
Fitness(x) = ; (22)
1+ RMSE(x)

DE was used to tune RF and MLP parameters due to
its robustness and global search capabilities.

3)  Genetic Algorithm (GA)

GA evolves population using selection, crossover,
and mutation. Fitness is inversely related to RMSE:

Fitness(x) = m (23)

Offspring are created as:
Offspring, = ax, +(1-oa)x, (24)
x =x+6, &~N(0,0%) (25)

GA was applied to optimize hyperparameters of MLP
and RF. Its stochastic nature aids in exploring diverse
regions of the search space.

4)  Particle Swarm Optimization (PSO)

PSO models particles move in a solution space,
adjusting positions based on personal and global bests.
The update rules are:

112

t+1

Vit =wy! + ¢ (pBest, —x;) +c,r,(gBest —x!)  (26)

t+1

1
=X 4y

X" =

27)

PSO was effective for optimizing MLP and RF
parameters due to its fast convergence and simple
implementation.

5)  Simulated Annealing (SA)

SA performs probabilistic exploration using a
cooling schedule. A new solution is accepted based on
the Metropolis criterion:

P=e?"" AE = Fitness__ — Fitness

new current

(28)

SA was applied to fine-tune MLP and RF models by
escaping local optima through controlled randomness.

Each of these algorithms contributed to
discovering optimal hyperparameters for predictive
models, enabling superior performance compared to
traditional fixed-parameter configurations.

G. Ensemble Learning for Gold Price Forecasting

This study integrates ensemble learning to improve the
accuracy and robustness of gold price forecasting models.
Two ensemble techniques are employed: weighted
ensemble and boosting ensemble. Both approaches
combine predictions from multiple optimized models to

reduce individual model errors and enhance
generalization.
1)  Weighted ensemble method

The weighted ensemble combines the outputs of
n=12 optimized models, comprising RF, MLP, and
XGBoost variants tuned via Grid Search, DE, PSO, SA,
and GA.

Let p,(¢) denote the prediction of model i at time ¢ and

RMSE; be its root mean squared error on the validation
set, computed as:

RMSE,. = \/%i(yk _J’}i(k))z (29)

where m is the number of validation samples and yx is the
actual observed value.

Each model’s weight w; is assigned
proportional to the square of its RMSE:

inversely

RMSE* i
= ——, Zwl.zl, w, >0 (30)
 RMSE? ‘5
Jj=1 J
The final ensemble prediction at time ¢ is then:
j}ensz'mble (t) = Z wi 'j}i (t) (3 1)
i=1

This weighting scheme ensures that models with lower
prediction error have greater influence in the final output.
By aggregating predictions from diverse optimization
strategies, the ensemble benefits from the complementary
strengths of individual models, thereby enhancing
stability, reducing variance, and mitigating overfitting—
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qualities particularly important for volatile financial data.
Performance is evaluated using metrics such as RMSE,

MSE, R’, standard deviation, and p-value. The flowchart

of the weighted ensemble method is presented in Fig. 2.

e

¥
Train Multiple Base Models

¥

Generate Individual Predictions

¥
‘ Evaluate Performance (e.g., RMSE) ‘

¥

Compute Model Weights (e.g., Inverse Error)

¥

Combine Predictions via Weighted Sum

¥

Generate Final Ensemble Output

¥
End

Fig. 2. Flowchart of the weighted ensemble method.

2)  Boosting ensemble method

Boosting is a sequential ensemble learning strategy in
which a strong base learner is iteratively improved by
fitting a secondary model to the residual errors of the
first. In this study, boosting architecture combines a
primary base model with an XGBoost residual learner,
designed to capture patterns not modeled by the base
predictor. Two configurations were tested: (i) RF-PSO +
XGBoost and (ii) MLP-PSO + XGBoost.

Let y; denote the actual gold price at time step i and
Vsases b€ the prediction from the base model (RF-PSO or

MLP-PSO). The residual at each observation is computed
as:

=Y _J’>Base,i’ i=12,.,m (32)
where m is the number of samples in the training or
validation set.

The XGBoost residual learner is trained to

approximate the mapping fygs: », — 7, producing the

predicted residual 7 . The final boosted prediction is

then:
(33)

j}Boosting,i = )A}Baxe,i +;Z

This formulation allows the second learner to model
systematic errors from the first, effectively refining
predictions.

