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Abstract—The growing elderly population in Thailand faces 

challenges in managing medications, particularly due to 

vision impairments affecting adherence. This research 

introduces a novel approach using Optical Character 

Recognition (OCR) integrated into a mobile platform to 

automate the extraction of pharmaceutical label information. 

The system operates in four phases: image capture, quality 

enhancement, text extraction, and data processing. Text 

extraction employs advanced techniques such as medication 

verification via fuzzy matching with Levenshtein distance, 

dosage instruction using regular expressions, frequency 

confirmation through dictionary matching, and medical 

indications with named entity recognition. The system 

achieved an overall accuracy of 98.67%. The application 

significantly enhances medication safety for visually 

impaired elderly users, with positive satisfaction reported for 

medication entry, scanning, and reminders. 

 

Keywords—applied medical informatics, pharmaceutical 

label data processing, pharmaceutical label transcription, 

Optical Character Recognition (OCR) 

 

I. INTRODUCTION 

Thailand is currently transitioning into a fully developed 

aging society. In 2018, 16.7% of the Thai population was 

aged 60 and older, and this proportion is expected to rise 

to 31.28% by 2040. Older adults are four times more likely 

to suffer from diseases compared to other age groups [1]. 

A significant number of elderly individuals are affected by 

underlying medical conditions that require ongoing 

treatment and medication during their illnesses. As people 

age, physical health often declines. Managing daily 

routines, such as adhering to medication schedules, can 

pose considerable challenges. Due to their age, elderly 

individuals may experience confusion and forgetfulness. 

Moreover, complications arising from age-related 

degeneration of the lens in the eye may impede 

individuals’ ability to read medication labels accurately. 

This impairment can diminish their capacity to 

comprehend essential information regarding medication 

administration, leading to potential misunderstandings 

concerning the timing and type of medication required. 

Furthermore, blurred vision may result in elderly patients 

misidentifying pharmacological tablets of similar shapes, 

jeopardizing their ability to adhere to the medication 

regimen their healthcare providers prescribe.  

Technological innovations have enhanced health 

outcomes by efficiently managing human wellness, 

enabling precise disease diagnosis and pharmaceutical 

development that extends lifespans. Medical technology 

addresses physical and mental health conditions like 

adaptive life-sustaining mechanisms [2], using specialized 

equipment that responds to environmental factors to 

enhance survival potential. 

Health artificial intelligence aims to improve patient 

care while promoting healthcare equity. Health 

Information Technology enables systematic patient data 

documentation, allowing healthcare providers and 

government agencies to derive insights into effective 

disease prevention policies while advancing healthcare 

quality, reducing errors, improving safety, and 

strengthening provider-patient relationships.  

Mobile applications incorporating Optical Character 

Recognition (OCR) technology enhance pharmaceutical 

information management systems [3−5]. These 

applications digitize medication labels, track prescriptions, 

and provide current drug information. Connecting labels to 

electronic records improves adherence through automated 

alerts and scheduling, while reducing errors with accurate 
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dosage details, contraindications, and usage instructions. 

Medical practitioners benefit from immediate access to 

reliable medication histories and improved compliance 

tracking.  

Consequently, this research develops an elderly-focused 

medication management system that interprets hard-to-

read pharmaceutical labels. Mobile applications with OCR 

technology link prescription information to digital health 

records, deliver timely reminders and organized 

medication schedules. The system provides healthcare 

professionals with precise medication tracking while 

helping elderly users achieve improved treatment results 

through simplified medication identification. This 

technology ultimately streamlines healthcare delivery and 

enhances quality of care for elderly.  

The primary objective of this research is to implement 

optical character recognition technology for the automated 

transcription of pharmaceutical labels within medical 

informatics systems. The secondary objective is to develop 

a mobile application interface that employs optical 

character recognition technology to read and manage 

pharmaceutical labels. The third objective is to evaluate 

user satisfaction with the system’s performance. 

II. LITERATURE REVIEW 

Artificial Intelligence (AI) is crucial in medical 

informatics, especially in automating pharmaceutical label 

transcription through OCR technology. The practical 

implementation of OCR markedly improves patient safety 

and streamlines healthcare operations. This review 

explores recent advancements, pinpoints challenges, and 

underscores research gaps associated with utilizing OCR 

to transcribe pharmaceutical labels within healthcare 

environments.  

The transition from physical to digital medical 

documentation has become essential for healthcare 

providers striving for operational efficiency. As traditional 

data entry methods are deemed insufficient, OCR 

technology surfaces as a feasible automation solution [6]. 

This review evaluates the present applications of OCR in 

healthcare documentation, investigating both the 

challenges of implementation and the possibilities for 

technological advancements.  

The digitization of medical documentation necessitated 

the effective implementation of OCR within healthcare 

settings. A significant study compared three Python OCR 

libraries: PyOCR, PyTesseract, and TesseOCR, within 

health information systems. This research evaluated 

performance through a structured methodology, 

examining hospital documents across multiple extraction 

areas while measuring accuracy and processing efficiency. 

The investigation employed a systematic four-phase 

approach: document preparation with standardized 

resolutions, execution of the OCR method with meticulous 

tracking of processing time, data filtering utilizing regular 

expressions, and validation of results against expected 

values. Clinical archive documents from a Portuguese 

hospital provided real-world testing materials. Notable 

research gaps identified included inadequate 

documentation of test material specifications, limited 

exploration of health information system integration 

requirements, absence of investigations into parameter 

optimization, minimal consideration of advanced image 

pre-processing techniques, unaddressed language 

variations, a lack of benchmarking against commercial 

solutions and missing qualitative assessment metrics. This 

research provided valuable comparative insights while 

underscoring opportunities for more comprehensive 

investigations into factors influencing document 

variability and challenges related to system integration 

within healthcare environments [7].  

Compliance with anti-doping regulations remains a 

significant challenge in the world of sports despite the 

regulatory framework established by the World Anti-

Doping Agency. This challenge primarily arises from the 

complexities of interpreting pharmaceutical information. 

While OCR technology shows promise for improving 

medication screening processes, previous implementations 

have encountered notable limitations. Systems such as 

those developed by Park et al. [8] constrained to Korean-

language contexts, limiting their broader applicability. A 

database of prohibited substances was built based on 

international doping standards, using Korean-language 

drug names from official pharmaceutical sources. 

Utilizing the CLOVA OCR model on the Naver Cloud 

platform, the system enables users to upload prescription 

images, recognize text, and cross-reference it with the 

banned substance list. The system was evaluated using a 

collection of images containing drug ingredient 

information, yielding a character recognition accuracy of 

95.6%, with minimal errors in text extraction. In terms of 

classification performance, the model achieved an overall 

accuracy of 92%, demonstrated perfect sensitivity, and 

reached a level of specificity that supports its readiness for 

real-world applications [8]. 

