
Energy Distance Based Similarity Analysis of

Hyperparameter Optimization Results for

Random Forests

Thuy Thi Tran 1,2, Nghia Quoc Phan 1, and Hiep Xuan Huynh 3,4,*

1 Assessment Office, Tra Vinh University, Tra Vinh, Vietnam
2 Network Management Center, University of Cuu Long, Vinh Long, Vietnam

3 College of Information and Communication Technology, Can Tho University, Can Tho, Vietnam
4 CTU Leading Research Team on Automation, Artificial Intelligence, inforMation tEchnology and Digital

Transformation, Can Tho University, Can Tho, Vietnam

Email: tranthithuy.dhcl@gmail.com (T.T.T.); nghiavnt@tvu.edu.vn (N.Q.P.); hxhiep@ctu.edu.vn (H.X.H.)

*Corresponding author

Abstract—In this study, we propose a novel approach for

analyzing the results of Hyperparameter Optimization

(HPO) for Random Forest (RF) models by applying Energy

Distance (ED), a metric based on pairwise Euclidean

distances. This method provides a quantitative measure of

the similarities and differences between the configurations of

hyperparameters and their corresponding performance

metrics. We use a dataset from a hyperparameter

optimization experiment for RF, where we explore the

relationship between hyperparameter settings and model

accuracy. The results indicate that Energy Distance can offer

useful insights into the proximity of different

hyperparameter configurations and help identify clusters of

similar configurations, which can be useful for model

selection and optimization.

Keywords—energy distance, hyperparameter optimization,

random forest, Euclidean distance, machine learning

I. INTRODUCTION

Hyperparameter optimization is crucial for developing

machine learning models, as it significantly affects model

accuracy, robustness, and generalization [1–4].

Hyperparameters, such as the number of trees in a

Random Forest or the learning rate in gradient boosting,

are set before training and govern the model’s structure

and training process [5–7]. Unlike model parameters,

which are learned during training, hyperparameters play a

vital role in the model’s effectiveness. Incorrect choices

can lead to overfitting or underfitting, resulting in poor

performance [8–10].

For ensemble methods like Random Forests, the

optimal selection of hyperparameters can dramatically

influence model accuracy. Key hyperparameters, such as

tree depth and the minimum number of samples required

to split a node, control model complexity and

generalization. Incorrect choices can lead to overfitting or

underfitting, both of which degrade performance [2].

Thus, fine-tuning hyperparameters is essential for

achieving the right balance between bias and variance,

which enhances accuracy and generalization.

Traditional hyperparameter optimization methods, like

grid search and random search, are widely used but have

limitations. Grid search exhaustively tests all

combinations, which is computationally expensive,

especially with high-dimensional spaces. Random search

is more efficient but may miss optimal configurations due

to its lack of strategic exploration [11, 12]. Both methods

fail to capture complex interactions between

hyperparameters, which are often crucial in finding the

best model configurations [1, 2].

The importance of hyperparameters is particularly

critical in AI applications like predictive analytics,

healthcare, finance, and autonomous systems, where

optimal configuration can lead to reliable and efficient

decision-making [13–17]. Recent methods like Bayesian

optimization and Hyperband aim to improve efficiency by

using past performance data to guide exploration.

However, these methods still struggle to fully capture the

complex relationships between hyperparameters [18–21].

This study introduces Energy Distance as a novel tool

for analyzing hyperparameter optimization results in

Random Forests. Energy Distance (ED), based on the

Euclidean distance between data points, helps uncover

similarities or dissimilarities between hyperparameter

configurations and their performance

distributions [22–24]. Unlike traditional optimization

techniques, ED reveals insights into the structure of the

hyperparameter space and identifies clusters of

configurations with similar performance outcomes. This

provides a deeper understanding of hyperparameter

interactions, allowing for more informed optimization

decisions.

Manuscript received January 24, 2025; revised February 27, 2025;

accepted May 9, 2025; published September 19, 2025.

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1329doi: 10.12720/jait.16.9.1329-1337

https://orcid.org/0009-0006-6341-0754
https://orcid.org/0000-0001-6147-5219
https://orcid.org/0000-0002-9213-131X

Research Questions are as follows:

How can Energy Distance be applied to analyze

hyperparameter optimization results in ensemble methods

like Random Forests?

What insights can ED provide about the relationships

between hyperparameters and model performance?

We hypothesize that applying Energy Distance to

hyperparameter optimization will uncover patterns in the

search space, leading to better identification of optimal

configurations and insights into hyperparameter

interactions that traditional methods may overlook. ED is

particularly suited for this task, as it does not assume a

specific data distribution, making it ideal for the non-

normal distributions common in hyperparameter

optimization [24]. By calculating ED between pairs of

configurations, we aim to understand performance

dynamics and identify configurations likely to produce

optimal results.

The paper is organized as follows: Section II reviews

related work on hyperparameter optimization and distance

measures, focusing on Euclidean Distance. Section III

covers hyperparameter optimization and the role of ED.

Section IV outlines the methodology, including the

hyperparameter search space, Random Forest model, and

ED application. Section V presents experimental results,

comparing ED with other techniques. Section VI

concludes with key findings, advantages, limitations, and

future research directions.

II. RELATED WORKS

The task of hyperparameter optimization and similarity

analysis in machine learning models has been widely

studied in recent years. Various methods, including

distance measures, clustering techniques, and machine

learning approaches, aim to enhance model selection and

optimize performance.

