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Abstract—In this study, we propose a novel approach for 

analyzing the results of Hyperparameter Optimization 

(HPO) for Random Forest (RF) models by applying Energy 

Distance (ED), a metric based on pairwise Euclidean 

distances. This method provides a quantitative measure of 

the similarities and differences between the configurations of 

hyperparameters and their corresponding performance 

metrics. We use a dataset from a hyperparameter 

optimization experiment for RF, where we explore the 

relationship between hyperparameter settings and model 

accuracy. The results indicate that Energy Distance can offer 

useful insights into the proximity of different 

hyperparameter configurations and help identify clusters of 

similar configurations, which can be useful for model 

selection and optimization.  
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I. INTRODUCTION 

Hyperparameter optimization is crucial for developing 

machine learning models, as it significantly affects model 

accuracy, robustness, and generalization [1–4]. 

Hyperparameters, such as the number of trees in a 

Random Forest or the learning rate in gradient boosting, 

are set before training and govern the model’s structure 

and training process [5–7]. Unlike model parameters, 

which are learned during training, hyperparameters play a 

vital role in the model’s effectiveness. Incorrect choices 

can lead to overfitting or underfitting, resulting in poor 

performance [8–10]. 

For ensemble methods like Random Forests, the 

optimal selection of hyperparameters can dramatically 

influence model accuracy. Key hyperparameters, such as 

tree depth and the minimum number of samples required 

to split a node, control model complexity and 

generalization. Incorrect choices can lead to overfitting or 

underfitting, both of which degrade performance [2]. 

Thus, fine-tuning hyperparameters is essential for 

achieving the right balance between bias and variance, 

which enhances accuracy and generalization. 

Traditional hyperparameter optimization methods, like 

grid search and random search, are widely used but have 

limitations. Grid search exhaustively tests all 

combinations, which is computationally expensive, 

especially with high-dimensional spaces. Random search 

is more efficient but may miss optimal configurations due 

to its lack of strategic exploration [11, 12]. Both methods 

fail to capture complex interactions between 

hyperparameters, which are often crucial in finding the 

best model configurations [1, 2]. 

The importance of hyperparameters is particularly 

critical in AI applications like predictive analytics, 

healthcare, finance, and autonomous systems, where 

optimal configuration can lead to reliable and efficient 

decision-making [13–17]. Recent methods like Bayesian 

optimization and Hyperband aim to improve efficiency by 

using past performance data to guide exploration. 

However, these methods still struggle to fully capture the 

complex relationships between hyperparameters [18–21]. 

This study introduces Energy Distance as a novel tool 

for analyzing hyperparameter optimization results in 

Random Forests. Energy Distance (ED), based on the 

Euclidean distance between data points, helps uncover 

similarities or dissimilarities between hyperparameter 

configurations and their performance  

distributions [22–24]. Unlike traditional optimization 

techniques, ED reveals insights into the structure of the 

hyperparameter space and identifies clusters of 

configurations with similar performance outcomes. This 

provides a deeper understanding of hyperparameter 

interactions, allowing for more informed optimization 

decisions. 
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Research Questions are as follows: 

How can Energy Distance be applied to analyze 

hyperparameter optimization results in ensemble methods 

like Random Forests? 

What insights can ED provide about the relationships 

between hyperparameters and model performance? 

We hypothesize that applying Energy Distance to 

hyperparameter optimization will uncover patterns in the 

search space, leading to better identification of optimal 

configurations and insights into hyperparameter 

interactions that traditional methods may overlook. ED is 

particularly suited for this task, as it does not assume a 

specific data distribution, making it ideal for the non-

normal distributions common in hyperparameter 

optimization [24]. By calculating ED between pairs of 

configurations, we aim to understand performance 

dynamics and identify configurations likely to produce 

optimal results. 

The paper is organized as follows: Section II reviews 

related work on hyperparameter optimization and distance 

measures, focusing on Euclidean Distance. Section III 

covers hyperparameter optimization and the role of ED. 

Section IV outlines the methodology, including the 

hyperparameter search space, Random Forest model, and 

ED application. Section V presents experimental results, 

comparing ED with other techniques. Section VI 

concludes with key findings, advantages, limitations, and 

future research directions. 

II. RELATED WORKS 

The task of hyperparameter optimization and similarity 

analysis in machine learning models has been widely 

studied in recent years. Various methods, including 

distance measures, clustering techniques, and machine 

learning approaches, aim to enhance model selection and 

optimize performance. 