Complementary to the OCR approach, the present 

research illustrates considerable advancements through a 

multi-phase development process: initial assessments 

utilizing Google Tesseract OCR attained a text recognition 

accuracy of 96.3%, whereas the fully developed system 

exhibited an improved character recognition accuracy of 

98.3%. Notably, the system also registered a 95% degree 

of accuracy in classifying prohibited substances, reflecting 

a significant enhancement in doping detection capabilities. 

However, substantial challenges persist in developing 

comprehensive international medication databases and 

validating the system’s effectiveness across various 

clinical and athletic contexts. These findings signify 

meaningful progress in developing technological solutions 

for anti-doping compliance, though more research is 

required to tackle real-world implementation 

challenges  [9].  

A recent study proposed an automated method for 

extracting essential information from cylindrically 

distorted prescription labels using only a standard camera, 

without the need for additional hardware. The approach 

utilized Deep Convolutional Neural Networks (DCNNs) to 

identify key points on curved labels, achieving high 

accuracy, with a percentage of correct key 0.03 score of 

97%. These key points enabled effective correction of 
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cylindrical distortion through image dewarping and 

stitching techniques. After image correction, OCR and 

Natural Language Processing (NLP) were used to extract 

critical medication details, including patient names, drug 

names, dosages, and usage instructions. The system 

performed robustly under various lighting and background 

conditions, offering a practical solution to minimize 

manual data entry errors. This is particularly beneficial for 

elderly patients and contributes to improved medication 

adherence [10].  
The research on drug Label identification through an 

image and text embedding model (DLI-IT) examines the 
identification of pharmaceutical labels using 
complementary technologies. Image-based methods 
exhibit limitations regarding computational demands and 
environmental sensitivity. For text processing, the study 
employs Connectionist Text Proposal Network (CTPN) 
for detection, followed by a distributed OCR approach in 
which Tesseract processes multiple sub-images 
independently before consolidating them into 
comprehensive documents. Semantic analysis utilizes the 
Universal Sentence Encoder, chosen for its transfer 
learning capabilities in specialized pharmaceutical 
terminology. The Partial Levenshtein Distance technique 
addresses recognition errors in the extracted 
pharmaceutical text. A precision of 88% was attained in 
drug label detection, marking an improvement of up to 
35% over conventional approaches. Limitations include a 
restricted dataset scope and challenges in OCR reliability 
when processing diverse pharmaceutical packaging under 
varying conditions [11].  

Converting medical documents into machine-readable 

text was a crucial step in enhancing data management in 

electronic health records. OCR played a vital role in 

transforming printed or handwritten medical records into 

digital text that could be easily accessed and processed. 

Tesseract OCR extracted raw text, which was then refined 

through preprocessing. After preprocessing with the 

Natural Language Toolkit (lowercasing and stopword 

removal), the top 400 terms were vectorized using term 

frequency–inverse document frequency and normalized. 

Analyzed by evaluating Bidirectional Long Short-Term 

Memory (BiLSTM), Bidirectional Encoder 

Representations from Transformers (BERT), and 

ClinicalBERT. These models were pretrained on 

Electronic Health Record (EHR) data to extract clinical 

information such as diagnoses, medications, and dosages. 

The main advantage of OCR was its ability to efficiently 

digitize large volumes of legacy medical records, reducing 

the need for manual data entry. Data collection at the 

University of Texas Medical Branch provided a valuable 

dataset for evaluating these methods. However, low 

quality documents, handwriting, and complex layouts 

caused recognition failures that impaired later NLP 

analysis. The model demonstrated strong predictive 

capability, reaching over 94% accuracy and Area Under 

the receiver operating characteristic curve values near 

97.43% for key clinical indicators. Incorporating OCR-

derived layout data was shown to improve model accuracy 

by 3−5%, highlighting the importance of spatial 

information in clinical document classification and 

illustrating the role of OCR in boosting the effectiveness 

of deep learning models [12].  

A lightweight pipeline for digitizing paper-based 

laboratory test reports was developed using OCR and 

Information Extraction (IE) within the PaddlePaddle deep 

learning framework. They adopted an OCR system that 

employs PP-OCR [13] with a MobileNetV3 backbone to 

perform text detection, direction correction, and 

recognition. The Information Extraction module consists 

of five stages: Time Detection, Headline Position, Line 

Normalization, Conditional Random Field (CRF)-based 

NER, and Step Detection for multi-column layouts. These 

stages collectively transform the recognized text into 

structured data. The system achieved 0.95 character-level 

accuracy and average accuracy of 0.93 for OCR. 

Performance validation was conducted using real-world 

laboratory test reports from Peking University First 

Hospital. Despite its efficiency, the system’s performance 

depends on OCR accuracy and its ability to handle 

structured text, which limits its applicability to certain 

document formats. However, it demonstrates a practical 

solution for automating medical document processing in 

resource-limited environments [14].  

The use of OCR and AI for automating health insurance 

claim processing is explored through an Intelligent 

Document Management System (IDMS). This system 

extracts the document data from Aadhaar cards, PAN 

cards, and hospital invoices. It uses Amazon Web Services 

(AWS) with heuristic rules for unstructured data. While 

high accuracy (94.09%) is achieved for invoice processing, 

Aadhaar and PAN card extraction show lower accuracy 

(83.13% and 70.3%, respectively), revealing limitations in 

handling fixed-format documents. Converting scanned 

data into structured formats like JSON and CSV enhances 

processing speed and reduces manual errors. However, 

reliance on cloud-based tools and inconsistent 

performance across document types present challenges. 

The study highlights OCR’s potential in healthcare 

workflows but emphasizes the need for improved accuracy 

in structured documents and better multilingual 

support  [15].  

In 2025 study a system highlights the potential of 

computer vision in improving ICU data workflows. One 

study applied AWS OCR to automate data entry from ICU 

medical devices by extracting numerical values from 

smartphone images and mapping them to structured case 

report forms the system developed using Python, PyTorch, 

and OpenCV on AWS EC2, showed high accuracy and 

efficiency in multicenter ICU settings across Hong Kong, 

Thailand, and Australia. The system achieved 96.9% 

accuracy and 98.5% completeness, while reducing data 

entry time to 3.4 min per patient compared to 6.0 min with 

manual entry. While the approach shows promise, it 

remains limited by sensitivity to image quality, restricted 

device compatibility, and the lack of integration with 

electronic health records. These factors pose challenges for 

clinical adoption and scalability. Even so, it offers a useful 

direction for applying affordable, open-source tools in 

critical care and highlights the need for further work on 

interoperability and broader device support [16].  
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The research on AI models for prescription label 

identification in elderly Thai populations compared two 

approaches: a two-stage model (EasyOCR with Qwen2-

72b-instruct) and a uni-stage model (Qwen2-72b-VL). 