Among the tested configurations, the RF-PSO +
XGBoost ensemble outperformed MLP-PSO + XGBoost
in both predictive accuracy and computational efficiency.
The boosting approach is particularly effective for this
problem because gold price dynamics contain residual
nonlinear dependencies that a single model may miss. By
explicitly modeling these residuals, the ensemble
improves generalization and reduces bias.

The process is illustrated in Fig. 3.
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Train Base Model (RF-PSO or MLP-PSO) ‘
¥
Generate Base Predictions §page,i
]
Compute Residuals 7; = 4; — /Base,i
¥
Train XGBoost on Residuals r;
i
Generate Predicted Residuals 7;
)
Combine Predictions §ggesting,i
i
‘ Evaluate Final Performance
]
{Output Final Predictiun]

?}Base,t + ’f"L

Fig. 3. Flowchart of the Boosting Ensemble Method combining a base
model (RF-PSO or MLP-PSO) with an XGBoost residual learner.

By leveraging boosting in this manner, the final
ensemble benefits from both the robust feature extraction
of the base learner and the fine-grained residual modeling
of XGBoost. This two-stage design is scalable and
adaptable to other time series forecasting problems with
similar non-linear dynamics.

IV. RESULTS AND DISCUSSION

This section presents and discusses the results of the
proposed optimized machine learning framework for gold
price forecasting. The analysis evaluates individual
models, optimization strategies, and ensemble methods.
We begin by detailing the dataset and preprocessing steps,
followed by the evaluation metrics used to assess model
performance. The results are presented in phases—
starting with baseline models (RF, MLP, XGBoost),
followed by their optimized versions using Grid Search,
Differential Evolution, Particle Swarm Optimization,
Simulated Annealing, and Genetic Algorithm. Ensemble
strategies—weighted and boosting—are then applied.
Residual and convergence analyses further support the
results, concluding with a comparative discussion against
existing literature.

A. Feature Selection and Dataset Overview

The dataset comprises macroeconomic indicators (e.g.,
inflation rates), commodity prices (silver, copper, oil),
and currency exchange rates (USD/ZAR, USD/CNY,
USD/INR). Derived features—RSI, MACD, and
Gold Lag 1—were added to capture market momentum
and trends. Correlation analysis identified four key
features: RSI (0.9657), MACD (0.6301), Oil Price
(0.1618), and Gold Lag 1 (0.1270), as shown in Table II.

TABLE II. CORRELATION OF SELECTED FEATURES WITH GOLD PRICE

Feature Correlation
RSI 0.9657
MACD 0.6301
Oil Price 0.1618
Gold Lag 1 0.1270
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The dataset spans January 1991 to December 2023,
normalized using MinMaxScaler. Table III shows
representative samples.

TABLE III. SAMPLE ROWS FROM THE GOLD PRICE FORECASTING

DATASET
Date RSI  MACD Gold Lag 1  Oil Price  Gold
1991.02  0.432 0.015 0.430 0.327 0.435
2007.06  0.712 0.121 0.705 0.586 0.725
2023.12  0.943 0.284 0.941 0.778 0.950
B.  Evaluation Metrics
To rigorously assess model performance, five

complementary evaluation metrics were employed: R,
MSE, RMSE, Standard Deviation of Errors (o), and p-
value. Let y; be the actual gold price at time step i, p, the
y
e, =y, —y, the prediction error, ¢ the mean error, n

predicted price, the mean of actual values,

the number of samples, and r the Pearson correlation
coefficient between y; and J,.

1) Coefficient of Determination (R?)

Measures the proportion of variance in the dependent
variable explained by the model:

(-
n —\2
Zi:](yl _y)

Higher values indicate better explanatory power,
with R? =1 representing perfect predictions.

2)  Mean Squared Error (MSE)
Represents the average squared prediction error:

(34)

n

1 A
MSE ==Y (3,-5,)

i=1

(35)

Lower values signify greater predictive accuracy.
3)  Root Mean Squared Error (RMSE)

Square root of the MSE, providing error magnitude in
the original units:

RMSE = MSE (36)

RMSE is more interpretable than MSE in terms of
scale.

4)  Standard Deviation of Errors (o)
Quantifies the dispersion of prediction errors around

their mean:
1 _
o= —Z(ei —e)
noiy

A smaller o reflects greater stability in predictions.