Hyperparameter optimization is key to improving 

machine learning models. Traditional methods like grid 

search and random search are commonly used [1]. More 

advanced techniques, such as Bayesian optimization [19], 

genetic algorithms, Hyperband [20], and population-based 

training, aim to reduce model evaluation costs and find 

optimal configurations more effectively [25]. However, 

these methods often fail to capture the complex 

relationships between hyperparameters and their impact 

on model performance. 

Pioneering work by Bergstra and Bengio [12] combined 

grid search with Bayesian optimization, reducing 

computational costs and enhancing model performance, 

though it did not address the deeper relationships between 

hyperparameters. Recent advances, such as asynchronous 

optimization algorithms [2, 3] and Meta-Learning [26], 

seek to improve efficiency by adapting based on previous 

optimization runs. Yet, these techniques still rely on 

traditional search algorithms and may miss underlying 

patterns in the hyperparameter space. 

Assessing similarity between hyperparameter 

configurations is crucial. Common methods like 

Euclidean distance and cosine similarity help compare 

configurations based on performance. A more powerful 

tool, Energy Distance, introduced by Szekely et al. [22], 

is effective for comparing data distributions and assessing 

the similarity between hyperparameter configurations. ED 

has been shown to reduce computational costs by 

grouping similar models, making optimization more 

efficient. 

Further work by Rizzo and Szekely [23] demonstrated 

ED’s advantages in optimization and classification tasks. 

Gortz and Wouters [27] applied ED to optimize 

hyperparameters by grouping similar models, thus 

speeding up the search for optimal configurations.  

Szekely and Rizzo [28] expanded ED’s application to non-

normal data distributions, particularly useful for high-

dimensional spaces in models like Random Forests and 

deep learning. Jung et al. [29] enhanced ED by combining 

it with other metrics, such as mutual information and 

correlation distance, for faster convergence during 

optimization tasks. 

While Kim et al. [30] demonstrated ED’s usefulness in 

deep learning models, this study focuses on applying ED 

to Random Forests, which have different hyperparameter 

dynamics. 

Random Forests are a popular machine learning 

algorithm, and optimizing their hyperparameters is crucial 

for improving performance [31]. Key hyperparameters 

include the number of trees (n_estimators), maximum 

depth (max_depth), and bootstrap sampling 

(bootstrap) [9]. Traditional optimization methods often 

fail to capture the relationships between these 

hyperparameters, leaving room for improvement [8]. 

Zhou et al. [32] combined Bayesian optimization with 

Random Forests to optimize hyperparameters, showing 

better efficiency than grid search. However, their 

approach did not address the interdependencies between 

hyperparameters. Zhao et al. [33] applied deep 

reinforcement learning for Random Forest optimization, 

achieving improvements in accuracy and efficiency. This 

study complements their work by using ED to identify 

patterns in hyperparameter configurations, offering deeper 

insights into optimization. 

This study builds on previous work by applying Energy 

Distance to uncover hidden relationships between 

hyperparameter configurations in Random Forests. While 

methods like Bayesian optimization and Hyperband focus 

on improving the search for optimal configurations, they 

often overlook the nuanced relationships between 

hyperparameters. By leveraging ED, this study offers a 

deeper understanding of how hyperparameters interact 

and affect model performance, contributing to more 

informed optimization strategies. 

III. HYPERPARAMETER OPTIMIZATION 

Hyperparameter optimization is the process of 

identifying the most effective set of hyperparameters for a 

machine learning model to enhance its performance [5]. 

Hyperparameters are external configurations set before 

training that influence the model’s learning process and 

overall effectiveness. Let 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛)  represent 

the hyperparameters of a machine learning model. The 
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objective is to determine the optimal hyperparameters 𝜃∗ 

that minimize a loss function 𝐿(𝜃): 

 𝜃∗ = argmin
𝜃

𝐿(𝜃) (1) 

where, 𝐿(𝜃) is typically evaluated using a validation set or 

through cross-validation techniques. The challenge in 

hyperparameter optimization lies in efficiently searching 

the hyperparameter space to find the best values of 𝜃 that 

minimize the loss. 

