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Abstract—Sleep apnea, a serious sleep disorder characterized 
by interrupted breathing during sleep, poses significant 
health risks such as cardiovascular disease and diabetes. 
Traditional diagnostic methods, such as polysomnography, 
are cumbersome and expensive, creating a demand for 
automated solutions. Previous sleep apnea detection research 
relied on Multi-Layer Perceptrons (MLPs), which, while 
functional, can be limited in capturing the complex temporal 
dependencies within Electroencephalogram (EEG) signals. 
Our study introduces a novel approach by combining 
Convolutional Neural Network (CNN) with Fast Fourier 
Transform (FFT) to detect sleep apnea. The FFT was 
implemented as feature extraction to capture frequency-
domain characteristics of the EEG signals. Two versions of 
the model were developed: one trained on raw EEG data and 
the other on FFT-processed data. The Physionet Sleep-EDF 
Database served as the source for EEG recordings, labeled as 
“normal” or indicative of sleep-disordered breathing. 
Performance metrics, including accuracy, precision, recall, 
and F1-Score, were used to evaluate the models. The CNN 
trained on raw EEG data achieved superior results, with 92% 
accuracy, a precision of 0.86, recall of 1.00, and an F1-Score 
of 0.92, outperforming previous studies utilizing Multi-Layer 
Perceptrons (MLP). However, the result shows that the 
approach using FFT produces worse results. This suggests 
that, in the context of sleep apnea detection using our specific 
dataset, the most discriminative features may not reside 
solely in the frequency domain as extracted by FFT. The 
results demonstrate the potential of CNNs in developing low-
cost, accessible diagnostic tools. Future efforts should address 
dataset limitations and explore alternative feature extraction 
methods to improve generalizability. 
 
Keywords—Convolutional Neural Network (CNN), deep 
learning, Electroencephalogram (EEG), sleep disorder, sleep 
apnea 

I. INTRODUCTION 

Sleep apnea is a sleep disorder characterized by 
interrupted breathing during sleep. It is prevalent among 
adults and also affects a small portion of the younger 
population [1]. Individuals with sleep apnea experience 
episodes of either no breathing or insufficient breathing 
while asleep. The initial condition, characterized by 
temporary pauses in breathing, is called apnea, whereas the 
subsequent condition, involving intervals of reduced 
airflow or shallow breathing, is known as hypopnea. Both 
conditions can lead to associated medical issues, 
underlining their harmful impact on an individual’s overall 
health [2]. A specific kind of sleep apnea, Obstructive 
Sleep Apnea (OSA), is typified by repeated episodes of 
partial or complete upper airway blockage, which causes 
intermittent hypoxia and disturbance of sleep [3]. The 
main negative effect of OSA includes hypoxia, which is a 
condition of decreasing oxygen levels, and disrupted sleep 
patterns. Additionally, research has demonstrated that 
OSA affects the body’s sleep regulation and has negative 
effects on metabolic factors, insulin sensitivity, and 
cardiovascular health. This research suggests a correlation 
between sleep disorders and metabolic conditions, 
including obesity, metabolic syndrome, and diabetes 
mellitus [4]. 

In addition to Obstructive Sleep Apnea (OSA), there are 
two other forms of sleep apnea: Central Sleep Apnea 
(CSA) and Mixed Sleep Apnea (MSA). Each individual is 
marked by recurrent cases of infection of the upper 
respiratory tract, accompanied by a stable respiratory 
rhythm. In CSA, respiration may be reduced or entirely 
absent, whereas MSA is characterized by a combination of 
two distinct types of apnea [5]. During the diagnostic 
procedure, the circumstances of the sleep apnea event is 
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used to determine the specific kind of sleep apnea that a 
patient has. Patients with MSA frequently combine central 
and obstructive events; those diagnosed with OSA usually 
experience obstructive events mostly; those identified with 
CSA mostly face central events [5, 6]. 

The physiological symptoms of this sleep disorder 
encompass snoring, experiencing abrupt breathlessness 
during sleep, waking up with a parched mouth, and, 
overall, encountering subpar sleep quality. These factors 
contribute to reduced concentration, insomnia, declining 
cognitive abilities, mishaps, memory impairment, and 
feelings of despondency. Apart from the diminished 
quality of life due to inadequate rest and weariness, sleep 
apnea can also trigger serious complications such as 
diabetes, cardiovascular disorders, high blood pressure, 
neurological challenges, and liver ailments. Given the 
widespread prevalence of sleep apnea and its associated 
long-term repercussions, both direct and indirect, it holds 
significance to accurately diagnose and address this 
condition [7–9].  