(37

5) p-value

Tests the statistical significance of the correlation
between predicted and actual values using the t-statistic:

(38)

t=r
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A p-value below 0.05 indicates statistical significance at
the 5% level.

These metrics collectively provide a holistic evaluation
of both accuracy and reliability. While R’ offers an
intuitive measure of variance explanation, it can be
misleading in time series forecasting due to autocorrelation
effects. Therefore, in this study, R’ is used only as a
supplementary indicator, with primary emphasis on error-
based measures such as RMSE and MSE for evaluating
forecasting accuracy.

C. Evaluation Procedure

The evaluation process followed five key steps:
(1) Baseline assessment: Default RF, MLP,
XGBoost were evaluated.

Optimization: Grid Search and metaheuristics (PSO,
DE, SA, GA) were used to tune models. XGBoost
was optimized via Grid Search only.

Comparison: Models were evaluated and compared
using R’, MSE, RMSE, standard deviation, and p-
value.

Ensemble methods: Top models were integrated using
weighted and boosting ensembles.

Validation: Residual and convergence analyses con-
firmed model robustness.

The following sections present the results and insights
from each evaluation stage.

and

2

(€)

4)
©)

D. Experimental Results and Analysis

This section presents the experimental outcomes and
analysis of the machine learning models applied to gold
price forecasting. The models are evaluated both before
and after optimization to assess the impact on accuracy
and generalization.

1)  Baseline model performance

The initial analysis evaluates the default (non-
optimized) configurations of RF, MLP, and XGBoost.
These baseline results establish reference points for
measuring the effectiveness of subsequent optimization.

Table IV summarizes the performance of each model
based on R°, MSE, RMSE, standard deviation, and p-
value. Among the models, RF demonstrates the strongest
baseline performance, with the highest R’ (0.8537),
lowest MSE (0.0091), and RMSE (0.0955). XGBoost
shows comparable but slightly inferior results. In contrast,
MLP exhibits the weakest performance, indicating a need
for hyperparameter tuning.

TABLE IV. BASELINE PERFORMANCE OF MACHINE LEARNING

MODELS
Model R’ MSE RMSE Std Dev  p-value
RF 08537 00091 00955 02576  1.735¢
Multi-Layer 5400 00283 01681 02206  2.438¢
Perceptron
XGBoost  0.8525 0.0092 00959 02578  4.103¢

These results highlight RF as the strongest baseline
model, with XGBoost showing potential pending
optimization. MLP’s poor performance reinforces the
need for hyperparameter tuning to improve predictive
accuracy.
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2)  Model performance after optimization

This section evaluates the performance of machine
learning models after applying hyperparameter
optimization using both heuristic and metaheuristic
techniques. RF and MLP were tuned using Grid Search,
DE, PSO, SA, and GA. XGBoost was optimized solely
through Grid Search due to its inherent boosting and
internal optimization structure.

RF achieved its best results with PSO, yielding the
highest R’ (0.8564) and lowest RMSE (0.0946),
indicating enhanced predictive precision and consistency
across all optimization methods, as presented in Table V.

The PSO-optimized MLP model achieved the highest

accuracy among all tuning methods, with an R? of 0.8193
and RMSE of 0.1062, showing substantial improvement
over its baseline performance, as shown in Table VI.

In Table VII, XGBoost showed only marginal gains
after Grid Search tuning, reinforcing the strength of its
built-in optimization. Nevertheless, slight improvements
in error metrics were observed.

Among all optimized models, RF-PSO demonstrated
the best overall performance, followed closely by
XGBoost and MLP-PSO, as presented in Table VIIIL
These models are selected for ensemble integration to
leverage their complementary strengths for improved
forecasting accuracy.

TABLE V. PERFORMANCE OF OPTIMIZED RF MODELS

Model R’ MSE RMSE Std Dev  p-value
RF Grid Search  0.8540 0.0091  0.0954 0.2569 1.295¢7
RF-DE 0.8563  0.0090  0.0947 0.2569 5.473e8
RF-PSO 0.8564  0.0090  0.0946 0.2568 5.157e8
RF-SA 0.8563  0.0090  0.0947 0.2569 5.442¢78
RF-GA 0.8560 0.0090 0.0948 0.2571 6.266e

