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Abstract—Steganography, or hiding information within
digital media, is one of the most important challenges in
digital security in terms of detecting hidden content for both
various embedding processes and under different payload
sizes. This study proposes an enhanced deep learning
methodology that combines the Visual Geometry Group 19-
layer Convolutional Neural Network (VGG19) convolutional
neural network with particle swarm optimization to optimize
key hyperparameters, improving its ability to detect
steganographic content more effectively. Our proposed
approach was tested using the Break Our Steganographic
System (BOSSBase) 1.01 dataset and a combined dataset
with Break Our Watermarking System 2 (BOWS?2), focusing
on stego-images generated by the Spatial UNIversal WAvelet
Relative Distortion (S-UNIWARD) and Wavelet Obtained
Weights (WOW) algorithms. The results clearly indicate that
our proposed methodology outperforms state-of-the-art
models such as Xu-Net, Ye-Net, Yedroudj-Net, and
VGG16Stego, achieving accuracy of 0.8816 and 0.8900 for
payloads of 0.2bpp (bits per pixel) and 0.4bpp, respectively.
These findings show the significance of our approach,
highlighting its potential to become a leading solution for
steganography detection in digital security applications.

Keywords—steganalysis, particle swarm optimization, Visual
Geometry Group 19 (VGG19), spatial domain, image
security, data hiding

I. INTRODUCTION

With the existence of digital technology, sending files
like images, audio, videos, and text has become much
easier. Steganographic algorithms are techniques and
methods used to hide information within digital media so
it’s not visible at first glance. This information is even
tailored to blend seamlessly with the content of the files,
making it harder to detect. Image modification is
commonly used for various purposes, including
transmitting secure and legal information [1], criminal
activities, and social media misuse [2]. As a result, it’s
important for legal bodies to identify when images have
been modified to convey hidden information.
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Steganalysis is the process of using robust models to
determine whether an image file contains hidden
steganographic disturbances [3—7]. This field has greatly
benefited from advancements in artificial intelligence.
Initially, tasks in steganalysis employed traditional
machine learning methods like Support Vector Machines.
However, Deep Learning, particularly Convolutional
Neural Networks (CNN5), has proven to be more effective,
especially for extracting features from images in both
spatial and frequency domains. These techniques have
quickly evolved, enhancing their ability to classify images
accurately. In the research field of steganalysis, detecting
hidden information in images is crucial, especially when
adaptive steganography techniques are used [8, 9].
Contributions such as new image processing techniques,
databases, and computational tools are valuable.
Moreover, developing new architectures that can classify
with greater accuracy is immensely beneficial to the
scientific community [10, 11].

While steganalysis has traditionally been viewed as a
core component of digital security and information
assurance, its relevance extends far beyond these domains
into several other domains. In the domain of digital
forensics, steganalysis is employed to identify hidden
evidence in images, video, and documents that is meant to
be utilized to conceal incriminating information [12]. For
instance, forensic analysts often employ steganalysis to
detect concealed information in digital devices to create
timelines, motive, or history of communications.
Steganalysis is also applied to defend intellectual property
by detecting unauthorized digital watermarks.
Organizations embed ownership or licensing data into
digital media to prevent piracy, and steganalysis methods
are employed to confirm or disclose such concealed data.
In such cases, robust detection systems are a part of legal
verification and content authenticity guarantee [13].

Apart from civilian usage, steganalysis is also applied
in military and intelligence operations where it is an
essential weapon to trace suspicious media transactions
that can carry concealed messages [14, 15]. Identification
of such communication is highly essential for national
security and cyber-defense, particularly in regions with
high conflict rates or when there is widespread organized
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cybercrime. Additionally, in the medical profession,
steganalysis techniques are increasingly utilized to secure
patient information concealed in medical images (e.g.,
Magnetic Resonance Imaging (MRI) or Computed
Tomography (CT) scans) [16, 17]. In telemedicine and
remote diagnostics, it is typically necessary to reliably
embed diagnosis results or patient identities inside images
before they can be remotely sent. In all these, steganalysis
is invoked in verifying the integrity and authenticity of
medical images, assisting in maintaining Health Insurance
Portability and Accountability Act (HIPAA) compliance,
for instance. Such cross-domain applications cement the
significance of developing methods of steganalysis that
can generalize across multiple data representations and
threat models. The strategy for optimizing steganalysis
performance was developed and tested across a variety of
CNN architectures, including three specifically designed
for steganalysis in the spatial domain and two for general
image classification [18]. Xu-Net, proposed by
Xu et al [19], features a High Pass Filter (HPF) layer
for initial feature extraction followed by five convolutional
layers with an Absolute Value Layer (ABS) layer post the
first and Batch Normalization (BN) after each. The
classification stage of Xu-Net includes two fully
connected layers culminating in a SoftMax activation.
Initially employing the TanH activation function for the
first two layers and Rectified Linear Unit (ReLU) for the
subsequent ones, this network utilizes mini-batch gradient
descent with momentum set at 0.9 and a learning rate
starting at 0.001, which decreases by 10% every 5000
iterations, over 120,000 iterations with batches of 64
images.