Remarkable progress in technology and artificial 
intelligence with machine learning or deep learning has 
proven to be useful in healthcare field [8–11]. For 
example, machine learning has been used for depression 
detection during COVID-19 crisis [10, 12]. Conversely, 
deep learning significantly influences healthcare by 
facilitating physician fixation prediction and the 
classification of pre-cancerous cervical lesions [13, 14]. 
This means machine learning and deep learning are also 
applicable for detecting sleep apnea. Since CNNs could 
automatically extract local temporal and spatial features 
from time-series data such as EEG signals, they were 
selected [15]. CNNs are more useful for EEG waveform 
analysis than MLPs as, through convolutional layers, they 
record local dependencies. CNNs are also computationally 
more efficient and more suited for fixed-length 
segments—as employed in this work—than Recurrent 
Neural Networks (RNNs) or Long Short-Term Memory 
(LSTMs). CNNs beat MLPs in biomedical signal 
categorization applications, according to earlier 
studies  [10, 16–18]. For the objective of creating an 
accurate, automated sleep apnea detection model using 
EEG, CNNs thus provide an ideal mix between accuracy, 
efficiency, and interpretability. 

 

 
Fig. 1. The process of real time EEG examination. 

Utilizing brain physiological signals or an 
Electroencephalogram (EEG), sleep apnea can be detected 

using deep learning model [19]. Electroencephalography 
(EEG) is a non-invasive technique employed to document 
the brain’s electrical activity, recording neural signals with 
high temporal precision [11]. The recorded brain impulses 
yield significant data that may be processed and analyzed 
by machine learning techniques, especially deep learning, 
to reveal patterns and insights for many applications [9]. 
Fig. 1 shown the efficacy of the EEG device in acquiring 
brain signal recordings. 

II. RELATED WORKS 

Previous research has demonstrated that the use of the 
Multi-Layer Perceptron (MLP) deep learning model 
achieves promising results, with an accuracy rate of 86% 
in detecting sleep apnea [19, 20]. However, this accuracy 
can be further enhanced. One of many approaches was 
changing the deep learning model. One of many deep 
learning models is Convolutional Neural Networks (CNN) 
which proved to be better than MLP on breast cancer 
detection or using other machine learning methods [13]. 
Besides changing the model, another approach is to 
employ feature extraction on the dataset. The feature 
extraction on the dataset can be done using Fast Fourier 
Transform (FFT), which believed could enhance the model 
performance than dataset that did not go through the  
FFT [11]. 

Recently, CNN has become a dominant and highly 
effective model in EEG classification task  
space [10, 21–23]. Because of that, we opted for CNN 
architecture over MLP for this sleep apnea detection study. 
Numerous prior works in EEG analysis have demonstrated 
the advantages of CNNs in automatically learning relevant 
features and achieving state-of-the-art 
performance  [10,  22, 23]. 

The aim of this study is to develop an automated model 
for sleep apnea detection with improved performance over 
previous studies. We focus on introducing a new 
architecture approach compared to previous works which 
solely use MLP which is deemed to be outdated. This 
research introduces a novel methodology that leverages 
deep learning techniques, specifically Convolutional 
Neural Networks (CNNs), in combination with Fast 
Fourier Transform (FFT) for feature extraction from EEG 
datasets. While CNNs and FFT have shown effectiveness 
in enhancing model performance in other  
applications [9, 20, 24]. This study focuses on evaluating 
their combined efficacy within the context of sleep apnea 
detection. Additionally, the study compares the proposed 
approach to prior work and assesses the impact of FFT-
based feature extraction by contrasting the performance of 
models trained on raw EEG data against those trained on 
FFT-processed datasets. 

III. MATERIALS AND METHODS 

This article presents a method for detecting Sleep Apnea 
using Electroencephalogram data with Convolutional 
Neural Networks. This method outlines a systematic, 
sequential routine to follow during the detection process. 
This process is fully depicted in Fig. 2. 
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Fig. 2. Block diagram of sleep apnea detection development procedure. 