TABLE VI. PERFORMANCE OF OPTIMIZED MLP MODELS

Model R’ MSE RMSE Std Dev  p-value
MLP Grid Search  0.7920  0.0130  0.1139 0.2375 1.803¢7
MLP-DE 0.6958 0.0190 0.1377 0.2316 9.717¢¢
MLP-PSO 0.8193  0.0113  0.1062 0.2422 6.425¢7%
MLP-SA 0.7382  0.0163  0.1278 0.2414 5.633¢7
MLP-GA 0.5782  0.0263  0.1622  0.2298 1.609¢7>

TABLE VII. PERFORMANCE OF XGBOOST BEFORE AND AFTER GRID SEARCH OPTIMIZATION

Model R’ MSE RMSE Std Dev  p-value
XGBoost (Baseline) ~ 0.8525  0.0092  0.0959  0.2578  4.103¢™®
XGBoost (Optimized)  0.8543  0.0091  0.0953  0.2570  1.549¢™®
TABLE VIII. TOP PERFORMING OPTIMIZED MODELS

Model R’ MSE RMSE Std Dev  p-value
RF-PSO 0.8564  0.0090 0.0946 02568  5.157¢®
MLP-PSO 0.8193 0.0113 0.1062 02422  6.425¢™%
XGBoost (Optimized) 0.8543  0.0091  0.0953 02570  1.549¢¢

3) Ensemble learning results

To further enhance forecasting accuracy, two
ensemble strategies were implemented: a weighted
ensemble and a boosting ensemble. These approaches
combine the strengths of individually optimized models
to improve robustness and reduce prediction errors.

The weighted ensemble aggregates predictions based
on the inverse of RMSE values, giving greater weight to
models with lower errors. As shown in Table IX, this
method yields moderate improvements over individual

models, achieving R’ = 0.8333 and RMSE = 0.1020.

In contrast, boosting ensembles significantly improves
performance by sequentially combining optimized
models. Two configurations were tested: (1) MLP-PSO
with XGBoost, and (2) RF-PSO with XGBoost. As
shown in Table X, both configurations outperform
individual models, with the RF-PSO + XGBoost
combination achieving the highest accuracy (R° = 0.9617,
RMSE = 0.0489).

TABLE IX. PERFORMANCE OF WEIGHTED ENSEMBLE

Model R’

MSE

RMSE  Std Dev  p-value

Weighted Ensemble  0.8333

0.0104

0.1020  0.2505 1.866e™

TABLE X. COMPARISON OF BOOSTING ENSEMBLE METHODS

Ensemble Model R’ MSE RMSE Std Dev  p-value
Boosting (MLP-PSO + XGBoost) 09102 0.0045 0.0672 02461  2.127¢™®
Boosting (RF-PSO + XGBoost) ~ 0.9617  0.0024  0.0489  0.2438  4.475¢”
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TABLE XI. COMPARISON OF ENSEMBLE METHODS

Ensemble Model R’ MSE RMSE Std Dev  p-value
Weighted Ensemble 0.8333  0.0104 0.1020  0.2505 1.866¢
Boosting (MLP-PSO + XGBoost) 09102 0.0045 0.0672 02461  2.127¢™®
Boosting (RF-PSO + XGBoost) ~ 0.9617  0.0024  0.0489  0.2438  4.475¢”

Table XI summarizes the performance of all ensemble
methods. While the weighted ensemble offers modest
gains, boosting ensembles—particularly RF-PSO +
XGBoost—demonstrate superior forecasting capabilities
by effectively merging complementary model strengths.

These results confirm that ensemble learning,
particularly through boosting, substantially enhances
model accuracy and reliability in gold price forecasting
tasks.
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4)  Residual analysis

Residual analysis was conducted to evaluate model
accuracy and error distribution. Residuals—the
differences between actual and predicted values—should
ideally be randomly scattered around zero to indicate a
well-fitted model. Fig. 4 presents residual plots for
baseline, optimized, and ensemble models.
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Fig. 4. Residual plots for baseline, optimized, and ensemble models.

The results show that optimized models exhibit more
tightly clustered residuals around zero compared to their
baseline versions. This indicates enhanced accuracy and
reduces bias due to optimization. Among all models, the
boosting ensemble demonstrated the least residual
variation, confirming its superior predictive precision.

5) Convergence analysis

Convergence analysis was used to assess the efficiency
and stability of the metaheuristic algorithms. The fitness
curves in Figs. 5 and 6 illustrate the reduction in
prediction error across iterations for RF and MLP models.