Hyperparameter optimization is key to improving

machine learning models. Traditional methods like grid

search and random search are commonly used [1]. More

advanced techniques, such as Bayesian optimization [19],

genetic algorithms, Hyperband [20], and population-based

training, aim to reduce model evaluation costs and find

optimal configurations more effectively [25]. However,

these methods often fail to capture the complex

relationships between hyperparameters and their impact

on model performance.

Pioneering work by Bergstra and Bengio [12] combined

grid search with Bayesian optimization, reducing

computational costs and enhancing model performance,

though it did not address the deeper relationships between

hyperparameters. Recent advances, such as asynchronous

optimization algorithms [2, 3] and Meta-Learning [26],

seek to improve efficiency by adapting based on previous

optimization runs. Yet, these techniques still rely on

traditional search algorithms and may miss underlying

patterns in the hyperparameter space.

Assessing similarity between hyperparameter

configurations is crucial. Common methods like

Euclidean distance and cosine similarity help compare

configurations based on performance. A more powerful

tool, Energy Distance, introduced by Szekely et al. [22],

is effective for comparing data distributions and assessing

the similarity between hyperparameter configurations. ED

has been shown to reduce computational costs by

grouping similar models, making optimization more

efficient.

Further work by Rizzo and Szekely [23] demonstrated

ED’s advantages in optimization and classification tasks.

Gortz and Wouters [27] applied ED to optimize

hyperparameters by grouping similar models, thus

speeding up the search for optimal configurations.

Szekely and Rizzo [28] expanded ED’s application to non-

normal data distributions, particularly useful for high-

dimensional spaces in models like Random Forests and

deep learning. Jung et al. [29] enhanced ED by combining

it with other metrics, such as mutual information and

correlation distance, for faster convergence during

optimization tasks.

While Kim et al. [30] demonstrated ED’s usefulness in

deep learning models, this study focuses on applying ED

to Random Forests, which have different hyperparameter

dynamics.

Random Forests are a popular machine learning

algorithm, and optimizing their hyperparameters is crucial

for improving performance [31]. Key hyperparameters

include the number of trees (n_estimators), maximum

depth (max_depth), and bootstrap sampling

(bootstrap) [9]. Traditional optimization methods often

fail to capture the relationships between these

hyperparameters, leaving room for improvement [8].

Zhou et al. [32] combined Bayesian optimization with

Random Forests to optimize hyperparameters, showing

better efficiency than grid search. However, their

approach did not address the interdependencies between

hyperparameters. Zhao et al. [33] applied deep

reinforcement learning for Random Forest optimization,

achieving improvements in accuracy and efficiency. This

study complements their work by using ED to identify

patterns in hyperparameter configurations, offering deeper

insights into optimization.

This study builds on previous work by applying Energy

Distance to uncover hidden relationships between

hyperparameter configurations in Random Forests. While

methods like Bayesian optimization and Hyperband focus

on improving the search for optimal configurations, they

often overlook the nuanced relationships between

hyperparameters. By leveraging ED, this study offers a

deeper understanding of how hyperparameters interact

and affect model performance, contributing to more

informed optimization strategies.

III. HYPERPARAMETER OPTIMIZATION

Hyperparameter optimization is the process of

identifying the most effective set of hyperparameters for a

machine learning model to enhance its performance [5].

Hyperparameters are external configurations set before

training that influence the model’s learning process and

overall effectiveness. Let 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛) represent

the hyperparameters of a machine learning model. The

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1330

objective is to determine the optimal hyperparameters 𝜃∗

that minimize a loss function 𝐿(𝜃):

 𝜃∗ = argmin
𝜃

𝐿(𝜃) (1)

where, 𝐿(𝜃) is typically evaluated using a validation set or

through cross-validation techniques. The challenge in

hyperparameter optimization lies in efficiently searching

the hyperparameter space to find the best values of 𝜃 that

minimize the loss.

Grid Search is a straightforward and exhaustive

approach for hyperparameter optimization. It involves

systematically searching through a predefined

hyperparameter space by considering all possible

combinations of values [12]. For a hyperparameters set

𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛), where each 𝜃𝑖 belongs to a discrete

discrete set 𝛩𝑖, Grid Search creates a grid of all possible

combinations:

 𝛩𝑔𝑟𝑖𝑑 = ∏ 𝛩𝑖
𝑛
𝑖=1 (2)

For each combination 𝜃∗ ∈ 𝛩𝑔𝑟𝑖𝑑, the model is trained

and evaluated using cross-validation:

 𝐿(𝜃∗) =
1

𝑘
∑ 𝐿𝑖(𝜃

∗)𝑘
𝑖=1 (3)

where 𝑘 is the number of folds in cross-validation and

𝐿𝑖(𝜃
∗) is the loss on the 𝑖 − 𝑡ℎ fold. Selection the optimal

hyperparameters by identifying the combination 𝜃𝑜𝑝𝑡 that

minimizes the average loss:

 𝜃𝑜𝑝𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃∗∈𝛩𝑔𝑟𝑖𝑑

𝐿(𝜃∗) (4)

The computational burden of Grid Search is influenced

by the dimensionality of the hyperparameter space and the

number of discrete values per hyperparameter. The total

number of evaluations required is:

 𝑁𝑒𝑣𝑎𝑙 = ∏ |Θi| × 𝑘𝑛
𝑖=1 (5)

where |𝛩𝑖| denotes the cardinality of the set 𝛩𝑖 . This

exponential growth in evaluations with respect to 𝑛 and
|𝛩𝑖| can render Grid Search computationally prohibitive

for models with a large number of hyperparameters or

extensive hyperparameter spaces.