Using the Visual Question Answering (VQA) form within 

a Retrieval-Augmented Generation (RAG) framework, 

both approaches utilized RAG with DrugBank as the 

reference data source. The two-stage model achieved an 

accuracy of 94%, excelling in interpreting complex 

medication instructions, while the uni-stage model 

provided faster response times for high-volume scenarios. 

However, the study does not explore multilingual contexts, 

poor lighting conditions, testing with visually impaired 

elderly users, or resource efficiency for mobile 

implementation [17].  

Intelligent Document Processing (IDP) is enhancing 

operational efficiency in healthcare and insurance by 

tackling problems like manual errors, processing delays, 

and compliance issues. It uses machine learning (ML), 

NLP), Robotic Process Automation (RPA), and OCR to 

automatically extract and verify information from diverse 

document types, including handwritten ones. OCR plays a 

key role in automating document processing, achieving 

over 97% accuracy. Combined with ML, NLP, and RPA, 

it streamlines workflows, reduces errors, and accelerates 

approvals. However, despite these advantages, IDP still 

faces barriers such as high deployment costs and 

sensitivity to data quality [18].   

Wang and Luo explored the use of OCR to extract data 

from scanned EHRs, aiming to improve efficiency in 

hospital systems. Their method combined grayscale 

preprocessing, Tesseract OCR, and NLP to process sleep 

disorder records. Extracted text was vectorized using a Bag 

of Words model and classified with Hidden Bayesian 

Integrated Dense Bi-LSTM (HB-DBi-LSTM) deep 

learning framework. The model achieved strong accuracy 

93.21%, showing improved accuracy over traditional 

methods. However, challenges included poor scan quality 

and high computational cost. The study highlighted the 

potential of optical character recognition in automating 

clinical data, while noting challenges in scalability and 

real-time system integration [19].  

Notwithstanding the advancements in OCR technology 

pharmaceutical label transcription, several research gaps 

remain. In healthcare, especially in digitizing unstructured 

data such as prescriptions and clinical notes, further 

development is still needed. Future innovations should 

focus on multilingual recognition capabilities, 

environmental adaptability, enhanced accessibility 

features, and security protocols specific to healthcare. 

Such enhancements would fortify the implementation of 

OCR in the management of pharmaceutical data while 

upholding the standards of healthcare delivery.  

III. MATERIALS AND METHODS 

A. Conceptual Framework and Research Design  

The framework for transcribing pharmaceutical labels 

and identifying tablet shapes through image processing 

and OCR techniques constitutes a significant technological 

advancement designed to assist elderly individuals. This 

method employs optical character recognition technology 

to decode text from pharmaceutical labels accurately and 

convert it into speech, informing users about the specific 

type of medication. Furthermore, by utilizing principles of 

object detection, the solution classifies medication types 

based on the visual characteristics of the tablets, 

effectively mitigating the risk of elderly individuals 

inadvertently consuming incorrect medications. The 

research framework and conceptual design are illustrated 

in Fig. 1.  

 

 

Fig. 1. Conceptual framework and research design.  

Scope of the Study: This project seeks to establish and 

refine a medication reminder model specifically designed 

to assist in managing and documenting medication intake 

among elderly individuals. The primary objective of this 

model is to enhance convenience, visual accessibility, and 

reading comprehension, thereby ensuring ease of use for 

patients. The model that demonstrates effectiveness will 

subsequently be developed into an application capable of 

interpreting the text on the front of medication labels.  

B. Data Collection  

The dataset employed in this study comprises 271 

pharmaceutical label images collected from patients 

receiving treatment at the University of Phayao Hospital, 

Phayao Province, Thailand, during 2024–2025. The 

medication dictionary uses real prescription labels from 

the University of Phayao Hospital, which follow national 

standards and the Lexicomp database. An internationally 

recognized drug information resource and data follows 

Thailand Ministry of Public Health standards. All 

prescription data was anonymized with patient identifiers 

removed. The study complies with Thai healthcare 

regulations, medical research ethics, and Personal Data 

Protection Act (PDPA) requirements. OCR processing 

occurs locally without external data transmission. The 

medication dictionary contains only drug names and 

medical terminology. These labels were supplemented by 

a structured medication database derived from the 

hospital’s pharmaceutical records in Table I. To protect 

patient confidentiality, personally identifiable information 

was masked prior to analysis. Figs. 2−4 present 

representative examples of Thai-language pharmaceutical 

labels, including the original format and their 

corresponding English translations. 

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1341



TABLE I. DISTRIBUTION OF ANALYZED CHARACTERS BY TYPE OF 

PHARMACEUTICAL INFORMATION 

Information Category Number of Characters Percentage (%) 

Medication 123,078 41.02 

Dosage Instruction 62,330 20.78 

Frequency 70,540 23.51 

Medical Indications 44,063 14.69 

Total 300,011 100 

 

 

Fig. 2. The Thai format of the pharmaceutical label.  

 

Fig. 3. The English translation of the pharmaceutical label.  

 

Fig. 4. Example of Thai Pharmaceutical Label.  

Table I summarizes the distribution of analyzed 

characters across four key categories of pharmaceutical 

information: medication, dosage instruction, frequency 

and medical indications. Medication-related content made 

up the highest proportion at 41.02%, followed closely by 

frequency at 23.51%. Dosage instruction and medical 

indications represented 20.78% and 14.69% of the data, 

respectively. These figures highlight the variation in 

content length and layout of Thai pharmaceutical labels. 

Some labels contained a single line of text, while others 

required two or three lines to convey complete 

information. The number of characters also varied, 

affecting OCR accuracy and necessitating a system 

capable of handling diverse text structures and formatting 

styles. 

C. Transcription of Pharmaceutical Labels Process  

This section delineates a structured methodology for 

implementing OCR, which refers to converting an image 

of text into a machine-readable format. For example, when 

a form or receipt is scanned, the computer captures the 

resulting scan as an image file; however, a text editor 

cannot read, edit, search, or count words within such an 

image file. In contrast, OCR enables the transformation of 

an image into a text document that encapsulates the content 

as textual data. Data scientists subsequently categorize it 

into various OCR technologies based on their specific 

applications and services. This process comprises multiple 

steps to enhance recognition accuracy, rectify errors, and 

ensure structured data output for seamless integration with 

medical informatics systems, as illustrated in Fig. 5. It is 

organized into the following four steps. 

 

 

Fig. 5. The flow diagram of OCR-based pharmaceutical label 

transcription system.  

a) Step 1: Image acquisition  

The system starts by capturing an image of a 

pharmaceutical label through a mobile application. Users 

receive guidelines for optimal image quality, including 

proper lighting, focus, and angle. 
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b) Step 2: Pre-processing  

OCR software initially undertakes the task of cleansing 

the image and correcting any errors to ensure accurate 

reading. The image’s quality is paramount in determining 

the accuracy of text extraction utilizing OCR technology. 