Ye-Net architecture, designed by Ye et al [20],
incorporates a Spatial Rich Models (SRM) filter bank for
noise extraction and eight convolutional layers and
employs a Truncation Linear Unit (TLU) activation post
the first layer, followed by TanH. The network’s learning
structure is streamlined with a single fully connected layer
and SoftMax activation function, trained using the
AdaDelta optimizer, with specifics like a momentum of
0.95 and a learning rate of 0.4.

Yedroudj-Net architecture, proposed by
Yedroudj et al. [21], integrates the strongest aspects of
Xu-Net and Ye-Net into a unified architecture that
includes an SRM-inspired filter bank, five convolutional
layers with average pooling starting from the second, and
two activation phases using TLU and ReLU in different
stages of the network. The classification stage mirrors Xu-
Net but is adapted to operate under mini-batch Stochastic
Gradient Descent (SGD) constraints with a momentum of
0.95 and a learning rate reduction strategy based on the
training progress.

VGG16 and VGGI19 architectures by Simonyan and
Zisserman [22] from the Large-Scale Visual Recognition
Challenge 2014 are also employed. These architectures are
recognized for their depth and efficacy in image
classification, achieving up to 93.2% top 5 test accuracy in
ImageNet. Each consists of multiple convolutional blocks
paired with Max or Average Pooling, leading to three fully
connected layers and a final SoftMax layer, with all hidden

layers activated by ReLU, marking them as benchmarks in
both image classification and as a basis for adaptation to
steganalysis.

Metaheuristic algorithms, especially Particle Swarm
Optimization (PSO), play an important role in the field of
image processing and steganalysis by providing robust
solutions to optimization problems that are otherwise
challenging because of their high-dimensional and
nonlinear nature [23].

In steganalysis, PSO can be instrumental in fine-tuning
the parameters of Convolutional Neural Networks
(CNNs), enabling them to effectively detect subtle
manipulations indicative of hidden messages within
images. The adaptive search capabilities of PSO allow for
the exploration of optimal configurations in complex
parameter spaces, leading to significant improvements in
detection accuracy and computational efficiency. This
makes PSO a valuable algorithm for enhancing the
performance of image analysis systems against advanced
steganographic techniques.

This study proposes a novel architecture that utilizes the
PSO algorithm for the optimal selection of
hyperparameters, enhancing the performance of VGG19
architectures in the domain of steganalysis. PSO was
selected in this study as the hyperparameter optimization
method because it is efficient, easy to use, and has good
global search capability. PSO is a metaheuristic
population-based method inspired by social behavior of
birds flocking together and has performed well
consistently across numerous image processing and
machine learning tasks. Compared to other optimization
techniques such as Genetic Algorithms (GA) or Bayesian
Optimization, PSO is less complex in terms of control
parameters, easier to implement, and converges rapidly
without the necessity of calculating complex derivative
values. Such a nature makes it appropriate for the tuning
of high-dimensional hyperparameter spaces in deep
learning models particularly when objective function
evaluation is computationally expensive. By integrating
PSO with VGG19 architecture, we intend to learn optimal
values of training and architectural parameters
automatically that produce maximum classification
performance in steganalysis tasks.

Our main contributions could be summarized as
follows:

» Utilizes Particle Swarm Optimization (PSO) for
optimal selection of hyperparameters, enhancing
CNN performance in steganalysis.

* Employs PSO to adjust crucial parameters like
learning rate, batch size, and layer configurations.

» Significantly boosts the capability of CNNs to
identify hidden steganographic content in digital
images.

* Includes a detailed presentation of experimental
results that confirm the effectiveness of the
innovative method-ology.

The remainder of this paper is structured as follows:
Section II provides related works of steganography
algorithms and deep learning models that are used in this
field. Our methodology is presented in Section III.
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Section 1V presents experimental and evaluation results.
Finally, Section V concludes the paper and discusses
future work.