Convergence Curves for Random Forest Models
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Fig. 5. Convergence curve for RF under metaheuristic optimization.
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Convergence Curves for MLP Models
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Fig. 6. Convergence curve for MLP under metaheuristic optimization.

PSO and SA demonstrated faster and smoother
convergence compared to DE and GA. PSO achieved
rapid error reduction in early iterations, while SA
maintained steady progress. DE and GA required more
iterations to reach similar error levels, indicating slower
convergence. These results highlight the training
efficiency of PSO and SA in optimization.

6) Summary of best results

The RF model outperformed other baseline models.
After optimization, PSO delivered the best improvements
for RF, while SA showed the highest gains for MLP.
Although XGBoost exhibited marginal improvement after
Grid Search, its performance remained strong.

Boosting ensembles significantly enhanced forecast
accuracy. The best performance was achieved by
combining RF-PSO and optimized XGBoost, resulting in
the highest R’ and lowest RMSE, confirming the
ensemble’s ability to capture gold price variation with
high fidelity. The SA-MLP model, despite improvement,
was excluded from the final ensemble due to slightly
lower accuracy, which could diminish ensemble strength.

Fig. 7 presents the predicted vs actual gold price
trajectories for the top-performing models. The boosting
ensemble closely tracks actual prices, outperforming all
other models.

Prediction: RF (PSO)

1.0 — Actual Gold Price
—— RF (PSO) - R 0.856, MSE: 0.009, Std: 0.257, P: 5.157e-58
A A4
084 /.
| N
f ‘ N ||
0.6 = /\
‘ \
- | |
= 1
=] \
G 0.4
0.2+ { ’
0.0
0 20 40 60 80 100

Prediction: MLP (PSO)

1.0 4 — Actual Gold Price
—— MLP (PSO) - R*: 0.819, MSE: 0.011, Std: 0.242, P: 6.425€-56

0.8 / I N 2
\ |
|
|
~ J. \
064 L
3 |
£ |
- | |
3 AT '
0.4 4 [ / \
| |
I |
‘ ’
|
0.2+ {
00+
o 20 40 60 80 100
Time
Prediction: XGBoost (Opt)
1.0 — Actual Gold Price

—— XGBoost (Opt) - R* 0.854, MSE: 0.009, Std: 0.257, P: 1.549e-58

o
Y

Gold Price

<
=

* \/1
0.24
20

Time



Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

Prediction: Boosting Ensemble
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Fig. 7. Predicted vs actual gold prices for RF-PSO, MLP-PSO, XGBoost, and boosting ensemble.
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Fig. 8. Comparison of forecasts: predicted vs actual gold prices for all models.

Finally, Fig. 8 compares all models predicted values
against actual gold prices. It visually confirms the
superior accuracy of ensemble techniques, particularly
the boosting approach.

E.  Comparison with Previous Work

This study utilizes the same dataset as the research
titled “Enhancing MLP using Archive-based Harris
Hawks Optimizer to Predict Gold Prices” [23]. The
referenced work focused on improving the performance
of MLP by optimizing its parameters using the Archive-
based HHO, resulting in significant performance gains
over the baseline MLP, as presented in Table XII.

TABLE XII. COMPARISON WITH RESULTS FORM [23]

Method R’ RMSE
HHO-Optimized MLP (from [23])  0.8500  0.1020
Boosting Ensemble (This Study) 0.9654  0.0433
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In contrast, the current study adopts a broader strategy
by applying traditional machine learning models—RF,
MLP, and XGBoost—and enhancing them using several
metaheuristic optimization algorithms: PSO, DE, SA, and
GA. Additionally, ensemble learning techniques, namely
weighted and boosting ensembles, were implemented to
further improve forecasting accuracy.

The findings demonstrate that simpler and well-
established metaheuristic optimizers, when combined
with traditional models, can outperform more complex
approaches like HHO. In particular, the boosting
ensemble model developed in this study achieved higher
accuracy with a greater R’ and lower RMSE than the
HHO-optimized MLP. This highlights that high
forecasting precision can be achieved through careful
optimization and ensemble integration, without relying
on newer or more complex algorithms.
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F. Discussion

This study provides key insights into the effectiveness
of various machine learning and optimization approaches
for gold price prediction. The baseline analysis showed
that traditional models such as RF and XGBoost already
deliver strong performance, even without hyperparameter
tuning.