In summary there are four steps for performing sleep 
apnea detection model development contained on Fig. 2, 
which are data acquisition, data preprocessing, training 
model, and testing/validating the trained model. On data 
acquisition steps, the brain physiological signals or an 
Electroencephalogram (EEG) data are collected, loaded, 
and annotated. Then those datasets are pre-processed to 
transform data into a format that is suitable for training 
process, in this step the dataset also splits into training and 
testing purposes data. In the training step, the data for 
training purposes from previous steps was then used to 
train the Convolutional Neural Network model. The 
trained model then tested or evaluated using testing 
purposes data to see the performance of the model.  

A. Dataset  
The dataset utilized in this research is derived from the 

Physionet Database, documented by the Sleep Disorders 
Center at Ospedale Maggiore in Parma, Italy [25]. Within 
this dataset, there are 108 polysomnographic records, each 
containing at least 3 or more channels of brain 
physiological signals per record, along with annotations of 
sleep events with other signals. Out of 108 records, only 4 
of them are labelled as “sleep-disorder-breathing” (sdb) 
records and 16 of them labelled as “normal” records. 

In Physionet database, there are 20 records available, 
including 4 records with subjects with apnea and 16 
records of subjects with no pathology (normal). However, 
we only use 5 out of 20 records. This is because, among 4 
records with apnea, 2 records are unable to open. Thus, 
resulting only 2 of the apnea records are usable for the 
research. Additionally, the other 3 records come from 
records with no pathology (normal). The chosen of the 
records is following the sequence naming of the sample. 
The amount of the subject with no pathology record is 

from the balance amount of segmented sample from the 
apnea and no pathology records. The 14 unused normal 
records were excluded solely to balance the apnea/normal 
ratio at the segmented sample level, not due to quality 
concerns. 

The dataset follows the 10–20 international system, 
which consists of Fp1-F3, F3-C3, C3-P3, P3-O1 and/or 
Fp2-F4, F4-C4, C4-P4, P4-O2 [25]. The location of 
electrodes in 10–20 international system are shown Figs. 3 
and 4 illustrated the raw EEG signals obtained from the 
dataset. These signals serve as the primary input for the 
study, providing the data used for preprocessing, feature 
extraction, and training of the CNN models for sleep apnea 
detection. 

 

 
Fig. 3. Electrode locations of international 10–20 system of EEG 

recording [11]. 

 
Fig. 4. The raw EEG signal generated. 

B. Maintaining the Integrity of the Specifications 
Data preprocessing step was done before the dataset can 

be used for training sleep apnea detection model. 
Preprocessing aims to clean, normalize, and prepare the 
data for the detection model’s utilization. The following 
Fig. 5 outlines the preprocessing stages. 

 

  
Fig. 5. Block diagram of data preprocessing. 
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1) Converting frequency  
The frequency of the original brain physiological signal 

records ranging from 256 Hz to 512 Hz with a duration of 
7 to 8 h. To make the EEG frequency consistence, reducing 
frequency down to 256 Hz, which is the lower frequency. 
Unfortunately, the usage of samples with 256 Hz is too 
large for the available memory. resulting in force restart 
during modelling or even unable to load the samples. To 
be able to do the modelling, the approach of reducing 
frequency of the sample is chosen, with 64 Hz as the 
highest frequency possible without resulting in any error 
due to limited memory. Fig. 6 illustrates the procedure for 
capturing EEG in cases of sleep apnea. All data from each 
channel of brain physiological signals is exported into text 
files. 

2) Dataset segmentation 
The segmentation process extracts 35-minute EEG data 

segments. The following Fig. 6 illustrate the segmentation 
process. It identifies sleep event using the database’s 30-
second interval sleep annotations, defining these events as 
periods starting from the last “Wake” annotation and 
ending at the next “Wake” annotation. Each identified 
event is segmented, and then trimmed to include only the 
final 35 min. This creates uniform-length input data for the 
CNN. Finally, each 35-minute segment is labeled as 
“normal” or “sleep-disordered breathing (sdb)” based on 
the original record’s overall classification, providing a 
consistent, albeit simplified, dataset for model training and 
evaluation.The result of this segmentation process was a 
dataset with a total of 60 samples, with 30 samples labelled 
as “normal” and 30 samples labelled as “sdb”. The data on 
sleep apnea occurrences were collected during sleep 
phases N2 and N3, as indicated in the highlighted box in 
Fig. 6. 

 

 
Fig. 6. Block diagram of dataset segmentation. 

3) Dataset splitting 
After the segmentation, the dataset is divided into 3 

groups: training, validation, and testing. This division 
ensures that the dataset sufficiently fulfils the requirements 
of model design up to the testing phase. The training group 

comprises 70% or 42 samples, the validation group 
includes 10% or 6 samples, and the testing group consists 
of 20% or 12 samples. 