II. RELATED WORKS

Spatial domain techniques in digital steganography
employ small changes, i.e., modifying the Least
Significant Bits (LSB) of pixel values. They are largely
imperceptible to the human visual system and thus
applicable for covert communication, as reported by
Mazurczyk and Wendzel [24], Johnson and Jajodia [25].
Some of the major algorithms falling in this category
include Highly Undetectable steGO (HUGO) [3], S-
UNIWARD [4], High-pass, Low-pass, and Low-pass
(HILL) filter-based steganography [5], WOW [6] and
Minimizing the Power of the Optimal Detector
(MiPOD) [7]. Frequency-domain techniques, however,
utilize transformations such as the Discrete Cosine
Transform (DCT), Discrete Wavelet Transform (DWT),
and Singular Value Decomposition (SVD) in order to
embed secret messages. DCT, for instance, is commonly
used in JPEG compression [11].

Steganalysis—the reverse of steganography—is the
detection of hidden information within images. It typically
consists of two steps: feature extraction and binary
classification. Feature extraction techniques such as Rich
Models (RM) [26] were initially paired with classifiers
like Support Vector Machines (SVMs) or perceptrons.
However, with the inception of Deep Learning (DL) and
developments in Graphics Processing Units (GPUs), a
single DL-based model now has feature extraction and
classification as well, making the process easier and
reducing manual dimensionality.

Qian et al. [27] were the first to apply Convolutional
Neural Networks (CNNs) to steganalysis, utilizing a CNN
with Gaussian Activation for supervised learning.
Although their detection accuracy in their proposed model
was approximately 4% lower than Spatial Rich Models
(SRM) and 10% better than the Subtractive Pixel
Adjacency Matrix (SPAM), it set the ground for the
advancements that ensued [28]. Ye ef al. [13] went a step
further to improve the detection accuracy through the
incorporation of an Absolute Value (ABS) layer and 1x1
convolutional filters, coupled with improved training
strategies. Transfer learning came later to be introduced by
Pevny et al. [28], facilitating the use of parameters learned
on high-payload images for the detection of low-payload
content, albeit performance continued to be worse than
SRM and SPAM.

Boroumand et al. [14] proposed an eight-layer CNN
model with a TLU activation and SRM filter bank
initialization in preprocessing. The technique emulated
SRM’s feature extraction mechanism and achieved
detection accuracy of approximately 10% higher than the
standard method. Xu et al. [29] offered another CNN
model that used optimized SRM filter banks and residual
connections for detecting steganographic content in both
spatial and frequency domains.

Boroumand et al. [30] incorporated SRM-inspired filter
banks in preprocessing and employed separable
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convolutions and Spatial Pyramid Pooling (SPP) to
facilitate  arbitrarily = sized  image  processing.
Zhang et al. [31] extended this by retaining the use of
30 SRM filters, incorporating shortcut connections, and
eliminating fully connected layers leading to detection
rates that were state-of-the-art.

Another recent work by Reinel et al. [32] demonstrated
a high-fidelity CNN utilizing preprocessing, feature
extraction, and classification across a three-phase
framework. SRM filters accentuate patterns of noise in
preprocessing, and depthwise separable convolutions
extract consistent features. Classification is performed
through multi-scale average pooling and a SoftMax-
activated three-layer fully connected network. The method
raises detection accuracy by 4.6% to 10.2% and reduces
training time by up to 30.81%, mitigating significant
performance bottlenecks.

Ntivuguruzwa and Ahmad [33] applied Generative
Adversarial Networks (GANs) in the adversarial method
to enhance spatial steganography. Their method conceals
messages with minimal visual distortion using LSB
steganography and adversarial training for avoiding
detection by state-of-the-art deep learning models to
illustrate GANS’ stealth.

Other recent studies tried to integrate metaheuristic
optimization algorithms with DL to achieve performance
improvements  across  domains.  For instance,
Martin et al. [34] used orthogonal learning Particle
Swarm Optimization (PSO) to optimize CNNs for plant
disease diagnosis. In medical image analysis, Darwish and
Ezzat [35] designed a VGGI19-based model for
multimodal data fusion and Do et al. [36] used the Aquila
optimizer for the detection of cyber-attacks in smart grids.
Mhmood et al. [37], Hossain et al. [38] made use of PSO-
enhanced fuzzy CNNs for evaluation of ultrasound image
quality. These examples show the efficiency of PSO in
feature abstraction [39] and categorization across domains,
and provide the justification for integrating VGG19 and
PSO in steganalysis to automate hyperparameter tuning
and enhance performance.