Grid Search is a straightforward and exhaustive 

approach for hyperparameter optimization. It involves 

systematically searching through a predefined 

hyperparameter space by considering all possible 

combinations of values [12]. For a hyperparameters set 

𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛), where each 𝜃𝑖  belongs to a discrete 

discrete set 𝛩𝑖, Grid Search creates a grid of all possible 

combinations: 

 𝛩𝑔𝑟𝑖𝑑 = ∏ 𝛩𝑖
𝑛
𝑖=1  (2) 

For each combination 𝜃∗ ∈ 𝛩𝑔𝑟𝑖𝑑, the model is trained 

and evaluated using cross-validation: 

 𝐿(𝜃∗) =
1

𝑘
∑ 𝐿𝑖(𝜃

∗)𝑘
𝑖=1  (3) 

where 𝑘  is the number of folds in cross-validation and 

𝐿𝑖(𝜃
∗) is the loss on the 𝑖 − 𝑡ℎ fold. Selection the optimal 

hyperparameters by identifying the combination 𝜃𝑜𝑝𝑡 that 

minimizes the average loss: 

 𝜃𝑜𝑝𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃∗∈𝛩𝑔𝑟𝑖𝑑

𝐿(𝜃∗) (4) 

The computational burden of Grid Search is influenced 

by the dimensionality of the hyperparameter space and the 

number of discrete values per hyperparameter. The total 

number of evaluations required is: 

 𝑁𝑒𝑣𝑎𝑙 = ∏ |Θi| × 𝑘𝑛
𝑖=1  (5) 

where |𝛩𝑖|  denotes the cardinality of the set 𝛩𝑖 . This 

exponential growth in evaluations with respect to 𝑛 and 
|𝛩𝑖| can render Grid Search computationally prohibitive 

for models with a large number of hyperparameters or 

extensive hyperparameter spaces. 

Random Search is a simpler method where 

hyperparameters are selected randomly from predefined 

distributions over the search space [12]. Instead of 

exhaustively checking all combinations like Grid Search, 

Random Search samples combinations of 

hyperparameters and evaluates the model performance. 

This can be more computationally efficient for high-

dimensional spaces. Given a hyperparameter set 𝜃 =
(𝜃1, 𝜃2, … , 𝜃𝑛), where each θi is chosen randomly from a 

distribution, the objective is to minimize the loss function 

(Eq. (1)). 

The number of evaluations in Random Search is 

defined by the number of iterations 𝑁iterations, so: 

 𝑁eval = 𝑁iterations (6) 

Random Search is more efficient than Grid Search in 

high-dimensional spaces but may still miss the optimal 

configuration due to its random nature. 

On the other hand, Bayesian Optimization is an 

advanced approach that builds a probabilistic model, often 

using a Gaussian Process (GP), to model the objective 

function 𝐿(𝜃)  [19]. The goal is to find the optimal 

hyperparameters 𝜃∗  that minimize the loss function, by 

iteratively refining a surrogate model based on past 

evaluations. A Gaussian Process is used to model the loss 

function as: 

 𝑓(𝜃)~𝐺𝑃(𝑚(𝜃), 𝑘(𝜃, 𝜃′)) (7) 

where 𝑚(𝜃)  is the mean function, and 𝑘(𝜃, 𝜃′)  is the 

kernel function, which defines the covariance between 

points in the hyperparameter space. 

Next, an acquisition function 𝛼(𝜃) is used to decide the 

next set of hyperparameters to evaluate. This function 

strikes a balance between exploring regions of the space 

that have not been tested and exploiting areas that have 

already shown good performance. The next 

hyperparameter configuration 𝜃∗  is selected by 

maximizing the acquisition function: 

 𝜃∗ = argmax
𝜃

𝛼(𝜃) (8) 

After evaluating 𝜃∗ and updating the model, the process 

repeats. The acquisition function helps guide the search 

more efficiently than Random Search, reducing the 

number of evaluations required. 

Bayesian Optimization is particularly useful for high-

dimensional and expensive evaluation functions. It is 

computationally more intensive than Random Search 

because it involves training surrogate models (like 

Gaussian Processes), but it typically converges to the 

optimal solution in fewer iterations, making it more 

efficient in many cases. 

A. Energy Distance 

The Energy Distance is a statistical measure used to 

quantify the discrepancy between two  

distributions [23, 24], and it can be applied in 

hyperparameter optimization to assess the similarity 

between different configurations of  

hyperparameters [29, 30]. The approach leverages 

Euclidean distance to measure dissimilarity between data 

points in the feature space and provides a method for 

comparing hyperparameter configurations based on their 

performance. 

The first step in calculating Energy Distance is to 

compute the pairwise Euclidean distance between two 

data points 𝑥𝑖  and 𝑥𝑗  in the feature space [24]. This 

distance measures how far apart the data points are in the 

n-dimensional space, where n is the number of features. 

