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Abstract—Steganography, or hiding information within 
digital media, is one of the most important challenges in 
digital security in terms of detecting hidden content for both 
various embedding processes and under different payload 
sizes. This study proposes an enhanced deep learning 
methodology that combines the Visual Geometry Group 19-
layer Convolutional Neural Network (VGG19) convolutional 
neural network with particle swarm optimization to optimize 
key hyperparameters, improving its ability to detect 
steganographic content more effectively. Our proposed 
approach was tested using the Break Our Steganographic 
System (BOSSBase) 1.01 dataset and a combined dataset 
with Break Our Watermarking System 2 (BOWS2), focusing 
on stego-images generated by the Spatial UNIversal WAvelet 
Relative Distortion (S-UNIWARD) and Wavelet Obtained 
Weights (WOW) algorithms. The results clearly indicate that 
our proposed methodology outperforms state-of-the-art 
models such as Xu-Net, Ye-Net, Yedroudj-Net, and 
VGG16Stego, achieving accuracy of 0.8816 and 0.8900 for 
payloads of 0.2bpp (bits per pixel) and 0.4bpp, respectively. 
These findings show the significance of our approach, 
highlighting its potential to become a leading solution for 
steganography detection in digital security applications. 
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I. INTRODUCTION 

With the existence of digital technology, sending files 
like images, audio, videos, and text has become much 
easier. Steganographic algorithms are techniques and 
methods used to hide information within digital media so 
it’s not visible at first glance. This information is even 
tailored to blend seamlessly with the content of the files, 
making it harder to detect. Image modification is 
commonly used for various purposes, including 
transmitting secure and legal information [1], criminal 
activities, and social media misuse [2]. As a result, it’s 
important for legal bodies to identify when images have 
been modified to convey hidden information. 

Steganalysis is the process of using robust models to 
determine whether an image file contains hidden 
steganographic disturbances [3–7]. This field has greatly 
benefited from advancements in artificial intelligence. 
Initially, tasks in steganalysis employed traditional 
machine learning methods like Support Vector Machines. 
However, Deep Learning, particularly Convolutional 
Neural Networks (CNNs), has proven to be more effective, 
especially for extracting features from images in both 
spatial and frequency domains. These techniques have 
quickly evolved, enhancing their ability to classify images 
accurately. In the research field of steganalysis, detecting 
hidden information in images is crucial, especially when 
adaptive steganography techniques are used [8, 9]. 
Contributions such as new image processing techniques, 
databases, and computational tools are valuable. 
Moreover, developing new architectures that can classify 
with greater accuracy is immensely beneficial to the 
scientific community [10, 11]. 

While steganalysis has traditionally been viewed as a 
core component of digital security and information 
assurance, its relevance extends far beyond these domains 
into several other domains. In the domain of digital 
forensics, steganalysis is employed to identify hidden 
evidence in images, video, and documents that is meant to 
be utilized to conceal incriminating information [12]. For 
instance, forensic analysts often employ steganalysis to 
detect concealed information in digital devices to create 
timelines, motive, or history of communications. 
Steganalysis is also applied to defend intellectual property 
by detecting unauthorized digital watermarks. 
Organizations embed ownership or licensing data into 
digital media to prevent piracy, and steganalysis methods 
are employed to confirm or disclose such concealed data. 
In such cases, robust detection systems are a part of legal 
verification and content authenticity guarantee [13]. 

Apart from civilian usage, steganalysis is also applied 
in military and intelligence operations where it is an 
essential weapon to trace suspicious media transactions 
that can carry concealed messages [14, 15]. Identification 
of such communication is highly essential for national 
security and cyber-defense, particularly in regions with 
high conflict rates or when there is widespread organized 
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cybercrime. Additionally, in the medical profession, 
steganalysis techniques are increasingly utilized to secure 
patient information concealed in medical images (e.g., 
Magnetic Resonance Imaging (MRI) or Computed 
Tomography (CT) scans) [16, 17]. In telemedicine and 
remote diagnostics, it is typically necessary to reliably 
embed diagnosis results or patient identities inside images 
before they can be remotely sent. In all these, steganalysis 
is invoked in verifying the integrity and authenticity of 
medical images, assisting in maintaining Health Insurance 
Portability and Accountability Act (HIPAA) compliance, 
for instance. Such cross-domain applications cement the 
significance of developing methods of steganalysis that 
can generalize across multiple data representations and 
threat models. The strategy for optimizing steganalysis 
performance was developed and tested across a variety of 
CNN architectures, including three specifically designed 
for steganalysis in the spatial domain and two for general 
image classification [18]. Xu-Net, proposed by 
Xu  et  al.  [19], features a High Pass Filter (HPF) layer 
for initial feature extraction followed by five convolutional 
layers with an Absolute Value Layer (ABS) layer post the 
first and Batch Normalization (BN) after each. The 
classification stage of Xu-Net includes two fully 
connected layers culminating in a SoftMax activation. 
Initially employing the TanH activation function for the 
first two layers and Rectified Linear Unit (ReLU) for the 
subsequent ones, this network utilizes mini-batch gradient 
descent with momentum set at 0.9 and a learning rate 
starting at 0.001, which decreases by 10% every 5000 
iterations, over 120,000 iterations with batches of 64 
images. 