Despite massive progress in DL-based steganalysis,
there remain limitations. Most rely on fixed architectures
or manually tuned hyperparameters [40], limiting their
adaptability across datasets or payload types.
Architectures such as Ye-Net and Yedroudj-Net, while
domain-informed, lack dynamic optimization capabilities.
Furthermore, applying metaheuristic algorithms like PSO
to the optimization of general-purpose networks like
VGG19 is not yet explored. These are arecas where
adaptive models can shine. Our VGG19 + PSO solution is
to address such challenges using systematic
hyperparameter tuning to improve performance for
steganalysis tasks.

III. METHODOLOGY

The proposed approach aims to enhance the VGG19
architecture for digital image steganalysis by optimizing
its configuration and training parameters using the PSO
algorithm. This optimization targets the model’s
architecture and learning parameters to improve the
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detection of hidden data within images, which is important
for security and forensic applications.

1) Integration of Spatial Rich Model (SRM) filters

Spatial Rich Model (SRM) filters are integrated at the
onset of the image processing pipeline to enhance the
model’s ability to detect steganographic manipulations.
Positioned as a fixed, non-trainable preprocessing layer,
these filters employ 30 predefined 5x5 kernels to
emphasize textural anomalies often associated with
steganographic content. After applying SRM filters, a
custom Tanh3 activation function is used to highlight the
nuanced features essential for effective steganalysis,
ensuring that subsequent layers of the model are primed to
identify even the most subtle irregularities indicative of
steganography.

2) VGG19 architecture

The VGGI19 architecture, developed by the Visual
Graphics Group at Oxford, is distinguished by its depth
and robustness, featuring 19 layers with trainable
parameters that include 16 convolutional layers and three
fully connected layers. Originally designed for complex
image recognition tasks, this architecture utilizes very
small (3x3) convolution filters throughout, which enables
it to learn a rich hierarchy of features at multiple scales,
capturing both minute details and broader contextual
information from images. This capability makes VGG19
particularly adept at tasks requiring detailed image
analysis, such as digital image steganalysis. For the
purpose of steganalysis tasks, where the detection of
subtle, hidden modifications to an image is important,

the VGGI19 architecture is adapted to specifically
handle the unique challenges posed by this domain. The
modifications include adjusting the input layer to process
single-channel grayscale images of size 256x256 pixels,
which focuses the model’s processing power on textural
and structural nuances rather than color data. The

convolutional layers retain their depth but are fine-tuned
to enhance their sensitivity to the slight irregularities
typical of steganographic content. Finally, the output layer
is transformed into a binary classification system with a
SoftMax activation function, effectively distinguishing
between ‘clean’ and ‘steganographic’ images.

This adaptation leverages the model’s inherent
capabilities and tailors them towards identifying even the
most subtle signs of data hidden within digital images,
utilizing specific hyperparameters such as learning rate,
batch size, and the configuration of filters within the
convolutional layers, all of which are optimized using the
PSO algorithm to maximize detection accuracy while
minimizing false positives.

3)  Particle Swarm  Optimization
implementation and parameter tuning

Particle Swarm Optimization (PSO) is an evolutionary
computation technique inspired by the social behavior of
birds and fish, particularly how they move in swarms or
flocks. This algorithm is utilized in the field of
steganalysis to fine-tune the hyperparameters of the
VGG19 architecture, enhancing its ability to detect hidden
information embedded within digital images.

PSO optimizes by having a group (swarm) of candidate
solutions (particles), which iteratively move through the
hyperparameter space. Each particle adjusts its position in
the search space based on its own experience and that of
its neighbors, converging toward the best solution.

The proposed model, shown in Fig. 1, is effective for
steganalysis tasks as it dynamically adapts the model
parameters to maximize detection accuracy while
minimizing the likelihood of false positives. It offers a
robust mechanism to explore complex parameter spaces
more efficiently than traditional models, which can
become trapped in local minimum or require gradients that
are not always available.
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Fig. 1. Proposed VGG19-PSO optimized model architecture.

The following variables were assigned for optimization
in this study are shown in Table I.