Random Search is a simpler method where

hyperparameters are selected randomly from predefined

distributions over the search space [12]. Instead of

exhaustively checking all combinations like Grid Search,

Random Search samples combinations of

hyperparameters and evaluates the model performance.

This can be more computationally efficient for high-

dimensional spaces. Given a hyperparameter set 𝜃 =
(𝜃1, 𝜃2, … , 𝜃𝑛), where each θi is chosen randomly from a

distribution, the objective is to minimize the loss function

(Eq. (1)).

The number of evaluations in Random Search is

defined by the number of iterations 𝑁iterations, so:

 𝑁eval = 𝑁iterations (6)

Random Search is more efficient than Grid Search in

high-dimensional spaces but may still miss the optimal

configuration due to its random nature.

On the other hand, Bayesian Optimization is an

advanced approach that builds a probabilistic model, often

using a Gaussian Process (GP), to model the objective

function 𝐿(𝜃) [19]. The goal is to find the optimal

hyperparameters 𝜃∗ that minimize the loss function, by

iteratively refining a surrogate model based on past

evaluations. A Gaussian Process is used to model the loss

function as:

 𝑓(𝜃)~𝐺𝑃(𝑚(𝜃), 𝑘(𝜃, 𝜃′)) (7)

where 𝑚(𝜃) is the mean function, and 𝑘(𝜃, 𝜃′) is the

kernel function, which defines the covariance between

points in the hyperparameter space.

Next, an acquisition function 𝛼(𝜃) is used to decide the

next set of hyperparameters to evaluate. This function

strikes a balance between exploring regions of the space

that have not been tested and exploiting areas that have

already shown good performance. The next

hyperparameter configuration 𝜃∗ is selected by

maximizing the acquisition function:

 𝜃∗ = argmax
𝜃

𝛼(𝜃) (8)

After evaluating 𝜃∗ and updating the model, the process

repeats. The acquisition function helps guide the search

more efficiently than Random Search, reducing the

number of evaluations required.

Bayesian Optimization is particularly useful for high-

dimensional and expensive evaluation functions. It is

computationally more intensive than Random Search

because it involves training surrogate models (like

Gaussian Processes), but it typically converges to the

optimal solution in fewer iterations, making it more

efficient in many cases.

A. Energy Distance

The Energy Distance is a statistical measure used to

quantify the discrepancy between two

distributions [23, 24], and it can be applied in

hyperparameter optimization to assess the similarity

between different configurations of

hyperparameters [29, 30]. The approach leverages

Euclidean distance to measure dissimilarity between data

points in the feature space and provides a method for

comparing hyperparameter configurations based on their

performance.

The first step in calculating Energy Distance is to

compute the pairwise Euclidean distance between two

data points 𝑥𝑖 and 𝑥𝑗 in the feature space [24]. This

distance measures how far apart the data points are in the

n-dimensional space, where n is the number of features.

The Euclidean distance between two points is defined as:

 𝑑𝑖𝑗 = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑛

𝑘=1 (9)

where 𝑥𝑖𝑘 and 𝑥𝑗𝑘 are the values of the 𝑘 − 𝑡ℎ feature of

the 𝑖 − 𝑡ℎ and 𝑗 − 𝑡ℎ data points, and 𝑛 is the total

number of features.

Once the pairwise Euclidean distances are calculated,

the Energy Distance between two sets of points (or

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1331

distributions) can be derived. This is particularly useful

when comparing distributions of hyperparameter

configurations. The Energy Distance is defined as:

 𝐸𝐷 = √2 × 𝜇𝛥2 − (
1

𝑛
∑ 𝜇(∆2)𝑗𝑗) (10)

where, 𝜇∆2 is the mean of the squared differences between

data points in the dataset, 𝜇(∆2)𝑗 represents the mean

squared difference for each data point jjj within the

dataset,
1

𝑛
∑ 𝜇(∆2)𝑗𝑗 is the average of the mean squared

differences for each of the data points (calculated across

all points in the dataset).

The Energy Distance measures the “spread” or

“discrepancy” between two sets of data points. In

hyperparameter optimization, a lower Energy Distance

indicates that the hyperparameter configurations,

represented as data points in the feature space, are closer

to each other, suggesting similar performance or

behavior [30]. On the other hand, a higher Energy

Distance implies that the configurations are more

dissimilar, with their model performance being

significantly different. Therefore, Energy Distance offers

a means to assess the similarity between different

hyperparameter configurations based on their Euclidean

distance in the feature space. Configurations with a

smaller Energy Distance are more likely to produce

similar outcomes and can be grouped or clustered together

for further exploration.

B. Energy Distance in Hyperparameter Optimization

In hyperparameter optimization, Energy Distance is a

valuable metric for assessing the similarity between

different sets of hyperparameters based on their

corresponding model performances [29, 30]. The Energy

Distance between two hyperparameter configurations, 𝜃1

and 𝜃2 , can be calculated using the Euclidean distance

between their performance metrics in the feature space.