Ye-Net architecture, designed by Ye et al. [20], 
incorporates a Spatial Rich Models (SRM) filter bank for 
noise extraction and eight convolutional layers and 
employs a Truncation Linear Unit (TLU) activation post 
the first layer, followed by TanH. The network’s learning 
structure is streamlined with a single fully connected layer 
and SoftMax activation function, trained using the 
AdaDelta optimizer, with specifics like a momentum of 
0.95 and a learning rate of 0.4. 

Yedroudj-Net architecture, proposed by 
Yedroudj  et  al.  [21], integrates the strongest aspects of 
Xu-Net and Ye-Net into a unified architecture that 
includes an SRM-inspired filter bank, five convolutional 
layers with average pooling starting from the second, and 
two activation phases using TLU and ReLU in different 
stages of the network. The classification stage mirrors Xu-
Net but is adapted to operate under mini-batch Stochastic 
Gradient Descent (SGD) constraints with a momentum of 
0.95 and a learning rate reduction strategy based on the 
training progress. 

VGG16 and VGG19 architectures by Simonyan and 
Zisserman [22] from the Large-Scale Visual Recognition 
Challenge 2014 are also employed. These architectures are 
recognized for their depth and efficacy in image 
classification, achieving up to 93.2% top 5 test accuracy in 
ImageNet. Each consists of multiple convolutional blocks 
paired with Max or Average Pooling, leading to three fully 
connected layers and a final SoftMax layer, with all hidden 

layers activated by ReLU, marking them as benchmarks in 
both image classification and as a basis for adaptation to 
steganalysis. 

Metaheuristic algorithms, especially Particle Swarm 
Optimization (PSO), play an important role in the field of 
image processing and steganalysis by providing robust 
solutions to optimization problems that are otherwise 
challenging because of their high-dimensional and 
nonlinear nature [23]. 

In steganalysis, PSO can be instrumental in fine-tuning 
the parameters of Convolutional Neural Networks 
(CNNs), enabling them to effectively detect subtle 
manipulations indicative of hidden messages within 
images. The adaptive search capabilities of PSO allow for 
the exploration of optimal configurations in complex 
parameter spaces, leading to significant improvements in 
detection accuracy and computational efficiency. This 
makes PSO a valuable algorithm for enhancing the 
performance of image analysis systems against advanced 
steganographic techniques.  

This study proposes a novel architecture that utilizes the 
PSO algorithm for the optimal selection of 
hyperparameters, enhancing the performance of VGG19 
architectures in the domain of steganalysis. PSO was 
selected in this study as the hyperparameter optimization 
method because it is efficient, easy to use, and has good 
global search capability. PSO is a metaheuristic 
population-based method inspired by social behavior of 
birds flocking together and has performed well 
consistently across numerous image processing and 
machine learning tasks. Compared to other optimization 
techniques such as Genetic Algorithms (GA) or Bayesian 
Optimization, PSO is less complex in terms of control 
parameters, easier to implement, and converges rapidly 
without the necessity of calculating complex derivative 
values. Such a nature makes it appropriate for the tuning 
of high-dimensional hyperparameter spaces in deep 
learning models particularly when objective function 
evaluation is computationally expensive. By integrating 
PSO with VGG19 architecture, we intend to learn optimal 
values of training and architectural parameters 
automatically that produce maximum classification 
performance in steganalysis tasks. 

Our main contributions could be summarized as 
follows: 

• Utilizes Particle Swarm Optimization (PSO) for 
optimal selection of hyperparameters, enhancing 
CNN performance in steganalysis. 

• Employs PSO to adjust crucial parameters like 
learning rate, batch size, and layer configurations. 

• Significantly boosts the capability of CNNs to 
identify hidden steganographic content in digital 
images. 

• Includes a detailed presentation of experimental 
results that confirm the effectiveness of the 
innovative method-ology. 