The Euclidean distance between two points is defined as: 

 𝑑𝑖𝑗 = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑛

𝑘=1  (9) 

where 𝑥𝑖𝑘 and 𝑥𝑗𝑘 are the values of the 𝑘 − 𝑡ℎ feature of 

the 𝑖 − 𝑡ℎ  and 𝑗 − 𝑡ℎ  data points, and 𝑛  is the total 

number of features. 

Once the pairwise Euclidean distances are calculated, 

the Energy Distance between two sets of points (or 
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distributions) can be derived. This is particularly useful 

when comparing distributions of hyperparameter 

configurations. The Energy Distance is defined as: 

 𝐸𝐷 = √2 × 𝜇𝛥2 − (
1

𝑛
∑ 𝜇(∆2)𝑗𝑗 ) (10) 

where, 𝜇∆2 is the mean of the squared differences between 

data points in the dataset, 𝜇(∆2)𝑗  represents the mean 

squared difference for each data point jjj within the 

dataset, 
1

𝑛
∑ 𝜇(∆2)𝑗𝑗  is the average of the mean squared 

differences for each of the data points (calculated across 

all points in the dataset). 

The Energy Distance measures the “spread” or 

“discrepancy” between two sets of data points. In 

hyperparameter optimization, a lower Energy Distance 

indicates that the hyperparameter configurations, 

represented as data points in the feature space, are closer 

to each other, suggesting similar performance or 

behavior [30]. On the other hand, a higher Energy 

Distance implies that the configurations are more 

dissimilar, with their model performance being 

significantly different. Therefore, Energy Distance offers 

a means to assess the similarity between different 

hyperparameter configurations based on their Euclidean 

distance in the feature space. Configurations with a 

smaller Energy Distance are more likely to produce 

similar outcomes and can be grouped or clustered together 

for further exploration. 

B. Energy Distance in Hyperparameter Optimization 

In hyperparameter optimization, Energy Distance is a 

valuable metric for assessing the similarity between 

different sets of hyperparameters based on their 

corresponding model performances [29, 30]. The Energy 

Distance between two hyperparameter configurations, 𝜃1 

and 𝜃2 , can be calculated using the Euclidean distance 

between their performance metrics in the feature space. 

When the configurations 𝜃1  and 𝜃2  result in similar 

Energy Distances, it indicates that these two 

configurations produce comparable performance metrics, 

making them strong candidates for further fine-tuning or 

clustering. Mathematically, the Energy Distance between 

two configurations can be expressed as: 

 𝐸𝐷(θ1, θ2) = √∑ (𝐿𝑘(θ1) − 𝐿𝑘(θ2))
2𝑛

𝑘=1  (11) 

where 𝐿𝑘(𝜃1)  and 𝐿𝑘(𝜃2) are the performance metrics 

(such as loss or accuracy) of configurations 𝜃1 and 𝜃2 on 

the 𝑘 − 𝑡ℎ  evaluation fold. A smaller Energy Distance 

suggests similar performance, while a larger one indicates 

significant differences in model behavior. 

IV. ENERGY DISTANCE-BASED HYPERPARAMETER 

OPTIMIZATION  

A. Model 

The model for computing the Energy Distance for 

hyperparameter optimization involves several steps, 

including data preprocessing, feature extraction, pairwise 

distance calculation, and Energy Distance computation 

(Fig. 1). This approach is used to measure the similarity 

between hyperparameter configurations based on their 

performance (e.g., accuracy), allowing for optimization 

and selection of the best-performing configurations. 

Let the dataset 𝐷  consist of 𝑛  hyperparameter 

configurations 𝑋𝑖 with corresponding performance values 

y𝑖 , where 𝑖 = 1,2, … , 𝑛 . Each hyperparameter 

configuration 𝑋𝑖  is represented as a vector of 

hyperparameters 𝑋𝑖 = (𝜃1
(𝑖)

, 𝜃2
(𝑖)

, … , 𝜃𝑘
(𝑖)

) , where 𝜃𝑗
(𝑖)

 

denotes the value of the j − th hyperparameter in the 𝑖 −
th configuration. The performance value y𝑖 represents the 

performance metric (such as accuracy) associated with the 

hyperparameter configuration 𝑋𝑖. 