The parameters chosen for optimization in this study
were selected due to their significant influence on the

performance and efficiency of CNN in the field of digital
image steganalysis. One of the most critical factors is the
number of filters in the convolutional layers, as this
determines the network’s ability to extract diverse features
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from the image. Increasing the number of filters can help
capture more complex patterns, but it also comes with the
trade-offs of higher computational costs and a greater risk
of overfitting. Another important parameter is the size of
the filters in the convolutional layers, which impacts the
receptive field used to analyze the image. Modern
architectures often prefer smaller filters as they enable
deeper layers without substantially increasing the
parameter count, while larger filters can capture a broader
context. The size of the pooling window in max pooling
layers also plays a critical role by reducing the input’s
dimensionality and improving computational efficiency.
Proper optimization of this parameter ensures a good
balance between abstracting features and retaining
essential details.

TABLE I. PARAMETERS OPTIMIZED USING PSO AND THEIR SELECTED

VALUES

# Parameter Value Used
1 Number of Filters in Convolutional Layers 64

2 Size of Filters in Convolutional Layers 3x3

3 Pooling Size in Max Pooling Layers 2x2

4 Stride Size in Max Pooling Layers 2

5 Learning Rate 0.001

6 Batch Size 32

Similarly, the stride size in max pooling layers
determines how much down sampling occurs. Larger
strides result in more aggressive spatial reduction but can
lead to a loss of crucial information, whereas smaller
strides retain finer details. The learning rate is another
crucial hyperparameter that governs step size during
optimization. A well-tuned learning rate ensures efficient
model convergence without overshooting the optimum or
slowing down unnecessarily. Lastly, batch size influences
both training stability and memory usage. While larger
batch sizes provide more stable gradients and speed up
training, they demand more memory. On the other hand,
smaller batch sizes can improve generalization but often
result in noisier gradients.

Fitness = Accuracy — A X FPR )]

The above fitness function from Eq. (1) is used to
regulate the PSO process for selecting the optimal
hyperparameters for the VGG19 model. The fitness
function evaluates each solution (particle) based on both
its accuracy in classification and its False Positive Rate
(FPR). The objective is to maximize fitness value by
maximizing accuracy and minimizing FPR.

To ensure that the proposed PSO-optimized VGG19
model does not overfit the training data and generalizes,
different regularization methods were employed during
training. We first employed a dropout layer with a dropout
of 0.5 following the fully connected layers to randomly
drop out neurons and reduce reliance on specific
activations. Additionally, L2 regularization (weight
decay) was applied to the convolutional layers with a
penalty coefficient of 0.0005 to prevent huge weight
values. For additional generalization enhancement, data
augmentation techniques such as random horizontal
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flipping and small-angle rotations were employed on the
training images. During the PSO optimization process,
performance was regularly tested on a separate validation
set, and early stopping was employed to halt training if no
improvement was observed between successive epochs.
These techniques ensured that the high accuracy reported
in our results is genuine generalization and not overfitting
the data.

*  Accuracy: The proportion of correctly classified
stego and cover images on the validation dataset.

* FPR (False Positive Rate): The proportion of cover
images that are wrongly classified as stego-
images.

* A A regularization parameter utilized to achieve a
tradeoff between accuracy and FPR. Throughout
this study, we have set A =0.5.

Algorithm 1: PSO Optimized VGG19 for Steganalysis

1: Initialize PSO parameters: Number of Particles (N ),
Number of Iterations (max iter)

2: Define parameter bounds for VGG19: Filters, Filter Sizes,
Pool Sizes, Strides, Learning Rate, Batch Size

3: Initialize particle positions and velocities within bounds

4: Initialize pbest and gbest to first particle’s position

5: for iter = 1 to max iter do

for each particle i do

Set VGG19 parameters based on particle i’s position
Train VGG19 on training dataset

9:  Validate VGG19 on validation dataset

10:  Calculate fitness: accuracy - penalty for false positives
11: if fitness of particle i > fitness of pbesti then

12:  Update pbesti to particle i’s position

13:  endif

14: if fitness of particle i > fitness of gbest then

15:  Update gbest to particle i’s position

o

16: end if

17:  Update velocity and position of particle i
18: end for

19: end for

20: return parameters from gbest for optimized VGG19

The PSO algorithm can be used to fine-tune the
parameters of the VGGI19 architecture as shown in
Algorithm 1; each particle in the swarm would represent a
different configuration of the VGG19 architecture, where
each dimension in the particle’s position vector
corresponds to one of the hyperparameters listed above.
The fitness function used to evaluate each particle would
typically be based on the performance of the network on a
validation set, considering both accuracy and
computational efficiency as shown in Eq. (1). Below are
the steps of the proposed algorithm:

1) Generate initial positions and velocities for each
particle randomly within defined bounds for each
parameter.