The remainder of this paper is structured as follows: 
Section II provides related works of steganography 
algorithms and deep learning models that are used in this 
field. Our methodology is presented in Section III. 
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Section  IV presents experimental and evaluation results. 
Finally, Section V concludes the paper and discusses 
future work. 

II. RELATED WORKS 

Spatial domain techniques in digital steganography 
employ small changes, i.e., modifying the Least 
Significant Bits (LSB) of pixel values. They are largely 
imperceptible to the human visual system and thus 
applicable for covert communication, as reported by 
Mazurczyk and Wendzel [24], Johnson and Jajodia [25]. 
Some of the major algorithms falling in this category 
include Highly Undetectable steGO (HUGO) [3], S-
UNIWARD [4], High-pass, Low-pass, and Low-pass 
(HILL) filter-based steganography [5], WOW [6] and 
Minimizing the Power of the Optimal Detector 
(MiPOD)  [7]. Frequency-domain techniques, however, 
utilize transformations such as the Discrete Cosine 
Transform (DCT), Discrete Wavelet Transform (DWT), 
and Singular Value Decomposition (SVD) in order to 
embed secret messages. DCT, for instance, is commonly 
used in JPEG compression [11]. 

Steganalysis—the reverse of steganography—is the 
detection of hidden information within images. It typically 
consists of two steps: feature extraction and binary 
classification. Feature extraction techniques such as Rich 
Models (RM) [26] were initially paired with classifiers 
like Support Vector Machines (SVMs) or perceptrons. 
However, with the inception of Deep Learning (DL) and 
developments in Graphics Processing Units (GPUs), a 
single DL-based model now has feature extraction and 
classification as well, making the process easier and 
reducing manual dimensionality. 

Qian et al. [27] were the first to apply Convolutional 
Neural Networks (CNNs) to steganalysis, utilizing a CNN 
with Gaussian Activation for supervised learning. 
Although their detection accuracy in their proposed model 
was approximately 4% lower than Spatial Rich Models 
(SRM) and 10% better than the Subtractive Pixel 
Adjacency Matrix (SPAM), it set the ground for the 
advancements that ensued [28]. Ye et al. [13] went a step 
further to improve the detection accuracy through the 
incorporation of an Absolute Value (ABS) layer and 1×1 
convolutional filters, coupled with improved training 
strategies. Transfer learning came later to be introduced by 
Pevny et al. [28], facilitating the use of parameters learned 
on high-payload images for the detection of low-payload 
content, albeit performance continued to be worse than 
SRM and SPAM. 

Boroumand et al. [14] proposed an eight-layer CNN 
model with a TLU activation and SRM filter bank 
initialization in preprocessing. The technique emulated 
SRM’s feature extraction mechanism and achieved 
detection accuracy of approximately 10% higher than the 
standard method. Xu et al. [29] offered another CNN 
model that used optimized SRM filter banks and residual 
connections for detecting steganographic content in both 
spatial and frequency domains. 

Boroumand et al. [30] incorporated SRM-inspired filter 
banks in preprocessing and employed separable 

convolutions and Spatial Pyramid Pooling (SPP) to 
facilitate arbitrarily sized image processing. 
Zhang  et  al.  [31] extended this by retaining the use of 
30 SRM filters, incorporating shortcut connections, and 
eliminating fully connected layers leading to detection 
rates that were state-of-the-art. 

Another recent work by Reinel et al. [32] demonstrated 
a high-fidelity CNN utilizing preprocessing, feature 
extraction, and classification across a three-phase 
framework. SRM filters accentuate patterns of noise in 
preprocessing, and depthwise separable convolutions 
extract consistent features. Classification is performed 
through multi-scale average pooling and a SoftMax-
activated three-layer fully connected network. The method 
raises detection accuracy by 4.6% to 10.2% and reduces 
training time by up to 30.81%, mitigating significant 
performance bottlenecks. 

Ntivuguruzwa and Ahmad [33] applied Generative 
Adversarial Networks (GANs) in the adversarial method 
to enhance spatial steganography. Their method conceals 
messages with minimal visual distortion using LSB 
steganography and adversarial training for avoiding 
detection by state-of-the-art deep learning models to 
illustrate GANs’ stealth. 