Various factors may adversely affect character 

recognition, including inadequate lighting, image 

blurriness, and reflections. Preprocessing techniques such 

as grayscale conversion, contrast adjustment, noise 

elimination, and binarization may be employed to improve 

image clarity. Such enhancements serve to isolate the text 

from the background effectively. 

c) Step 3: Text extraction using Optical Character 

Recognition (OCR)  

Text extraction using Optical Character Recognition 

(OCR) is a key process in converting printed information 

on pharmaceutical labels into digital form. While OCR can 

identify and interpret text from images, its accuracy may 

be affected by factors such as font variation, curved 

packaging, and background noise. In this study, three OCR 

tools were examined: Easy OCR, Google Cloud Vision 

and Tesseract OCR. These systems were tested on Thai-

language medication labels to evaluate their effectiveness 

under real-world conditions. The goal is to identify the 

most reliable approach in terms of recognition accuracy, 

proper handling of Thai script and completeness of the 

extracted data. 

While these optimizations and inaccuracies in text 

recognition remain a possibility, thereby requiring 

supplementary correction mechanisms in the subsequent 

stages. The researchers emphasize the importance of 

examining the following pertinent information: 

medication, dosage instruction, frequency, and medical 

indications (diseases/symptoms). This study delineates a 

systematic approach to the implementation of an OCR-

based transcription system for pharmaceutical labels, 

integrating advanced error correction and validation 

techniques as outlined below:  

Step 3.1: Correction of Medication Utilizing Dictionary 

and Fuzzy Matching Techniques—The process of 

validating pharmaceuticals entails comparing the extracted 

text against an established drug dictionary (for instance, 

“Metformin,” “Aspirin,” “Ibuprofen,” “Paracetamol”). In 

cases where an exact match is identified, the validation 

process is completed immediately. Conversely, if an exact 

match is absent, the system employs fuzzy matching 

methodologies, such as the Levenshtein Distance 

algorithm, to ascertain the nearest potential match [11]. A 

predetermined similarity threshold is subsequently utilized 

to evaluate the match; the corrected medication name is 

adopted should the score surpass this threshold [11].  

Fuzzy matching techniques and Levenshtein Distance 

offer effective methods for approximate string matching, 

which are essential for search engines, eliminating 

duplicate data, and retrieving information despite errors, 

thereby ensuring greater transcription accuracy [20]. 

However, if the score drops below the threshold, the entry 

is flagged for manual review and verification. OCR errors 

may change medication (e.g., “Metformih” instead of 

“Metformin”), leading to possible misidentification [20].  

Fuzzy matching identifies similarities between non-

identical textual strings by quantifying the degree of 

similarity, unlike exact matching, which requires identical 

strings. It is helpful in data cleansing, entity resolution, and 

record linkage. A key technique is Levenshtein Distance 

(LD), which calculates the minimum number of edits 

needed to transform one string into another. This allows 

the detection of approximate matches in noisy data [21]. 

Levenshtein Distance, introduced by Vladimir 

Levenshtein, is a widely recognized metric for measuring 

the difference between two sequences of characters. It 

measures the minimal operations needed to convert one 

string into another through insertion, deletion, or 

substitution. This method is vital in various computational 

fields, such as NLP, bioinformatics, and information 

retrieval [22]. To compare two strings, the Levenshtein 

Distance (LD) indicates the minimum number of editing 

operations required to transform S into T, with lengths m 

and n, respectively. Construct a matrix LD [n+1, m+1]. 

Next, calculate the value of each cell LD (i, j) in the matrix 

iteratively using the formula [23], as shown in Eq. (1).  

𝐿𝐷(𝑖, 𝑗)  =

{
 

 
0, 𝑖 = 0, 𝑗 = 0
𝑗, 𝑖 = 0, 𝑗 > 0
𝑖,         𝑖 > 0, 𝑗 = 0

𝑀𝑖𝑛,   𝑖 > 0, 𝑗 > 0

 

𝑀𝑖𝑛 = 𝑚𝑖𝑛 (
𝐿𝐷[𝑖 − 1, 𝑗] + 1, 𝐿𝐷[𝑖, 𝑗 − 1] + 1,

𝐿𝐷[𝑖 − 1, 𝑗 − 1] + 1
) + 𝑓(𝑖, 𝑗)    (1) 

In this case, f (i, j) = 1 if the ith word of S differs from 

the jth word of T; otherwise, f (i, j) = 0. Finally, the edit 

distance is provided by the value in the bottom-right corner 

of the matrix, LD (n, m). The fuzzy similarity score (Sim 

(S, T)) can be calculated using the formula [23], as shown 

in Eq. (2).  

𝑆𝑖𝑚(𝑆, 𝑇) = (1 −
𝐿𝐷

𝑚𝑎𝑥(𝑚,𝑛)
)  (2) 

This step compares text by defining a reference dataset 

(drug_dictionary) and target text. Fuzzy matching, 

utilizing Levenshtein Distance, calculates the similarity 

score with a threshold of 80 to identify acceptable matches. 

For instance, comparing “Metformih” to “Metformin” in 

Fig. 6 yields a Fuzzy Similarity Score of 77.78%, which 

falls short of the 80% threshold. This suggests that while 

the strings exhibit similarities, they may not fulfill the 

established criteria for an exact match.  

Step 3.2: Dosage and Quantity Verification uses 

Regular Expressions to identify dosage patterns (e.g., 

“1 tablet”, “850 mg”), supported by rule-based checks 

against standard medical formats. This structured 

methodology enhances accuracy in dosage extraction and 

mitigates the risk of medication errors by systematically 

verifying data against established medical standards. For 

example, the regular expression d+s* (tablet|mg|capsule) 

is intended to pinpoint numerical values followed by 

specific dosage units, such as “tablet”, “mg”, or “capsule”. 

The d+ component captures one or more digits, 

representing quantities like “1” or “850”, while s* permits 

optional spaces between the number and the unit to 

accommodate variations in formatting. The final segment 
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(tablet|mg|capsule) ensures that only the specified dosage 

forms are acknowledged, making this pattern effective for 

extracting medication dosage information from text. 

 

 

Fig. 6. Edit distance example: “Metformih” vs. “Metformin”. 

Step 3.3: Frequency Validation uses dictionary 

matching to verify extracted timing instructions, reducing 

OCR errors in key administration details like mealtimes 

and bedtime dosing. This systematic approach ensures 

accurate transcription and standardization of temporal 

medication directives.  

Step 3.4: Extraction and validation of indications 

(Disease/Condition) use NER to identify medication-

related conditions. This facilitates accurate therapeutic 

categorization, which improves clinical decision support 

and ensures seamless integration with Electronic Health 

Records.  

d) Step 4: Post processing  

The validated medication data, including medication, 

dosages, timing, and indications, undergoes systematic 

structuring into JSON format to enhance interoperability 

between medical informatics systems, mobile 

applications, and databases.  