𝑋 =

[
 
 
 
 
θ1

(1)
θ2

(1)
… θ𝑘

(1)

θ1

(2)
θ2

(2)
… θ𝑘

(2)

⋮
θ1

(𝑛)

⋮
θ2

(𝑛)
⋱
…

⋮
θ𝑘

(𝑛)
]
 
 
 
 

 

The dataset 𝐷  is loaded, where the hyperparameter 

configurations 𝑋𝑖  and their corresponding performance 

values 𝑦𝑖, are assigned to their respective columns. In this 

step, categorical hyperparameters are converted into 

numerical values. Specifically, each categorical 

hyperparameter 𝜃𝑗  is mapped to a numerical 

representation, where 𝜃𝑗 ∈ 𝑅+for continuous variables or 

𝜃𝑗 ∈ 𝑍+  for integer-valued parameters. Furthermore, 

missing values in the dataset are handled by replacing 

them with −1. If a particular value 𝜃𝑗
(𝑖)

 is missing, it is 

substituted with 𝜃𝑗
(𝑖)

= −1, ensuring that the dataset is 

complete and ready for further analysis. 

𝑋𝐷 =

[
 
 
 
 θ1

(1)
θ2

(1)
… θ𝑘

(1)
d𝐸𝑛𝑒𝑟𝑔𝑦

(1)

θ1

(2)
θ2

(2)
… θ𝑘

(2)
d𝐸𝑛𝑒𝑟𝑔𝑦

(2)

⋮
θ1

(𝑛)

⋮
θ2

(𝑛)
⋱
…

⋮      ⋮
θ𝑘

(𝑛)
d𝐸𝑛𝑒𝑟𝑔𝑦

(𝑛)
]
 
 
 
 

 

The matrix representing hyperparameter adjustments 

and Energy Distance (𝑋𝐷) is structured as follows: each 

row corresponds to an iteration i, with the first k columns 

representing the values of the k hyperparameters at that 

iteration, 𝜃𝑗
(𝑖)

, and the last column containing the Energy 

Distance 𝑑𝐸𝑛𝑒𝑟𝑔𝑦
(𝑖)

, which measures the difference between 

the predicted and actual distributions after the 𝑖 − th 

adjustment. This matrix provides a comprehensive view 

of how hyperparameters evolve over time and how the 

model’s performance improves, as indicated by the 

decrease in Energy Distance after each adjustment. 

 

 
Fig. 1. Energy-based HPO model. 
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B. Algorithm 

 
Algorithm: Computation of Energy Distance for 

Hyperparameter Optimization 

Input: Dataset D with hyperparameter configurations 𝑋𝑖  and 

corresponding accuracy 𝑦𝑖. 

Output: Energy Distance matrix 𝐸𝐷  quantifying similarity 

between hyperparameter configurations. 

Begin 

Step 1. Data Preprocessing 

1.1. Load the dataset and assign column names for 

hyperparameters and accuracy. 

1.2. Convert categorical variables into numerical values. 

1.3. Replace NaN (missing) values with −1. 

Step 2. Feature Extraction 

2.1. Extract the hyperparameter values as a feature matrix 

𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑘 , where 𝑋𝑖  represents the values of 

the 𝑖 − 𝑡ℎ hyperparameter configuration. 

Step 3. Compute pairwise Euclidean distances 

3.1. Compute the Euclidean distances between all pairs of 

hyperparameter configurations (𝑋𝑖 , 𝑋𝑗) (Eq. (9)) 

Step 4. Compute Energy Distance 

4.1. Compute the squared differences ∆𝑖𝑗
2 = 𝑑𝑖𝑗

2  between each 

pair of configurations. 

4.2. Calculate the mean squared distance 𝜇𝛥2. 

4.3. Compute Energy Distance (Eq. (11)) 

Step 5. The algorithm returns the Energy Distance matrix 𝐸𝐷. 

End 

V. EXPERIMENT 

A. Data Used 

The study uses the MNIST dataset, a benchmark for 

image classification, consisting of 60,000 training and 

10,000 test images of handwritten digits (0–9) with 2828 

pixel resolution. The images are flattened into 1D vectors 

and processed using a Random Forest Classifier. 

Preprocessing techniques like PCA were applied to reduce 

dimensionality and enhance performance. The model’s 

accuracy was optimized through hyperparameter tuning, 

including parameters such as tree depth, number of 

estimators, and max features, using grid search with cross-

validation to achieve the best configuration for 

classification (Table I). 

B. Tool Used 

In this study, several Python libraries and tools were 

utilized to facilitate data processing, model building, and 

evaluation. The PyTorch library was employed for deep 

learning-related tasks, leveraging its powerful tensor 

computation capabilities. For data manipulation and 

analysis, Pandas was used to handle structured datasets, 

while Numpy provided support for numerical 

computations. Scikit-learn played a central role, with the 

RandomForestClassifier used for classification tasks and 

GridSearchCV for hyperparameter tuning to enhance 

model performance. Additionally, cdist from Scipy was 

used for computing pairwise distances between data 

points, assisting in various distance-based algorithms [34].  