Other recent studies tried to integrate metaheuristic 
optimization algorithms with DL to achieve performance 
improvements across domains. For instance, 
Martin  et  al.  [34] used orthogonal learning Particle 
Swarm Optimization (PSO) to optimize CNNs for plant 
disease diagnosis. In medical image analysis, Darwish and 
Ezzat [35] designed a VGG19-based model for 
multimodal data fusion and Do et al. [36] used the Aquila 
optimizer for the detection of cyber-attacks in smart grids. 
Mhmood et al. [37], Hossain et al. [38] made use of PSO-
enhanced fuzzy CNNs for evaluation of ultrasound image 
quality. These examples show the efficiency of PSO in 
feature abstraction [39] and categorization across domains, 
and provide the justification for integrating VGG19 and 
PSO in steganalysis to automate hyperparameter tuning 
and enhance performance. 

Despite massive progress in DL-based steganalysis, 
there remain limitations. Most rely on fixed architectures 
or manually tuned hyperparameters [40], limiting their 
adaptability across datasets or payload types. 
Architectures such as Ye-Net and Yedroudj-Net, while 
domain-informed, lack dynamic optimization capabilities. 
Furthermore, applying metaheuristic algorithms like PSO 
to the optimization of general-purpose networks like 
VGG19 is not yet explored. These are areas where 
adaptive models can shine. Our VGG19 + PSO solution is 
to address such challenges using systematic 
hyperparameter tuning to improve performance for 
steganalysis tasks. 

III. METHODOLOGY 

The proposed approach aims to enhance the VGG19 
architecture for digital image steganalysis by optimizing 
its configuration and training parameters using the PSO 
algorithm. This optimization targets the model’s 
architecture and learning parameters to improve the 
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detection of hidden data within images, which is important 
for security and forensic applications. 

1) Integration of Spatial Rich Model (SRM) filters 
Spatial Rich Model (SRM) filters are integrated at the 

onset of the image processing pipeline to enhance the 
model’s ability to detect steganographic manipulations. 
Positioned as a fixed, non-trainable preprocessing layer, 
these filters employ 30 predefined 5×5 kernels to 
emphasize textural anomalies often associated with 
steganographic content. After applying SRM filters, a 
custom Tanh3 activation function is used to highlight the 
nuanced features essential for effective steganalysis, 
ensuring that subsequent layers of the model are primed to 
identify even the most subtle irregularities indicative of 
steganography. 

2) VGG19 architecture 
The VGG19 architecture, developed by the Visual 

Graphics Group at Oxford, is distinguished by its depth 
and robustness, featuring 19 layers with trainable 
parameters that include 16 convolutional layers and three 
fully connected layers. Originally designed for complex 
image recognition tasks, this architecture utilizes very 
small (3×3) convolution filters throughout, which enables 
it to learn a rich hierarchy of features at multiple scales, 
capturing both minute details and broader contextual 
information from images. This capability makes VGG19 
particularly adept at tasks requiring detailed image 
analysis, such as digital image steganalysis. For the 
purpose of steganalysis tasks, where the detection of 
subtle, hidden modifications to an image is important, 

the VGG19 architecture is adapted to specifically 
handle the unique challenges posed by this domain. The 
modifications include adjusting the input layer to process 
single-channel grayscale images of size 256×256 pixels, 
which focuses the model’s processing power on textural 
and structural nuances rather than color data. The 

convolutional layers retain their depth but are fine-tuned 
to enhance their sensitivity to the slight irregularities 
typical of steganographic content. Finally, the output layer 
is transformed into a binary classification system with a 
SoftMax activation function, effectively distinguishing 
between ‘clean’ and ‘steganographic’ images. 

This adaptation leverages the model’s inherent 
capabilities and tailors them towards identifying even the 
most subtle signs of data hidden within digital images, 
utilizing specific hyperparameters such as learning rate, 
batch size, and the configuration of filters within the 
convolutional layers, all of which are optimized using the 
PSO algorithm to maximize detection accuracy while 
minimizing false positives. 

3) Particle Swarm Optimization (PSO) 
implementation and parameter tuning 

Particle Swarm Optimization (PSO) is an evolutionary 
computation technique inspired by the social behavior of 
birds and fish, particularly how they move in swarms or 
flocks. This algorithm is utilized in the field of 
steganalysis to fine-tune the hyperparameters of the 
VGG19 architecture, enhancing its ability to detect hidden 
information embedded within digital images. 

PSO optimizes by having a group (swarm) of candidate 
solutions (particles), which iteratively move through the 
hyperparameter space. Each particle adjusts its position in 
the search space based on its own experience and that of 
its neighbors, converging toward the best solution. 

The proposed model, shown in Fig. 1, is effective for 
steganalysis tasks as it dynamically adapts the model 
parameters to maximize detection accuracy while 
minimizing the likelihood of false positives. It offers a 
robust mechanism to explore complex parameter spaces 
more efficiently than traditional models, which can 
become trapped in local minimum or require gradients that 
are not always available. 