When the configurations 𝜃1 and 𝜃2 result in similar

Energy Distances, it indicates that these two

configurations produce comparable performance metrics,

making them strong candidates for further fine-tuning or

clustering. Mathematically, the Energy Distance between

two configurations can be expressed as:

 𝐸𝐷(θ1, θ2) = √∑ (𝐿𝑘(θ1) − 𝐿𝑘(θ2))
2𝑛

𝑘=1 (11)

where 𝐿𝑘(𝜃1) and 𝐿𝑘(𝜃2) are the performance metrics

(such as loss or accuracy) of configurations 𝜃1 and 𝜃2 on

the 𝑘 − 𝑡ℎ evaluation fold. A smaller Energy Distance

suggests similar performance, while a larger one indicates

significant differences in model behavior.

IV. ENERGY DISTANCE-BASED HYPERPARAMETER

OPTIMIZATION

A. Model

The model for computing the Energy Distance for

hyperparameter optimization involves several steps,

including data preprocessing, feature extraction, pairwise

distance calculation, and Energy Distance computation

(Fig. 1). This approach is used to measure the similarity

between hyperparameter configurations based on their

performance (e.g., accuracy), allowing for optimization

and selection of the best-performing configurations.

Let the dataset 𝐷 consist of 𝑛 hyperparameter

configurations 𝑋𝑖 with corresponding performance values

y𝑖 , where 𝑖 = 1,2, … , 𝑛 . Each hyperparameter

configuration 𝑋𝑖 is represented as a vector of

hyperparameters 𝑋𝑖 = (𝜃1
(𝑖)

, 𝜃2
(𝑖)

, … , 𝜃𝑘
(𝑖)

) , where 𝜃𝑗
(𝑖)

denotes the value of the j − th hyperparameter in the 𝑖 −
th configuration. The performance value y𝑖 represents the

performance metric (such as accuracy) associated with the

hyperparameter configuration 𝑋𝑖.

𝑋 =

[

θ1

(1)
θ2

(1)
… θ𝑘

(1)

θ1

(2)
θ2

(2)
… θ𝑘

(2)

⋮
θ1

(𝑛)

⋮
θ2

(𝑛)
⋱
…

⋮
θ𝑘

(𝑛)
]

The dataset 𝐷 is loaded, where the hyperparameter

configurations 𝑋𝑖 and their corresponding performance

values 𝑦𝑖, are assigned to their respective columns. In this

step, categorical hyperparameters are converted into

numerical values. Specifically, each categorical

hyperparameter 𝜃𝑗 is mapped to a numerical

representation, where 𝜃𝑗 ∈ 𝑅+for continuous variables or

𝜃𝑗 ∈ 𝑍+ for integer-valued parameters. Furthermore,

missing values in the dataset are handled by replacing

them with −1. If a particular value 𝜃𝑗
(𝑖)

 is missing, it is

substituted with 𝜃𝑗
(𝑖)

= −1, ensuring that the dataset is

complete and ready for further analysis.

𝑋𝐷 =

[

 θ1

(1)
θ2

(1)
… θ𝑘

(1)
d𝐸𝑛𝑒𝑟𝑔𝑦

(1)

θ1

(2)
θ2

(2)
… θ𝑘

(2)
d𝐸𝑛𝑒𝑟𝑔𝑦

(2)

⋮
θ1

(𝑛)

⋮
θ2

(𝑛)
⋱
…

⋮ ⋮
θ𝑘

(𝑛)
d𝐸𝑛𝑒𝑟𝑔𝑦

(𝑛)
]

The matrix representing hyperparameter adjustments

and Energy Distance (𝑋𝐷) is structured as follows: each

row corresponds to an iteration i, with the first k columns

representing the values of the k hyperparameters at that

iteration, 𝜃𝑗
(𝑖)

, and the last column containing the Energy

Distance 𝑑𝐸𝑛𝑒𝑟𝑔𝑦
(𝑖)

, which measures the difference between

the predicted and actual distributions after the 𝑖 − th

adjustment. This matrix provides a comprehensive view

of how hyperparameters evolve over time and how the

model’s performance improves, as indicated by the

decrease in Energy Distance after each adjustment.

Fig. 1. Energy-based HPO model.

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1332

B. Algorithm

Algorithm: Computation of Energy Distance for

Hyperparameter Optimization

Input: Dataset D with hyperparameter configurations 𝑋𝑖 and

corresponding accuracy 𝑦𝑖.

Output: Energy Distance matrix 𝐸𝐷 quantifying similarity

between hyperparameter configurations.

Begin

Step 1. Data Preprocessing

1.1. Load the dataset and assign column names for

hyperparameters and accuracy.

1.2. Convert categorical variables into numerical values.

1.3. Replace NaN (missing) values with −1.

Step 2. Feature Extraction

2.1. Extract the hyperparameter values as a feature matrix

𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑘 , where 𝑋𝑖 represents the values of

the 𝑖 − 𝑡ℎ hyperparameter configuration.

Step 3. Compute pairwise Euclidean distances

3.1. Compute the Euclidean distances between all pairs of

hyperparameter configurations (𝑋𝑖 , 𝑋𝑗) (Eq. (9))

Step 4. Compute Energy Distance

4.1. Compute the squared differences ∆𝑖𝑗
2 = 𝑑𝑖𝑗

2 between each

pair of configurations.

4.2. Calculate the mean squared distance 𝜇𝛥2.

4.3. Compute Energy Distance (Eq. (11))

Step 5. The algorithm returns the Energy Distance matrix 𝐸𝐷.