This framework improves OCR-based transcription of 

pharmaceutical labels for mobile applications and 

databases by incorporating text extraction, correction, 

validation, and structured output. Utilizing dictionary-

based matching, fuzzy logic, rule-based validation, and 

NER reduces OCR errors in medication, dosages, 

schedules, and indications. The structured JSON output 

guarantees seamless integration with mobile health apps 

and medical databases.  

This section offers a comparative assessment of OCR 

results using a typical Thai-language pharmaceutical label 

as the test input. The evaluation centers on four key clinical 

elements are frequently present on medication labels: 

medication, dosage instruction, frequency, and medical 

indication. Table I presents a detailed line-by-line 

comparison, emphasizing recognition errors and their 

impact on both language accuracy and patient safety.  

In the implementation stage, the development of the 

system occurs, integrating OCR technology to extract 

information from medication labels. Finally, the testing 

phase ensures the verification of the system’s accuracy, 

functionality, and usability before deployment.  

Fig. 7 illustrates a comparative analysis of OCR outputs 

from Easy OCR, Google Cloud Vision, and Tesseract, 

applied to a Thai medication label. The ground truth is 

shown for reference, with OCR errors red boxes. It 

summarizes OCR errors across systems and highlights key 

examples. 

 

 

Fig. 7. Comparison of OCR errors.  

Easy OCR shows significant recognition errors. 

Numerals are frequently misread, such as “500” → “s00,” 

and Thai text suffers from both character-level distortions, 

such as “รับประทานคร้ังละ 1 เมด็” → “รับประทานครังละ. 1 เมด็”. 

Several lines are omitted or heavily corrupted, making the 

output unreliable for clinical contexts, such as “วนัละ 2 คร้ัง 
หลงัอาหารเชา้ เยน็” → “วนละ 2 ครัง หลงัอาหารเชา เยน็”.  

Google Cloud Vision delivers the most accurate results. 

It correctly identifies all essential components such as drug 

name, dosage, and indication, demonstrating strong 

suitability for Thai medical text. 

Tesseract OCR yields partially correct output. Key 

elements like the drug name are present, but Thai text 

includes character-level errors, such as “รับประทานคร้ังละ 1 เมด็” 

→ “รับประทานครังละ 1 เมด็”. 

In summary, OCR performance varies significantly. 

Google Cloud Vision outperforms in both accuracy and 

completeness, while Easy OCR and Tesseract display 

distinct error patterns, particularly with Thai script. 

D. Mobile Application Development  

The system has been developed utilizing the Software 

Development Life Cycle (SDLC) methodology, thereby 
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ensuring a structured and efficient process. The 

development phases encompass Planning, Requirements 

Analysis, Design, Implementation, and Testing.  

During the Requirements Analysis phase, user roles and 

functionalities are defined. 

• Caregivers: Access the system, scan pharmaceutical 

labels, view medication details, notify medications, 

and record and monitor patients’ medication intake. 

• Admin: Manage user accounts by creating, deleting, 

and updating account information. 

• Doctors: Log in to track patients’ medication 

adherence and review their intake history.  

The design phase occupies a crucial position in the 

software development lifecycle, facilitating the 

transformation of system requirements into a 

comprehensive implementation plan. Employing the 

principles of Unified Modeling Language (UML) yields a 

clear and structured representation of the system’s 

architecture, functionality, and interactions, thereby 

ensuring the seamless integration of all components. This 

phase necessitates the creation of essential UML diagrams, 

which include Use Case Diagrams (as depicted in Fig. 8), 

Activity Diagrams, Class Diagrams (illustrated in Fig. 9), 

a Data Dictionary, and the User Interface (UI). 

Furthermore, the system architecture amalgamates Front-

End and Back-End components to promote efficient data 

management and streamlined functionality. Collectively, 

these components engender a cohesive, scalable, and 

robust system design, as detailed below.  

 

 

Fig. 8. Use case diagram.  

During the development phase, an array of technologies 

was employed to ensure efficient performance, facilitate 

seamless integration, and deliver smooth user experience. 

These tools optimize label recognition, medication 

management, and application functionality platforms. The 

system incorporates various backend and frontend 

technologies to enhance data processing, guarantee 

effective connectivity, and improve the overall user 

experience.  

In the backend, MySQL Workbench is employed to 

manage the database, while JavaScript facilitates server-

side functionality. Node.js is utilized to enable 

communication between the backend, the database, and the 

Google Cloud Vision API with the proposed method. For 

front-end development, Flutter allows for the creation of 

cross-platform applications, utilizing Dart as the primary 

programming language. Visual Studio Code is the 

principal Integrated Development Environment (IDE) for 

coding and debugging, whereas Android Studio is 

designated for testing on Android devices. Figma is 

employed for User Interface/User Experience (UI/UX) 

design, assisting in the development of an intuitive and 

responsive user interface. Collectively, these tools 

collaborate to deliver a robust and scalable system for 

pharmaceutical label recognition and medication 

management.  

In the implementation stage, the development of the 

system occurs, OCR technology to extract information 

from medication labels. Finally, the testing phase ensures 

the verification of the system’s accuracy, functionality, 

and usability before deployment.  

Fig. 8 illustrates a use case diagram that visually depicts 

the interactions among various users and the system, 

emphasizing the specific actions each user role may 

undertake. For Caregivers, the primary responsibilities 

involve managing patient medication. These tasks include 

logging into the system, scanning medication labels, 

reviewing medication details, receiving alerts, recording 

medication intake, and monitoring the patient’s adherence 

over time. The administrator role centers on overseeing 

user accounts. Administrators can log into the system and 

create, delete, and modify user accounts, thereby ensuring 

that access control is maintained, and the system remains 

secure. For Physicians, the focus is on tracking and 

evaluating medication adherence. Their responsibilities 

include logging in, accessing patient profiles, monitoring 

compliance, reviewing medication intake history, and 

analyzing patterns to ensure appropriate treatment plans 

are followed.  

Fig. 9 demonstrates the class diagram, which provides a 

comprehensive overview of the system’s architecture, 

highlighting significant classes, attributes, methods, and 

interactions. This structure is intended to facilitate a 

medication management system involving administrators, 

physicians, caregivers, and patients. Central to the system 

is:  

• The “User” class serves as a fundamental framework 

for all user types. This class encompasses key 

attributes, which include “userID”, “username”, and 

“password”. Additionally, it comprises essential 

methods such as “login()” and “receive 

Notification()”. From this base class, three 

specialized roles are derived: “Admin”, “Doctor”, 

and “Caregiver.”  