 

 
Fig. 1. Proposed VGG19-PSO optimized model architecture. 

The following variables were assigned for optimization 
in this study are shown in Table I. 

The parameters chosen for optimization in this study 
were selected due to their significant influence on the 

performance and efficiency of CNN in the field of digital 
image steganalysis. One of the most critical factors is the 
number of filters in the convolutional layers, as this 
determines the network’s ability to extract diverse features 
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from the image. Increasing the number of filters can help 
capture more complex patterns, but it also comes with the 
trade-offs of higher computational costs and a greater risk 
of overfitting. Another important parameter is the size of 
the filters in the convolutional layers, which impacts the 
receptive field used to analyze the image. Modern 
architectures often prefer smaller filters as they enable 
deeper layers without substantially increasing the 
parameter count, while larger filters can capture a broader 
context. The size of the pooling window in max pooling 
layers also plays a critical role by reducing the input’s 
dimensionality and improving computational efficiency. 
Proper optimization of this parameter ensures a good 
balance between abstracting features and retaining 
essential details. 

TABLE I. PARAMETERS OPTIMIZED USING PSO AND THEIR SELECTED 
VALUES 

# Parameter Value Used 
1 Number of Filters in Convolutional Layers 64 
2 Size of Filters in Convolutional Layers 3×3 
3 Pooling Size in Max Pooling Layers 2×2 
4 Stride Size in Max Pooling Layers 2 
5 Learning Rate 0.001 
6 Batch Size 32 

 
Similarly, the stride size in max pooling layers 

determines how much down sampling occurs. Larger 
strides result in more aggressive spatial reduction but can 
lead to a loss of crucial information, whereas smaller 
strides retain finer details. The learning rate is another 
crucial hyperparameter that governs step size during 
optimization. A well-tuned learning rate ensures efficient 
model convergence without overshooting the optimum or 
slowing down unnecessarily. Lastly, batch size influences 
both training stability and memory usage. While larger 
batch sizes provide more stable gradients and speed up 
training, they demand more memory. On the other hand, 
smaller batch sizes can improve generalization but often 
result in noisier gradients. 

 Fitness = Accuracy − λ × FPR (1) 

The above fitness function from Eq. (1) is used to 
regulate the PSO process for selecting the optimal 
hyperparameters for the VGG19 model. The fitness 
function evaluates each solution (particle) based on both 
its accuracy in classification and its False Positive Rate 
(FPR). The objective is to maximize fitness value by 
maximizing accuracy and minimizing FPR. 

To ensure that the proposed PSO-optimized VGG19 
model does not overfit the training data and generalizes, 
different regularization methods were employed during 
training. We first employed a dropout layer with a dropout 
of 0.5 following the fully connected layers to randomly 
drop out neurons and reduce reliance on specific 
activations. Additionally, L2 regularization (weight 
decay) was applied to the convolutional layers with a 
penalty coefficient of 0.0005 to prevent huge weight 
values. For additional generalization enhancement, data 
augmentation techniques such as random horizontal 

flipping and small-angle rotations were employed on the 
training images. During the PSO optimization process, 
performance was regularly tested on a separate validation 
set, and early stopping was employed to halt training if no 
improvement was observed between successive epochs. 
These techniques ensured that the high accuracy reported 
in our results is genuine generalization and not overfitting 
the data. 

• Accuracy: The proportion of correctly classified 
stego and cover images on the validation dataset. 

• FPR (False Positive Rate): The proportion of cover 
images that are wrongly classified as stego-
images. 

• λ: A regularization parameter utilized to achieve a 
tradeoff between accuracy and FPR. Throughout 
this study, we have set λ = 0.5. 

 
Algorithm 1: PSO Optimized VGG19 for Steganalysis 
1: Initialize PSO parameters: Number of Particles (N ), 
Number of Iterations (max iter) 
2: Define parameter bounds for VGG19: Filters, Filter Sizes, 
Pool Sizes, Strides, Learning Rate, Batch Size 
3: Initialize particle positions and velocities within bounds 
4: Initialize pbest and gbest to first particle’s position 
5: for iter = 1 to max iter do 
6: for each particle i do 
7: Set VGG19 parameters based on particle i’s position 
8: Train VGG19 on training dataset 
9: Validate VGG19 on validation dataset 
10: Calculate fitness: accuracy - penalty for false positives 
11: if fitness of particle i > fitness of pbesti then 
12: Update pbesti to particle i’s position 
13: end if 
14: if fitness of particle i > fitness of gbest then 
15: Update gbest to particle i’s position 
16: end if 
17: Update velocity and position of particle i 
18: end for 
19: end for 
20: return parameters from gbest for optimized VGG19 