TABLE I. RANDOMFOREST GRIDSEARCH HYPERPARAMETER OPTIMIZATION RESULTS FOR DIGIT CLASSIFICATION 

No bootstrap criterion max_depth max_features min_samples_leaf min_samples_split n_estimators Accuracy 

1 TRUE gini 15 sqrt 1 2 10 0.907 

2 TRUE gini 30 sqrt 1 5 30 0.9265 

3 TRUE entropy 15 sqrt 1 2 10 0.8965 

… … … … … … … … … 

2591 FALSE log_loss 50 0.5 8 2 10 0.8703 

 

C. Energy Distance Analysis of Hyperparameter 

Similarity in Random Forest Optimization 

The computed Energy Distance matrix, which 

quantifies the similarity between different hyperparameter 

configurations, reveals important insights into the 

performance behavior of the models. The Energy Distance 

metric, based on the distributional differences between 

two sets, is used to determine how similar or distinct two 

hyperparameter configurations are in terms of their 

predicted outputs. 

Configurations that exhibit low Energy Distance values 

are considered similar, suggesting that they yield 

comparable performance or predicted results. This can 

indicate that, despite differences in hyperparameter 

choices, certain configurations produce outputs with 

closely aligned distributions. Conversely, configurations 

with high Energy Distance values are considered distinct, 

highlighting significant differences in model performance 

or behavior. These configurations may have diverging 

predictions, which could help identify combinations of 

hyperparameters that lead to markedly different model 

behaviors. 

The dataset contains hyperparameter configurations 

and corresponding performance metrics for a machine 

learning model, focusing on accuracy and the “Distance to 

Max Accuracy”. Key elements of the analysis include the 

bootstrap method, which indicates whether bootstrap 

sampling is used to create data subsets (1 for True, 2 for 

False); the criterion, which measures the quality of a split 

(1 for Gini impurity and 2 for entropy); and max depth, 

which controls the maximum depth of the tree, influencing 

the model’s complexity and potential overfitting. Other 

factors include max features, specifying the number of 

features considered for splits; min samples leaf, ensuring 

a minimum number of samples at a leaf node to prevent 

overfitting; min samples split, setting the minimum 

number of samples needed to split an internal node; and 

n_estimators, representing the number of trees in the 

forest. Finally, accuracy measures the model’s 

performance on the test set, while the distance to max 

accuracy calculates the difference between the current 

configuration’s accuracy and the highest accuracy 

observed. 
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From the dataset, it’s clear that the accuracy for most 

configurations hovers around 93.6% to 94%, indicating 

that the model performs consistently across a wide range 

of hyperparameter combinations. The highest accuracy of 

93.99% appears multiple times, primarily with 

configurations having a maximum depth of 15, 20, or 30, 

and various values for the number of features, minimum 

samples per leaf, and number of estimators. 

The column labeled “Distance to Max Accuracy” 

shows how close each configuration’s accuracy is to the 

maximum observed accuracy (93.99%). The results with 

the smallest distances (0) represent configurations that 

achieved this maximum accuracy, indicating that there is 

minimal impact from other hyperparameters on the 

model’s performance at these settings. For example, 

configurations with: bootstrap = 1, criterion = 1, 

max_depth = 15, max_features = 1, min_samples_leaf = 

1, min_samples_split = 2, n_estimators = 30 all have an 

accuracy of 93.99% (Table II). 

TABLE II. ENERGY DISTANCE MATRIX FOR HYPERPARAMETER SIMILARITY 

bootstrap criterion max_depth max_features min_samples_leaf min_samples_split n_estimators 
Accuracy 

(%) 

Distance to Max 

Accuracy 

1 1 15 1 1 2 30 93.99  

1 1 15 2 1 2 30 93.99 1 

1 1 20 1 1 2 30 93.88 5 

1 1 20 2 1 2 30 93.88 5.10 

1 3 15 3 8 10 30 88.26 11 

2 2 15 3 8 2 20 88.31 12.45 

1 3 20 3 8 5 10 87.03 22.16 

… … … … … … … … … 

1 1 50 3 8 10 10 86.25 41.74 

 
The impact of hyperparameters on model accuracy 

reveals several important insights. The tree depth 

(max_depth) significantly influences accuracy, but its 

effect tends to stabilize once it reaches a certain value. For 

instance, tree depths of 15, 20, 30, and even 50 yield 

similar accuracy values (around 93.6%–93.99%), with 

only minor variations in the distance to maximum 

accuracy (Fig. 2). This suggests that the model is relatively 

resilient to moderate changes in tree depth. Similarly, the 

number of features (max_features) has a relatively minor 

impact on accuracy, with configurations where 

max_features equals 1 or 2 performing similarly. 