C. Fast Fourier Transform (FFT) 
Fast Fourier Transform (FFT) is one of the algorithms 

used to perform the calculation of Discrete Fourier 
Transforms (DFT) rapidly and efficiently. Fourier 
Transformation is a tool that can reconstruct periodic 
waveform signals using a series of harmonics [26]. Fourier 
Transforms can break down periodic waveform signals 
into their underlying harmonic components. Although FFT 
is not suitable for analyzing short-duration brain 
physiological signal waves, it is a method suitable for 
processing signals in the form of sine waves, such as EEG, 
because it is faster compared to other methods [24]. To 
evaluate the impact of FFT on our model performance, we 
performed two types of experiment. The first is an 
experiment using a normal dataset, and the second one 
using a dataset that undergoes feature extraction using 
FFT. The equation of FFT can be shown in Eq. (1). 

 𝑋𝑋(𝑘𝑘) =  � 𝑥𝑥(𝑛𝑛)𝑒𝑒−𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑘𝑘

𝑁𝑁−1

𝑛𝑛=0
  (1) 

- 𝑋𝑋(𝑘𝑘) is the transformed signal in the frequency domain, 
- 𝑥𝑥(𝑛𝑛) is the input signal in the time domain, 
- 𝑁𝑁 is the total number of samples, 
- 𝑘𝑘 is the frequency index, 
- 𝑒𝑒−𝑗𝑗

2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑘𝑘  represents the complex exponential basis 

functions. 
The Fast Fourier Transform (FFT) is a computational 

algorithm used to efficiently transform a time-domain 
signal into its frequency-domain representation. This 
transformation enables the identification of the frequency 
components within the signal, facilitating further analysis 
and processing in various applications, including machine 
learning [11, 26]. 

D. Convolutional Neural Network (CNN) 
Convolutional Neural Network (CNN) is a distinct type 

of neural network. CNN is an artificial neural network 
utilized for recognition and processing activities [27]. The 
convolution layer, pooling layer, non-linearity layer, fully 
connected layer are the four primary parts of CNN. The 
convolution layer is an operational layer that integrates 
two sets of information. The input data undergoes filtration 
using a convolutional filter, yielding a feature map [27]. 
The non-linearity layer turns the input signal into a non-
linear output signal. Examples of non-linear activation 
functions include sigmoid (logistic), Tanh, Rectified 
Linear Unit (ReLU), Exponential Linear Unit (ELU) and 
Parametric ReLU (PReLU) [28].  

The pooling layer is the third primary component, and 
it is categorized into two types: Max Pooling and Average 
Pooling. The feature map is summarized by Max Pooling, 
which determines the highest value in the feature map. 
Conversely, Average Pooling describes the feature map by 
determining the average value extracted from the feature 
map [27]. Finally, the Fully Connected Layer is an 
essential part of Deep Neural Networks that is responsible 
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for the development of predictions that are intended for use 
in regression or classification [28]. This research utilizes a 
Convolutional Neural Network (CNN) as the principal 
model to categorize brain physiological inputs into sleep 
apnea or normal classifications. The designed architecture 
combined fully connected layer, convolutional 1D layer, 
max pooling 1D, ReLU. Fig. 7 shows the designed 
architecture illustration. 
 

 
Fig. 7. The architecture of CNNs in deep learning model. 

The CNNs model that is being employed, as illustrated 
in Fig. 6, comprises 10 layers of 1D convolutions, each of 
which is activated by a Rectified Linear Unit (ReLU). 
These layers are followed by max-pooling layers using a 
pool size of 2. The convolution layers are succeeded by 
flatten and dense layers, which are followed by a dropout 
layer and a final dense layer. The initial layer in the 
convolution layers is given an input of size (134464, 1), 
with a kernel size of 3 and a filter of 64. The kernel size of 
the second to tenth layers is 3, and the filters have values 
of 64, 128, 128, 256, 256, 512, 512, 1048, and 1048, 
respectively. Following the convolution layers, there is a 
Flatten layer. The flatten layer functions as a bridge within 
the convolutional layers and the fully connected layers, 
converting the multi-dimensional outcome of the 
convolutional layers into a one-dimensional format that is 

then passed to the fully connected layers [28]. After this, a 
Dropout layer is present, followed by a Dense layer with 
16 neurons as well as Rectified Linear Unit (ReLU) 
activation. In order to prevent overfitting, the Dropout 
layer eliminates a portion of neurons during the training 
process. Lastly, a Dense layer with Sigmoid activation is 
implemented. Furthermore, PCA (Principal Component 
Analyst) may be implemented to mitigate the high 
dimensionality of the EEG dataset; however, it is 
inevitable that data loss will occur during the process. 
Consequently, the results of PCA may be 
insufficient  [29,  30]. Consequently, we refrained from 
employing PCA in our methodology.  