 
The PSO algorithm can be used to fine-tune the 

parameters of the VGG19 architecture as shown in 
Algorithm 1; each particle in the swarm would represent a 
different configuration of the VGG19 architecture, where 
each dimension in the particle’s position vector 
corresponds to one of the hyperparameters listed above. 
The fitness function used to evaluate each particle would 
typically be based on the performance of the network on a 
validation set, considering both accuracy and 
computational efficiency as shown in Eq. (1). Below are 
the steps of the proposed algorithm: 

1) Generate initial positions and velocities for each 
particle randomly within defined bounds for each 
parameter. 

2) Train the VGG19 model using the parameters 
specified by each particle, then evaluate its 
performance in terms of the accuracy matrix. 

3) Adjust the particles’ positions and velocities based 
on their personal best positions and the global best 
position found by any particle. 
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4) Repeat the evaluation and update steps until a 
stopping criterion is met, such as a maximum 
number of iterations or a satisfactory performance 
level. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Databases 
The experiments conducted in this research utilize two 

benchmark datasets: the Break Our Steganographic 
System (BOSSBase 1.01) [17] and the Break Our 
Watermarking System (BOWS 2) [18]. These datasets are 
frequently used for steganalysis tasks in the spatial domain 
because of their comprehensive collection of images and 
relevance to real-world scenarios. BOSSBase 1.01 and 
BOWS 2 datasets consist of 10,000 cover images, 
formatted in Portable Gray Map (PGM) at a resolution of 
512 × 512 pixels, and captured in grayscale. The selection 
of these datasets ensures a high degree of uniformity in 
terms of image quality and characteristics, which is 
important for maintaining consistency across steganalysis 
experiments. 

B. Data Preprocessing 
In this study, several data preprocessing steps were 

taken to adapt these databases for efficient processing and 
analysis: 

1) Image Resizing: All images were resized to 256 × 
256 pixels to standardize input dimensions for the 
neural network models, facilitating faster 
processing. 

2) Steganographic Alterations: Corresponding 
steganographic images were generated for each 

cover image using two different steganography 
algorithms. These modifications were applied at 
two payload levels: 0.2 bits per pixel (bpp) and 0.4 
bpp, creating variations that mimic potential real-
world steganographic implementations. 

3) Storage Optimization: To enhance the efficiency 
of data handling and significantly reduce loading 
times during training sessions, all image sets were 
saved in NumPy array (npy) format. This 
modification accelerates data retrieval compared 
to traditional image formats. 

C. Simulation Environment 
The proposed model was implemented using the Python 

programming language and the TensorFlow deep learning 
library to build and train our model. We leveraged a T4 
GPU hardware configuration, enhancing computational 
performance, which enabled faster training and inference 
processes. To make a fair comparison, we re-implemented 
the baseline models Xu-Net, Ye-Net, and Yedroudj-Net 
from the publicly available source codes published by the 
original authors. All the baseline models were trained and 
tested using the same experimental conditions as our 
proposed VGG19Stego + PSO model. These settings 
include the same training and testing datasets (BOSSBase 
1.01 and BOSSBase 1.01 + BOWS 2), the same payload 
sizes (0.2 and 0.4 bits per pixel), the same number of 
training epochs, batch sizes, and the same T4 GPU 
hardware environment. This alignment of experimental 
conditions ensures that all accuracy comparisons reported 
in Tables II and III are reproducible and fair, and that 
differences in performance are not caused by differences 
in implementation or setup. 

TABLE II. PERFORMANCE ON S-UNIWARD STEGO-IMAGES (BOSSBASE 1.01 AND BOSSBASE 1.01 + BOWS 2) 

Model Metric 
BOSSBase 1.01 + BOWS 2 

0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp 
Xu-Net Accuracy 0.6090 0.7280 – – 
Ye-Net Accuracy 0.6000 0.6880 – – 

Yedroudj-Net Accuracy 0.6000 0.7720 0.6560 – 
VGG16Stego Accuracy 0.7370 0.8291 0.7513 0.8545 
VGG19Stego Accuracy 0.7420 0.8210 0.7409 0.8520 

VGG19 + PSO 

Accuracy 0.8690 0.8701 0.8490 0.8852 
Precision 0.8612 0.8730 0.8418 0.8815 

Recall 0.8754 0.8691 0.8560 0.8868 
F1-Score 0.8682 0.8710 0.8488 0.8841 

False Positive Rate (FPR) 0.0946 0.0910 0.0895 0.0875 
False Negative Rate (FNR) 0.1246 0.1309 0.1440 0.1132 