2) Train the VGG19 model using the parameters
specified by each particle, then evaluate its
performance in terms of the accuracy matrix.

3) Adjust the particles’ positions and velocities based
on their personal best positions and the global best
position found by any particle.



Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

4) Repeat the evaluation and update steps until a
stopping criterion is met, such as a maximum
number of iterations or a satisfactory performance
level.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Databases

The experiments conducted in this research utilize two
benchmark datasets: the Break Our Steganographic
System (BOSSBase 1.01) [17] and the Break Our
Watermarking System (BOWS 2) [18]. These datasets are
frequently used for steganalysis tasks in the spatial domain
because of their comprehensive collection of images and
relevance to real-world scenarios. BOSSBase 1.01 and
BOWS 2 datasets consist of 10,000 cover images,
formatted in Portable Gray Map (PGM) at a resolution of
512 x 512 pixels, and captured in grayscale. The selection
of these datasets ensures a high degree of uniformity in
terms of image quality and characteristics, which is
important for maintaining consistency across steganalysis
experiments.

B. Data Preprocessing

In this study, several data preprocessing steps were
taken to adapt these databases for efficient processing and
analysis:

1) Image Resizing: All images were resized to 256 x
256 pixels to standardize input dimensions for the

neural network models, facilitating faster
processing.
2) Steganographic  Alterations:  Corresponding

steganographic images were generated for each

cover image using two different steganography
algorithms. These modifications were applied at
two payload levels: 0.2 bits per pixel (bpp) and 0.4
bpp, creating variations that mimic potential real-
world steganographic implementations.

Storage Optimization: To enhance the efficiency
of data handling and significantly reduce loading
times during training sessions, all image sets were
saved in NumPy array (npy) format. This
modification accelerates data retrieval compared
to traditional image formats.

3)

C. Simulation Environment

The proposed model was implemented using the Python
programming language and the TensorFlow deep learning
library to build and train our model. We leveraged a T4
GPU hardware configuration, enhancing computational
performance, which enabled faster training and inference
processes. To make a fair comparison, we re-implemented
the baseline models Xu-Net, Ye-Net, and Yedroudj-Net
from the publicly available source codes published by the
original authors. All the baseline models were trained and
tested using the same experimental conditions as our
proposed VGG19Stego + PSO model. These settings
include the same training and testing datasets (BOSSBase
1.01 and BOSSBase 1.01 + BOWS 2), the same payload
sizes (0.2 and 0.4 bits per pixel), the same number of
training epochs, batch sizes, and the same T4 GPU
hardware environment. This alignment of experimental
conditions ensures that all accuracy comparisons reported
in Tables II and III are reproducible and fair, and that
differences in performance are not caused by differences
in implementation or setup.

TABLE II. PERFORMANCE ON S-UNIWARD STEGO-IMAGES (BOSSBASE 1.01 AND BOSSBASE 1.01 + BOWS 2)

R BOSSBase 1.01 +BOWS 2
Model Metric
0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp
Xu-Net Accuracy 0.6090 0.7280 - -
Ye-Net Accuracy 0.6000 0.6880 - -
Yedroudj-Net Accuracy 0.6000 0.7720 0.6560 -
VGG16Stego Accuracy 0.7370 0.8291 0.7513 0.8545
VGG19Stego Accuracy 0.7420 0.8210 0.7409 0.8520
Accuracy 0.8690 0.8701 0.8490 0.8852
Precision 0.8612 0.8730 0.8418 0.8815
Recall 0.8754 0.8691 0.8560 0.8868
VGGI9+PSO F1-Score 0.8682 0.8710 0.8488 0.8841
False Positive Rate (FPR) 0.0946 0.0910 0.0895 0.0875
False Negative Rate (FNR) 0.1246 0.1309 0.1440 0.1132
TABLE III. PERFORMANCE ON WOW STEGO-IMAGES (BOSSBASE 1.01 AND BOSSBASE 1.01 + BOWS 2
Model Metri BOSSBase 1.01 +BOWS 2
ode etrie 0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp
Xu-Net Accuracy 0.6760 0.7930 - -
Ye-Net Accuracy 0.6690 0.7680 0.7390 -
Yedroudj-Net Accuracy 0.7220 0.8590 0.7630 -
VGG16Stego Accuracy 0.7760 0.8556 0.8059 0.8825
VGG19Stego Accuracy 0.7820 0.8570 0.8060 0.8833
Accuracy 0.8816 0.8790 0.8690 0.8900
Precision 0.8745 0.8711 0.8644 0.8835
Recall 0.8902 0.8840 0.8741 0.8952
VGGI9+PSO F1-Score 0.8823 0.8775 0.8692 0.8893
FPR 0.0883 0.0925 0.0911 0.0870
FNR 0.1098 0.1160 0.1259 0.1048
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D. Experiments Setup