However, in some cases, increasing the number of features 

slightly increases the distance to maximum accuracy, such 

as with max_features set to 50. The number of estimators 

(n_estimators) also shows diminishing returns beyond 30, 

with accuracy remaining constant at around 0.936 to 

0.9399 even when increased to 50 (Fig. 2). The distance 

to maximum accuracy only experiences slight increases, 

indicating that adding more estimators does not provide 

substantial improvements. Moreover, the model 

demonstrates robustness to changes in the sample-related 

parameters (min_samples_leaf and min_samples_split), 

where variations in values like 1 and 2 have minimal 

impact on accuracy, with the distances to maximum 

accuracy remaining within a narrow range. 
In terms of bootstrap and criterion, neither appears to 

have a significant effect on accuracy. The use of bootstrap 

sampling (bootstrap = 1) does not notably affect accuracy 

when compared to configurations without bootstrap 

sampling (bootstrap = 2), as the overall accuracy remains 

similar across both settings. Likewise, the choice of 

criterion—whether Gini impurity (criterion = 1) or 

entropy (criterion = 2)—shows minimal variation in 

accuracy, suggesting that this parameter does not play a 

major role in determining the model’s performance under 

the current configurations. 

 
Fig. 2. Hyperparameter influence on model accuracy. 

The exploration of optimal configurations demonstrates 

that the highest accuracy of 93.99% is consistently 

achieved with the following settings: bootstrap = 1 

(bootstrap sampling enabled), criterion = 1 (using Gini 

impurity), max_depth = 15, min_samples_split = 2, and 

n_estimators = 30. For other configurations, the accuracy 

remains close to this optimal value, with the “Distance to 

Max Accuracy” typically being low. This suggests that the 

model performs well across various combinations of 

hyperparameters. However, when parameters such as 

max_depth or max_features deviate from the optimal 

values, there is a slight decrease in performance, 

indicating the model’s sensitivity to changes in these 

settings. 

D. Scenario 1: Optimal Hyperparameter Values for 

Random Search and Bayesian Optimization on 

MNIST Dataset (HPO1) 

In Scenario 1, the optimal hyperparameter values for 

the Random Forest model on the MNIST dataset were 
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determined through experimental Random Search and 

Bayesian Optimization. The best configuration included 

the following values: n_estimators = 30, max_depth = 15 

or 20, min_samples_split = 2, min_samples_leaf = 1, 

criterion = “gini”, bootstrap = False, and max_features = 

“sqrt” or “auto” (Table III). These hyperparameters were 

selected based on their performance in the experiment, 

striking a balance between model complexity and 

generalization. 

For Grid Search (GS), the default configuration 

achieved an accuracy of 0.9083, which was reasonable but 

not optimal. However, when optimized with the HPO1 

hyperparameters, Grid Search significantly improved its 

performance, reaching an accuracy of 0.9399. This 

illustrates that, despite being computationally expensive, 

Grid Search can provide a substantial performance boost 

when hyperparameters are effectively tuned. 

TABLE III. OPTIMAL VALUES OF HYPERPARAMETERS 

bootstrap criterion max_depth max_features min_samples_leaf min_samples_split n_estimators 

FALSE gini 15, 20 sqrt, auto 1 2 30 

 

In the case of Random Search (RS), the default 

configuration yielded an accuracy of 0.8998, slightly 

lower than that of Grid Search. Nevertheless, after 

applying the HPO1 hyperparameters, Random Search 

achieved the highest accuracy of 0.9406, outperforming 

both the default configuration and Grid Search with 

optimized hyperparameters. This highlights the advantage 

of Random Search in exploring the hyperparameter space, 

especially when combined with a targeted optimization 

approach. 

For Bayesian Optimization (BO), the default 

configuration achieved an accuracy of 0.9007, which was 

similar to that of Random Search. With the HPO1 

optimize hyperparameters, Bayesian Optimization 

reached an accuracy of 0.9383, slightly lower than both 

Random Search (HPO1) and Grid Search (HPO1), but still 

a significant improvement over the default configuration. 

This slight difference in performance may result from the 

way Bayesian Optimization balances exploration and 

exploitation, which might not always identify the absolute 

optimal solution in every scenario. 