End

V. EXPERIMENT

A. Data Used

The study uses the MNIST dataset, a benchmark for

image classification, consisting of 60,000 training and

10,000 test images of handwritten digits (0–9) with 2828

pixel resolution. The images are flattened into 1D vectors

and processed using a Random Forest Classifier.

Preprocessing techniques like PCA were applied to reduce

dimensionality and enhance performance. The model’s

accuracy was optimized through hyperparameter tuning,

including parameters such as tree depth, number of

estimators, and max features, using grid search with cross-

validation to achieve the best configuration for

classification (Table I).

B. Tool Used

In this study, several Python libraries and tools were

utilized to facilitate data processing, model building, and

evaluation. The PyTorch library was employed for deep

learning-related tasks, leveraging its powerful tensor

computation capabilities. For data manipulation and

analysis, Pandas was used to handle structured datasets,

while Numpy provided support for numerical

computations. Scikit-learn played a central role, with the

RandomForestClassifier used for classification tasks and

GridSearchCV for hyperparameter tuning to enhance

model performance. Additionally, cdist from Scipy was

used for computing pairwise distances between data

points, assisting in various distance-based algorithms [34].

TABLE I. RANDOMFOREST GRIDSEARCH HYPERPARAMETER OPTIMIZATION RESULTS FOR DIGIT CLASSIFICATION

No bootstrap criterion max_depth max_features min_samples_leaf min_samples_split n_estimators Accuracy

1 TRUE gini 15 sqrt 1 2 10 0.907

2 TRUE gini 30 sqrt 1 5 30 0.9265

3 TRUE entropy 15 sqrt 1 2 10 0.8965

… … … … … … … … …

2591 FALSE log_loss 50 0.5 8 2 10 0.8703

C. Energy Distance Analysis of Hyperparameter

Similarity in Random Forest Optimization

The computed Energy Distance matrix, which

quantifies the similarity between different hyperparameter

configurations, reveals important insights into the

performance behavior of the models. The Energy Distance

metric, based on the distributional differences between

two sets, is used to determine how similar or distinct two

hyperparameter configurations are in terms of their

predicted outputs.

Configurations that exhibit low Energy Distance values

are considered similar, suggesting that they yield

comparable performance or predicted results. This can

indicate that, despite differences in hyperparameter

choices, certain configurations produce outputs with

closely aligned distributions. Conversely, configurations

with high Energy Distance values are considered distinct,

highlighting significant differences in model performance

or behavior. These configurations may have diverging

predictions, which could help identify combinations of

hyperparameters that lead to markedly different model

behaviors.

The dataset contains hyperparameter configurations

and corresponding performance metrics for a machine

learning model, focusing on accuracy and the “Distance to

Max Accuracy”. Key elements of the analysis include the

bootstrap method, which indicates whether bootstrap

sampling is used to create data subsets (1 for True, 2 for

False); the criterion, which measures the quality of a split

(1 for Gini impurity and 2 for entropy); and max depth,

which controls the maximum depth of the tree, influencing

the model’s complexity and potential overfitting. Other

factors include max features, specifying the number of

features considered for splits; min samples leaf, ensuring

a minimum number of samples at a leaf node to prevent

overfitting; min samples split, setting the minimum

number of samples needed to split an internal node; and

n_estimators, representing the number of trees in the

forest. Finally, accuracy measures the model’s

performance on the test set, while the distance to max

accuracy calculates the difference between the current

configuration’s accuracy and the highest accuracy

observed.

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1333

From the dataset, it’s clear that the accuracy for most

configurations hovers around 93.6% to 94%, indicating

that the model performs consistently across a wide range

of hyperparameter combinations. The highest accuracy of

93.99% appears multiple times, primarily with

configurations having a maximum depth of 15, 20, or 30,

and various values for the number of features, minimum

samples per leaf, and number of estimators.

The column labeled “Distance to Max Accuracy”

shows how close each configuration’s accuracy is to the

maximum observed accuracy (93.99%). The results with

the smallest distances (0) represent configurations that

achieved this maximum accuracy, indicating that there is

minimal impact from other hyperparameters on the

model’s performance at these settings. For example,

configurations with: bootstrap = 1, criterion = 1,

max_depth = 15, max_features = 1, min_samples_leaf =

1, min_samples_split = 2, n_estimators = 30 all have an

accuracy of 93.99% (Table II).

TABLE II. ENERGY DISTANCE MATRIX FOR HYPERPARAMETER SIMILARITY

bootstrap criterion max_depth max_features min_samples_leaf min_samples_split n_estimators
Accuracy

(%)

Distance to Max

Accuracy

1 1 15 1 1 2 30 93.99

1 1 15 2 1 2 30 93.99 1

1 1 20 1 1 2 30 93.88 5

1 1 20 2 1 2 30 93.88 5.10

1 3 15 3 8 10 30 88.26 11

2 2 15 3 8 2 20 88.31 12.45

1 3 20 3 8 5 10 87.03 22.16

… … … … … … … … …

1 1 50 3 8 10 10 86.25 41.74

The impact of hyperparameters on model accuracy

reveals several important insights. The tree depth

(max_depth) significantly influences accuracy, but its

effect tends to stabilize once it reaches a certain value. For

instance, tree depths of 15, 20, 30, and even 50 yield

similar accuracy values (around 93.6%–93.99%), with

only minor variations in the distance to maximum

accuracy (Fig. 2). This suggests that the model is relatively

resilient to moderate changes in tree depth. Similarly, the

number of features (max_features) has a relatively minor

impact on accuracy, with configurations where

max_features equals 1 or 2 performing similarly.