E. Evaluation 
Confusion matrix, precision, recall, accuracy, and F1-

Score were implemented as evaluation metrics in this 
investigation. The test dataset was employed to evaluate 
the final trained CNN model, which consisted of 12 data 
samples. These samples were divided into six normal 
samples and six sleep-disorder-breathing samples. The 
evaluation result then compared model 1 which trained 
using normal data, model 2 which trained using FFT 
applied data, and previous work that used MLP. While 
doing the evaluation, we did not employ any form of cross-
validation techniques, this is due to our hardware 
limitations. Cross-validation techniques are known to be 
computationally expensive [31]. 

1) Confusion matrix 
Confusion matrix usually used as a measure for 

determining the performance of model in classification or 
pattern recognition task [32]. By observing the diagonal 
line in the confusion matrix, we can determine whether the 
model is good or bad in classifying or recognizing pattern 
on the data [32]. The concept of the confusion matrix 
involves comparing the model’s detection results with the 
actual detection results for each data. This comparison is 
categorized into True Positive (TP), False Positive (FP), 
True Negative (TN), and False Negative (FN)  
categories [33]. True Positives (TP) denote the count of 
positive samples accurately predicted by the model, True 
Negatives (TN) signify the count of negative samples 
accurately predicted by the model, False Positives (FP) 
indicate the count of negative samples erroneously 
predicted as positive by the model, and False Negatives 
(FN) represent the count of positive samples erroneously 
predicted as negative by the model [33]. 

2) Accuracy, recall, precision, F1-Score 
The performance of trained models is evaluated using 

Accuracy, Recall, Precision, and F1-Score. Accuracy is a 
metric that determines the proportion of correctly predicted 
class instances compared to the total number of evaluated 
samples. Precision serves as a metric for determining the 
number of positive patterns that were accurately predicted 
out of all positive predictions in the positive class. Recall is 
a metrics that is employed to determine the number of 
positive patterns that are accurately classified. The F1-
Score is the measure that determines the harmonic 
relationship between precision and recall. The F1-Score is 
most advantageous at 1 and most detrimental at 0. TN, TP, 
FN, and FP were utilized to calculate each of them, as 
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represented in the confusion matrix. The formulas for 
calculating each metric are illustrated in Eqs. (2)–(5). 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇)+(𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹)

 (2) 

 𝑅𝑅𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (3) 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (4) 

 𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

  (5) 

IV. RESULT AND DISCUSSIONS 

The resulting CNN models for sleep apnea detection 
exhibited robust performance metrics. Model 1, trained on 
raw EEG signals, attained a training accuracy of 0.9762 
and a validation accuracy of 1.000, with training and 
validation losses of 0.0849 and 0.0018, respectively. 
Model 2, employing FFT-based feature extraction for EEG 
signal modeling, attained a training accuracy of 0.9762 and 
a validation accuracy of 1.000, while demonstrating 
slightly elevated training and validation losses of 0.0945 
and 0.1714, respectively. The training process of both 
models is depicted in Figs. 8 and 9. The figures use 
hyperparameter settings based on the 10-layer 1D CNN 
architecture, with ReLU activation functions in the hidden 
layers and a Sigmoid activation function in the output layer 
for the selected model. 

 

 
Fig. 8. Model 1 result on train and validation performance plot with the 
10 layers of CNN 1D and ReLu Sigmoid: (left) accuracy (right) loss. 

 
Fig. 9. Model 2 result on train and validation performance plot with the 
10 layers of CNN 1D and ReLu Sigmoid: (left) accuracy (right) loss. 

While the training and validation performance shows a 
similar result between model 1 and model 2, the 
performance plot on Fig. 8 and Fig. 9 shows that model 1 
is more stable than model 2 in training and validation 
performance. Besides the training and validation 
performance, we also conducted evaluation using test data. 

The test results of the models are presented in confusion 
matrix and table form. Figs. 10 and 11 are the confusion 
matrix of both model 1 and model 2. 

 

 
Fig. 10. Confusion matrix of model 1 (Raw EEG Signal).  