• The “Admin” class provides comprehensive 

management capabilities by utilizing methods such 

as “createUserAccount()”, “editUserInformation()”, 

and “deleteUserAccount()”, thereby ensuring 

effective user administration and maintaining system 

security.  
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Fig. 9. Class diagram.  

• The “Doctor” class utilizes methods such as 

“getMedicalHistory()” and “setMedicalHistory()” to 

access and modify patient medication histories. 

Additionally, physicians can use the “View 

Medication History” class to present historical 

information using the “displayMedicalHistory()” 

method.  

• The “Caregiver” class encompasses methods such as 

“getCaregiverName()”, “setCaregiverName()”, and 

“checkPatientData()”, which are designed to 

facilitate the management of patient care and to 

ensure adherence to treatment protocols. 

Additionally, the “Check Medication Information” 

class provides further assistance to caregivers by 

allowing for the retrieval and documentation of 

medication-related data.  

• The “Medication” class handles medication details 

and includes methods such as “getMedicationInfo()” 

and “setMedicationSchedule()”.  

• The “Notify Medication” class is dedicated to 

facilitating scheduling reminders and documenting 

missed doses through the utilization of the 

“recordMissedMedication()”, “execOfTakenMedica

tion()” methods.  

• The “Recode Medication” class also contributes to 

ensuring the accuracy of medication records.  
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Ultimately, the system augments collaboration among 

administrators, physicians, and caregivers, underscoring 

the significance of precise and efficient medication 

management. The meticulously structured class design 

provides distinct functionalities tailored to each role, 

contributing to the system’s robustness and effectiveness. 

E. Evaluating User Satisfaction in Usability and 

Performance Assessment  

The user satisfaction assessment, validated by domain 

experts, employed a Likert scale to measure attitudes and 

perceptions based on mean scores [24]. This evaluation 

focuses on key aspects of the system to assess its 

performance and user experience, including system access 

(ease, speed, and security), medication entry and label 

scanning (precision, efficiency, and user-friendliness), 

medication reminders (setup simplicity, notification 

accuracy, and clarity), medication history and records 

(data input ease, accessibility, and completeness), and the 

overall application (usability, design, performance, and 

stability). Each factor is carefully evaluated to ensure 

effective and user-friendly experience. 

• Users review system access based on convenience, 

speed, and security, ensuring a seamless and safe user 

entry process. 

• Users evaluate the medication entry and label 

scanning process for its accuracy, efficiency, and 

user-friendliness, guaranteeing effective handling of 

medication information. 

• Users examine the medication reminder feature for 

its setup simplicity, notification accuracy, and clarity 

of information to support adherence to medication 

schedules. 

• Users assess the medication record and history 

function by focusing on ease of data entry, quick 

access to past records, and data completeness, which 

help inform treatment decisions. 

• Users evaluate the overall application in terms of 

usability, design, functionality, and stability to ensure 

it remains intuitive, reliable, and valuable, enhancing 

the user experience and supporting effective 

healthcare management. 

IV. RESULTS  

A. Application Development Outcomes  

This research demonstrates the successful integration of 

OCR technology to automate extracting information from 

pharmaceutical labels in healthcare information systems. 

Additionally, it designs and implements a mobile 

application interface that leverages OCR technology to 

read and manage pharmaceutical labels. 

The study concentrated on the accurate capture of 

essential medication details, encompassing medication, 

dosage specifications, administration frequencies, and 

timing instructions (including meal-related timing and 

daily schedules). To augment transcription precision, the 

system employs a sophisticated amalgamation of 

methodologies: dictionary-based matching, fuzzy logic, 

rule-based validation, and NER, all functioning 

synergistically with the Tesseract OCR engine.  

The practical implementation of this technology is 

manifested in a mobile application meticulously designed 

and developed for processing pharmaceutical labels on 

Android devices. The application comprises a 

comprehensive suite of functionalities, including 

automated label reading, data storage, medication 

reminders, adherence tracking, and analytical reporting 

capabilities, as illustrated in Figs. 10 and 11 for the front 

end, and Fig. 12 for the backend. 

 

 

Fig. 10. Add medication interface. 

 

Fig. 11. Reminder interface.  

 

Fig. 12. Monthly medication summary interface.  

Fig. 10 illustrates the Medication Addition Interface, 

wherein users can input pertinent medication details, 

including the name, dosage, frequency, and other critical 

information. The Reminder Settings screen, as depicted in 

Fig. 11, enables users to schedule medication times, 
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establish alerts, and oversee reminders to facilitate timely 

intake.  

Fig. 12 illustrates Monthly Medication and Types Taken 

by the Patient Interface, providing an overview of the 

prescribed drugs and their usage frequency.  

B. Assessment of the Accuracy of Pharmaceutical Label 

Transcription  

A comprehensive evaluation of character recognition 

and OCR system performance was conducted at the 

University of Phayao Hospital in Thailand, involving the 

analysis of 271 unique pharmaceutical labels across 10 

iterations for each label. The analysis concentrated on 

character recognition accuracy relating to four essential 

elements: medication, dosage instruction, frequency, and 

medical indications using Easy OCR, Google Cloud 

Vision, and Tesseract OCR. For example, Fig. 13 

illustrates a comparative analysis of OCR outputs from 

Easy OCR, Google Cloud Vision, and Tesseract OCR, 

applied to a Thai medication label. The ground truth is 

shown for reference, with OCR errors red boxes. 

Easy OCR shows significant recognition errors. 

Numerals are frequently misread (e.g., “500” → “s00”), 

and Thai text suffers from both character-level distortions 

e.g., “รับประทานคร้ังละ 1 เมด็” (Take 1 tablet at a time.) → 

“รับประทานครังละ. 1 เมด็” (The error is that the top tone is 

missing.). Several lines are omitted or heavily corrupted, 

making the output unreliable for clinical contexts e.g., 

“วนัละ 2 คร้ัง หลงัอาหารเชา้ เยน็” (Twice a day after breakfast and 

dinner.) → วนละ 2 ครัง หลงัอาหารเชา เยน็” (The error is that the 

top tone is missing.).  

 

Fig. 13. Comparison of OCR results. 

Google Cloud Vision delivers the most accurate results. 

All essential components—drug name, dosage, and 

indication—are correctly identified, showing strong 

suitability for Thai medical text. 

Tesseract OCR yields partially correct output. Key 

elements like the drug name are present, but Thai text 

includes character-level errors.  

The evaluation produced the following results for 

character transcription in Table II. The evaluation metrics 

used were Accuracy (Acc.) and Character Error Rate 

(CER), assessed both before and after applying an OCR 

integrated with the proposed method. 