However, in some cases, increasing the number of features

slightly increases the distance to maximum accuracy, such

as with max_features set to 50. The number of estimators

(n_estimators) also shows diminishing returns beyond 30,

with accuracy remaining constant at around 0.936 to

0.9399 even when increased to 50 (Fig. 2). The distance

to maximum accuracy only experiences slight increases,

indicating that adding more estimators does not provide

substantial improvements. Moreover, the model

demonstrates robustness to changes in the sample-related

parameters (min_samples_leaf and min_samples_split),

where variations in values like 1 and 2 have minimal

impact on accuracy, with the distances to maximum

accuracy remaining within a narrow range.
In terms of bootstrap and criterion, neither appears to

have a significant effect on accuracy. The use of bootstrap

sampling (bootstrap = 1) does not notably affect accuracy

when compared to configurations without bootstrap

sampling (bootstrap = 2), as the overall accuracy remains

similar across both settings. Likewise, the choice of

criterion—whether Gini impurity (criterion = 1) or

entropy (criterion = 2)—shows minimal variation in

accuracy, suggesting that this parameter does not play a

major role in determining the model’s performance under

the current configurations.

Fig. 2. Hyperparameter influence on model accuracy.

The exploration of optimal configurations demonstrates

that the highest accuracy of 93.99% is consistently

achieved with the following settings: bootstrap = 1

(bootstrap sampling enabled), criterion = 1 (using Gini

impurity), max_depth = 15, min_samples_split = 2, and

n_estimators = 30. For other configurations, the accuracy

remains close to this optimal value, with the “Distance to

Max Accuracy” typically being low. This suggests that the

model performs well across various combinations of

hyperparameters. However, when parameters such as

max_depth or max_features deviate from the optimal

values, there is a slight decrease in performance,

indicating the model’s sensitivity to changes in these

settings.

D. Scenario 1: Optimal Hyperparameter Values for

Random Search and Bayesian Optimization on

MNIST Dataset (HPO1)

In Scenario 1, the optimal hyperparameter values for

the Random Forest model on the MNIST dataset were

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1334

determined through experimental Random Search and

Bayesian Optimization. The best configuration included

the following values: n_estimators = 30, max_depth = 15

or 20, min_samples_split = 2, min_samples_leaf = 1,

criterion = “gini”, bootstrap = False, and max_features =

“sqrt” or “auto” (Table III). These hyperparameters were

selected based on their performance in the experiment,

striking a balance between model complexity and

generalization.

For Grid Search (GS), the default configuration

achieved an accuracy of 0.9083, which was reasonable but

not optimal. However, when optimized with the HPO1

hyperparameters, Grid Search significantly improved its

performance, reaching an accuracy of 0.9399. This

illustrates that, despite being computationally expensive,

Grid Search can provide a substantial performance boost

when hyperparameters are effectively tuned.

TABLE III. OPTIMAL VALUES OF HYPERPARAMETERS

bootstrap criterion max_depth max_features min_samples_leaf min_samples_split n_estimators

FALSE gini 15, 20 sqrt, auto 1 2 30

In the case of Random Search (RS), the default

configuration yielded an accuracy of 0.8998, slightly

lower than that of Grid Search. Nevertheless, after

applying the HPO1 hyperparameters, Random Search

achieved the highest accuracy of 0.9406, outperforming

both the default configuration and Grid Search with

optimized hyperparameters. This highlights the advantage

of Random Search in exploring the hyperparameter space,

especially when combined with a targeted optimization

approach.

For Bayesian Optimization (BO), the default

configuration achieved an accuracy of 0.9007, which was

similar to that of Random Search. With the HPO1

optimize hyperparameters, Bayesian Optimization

reached an accuracy of 0.9383, slightly lower than both

Random Search (HPO1) and Grid Search (HPO1), but still

a significant improvement over the default configuration.

This slight difference in performance may result from the

way Bayesian Optimization balances exploration and

exploitation, which might not always identify the absolute

optimal solution in every scenario.

All three optimization methods showed considerable

improvements with the HPO1 hyperparameters compared

to their default configurations. Random Search (HPO1)

achieved the highest accuracy, closely followed by Grid

Search (HPO1), while Bayesian Optimization (HPO1)

provided a slightly lower accuracy but was still effective

(Table IV). This demonstrates the critical role of

hyperparameter tuning in improving model performance

and efficiency, with Random Search and Bayesian

Optimization proving to be more computationally

efficient than Grid Search.

TABLE IV. ACCURACY COMPARISON BY OPTIMIZATION METHODS

Methods GS RS BO

Default 0.9083 0.8998 0.9007

HPO1 0.9399 0.9406 0.9383

HPO2 0.9461 0.9471 0.9457

E. Scenario 2: Optimal Hyperparameter for Random

Search and Bayesian Optimization on MNIST

Dataset (HPO2)

In Scenario 2, the three most influential

hyperparameters for the Random Forest model on the

MNIST dataset—n_estimators, max_depth, and

max_features—were selected for optimization. These

hyperparameters were chosen because they significantly

impact the model’s performance. To further explore their

effects, the values of n_estimators and max_depth were

increased. Specifically, n_estimators were set to [10, 50,

200], max_depth to [10, 50, 200], and max_features to

[‘sqrt’, ‘auto’, ‘log2’]. These configurations were based

on prior evaluations indicating that these parameters

would likely have the greatest influence on accuracy.