The model was evaluated using the VGG19 architecture
enhanced by a PSO algorithm for training. The model was
trained over 30 epochs, with performance metrics captured
at each epoch to monitor progress. For our experimental
comparison, we utilized stego-images processed by S-
UNIWARD and WOW methods with varying payloads of
0.2 and 0.4 bits per pixel (bpp), using the BOSSBase 1.01
and the extended BOSSBase 1.01 + BOWS 2 datasets.

E. Results and Discussion

The results of our experiments are presented in Figs. 2
and 3, which illustrate the training and testing loss and
accuracy for the S-UNIWARD and WOW stego-images

processed using the VGG 19 model enhanced with the PSO
algorithm. These visual representations depict a consistent
and progressive improvement in accuracy as the model is
trained, reflecting the significant role of PSO in fine-
tuning network parameters. The reduction in training and
testing loss over epochs highlights the stability and
convergence of the PSO-enhanced model, further
emphasizing its robustness in steganalysis. Figs. 2—3 show
how the integration of PSO optimizes the learning process,
enabling the VGG19 model to adapt effectively to the
intricate patterns of steganographic embeddings. These
results underscore the enhanced capability of the
VGG19Stego+PSO model to distinguish between clean
and stego-images with higher precision.

Xu-Net
Ye-Net
Yedroudj-Net
VGG16Stego

VGG19Stego
+PSO

0.2 bpp BOSSBase 1.01

0.4 bpp BOSSBase 1.01

0.2 bpp BOSSBase 1.01 + BOWS 0.4 bpp BOSSBase 1.01+B

Payload and Dataset

Fig. 2. Model accuracies for different payloads and datasets for test S-UNIWARD stego-images.

B Xu-Net
I Ye-Net
B Yedroudj-Net
mmm VGG19Stego
mmm VGG19Stego
mm VGG19Stego +PSO

0.2 bpp BOSSBase 1.01

0.4 bpp BOSSBase 1.01

0.2 bpp BOSSBase 1.01 + BOWS 2 0.4 bpp BOSSBase 1 BOWS 2

Payload and Dataset

Fig. 3. Model accuracies for different payloads and datasets for test WOW stego-images.

As shown in Table II, the VGG19 model, when
combined with the PSO algorithm, achieves exceptional
performance on the BOSSBase 1.01 dataset using S-

UNIWARD stego-images. The model recorded accuracies
of 0.8690 and 0.8701 for payloads of 0.2 bits per pixel
(bpp) and 0.4 bpp, respectively. These results mark a
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significant improvement over existing deep learning
models. For comparison, the VGG16Stego model
achieved accuracies of 0.7370 and 0.8291 under the same
conditions, while earlier models such as Xu-Net and Ye-
Net lagged far behind, with accuracies of 0.6090 and
0.6000, respectively, for a 0.2 bpp payload. Furthermore,
the PSO-enhanced VGG19 model demonstrated its
adaptability and superior generalization on the combined
BOSSBase 1.01 + BOWS 2 dataset, achieving accuracies
of 0.8490 and 0.8852 for 0.2 bpp and 0.4 bpp payloads,
respectively. The improvements over traditional models
like Yedroudj-Net and VGG16Stego, which scored lower
across all payloads, highlights the efficacy of PSO in
optimizing the VGG19 architecture for S-UNIWARD
stego-image detection.

Training and Testing Accuracy

The VGGI19StegotPSO model also displayed
outstanding performance when applied to WOW stego-
images, as shown in Table III and illustrated in Figs. 4-5.
On the BOSSBase 1.01 dataset, the model achieved
accuracies of 0.8816 and 0.8790 for payloads of 0.2 bpp
and 0.4 bpp, respectively. This is a marked improvement
over the next best-performing model, VGG16Stego, which
achieved accuracies of 0.7760 and 0.8556 under the same
conditions. When evaluated on the combined BOSSBase
1.01 + BOWS 2 dataset, the VGG19Stego+PSO model
continued to outperform competing models, achieving
accuracies of 0.8690 and 0.8900 for 0.2 bpp and 0.4 bpp
payloads, respectively. In contrast, Ye-Net and Yedroud;-
Net, while performing better than Xu-Net, still fell short of
the PSO enhanced model’s performance.