TABLE II. ASSESSMENT OF THE CHARACTER RECOGNITION ACCURACY IN PHARMACEUTICAL LABEL TRANSCRIPTION  

Elements 
Pre-Parameters  Post-Parameters 

EOCR GCV TOCR EOCR GCV TOCR 

Accuracy (%) 

Medication 75.53 94.02 93.04 87.28 99.27 94.76 

Dosage Instruction 78.30 92.05 89.70 80.01 99.14 90.09 

Frequency 61.77 90.47 76.56 68.40 97.98 89.85 

Medical Indications 76.60 90.56 93.37 87.46 98.28 94.74 

CER (%) 

Medication 0.245 0.060 0.070 0.114 0.007 0.062 

Dosage Instruction 0.217 0.079 0.102 0.198 0.008 0.099 

Frequency 0.392 0.100 0.234 0.316 0.020 0.101 

Medical Indications 0.234 0.094 0.066 0.125 0.017 0.062 

Average Accuracy 

S.D. (±) 

73.05 91.78 86.81 80.79 98.67 92.26  

29.04 22.41 18.97 23.99 6.26 11.67 

Average CER 

S.D. (±) 

0.272 0.083 0.083 0.188 0.013 0.072  

29.13 22.44 18.98 23.97 0.06 11.73 

Note: Easy OCR (EOCR), Google Cloud Vision (GCV), and Tesseract OCR (TOCR) 

 

From Table II, the findings clearly indicate that GCV 

consistently outperformed the other OCR methods in 

terms of both accuracy and CER across all evaluated 

information elements. This trend was particularly 

pronounced after the application of the post-processing 

framework. For example, within the Medication element, 

GCV achieved a top accuracy of 99.27 %, accompanied by 

an exceptionally low CER of 0.007 %. In contrast, EOCR 

initially exhibited relatively lower performance but 

showed considerable improvement following post-

processing. This improvement was especially notable in 

the Frequency element, where the CER decreased from 

0.392% to 0.316%, while the accuracy improved from 

61.77 % to 68.40 %. TOCR, while demonstrating 

relatively strong initial performance in elements such as 

Medication and Medical Indications, showed only 

moderate gains after post-processing. This pattern 

suggests that TOCR may have already reached a near-

optimal level of performance within the current 

experimental setup. 

To conclude, GCV emerged as the most accurate and 

reliable OCR method for Thai medical labels. TOCR 

performed reasonably well, particularly after post-

processing, while EOCR requires further improvement to 

meet medical transcription standards. The post-processing 

approach proved effective, especially in reducing 

character-level errors, which is crucial for preserving 

meaning in Thai script. These findings highlight the 
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importance of OCR enhancement in supporting accurate 

and dependable clinical data extraction for healthcare. 

This summarizes character-level OCR performance, 

including accuracy, CER, and S.D., with and without the 

proposed post-processing approach. Among all 

configurations, GCV combined with the proposed method 

yielded the highest accuracy, achieving 98.67% (S. D.= ± 

6.26) character accuracy and a CER of 0.013 (S. D. = ± 

0.06). TOCR, with the method, followed with 92.26% 

accuracy and 0.072% CER, while EOCR, despite its 

lowest baseline accuracy 73.05%, improved substantially 

to 80.79% when augmented with the proposed method. 

These findings demonstrate the effectiveness of the 

method in enhancing OCR performance on pharmaceutical 

labels.  Its higher recognition accuracy correlates with 

lower CER. The standard deviations decreased between 

5.05 to 16.15 confirming the system’s overall stability and 

reliability. 

In practical testing, several model-specific OCR issues 

were observed, particularly affecting Thai diacritics, 

numerals, and domain-specific terminology. EOCR 

frequently misrecognizes critical elements. For instance, 

the word “คร้ัง” used in dosage instructions to indicate 

frequency like, “2 times per day” or “1 tablet per intake”. 

It was incorrectly transcribed as “ครัง,” which could lead to 

incorrect administration. Numerical errors such as 

rendering “500” as “5oo” or “soo”, and time-related errors 

were also common. For example, “เชา้” (meaning morning) 

was incorrectly identified as “เขา้” (enter), and “หลงัอาหาร” 

(after a meal, typically referring to after dinner) was 

misread as “หลงัอาการ” (after symptom). Such 

misinterpretations can significantly disrupt the intended 

medication schedule. 

TOCR showed similar recognition issues, including 

confusion between digits and visually similar characters, 

and frequent consonant substitutions likes, “ช” misread as 

“ข” or “ซ”, and “บ” as “ป”).  

Although GCV achieved superior overall accuracy, it 

exhibited critical errors in interpreting temporal 

expressions (e.g., missing space), and some character-level 

error (e.g., “เท่ียง” (noon) as “เพยีง” (only)). 

The proposed post-processing method substantially 

reduced these issues by applying domain-specific 

correction rules and contextual modeling tailored to Thai 

medical and pharmaceutical language. This enhancement 

improves the reliability of OCR outputs, making the 

system suitable for integration into mobile healthcare 

applications. It is particularly beneficial for older adults 

and individuals with limited literacy, supporting safer 

medication use and adherence in outpatient care. 

C. Usability and Performance Assessment Results  

Based on the experimental findings, the researchers 

selected Google Cloud Vision API as the foundational 

OCR engine due to its consistently high performance 

during preliminary testing. To further improve recognition 

accuracy, a hybrid error correction framework was 

introduced. This framework employs a combination of 

post-processing methods, including dictionary-based 

matching, fuzzy logic inference, rule-based validation, and 

NER. These techniques are organized within a multi-

layered architecture, which effectively minimizes OCR 

errors, particularly in mobile text recognition contexts 

where input data quality is often variable. To evaluate the 

system in a real-world context, thirty participants who 

were caregivers or family members of patients with long-

term health issues tested the application and provided 

feedback on its effectiveness, usability, and overall 

experience. A standardized questionnaire was used to 

ensure consistency in the evaluation. The results are 

summarized in Table III.  

TABLE III. EVALUATION OF USER SATISFACTION ON SYSTEM 

USABILITY 

Category Mean Level 

System Access 3.35 Moderate 

Medication Entry and Label Scanning 3.67 Good 

Medication Reminder 3.67 Good 

Medication Record and History 3.61 Good 

Overall Application 3.38 Moderate 

Overall Average 3.54 Good 

 

Table III summarizes user satisfaction across various 

systems. The overall average score was 3.54, indicating a 

positive response. System Access (3.35) and Overall 

Application (3.38) received moderate ratings, suggesting 

potential areas for improvement. On the other hand, 

Medication Entry and Label Scanning (3.67), Medication 

Reminder (3.67), and Medication Record and History 

(3.61) were positively rated, though slight improvements 

could optimize these features further.  

Medication entry and label scanning and medication 

reminder were particularly effective for hospital tasks, 

while system access and overall application may require 

enhancements to improve usability and efficiency. 