The results clearly showed significant improvements in

model performance when the optimized hyperparameters

(HPO2) were applied, compared to the default

configurations. Specifically, Grid Search (Default)

achieved an accuracy of 0.9083, Random Search (Default)

reached 0.8998, and Bayesian Optimization (Default)

obtained 0.9007. However, after applying HPO2, the

performance of all methods improved substantially. Grid

Search (HPO2) increased its accuracy to 0.9461, which

represents a 3.78% improvement over the default.

Similarly, Random Search (HPO2) achieved an accuracy

of 0.9471, showing a 4.73% increase, while Bayesian

Optimization (HPO2) reached an accuracy of 0.9457,

improving by 4.50% over the default configuration

(Fig. 3).

Fig. 3. Performance comparison of hyperparameter optimization

method.

In this case, Random Search (HPO2) provided the

highest accuracy, outperforming both Grid Search

(HPO2) and Bayesian Optimization (HPO2). However,

Bayesian Optimization (HPO2) demonstrated its

efficiency by achieving almost identical results to

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1335

Random Search (HPO2) with fewer computational

resources. These results underline the importance of

hyperparameter optimization in improving model

performance. While Random Search delivered the best

accuracy, Bayesian Optimization proved to be a more

resource-efficient option while still providing strong

performance.

VI. CONCLUSION

The use of Energy Distance in this study introduces a

novel method for analyzing hyperparameter optimization

in machine learning models. Similarity between

hyperparameter configurations is quantified based on their

performance, enabling the identification of clusters with

similar configurations. Insights into the most promising

hyperparameter sets are provided through this method.

Unlike traditional clustering methods like k-means,

Energy Distance does not require predefined clusters and

can detect subtle patterns in the data, making it more

flexible and capable of capturing a broader range of

relationships.

Outliers, or hyperparameter configurations that deviate

from the expected performance trend, are also identified

using Energy Distance. These outliers may indicate

overfitting or underfitting, offering opportunities for

further model refinement. Compared to traditional

methods such as Grid Search or Random Search, Energy

Distance provides deeper insights by exploring the

relationships between configurations, rather than only

focusing on point-wise accuracy. Additionally, Energy

Distance considers the distribution of performance

metrics, offering a more comprehensive view of model

performance.

Despite the advantages, some limitations are

acknowledged. The study focused on Random Forests and

digit classification, which may limit the generalizability of

the findings across other machine learning models or

domains. Furthermore, the computational cost of grid

search and Energy Distance calculation may hinder

scalability. Alternative optimization methods could be

explored in future research, and Energy Distance can be

tested on additional models and datasets.

Overall, Energy Distance is shown to offer a promising

approach for hyperparameter optimization, revealing

patterns and relationships often overlooked by traditional

methods. Further exploration of this method across

various machine learning tasks is encouraged, with future

research aiming to refine the technique and expand its

application in domains like deep learning, natural

language processing, and reinforcement learning.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Thuy Thi Tran conducted the experiments, processed

the data, and contributed to drafting the manuscript. Nghia

Quoc Phan participated in designing the methodology,

tuning the hyperparameters, and analyzing the results.

Hiep Xuan Huynh supervised the research, provided

critical revisions, and finalized the manuscript. All authors

read and approved the final version of the manuscript.

ACKNOWLEDGMENT

The authors thank the supprot from CTU Leading

Research Team on Automation, artificial Intelligence,

inforMation tEchnology and Digital transformation.

REFERENCES

[1] P. Gijsbers and M. L. P. Bueno, “AMLB: An AutoML benchmark,”

Journal of Machine Learning Research, vol. 25, no. 6, 2024

[2] M. Baratchi, C. Wang, S. Limmer, J. N. van Rijn, H. Hoos, T. Bäck,

and T. Olhofer, “Automated machine learning: Past, present and

future,” Artificial Intelligence Review, vol. 57, no. 5, 2024.

https://doi.org/10.1007/s10462-024-10726-1

[3] W. Sun and X. Zhang, “Efficient hyperparameter optimization for

deep learning models using evolutionary algorithms,“ Journal of

Machine Learning Research, vol. 23, no. 14, pp. 1–23, 2022.

[4] F. Mohr and M. Wever, “Naive automated machine learning,”

Machine Learning, vol. 112, no. 4, pp. 1131–1170, 2023.

https://doi.org/10.1007/s10994-022-06200-0

[5] J. Won, H.-S. Lee, and J.-W. Lee, “A review on multi-fidelity

hyperparameter optimization in machine learning,” ICT Express,

vol. 11, pp. 245–257, 2025.

https://doi.org/10.1016/j.icte.2025.02.001

[6] M. Yang and J. Chen, “Hyperparameter optimization for boosting

models using multi-objective optimization,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 32, no. 9, pp. 3889–

3901, 2021.

[7] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine

Learning: Methods, Systems, Challenges, Springer, 2019.

[8] L. Perez and D. Wang, “Optimal hyperparameter selection for

machine learning applications,” in Proc. 39th Int. Conf. Machine

Learning, 2020, pp. 2423–2431.

[9] D. Angluin and P. Laird, “Critical role of hyperparameters in

artificial intelligence and machine learning models,” AI & Society,

vol. 35, no. 1, pp. 79–92, 2020.