All three optimization methods showed considerable 

improvements with the HPO1 hyperparameters compared 

to their default configurations. Random Search (HPO1) 

achieved the highest accuracy, closely followed by Grid 

Search (HPO1), while Bayesian Optimization (HPO1) 

provided a slightly lower accuracy but was still effective 

(Table IV). This demonstrates the critical role of 

hyperparameter tuning in improving model performance 

and efficiency, with Random Search and Bayesian 

Optimization proving to be more computationally 

efficient than Grid Search. 

TABLE IV. ACCURACY COMPARISON BY OPTIMIZATION METHODS 

Methods GS RS BO 

Default 0.9083 0.8998 0.9007 

HPO1 0.9399 0.9406 0.9383 

HPO2 0.9461 0.9471 0.9457 

 

E. Scenario 2: Optimal Hyperparameter for Random 

Search and Bayesian Optimization on MNIST 

Dataset (HPO2)  

In Scenario 2, the three most influential 

hyperparameters for the Random Forest model on the 

MNIST dataset—n_estimators, max_depth, and 

max_features—were selected for optimization. These 

hyperparameters were chosen because they significantly 

impact the model’s performance. To further explore their 

effects, the values of n_estimators and max_depth were 

increased. Specifically, n_estimators were set to [10, 50, 

200], max_depth to [10, 50, 200], and max_features to 

[‘sqrt’, ‘auto’, ‘log2’]. These configurations were based 

on prior evaluations indicating that these parameters 

would likely have the greatest influence on accuracy. 

The results clearly showed significant improvements in 

model performance when the optimized hyperparameters 

(HPO2) were applied, compared to the default 

configurations. Specifically, Grid Search (Default) 

achieved an accuracy of 0.9083, Random Search (Default) 

reached 0.8998, and Bayesian Optimization (Default) 

obtained 0.9007. However, after applying HPO2, the 

performance of all methods improved substantially. Grid 

Search (HPO2) increased its accuracy to 0.9461, which 

represents a 3.78% improvement over the default. 

Similarly, Random Search (HPO2) achieved an accuracy 

of 0.9471, showing a 4.73% increase, while Bayesian 

Optimization (HPO2) reached an accuracy of 0.9457, 

improving by 4.50% over the default configuration 

(Fig. 3). 

 

 
Fig. 3. Performance comparison of hyperparameter optimization 

method. 

In this case, Random Search (HPO2) provided the 

highest accuracy, outperforming both Grid Search 

(HPO2) and Bayesian Optimization (HPO2). However, 

Bayesian Optimization (HPO2) demonstrated its 

efficiency by achieving almost identical results to 
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Random Search (HPO2) with fewer computational 

resources. These results underline the importance of 

hyperparameter optimization in improving model 

performance. While Random Search delivered the best 

accuracy, Bayesian Optimization proved to be a more 

resource-efficient option while still providing strong 

performance. 

VI. CONCLUSION 

The use of Energy Distance in this study introduces a 

novel method for analyzing hyperparameter optimization 

in machine learning models. Similarity between 

hyperparameter configurations is quantified based on their 

performance, enabling the identification of clusters with 

similar configurations. Insights into the most promising 

hyperparameter sets are provided through this method. 

Unlike traditional clustering methods like k-means, 

Energy Distance does not require predefined clusters and 

can detect subtle patterns in the data, making it more 

flexible and capable of capturing a broader range of 

relationships. 

Outliers, or hyperparameter configurations that deviate 

from the expected performance trend, are also identified 

using Energy Distance. These outliers may indicate 

overfitting or underfitting, offering opportunities for 

further model refinement. Compared to traditional 

methods such as Grid Search or Random Search, Energy 

Distance provides deeper insights by exploring the 

relationships between configurations, rather than only 

focusing on point-wise accuracy. Additionally, Energy 

Distance considers the distribution of performance 

metrics, offering a more comprehensive view of model 

performance. 

Despite the advantages, some limitations are 

acknowledged. The study focused on Random Forests and 

digit classification, which may limit the generalizability of 

the findings across other machine learning models or 

domains. Furthermore, the computational cost of grid 

search and Energy Distance calculation may hinder 

scalability. Alternative optimization methods could be 

explored in future research, and Energy Distance can be 

tested on additional models and datasets. 

Overall, Energy Distance is shown to offer a promising 

approach for hyperparameter optimization, revealing 

patterns and relationships often overlooked by traditional 

methods. Further exploration of this method across 

various machine learning tasks is encouraged, with future 

research aiming to refine the technique and expand its 

application in domains like deep learning, natural 

language processing, and reinforcement learning. 
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