User feedback reveals both the system’s strengths and 

areas for potential improvement. Healthcare professionals 

praised its effectiveness in tracking medication adherence 

and supporting treatment planning by providing easy 

access to patient medication histories. One user 

commented, “The system helps us spot whether patients 

are sticking to their meds or not”. For caregivers, the 

system alleviates the challenges of managing medication 

schedules. One caregiver noted, “I use the application to 

help my dad with his meds. The logs and reminders keep 

us both worry-free”.  

A key recommendation was to enhance data 

visualization by offering more flexible viewing options, 

making it easier to understand and compare medication 

data. One user suggested, “If there were more ways to view 

the data, it would make things easier to read and compare”. 

Additionally, feedback emphasized the need to refine 

the preprocessing techniques and OCR system for greater 

accuracy. Faded or unclear labels can lead to 

misinterpretation, making careful data review essential to 

ensuring accuracy and reducing errors. As one user 

explained, “Faded or unclear label text occasionally 

caused character misinterpretation, requiring careful 

review to ensure accuracy”. 
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V. DISCUSSION 

The proposed system demonstrates strong performance 

in recognizing structured pharmaceutical data, particularly 

in identifying medication names and dosage units, which 

is essential for safe and effective medication management. 

Among the tested configurations, the combination of 

Google Cloud Vision with the proposed post-processing 

method achieved the highest performance, reaching 

98.67%-character accuracy and a CER of 0.013. This 

performance surpasses previous studies, including 

95.70% [8], 97.00% [10], 93.0% [14], 94.09% [15], 

96.90% [16], 94.00% [17], and 93.20% [19], and remains 

competitive with 98.30% [9]. 

Compared to other cloud-based OCR services, the 

proposed method outperformed AWS OCR combined with 

heuristics [15], standard AWS OCR [16], and CLOVA 

OCR [8] by 4.67%, 1.77%, and 3.00%, respectively. These 

improvements to the integration of domain-specific 

dictionaries, fuzzy logic inference, rule-based validation, 

and named entity recognition tailored to Thai-language 

medical documents. These techniques help mitigate 

linguistic challenges such as Thai morphological 

ambiguities and inconsistencies in scanned prescriptions. 

Performance varied significantly depending on which 

OCR engine the system employed. For instance, EasyOCR 

combined with the proposed method improved from a 

baseline of 73.05% to 80.79%. However, this result 

remained lower than the 94.0% accuracy reported in the 

research by Thetbanthad et al. [17], which employed the 

Qwen2-72B-instruct model with an integrated VQA 

component under a RAG framework, combining 

document retrieval with response generation to enhance 

language understanding. It does not fully incorporate 

instruction-tuned large language models or advanced 

multimodal reasoning, which are specifically optimized 

for task-oriented prompt following. This may contribute to 

the observed performance gap. 

Tesseract OCR, when enhanced by the proposed 

method, reached 92.26% accuracy with a CER of 0.072. 

While this is slightly lower than  in the study by Wang and 

Luo [19] (93.21%), which utilizes a HB-DBi-LSTM-based 

model, the result is still competitive. The researchers 

suspect that the discrepancy arises from Tesseract’s 

limitations in handling Thai script, especially under varied 

font styles, layouts, and image quality. 

Challenges specific to Thai-language medical texts 

include morphological ambiguities, such as confusion 

between similar-looking words. Visual noise from 

degraded labels also poses difficulties. English-based 

studies tend to exhibit these issues less prominently such 

as the work by Lee et al. [9], which often use high-quality 

digital inputs.  In real-world clinical environments, printed 

prescriptions often suffer from poor contrast, faded ink, 

and scanning artifacts. These factors reduce recognition 

accuracy, especially given the frequency of such issues and 

the critical importance of medical indications. 

Despite these challenges, the proposed method 

consistently outperforms baseline systems and shows 

strong potential for clinical deployment, particularly in 

rural or underserved areas where manual verification is 

limited. Accurate transcription of medication labels is 

crucial, as misinterpretation can lead to adverse drug 

events and reduced patient adherence. 

To promote real-world usability, researchers have 

developed a mobile application based on the proposed 

system. This tool supports patients, especially those with 

visual impairments by providing clear interpretations of 

pharmaceutical labels. It also addresses healthcare 

accessibility gaps, which are prominent in many regions of 

Thailand. 

Future development will focus on reducing character 

error rates with advanced pattern recognition techniques, 

expansion of the pharmaceutical lexicon, and image 

preprocessing methods such as noise reduction and 

contrast enhancement. Expansion of the pharmaceutical 

lexicon, as well as adaptive learning mechanisms and user 

interface improvements guided by human-centered design 

principles, as improvements in Ref. [16]. To further 

improve mobile performance, researchers will apply 

model quantization to reduce memory usage and accelerate 

real-time inference on resource-limited devices. 

Researchers will also explore federated learning to enable 

on-device model updates using local user data, enhancing 

personalization while preserving patient privacy. While 

the current system relies on cloud-based inference, future 

deployment will consider on-device solutions via 

TensorFlow Lite or ONNX Runtime Mobile to reduce 

latency and support offline use.  

VI. CONCLUSION 

In conclusion, this research highlights the potential of 

OCR technology in automating the extraction of critical 

information from pharmaceutical labels. The mobile 

application successfully captured key medication details, 

including medication, dosages, administration times, and 

medical indications, with high accuracy. However, the 

recognition of frequency and medical indications was 

slightly less accurate. These challenges stemmed from the 

complexity of pharmaceutical terminology, label design, 

and image quality. Despite these issues, the system 

demonstrates significant promise in enhancing medication 

safety and patient care. 

Overall, user satisfaction is positive, with high praise for 

medication entry, label scanning, and reminders. However, 

system access and overall application performance were 

rated lower, highlighting the need for improvements in 

usability. In conclusion, while the system effectively 

promotes adherence and supports treatment planning, 

enhancing data visualization would improve usability and 

decision-making for both healthcare professionals and 

caregivers. 

Multilingual scalability presents challenges due to 

linguistic diversity, especially in low-resource languages, 

requiring adaptive OCR and preprocessing techniques. 

Future improvements will focus on integrating language-

agnostic models, multilingual resources, and additional 

international databases to enhance system flexibility, 

scalability, and interoperability. To further enhance 

recognition across diverse scripts, script-aware 

preprocessing will be used to tailor image processing to 
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script-specific features. Techniques such as language-

specific feature extraction and multi-task learning will 

address structural and contextual variations. Together with 

improved OCR, advanced NLP, and mobile support, these 

upgrades enable scalable use in multilingual healthcare 

settings. 

This study acknowledges certain limitations. Users with 

impaired vision often require caregiver assistance, and 

OCR accuracy is affected by image quality issues like 

blurriness and poor lighting. Challenges also arise from 

inconsistent pharmaceutical terminology and unstructured 

text, as well as label degradation and privacy concerns 

during data collection.  
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