TABLE III. PERFORMANCE ON WOW STEGO-IMAGES (BOSSBASE 1.01 AND BOSSBASE 1.01 + BOWS 2 

Model Metric 
BOSSBase 1.01 + BOWS 2 

0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp 
Xu-Net Accuracy 0.6760 0.7930 – – 
Ye-Net Accuracy 0.6690 0.7680 0.7390 – 

Yedroudj-Net Accuracy 0.7220 0.8590 0.7630 – 
VGG16Stego Accuracy 0.7760 0.8556 0.8059 0.8825 
VGG19Stego Accuracy 0.7820 0.8570 0.8060 0.8833 

VGG19 + PSO 

Accuracy 0.8816 0.8790 0.8690 0.8900 
Precision 0.8745 0.8711 0.8644 0.8835 

Recall 0.8902 0.8840 0.8741 0.8952 
F1-Score 0.8823 0.8775 0.8692 0.8893 

FPR 0.0883 0.0925 0.0911 0.0870 
FNR 0.1098 0.1160 0.1259 0.1048 
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D. Experiments Setup 
The model was evaluated using the VGG19 architecture 

enhanced by a PSO algorithm for training. The model was 
trained over 30 epochs, with performance metrics captured 
at each epoch to monitor progress. For our experimental 
comparison, we utilized stego-images processed by S-
UNIWARD and WOW methods with varying payloads of 
0.2 and 0.4 bits per pixel (bpp), using the BOSSBase 1.01 
and the extended BOSSBase 1.01 + BOWS 2 datasets. 

E. Results and Discussion 
The results of our experiments are presented in Figs. 2 

and 3, which illustrate the training and testing loss and 
accuracy for the S-UNIWARD and WOW stego-images 

processed using the VGG19 model enhanced with the PSO 
algorithm. These visual representations depict a consistent 
and progressive improvement in accuracy as the model is 
trained, reflecting the significant role of PSO in fine-
tuning network parameters. The reduction in training and 
testing loss over epochs highlights the stability and 
convergence of the PSO-enhanced model, further 
emphasizing its robustness in steganalysis. Figs. 2–3 show 
how the integration of PSO optimizes the learning process, 
enabling the VGG19 model to adapt effectively to the 
intricate patterns of steganographic embeddings. These 
results underscore the enhanced capability of the 
VGG19Stego+PSO model to distinguish between clean 
and stego-images with higher precision.

 

 
Fig. 2. Model accuracies for different payloads and datasets for test S-UNIWARD stego-images. 

 
Fig. 3. Model accuracies for different payloads and datasets for test WOW stego-images. 

As shown in Table II, the VGG19 model, when 
combined with the PSO algorithm, achieves exceptional 
performance on the BOSSBase 1.01 dataset using S-

UNIWARD stego-images. The model recorded accuracies 
of 0.8690 and 0.8701 for payloads of 0.2 bits per pixel 
(bpp) and 0.4 bpp, respectively. These results mark a 
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significant improvement over existing deep learning 
models. For comparison, the VGG16Stego model 
achieved accuracies of 0.7370 and 0.8291 under the same 
conditions, while earlier models such as Xu-Net and Ye-
Net lagged far behind, with accuracies of 0.6090 and 
0.6000, respectively, for a 0.2 bpp payload. Furthermore, 
the PSO-enhanced VGG19 model demonstrated its 
adaptability and superior generalization on the combined 
BOSSBase 1.01 + BOWS 2 dataset, achieving accuracies 
of 0.8490 and 0.8852 for 0.2 bpp and 0.4 bpp payloads, 
respectively. The improvements over traditional models 
like Yedroudj-Net and VGG16Stego, which scored lower 
across all payloads, highlights the efficacy of PSO in 
optimizing the VGG19 architecture for S-UNIWARD 
stego-image detection. 

The VGG19Stego+PSO model also displayed 
outstanding performance when applied to WOW stego-
images, as shown in Table III and illustrated in Figs. 4–5. 
On the BOSSBase 1.01 dataset, the model achieved 
accuracies of 0.8816 and 0.8790 for payloads of 0.2 bpp 
and 0.4 bpp, respectively. This is a marked improvement 
over the next best-performing model, VGG16Stego, which 
achieved accuracies of 0.7760 and 0.8556 under the same 
conditions. When evaluated on the combined BOSSBase 
1.01 + BOWS 2 dataset, the VGG19Stego+PSO model 
continued to outperform competing models, achieving 
accuracies of 0.8690 and 0.8900 for 0.2 bpp and 0.4 bpp 
payloads, respectively. In contrast, Ye-Net and Yedroudj-
Net, while performing better than Xu-Net, still fell short of 
the PSO enhanced model’s performance. 