[10] L. Liu and D. Zhang, “Enhancing machine learning algorithms with

hyperparameter optimization,” Journal of Machine Learning

Research, vol. 18, no. 23, pp. 1–26, 2017.

[11] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,

pp. 5–32, 2001.

[12] J. Bergstra and Y. Bengio, “Random search for hyper-parameter

optimization,” Journal of Machine Learning Research, vol. 13, pp.

281–305, 2012.

[13] J. van der Baan and T. van der Zwan, “The role of hyperparameters

in machine learning for predictive analytics in healthcare,” Journal

of Healthcare Engineering, pp. 1–10, 2020.

[14] Z. He and Y. Zhang, “Hyperparameter tuning for financial time

series prediction models,” Journal of Financial Data Science, vol.

7, no. 4, pp. 112–125, 2021.

[15] R. Madani and A. Al-Hmouz, “Impact of hyperparameter

optimization in autonomous systems for safety-critical

applications,” Journal of Autonomous Systems, vol. 15, no. 2, pp.

45–60, 2020.

[16] J. Tan and M. Chen, “Hyperparameter optimization and its

effectiveness in machine learning models for predictive analytics,”

Computers in Industry, vol. 109, pp. 27–36, 2019

[17] H. Liu and F. Zhang, “Optimizing hyperparameters in machine

learning models for critical decision-making in healthcare and

finance,” IEEE Transactions on Systems, Man, and Cybernetics:

Systems, vol. 51, no. 4, pp. 1445–1457, 2021.

[18] K. Kandasamy, J. Schneider, and S. Vasudevan, “Bayesian

optimization with intractable constraints,” in Proc. 35th Int. Conf.

Machine Learning, 2018, vol. 80, pp. 4153–4162.

[19] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian

optimization of machine learning algorithms,” Advances in Neural

Information Processing Systems, vol. 25, pp. 2951–2959, 2012.

[20] L. Li, K. G. Jamieson, G. DeSalvo et al., “Hyperband: A novel

bandit-based approach to hyperparameter optimization,” Journal of

Machine Learning Research, vol. 18, no. 1, pp. 6765–6816, 2017.

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1336

https://doi.org/10.1007/s10462-024-10726-1
https://doi.org/10.1007/s10994-022-06200-0
https://doi.org/10.1016/j.icte.2025.02.001

[21] J. Wang, J. Zhang, and X. Li, “Combination of hyperband and

bayesian optimization for hyperparameter optimization in deep

learning,” arXiv preprint, arXiv:1801.01596, 2018.

[22] G. J. Szekely, M. L. Rizzo, and N. K. Bakirov, “Measuring and

testing dependence by energy distances,” The Annals of Statistics,

vol. 35, no. 6, pp. 2769–2794, 2007.

[23] M. L. Rizzo and G. J. Szekely, “Energy distance,” Statistics &

Probability Letters, vol. 83, no. 10, pp. 1815–1820, 2013.

[24] R. Jensen, “Energy distance: A new metric for similarity between

distributions,” Journal of Machine Learning Research, vol. 12, pp.

1159–1174, 2011.

[25] M. Jaderberg, W. M. Czarnecki, I. Dunning et al., “Population-

based training of neural networks,” in Proc. 34th Int. Conf.

Machine Learning, 2017, vol. 70, pp. 1958–1967.

[26] P. Brazdil and C. Giraud-Carrier, “Metalearning and algorithm

selection: Progress, state of the art and introduction to the 2018

special issue,” Mach. Learn., vol. 107, pp. 1–14, 2018.

[27] S. Gortz and D. Wouters, “Energy distance and its applications to

machine learning,” Computational Statistics & Data Analysis, vol.

72, pp. 189–197, 2014.

[28] G. J. Szekely and M. L. Rizzo, “Energy distance and statistical

inference,“ Statistical Science, vol. 35, no. 1, pp. 51–70, 2020.

[29] K. Jung, H. Lee, and J. Kim, “Efficient hyperparameter

optimization using energy distance combined with mutual

information,” in Proc. 41st Int. Conf. Machine Learning, 2023, pp.

372–380.

[30] Y. Kim, J. Lee, and T. Park, “Energy distance in deep learning: An

exploration of hyperparameter optimization,” Journal of Machine

Learning, vol. 15, no. 4, pp. 233–245, 2023.

[31] M. Liao, H. Wen, L. Yang, G. Wang, X. Xiang, and X. Liang,

“Improving the model robustness of flood hazard mapping based

on hyperparameter optimization of random forest,” Expert Systems

with Applications, vol. 241, 122682, 2024.

https://doi.org/10.1016/j.eswa.2023.122682

[32] X. Zhou, L. Zhang, and L. Xie, “Bayesian optimization for

hyperparameter tuning of Random Forest models,” Journal of

Computational and Graphical Statistics, vol. 29, no. 4, pp. 931–

944, 2020.

[33] B. Zhao, S. Huang, and X. Wang, “Hyperparameter optimization

with deep reinforcement learning,” in Proc. 38th Int. Conf.

Machine Learning, 2021, vol. 128, pp. 4183–4192.

[34] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830,

2011.

Copyright © 2025 by the authors. This is an open access article

distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited (CC BY 4.0).

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1337

https://creativecommons.org/licenses/by/4.0/

	JAIT-V16N9-1329