Model performance improved substantially after
applying heuristic and metaheuristic optimization
algorithms. PSO consistently enhanced the accuracy of
the RF model, while SA yielded the highest gains for
MLP. These findings underscore the importance of
selecting suitable optimization strategies tailored to the
model architecture.

Ensemble learning further boosted forecasting
performance. While the weighted ensemble stabilized
predictions, the boosting ensemble significantly

outperformed all other methods across evaluation metrics.

It effectively combined the strengths of the best-
optimized models (RF-PSO and XGBoost), resulting in
the most accurate and reliable forecasts.

Notably, this research shows that well-established
metaheuristic algorithms, when thoughtfully applied to
traditional models, can exceed the performance of more
complex and newer approaches such as the HHO. This
supports the notion that practical and flexible
techniques—rather than complexity alone—are key to
achieving high accuracy in financial forecasting tasks.

V. CONCLUSION AND FUTURE WORK

This study proposed a robust forecasting framework
for gold price prediction by integrating traditional
machine learning models with metaheuristic optimization
and ensemble learning strategies. Three primary models,
including RF, MLP, and XGBoost, were evaluated for
their predictive capabilities. To enhance model
performance, hyperparameter tuning was conducted
using four metaheuristic algorithms: PSO, DE, SA, and
GA. XGBoost, due to its inherent optimization
mechanisms, was fine-tuned using Grid Search.

Performance evaluation relied on multiple statistical
metrics including the coefficient of determination (R?),
MSE, RMSE, standard deviation, and p-value. The PSO-
optimized RF model (RF-PSO) achieved the best
performance among individual models with an R’ of
0.8150 and RMSE of 0.1000. XGBoost showed
consistent performance before and after optimization.

To further boost accuracy and stability, two ensemble
methods were introduced. The weighted ensemble
combined predictions from RF, MLP, and XGBoost
using inverse RMSE-squared weighting. While this
approach yielded stable forecasts, the boosting ensemble
— formed by sequentially combining RF-PSO and
XGBoost—achieved the best results, with an R’ of
0.9654 and RMSE of 0.0433, outperforming all other
models.

Residual and convergence analyses confirmed that
metaheuristic optimization enhanced both accuracy and
consistency. The proposed framework -effectively
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modeled the complex and nonlinear behavior of gold

prices, offering practical implications for financial
analysts, policymakers, and investors. The study
successfully met its objectives: assessing the

performance of key machine learning models for gold
price prediction, improving these models through
optimization techniques, and designing ensemble
strategies that leverage the strengths of individual models.

Despite these contributions, several constraints should
be acknowledged. The dataset did not incorporate
sentiment or geopolitical indicators, which are known to
influence real-world gold price dynamics. The scope of
optimization was limited to four metaheuristic
algorithms, omitting potentially competitive alternatives
such as Ant Colony Optimization, Firefly Algorithm, or
Grey Wolf Optimizer. Similarly, advanced deep learning
architectures like LSTM, GRU, or Transformer-based
models were not investigated, which could offer
additional = advantages in  modeling  temporal
dependencies. The framework lacked online learning or
real-time retraining mechanisms, which are essential for
adapting to sudden market changes. Furthermore,
explainability techniques such as SHAP or LIME were

not implemented, limiting interpretability  for
stakeholders in high-stakes decision-making
environments.

Future research can address these limitations in several
ways. First, integrating macroeconomic, sentiment-based,
and qualitative geopolitical features could provide a
richer representation of market conditions. In particular,
incorporating multi-modal data sources—such as
financial news, social media sentiment, and policy
announcements—processed via NLP could capture
market psychology and event-driven fluctuations more
effectively. Second, expanding the optimization phase to
include a broader range of metaheuristics or hybrid
approaches may uncover more efficient hyperparameter
configurations. Third, experimenting with advanced deep
learning and hybrid architectures could improve the
capacity to model long-range dependencies. Fourth,
implementing adaptive, online learning mechanisms
would allow the framework to adjust continuously to
evolving market conditions. Finally, extending the
evaluation framework to include scale-independent
performance metrics such as the Relative Root Mean
Square Error (RRMSE) would facilitate fairer
comparisons across datasets and forecasting horizons,
enhancing the generalizability and robustness of the
proposed approach.
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