 

 
Fig. 4. VGG19-PSO accuracy and loss results for the S-UNIWARD stego-images. 

 
Fig. 5. VGG19-PSO accuracy and loss results for the WOW stego-images.

F. Computational Efficiency 
To evaluate the computational overhead introduced by 

the PSO module, we compared the training time and 
resource utilization of the baseline VGG19 model with 
that of the PSO optimized VGG19 version. All 
experiments were executed in a T4 GPU environment 
under the same software and dataset configurations. 

TABLE IV. TRAINING TIME COMPARISON BETWEEN BASELINE AND 
PSO-OPTIMIZED VGG19 

Model Epochs Training Time Notes 
Baseline 
VGG19 30 25 min Default 

hyperparameters 
VGG19 + 

PSO 30 3 h 20 particles × 30 
iterations 
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As shown in Table IV, the initial VGG19 model trained 
for 30 epochs and completed in about 25 minutes. The 
PSO- based model completed the optimization in about 3 
hours. The increased time is because the PSO ran 20 
particles for 30 iterations, meaning 600 separate runs of 
VGG19 training were considered. Each particle represents 
a different set of hyperparameters being tried and tested 
with the fitness function. 

Despite the added computational cost, the performance 
improvements achieved by the PSO-optimized model 
justify this cost, particularly in high-stakes uses where 
detection accuracy is paramount. Future work can address 
faster swarm-based alternatives, early termination with 
dynamic criteria, or surrogate modeling to further reduce 
the optimization duration. 

The integration of PSO into the VGG19 architecture 
was instrumental in fine-tuning the model’s parameters, 
enabling it to adapt effectively to the diverse embedding 
processes and payload conditions of steganographic 
methods. This meticulous optimization resulted in 
consistently higher accuracies across all datasets and 
payloads compared to traditional and state-of-the-art deep 
learning models. The significant performance gains 
demonstrate the PSO-enhanced model’s refined sensitivity 
to hidden data patterns within digital images, making it a 
robust and versatile solution for steganalysis. 

V. CONCLUSION AND FUTURE WORK 

The integration of the Particle Swarm Optimization 
(PSO) algorithm into the VGG19 model has been shown 
to achieve tremendous improvements in steganalysis 
operations, particularly in the detection of embedded 
information in digital images under diverse payloads and 
scenarios. The proposed VGG19Stego + PSO model is 
significantly superior to existing state-of-the-art 
techniques, making the integration of deep learning 
models with metaheuristic optimization algorithms critical 
in digital security systems. 

While promising results are achieved, we appreciate 
that presently the assessment is limited to merely two 
spatial-domain steganographic schemes: S-UNIWARD 
and WOW. While these are widely used and considered to 
be good benchmarks, additional work should aim to 
broaden the range of assessment to other embedding 
schemes such as HILL and MiPOD. This will allow one to 
learn about the model’s capacity to generalize to a wider 
range of steganographic schemes. Moreover, subjecting 
the model’s performance on images of various resolutions 
and formats will provide a better understanding of its 
power and applicability in practical scenarios. 

Future work can explore the use of other evolutionary 
optimization methods, such as Genetic Algorithms (GA) 
and the Firefly Algorithm, to further optimize the tuning 
of network structures and training parameters. In addition, 
applying the proposed methodology on larger and more 
diverse datasets will allow for better assessment of its 
scalability and ability to generalize real-world steganalysis 
problems. One of the primary extensions of this research 
will also include conducting an extensive ablation study to 
measure the contribution of each PSO-optimized 

hyperparameter individually to the overall performance. 
This will help identify which parameters play the most 
important role in improving detection accuracy and 
computational efficiency. Besides that, we plan to 
compare the PSO-optimized VGG19 model with recent 
and more sophisticated deep learning models like ResNet-
based models including SRNet and Transformer-based 
models like Vision Transformers (ViT). Such comparisons 
will help put our work in context with the newly emerging 
trends of deep steganalysis. Finally, to ensure the results’ 
solidity, the future research will encompass statistical 
significance testing (e.g., paired ttests or Wilcoxon signed-
rank tests) to determine if gains in performance observed 
are not due to random fluctuation but actually reflect 
improvements. 
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