Training and Testing Loss

—— Train Accuracy

0.875 1 —— Test Accuracy
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Fig. 4. VGG19-PSO accuracy and loss results for the S-UNIWARD stego-images.
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Fig. 5. VGG19-PSO accuracy and loss results for the WOW stego-images.

F.  Computational Efficiency

To evaluate the computational overhead introduced by
the PSO module, we compared the training time and
resource utilization of the baseline VGG19 model with
that of the PSO optimized VGGI19 version. All
experiments were executed in a T4 GPU environment
under the same software and dataset configurations.

TABLE IV. TRAINING TIME COMPARISON BETWEEN BASELINE AND
PSO-OPTIMIZED VGG19

Model Epochs  Training Time Notes
Baseline . Default
VGGI19 30 25 min hyperparameters

VGG19 + 20 particles x 30
PSO 30 3h iterations
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As shown in Table IV, the initial VGG19 model trained
for 30 epochs and completed in about 25 minutes. The
PSO- based model completed the optimization in about 3
hours. The increased time is because the PSO ran 20
particles for 30 iterations, meaning 600 separate runs of
VGG19 training were considered. Each particle represents
a different set of hyperparameters being tried and tested
with the fitness function.

Despite the added computational cost, the performance
improvements achieved by the PSO-optimized model
justify this cost, particularly in high-stakes uses where
detection accuracy is paramount. Future work can address
faster swarm-based alternatives, early termination with
dynamic criteria, or surrogate modeling to further reduce
the optimization duration.

The integration of PSO into the VGG19 architecture
was instrumental in fine-tuning the model’s parameters,
enabling it to adapt effectively to the diverse embedding
processes and payload conditions of steganographic
methods. This meticulous optimization resulted in
consistently higher accuracies across all datasets and
payloads compared to traditional and state-of-the-art deep
learning models. The significant performance gains
demonstrate the PSO-enhanced model’s refined sensitivity
to hidden data patterns within digital images, making it a
robust and versatile solution for steganalysis.

V. CONCLUSION AND FUTURE WORK

The integration of the Particle Swarm Optimization
(PSO) algorithm into the VGG19 model has been shown
to achieve tremendous improvements in steganalysis
operations, particularly in the detection of embedded
information in digital images under diverse payloads and
scenarios. The proposed VGG19Stego + PSO model is
significantly superior to existing state-of-the-art
techniques, making the integration of deep learning
models with metaheuristic optimization algorithms critical
in digital security systems.

While promising results are achieved, we appreciate
that presently the assessment is limited to merely two
spatial-domain steganographic schemes: S-UNIWARD
and WOW. While these are widely used and considered to
be good benchmarks, additional work should aim to
broaden the range of assessment to other embedding
schemes such as HILL and MiPOD. This will allow one to
learn about the model’s capacity to generalize to a wider
range of steganographic schemes. Moreover, subjecting
the model’s performance on images of various resolutions
and formats will provide a better understanding of its
power and applicability in practical scenarios.

Future work can explore the use of other evolutionary
optimization methods, such as Genetic Algorithms (GA)
and the Firefly Algorithm, to further optimize the tuning
of network structures and training parameters. In addition,
applying the proposed methodology on larger and more
diverse datasets will allow for better assessment of its
scalability and ability to generalize real-world steganalysis
problems. One of the primary extensions of this research
will also include conducting an extensive ablation study to
measure the contribution of each PSO-optimized
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hyperparameter individually to the overall performance.
This will help identify which parameters play the most
important role in improving detection accuracy and
computational efficiency. Besides that, we plan to
compare the PSO-optimized VGG19 model with recent
and more sophisticated deep learning models like ResNet-
based models including SRNet and Transformer-based
models like Vision Transformers (ViT). Such comparisons
will help put our work in context with the newly emerging
trends of deep steganalysis. Finally, to ensure the results’
solidity, the future research will encompass statistical
significance testing (e.g., paired ttests or Wilcoxon signed-
rank tests) to determine if gains in performance observed
are not due to random fluctuation but actually reflect
improvements.
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