 
Fig. 11. Confusion matrix of model 2 (FFT-based feature extraction for 

EEG signal modeling). 

Fig. 10 showed that model 1 almost has a perfect score, 
it only misses one sample, which is a normal sample 
classified as sleep-disorder-breathing. While Fig. 11 
depicted two misclassified samples from both normal and 
sleep-disorder-breathing. From these confusion matrices, 
we can see briefly that model 1 is better than model 2. For 
better comparison of each model, we can see on Table I for 
the test result. 

TABLE I. TEST RESULT WITH 0 (ZERO) DESIBEL 

Model Precision Recall F1-Score Accuracy 
EEG MLP [19] - - - 0.86 
Model 1 CNN 0.86 1.00 0.92 0.92 

Model 2 CNN + FFT 0.83 0.83 0.83 0.83 
 
As we can see in Table I with the same 0 db, the highest 

recall calculation value is found in model 1, where the 
recall reaches 1.00, indicating a low False Negative value 
or the absence of detected errors in actual labels. On the 
other hand, the lowest recall value is in the model where 
the recall is only 0.83, signifying a high value of False 
Negative or a significant number of errors in actual labels 
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detected. As for the highest precision calculation value, the 
highest is model 1, with a precision of 0.86. This indicates 
a low value of False Positive, while model 2 has a False 
Positive value of 0.83. The highest F1 calculation value is 
observed in model 1, with an F1-Score of 0.92, signifying 
good precision and recall. Conversely, the lowest recall 
value is in the model where the recall is only 0.83, 
indicating poor precision and recall values. Similarly, the 
highest accuracy calculation value is found in model 1, 
where the accuracy reaches 0.92 beating the previous 
works that use MLP, and the lowest is in model 2, with an 
accuracy of only 0.83. From the results we can conclude 
that our model was better than the previous work using 
MLP [19]. While Model 1, trained on raw EEG data, 
demonstrated superior performance with a recall of 1.00 
and an F1-Score of 0.92, Model 2, trained on FFT-based 
features, exhibited reduced performance metrics. This 
suggests that for sleep apnea detection within our dataset, 
the most discriminative features may not be primarily 
located in the frequency domain as isolated by the FFT. It 
is plausible that crucial information for accurate sleep 
apnea detection resides within the temporal dynamics and 
morphology of the raw EEG waveforms. The FFT, while 
effective for frequency analysis, might have inadvertently 
discarded or obscured these critical time-domain features 
that are essential for CNN to effectively learn and classify 
sleep apnea events. Furthermore, the direct use of raw EEG 
might allow the CNN to automatically learn complex time-
frequency representations that are more nuanced and task-
specific than those derived from a fixed FFT 
implementation. 

In recent times, deep learning algorithms have been 
extensively employed across several domains to 
accomplish categorization or classification task [19]. It 
also applies to the healthcare and medical field. Where 
deep learning has been applied for classifying bone age, 
cervical pap smear, electrocardiogram signal noise, and 
others [1, 3, 34]. With extensive usefulness of deep 
learning on healthcare and medical field, in this paper we 
tried to apply deep learning for detecting sleep apnea using 
EEG signal. The same approach has been carried out using 
MLP showing a promising 86% accuracy as a result. The 
research findings align with prior studies utilizing deep 
learning CNN to analyze physiological signal 
data  [15,  35]. The FFT-based model (Model 2)’s 
diminished performance may be attributed to the model’s 
limited dataset size, which could limit its capacity to 
generalize. In order to improve the robustness of the model 
and alleviate the constraints identified in this research, 
future research should investigate alternative feature 
extraction techniques, such as wavelet transformations, 
and larger datasets [36]. 

TABLE II. COMPARISON WITH OTHER STUDIES 

Model Precision Recall F1-Score Accuracy 
Model 1 

CNN 0.86 1.00 0.92 0.92 

Moridani et al. [19] 
MLP - 0.84 - 0.86 

 

As we see on Table II, the same approach has been 
carried out using MLP showing a promising 86% accuracy 
as a result. The research findings align with prior studies 
utilizing deep learning CNN to analyze physiological 
signal data [15, 35]. The FFT-based model (Model 2)’s 
diminished performance may be attributed to the model’s 
limited dataset size, which could limit its capacity to 
generalize. In order to improve the robustness of the model 
and alleviate the constraints identified in this research, 
future research should investigate alternative feature 
extraction techniques, such as wavelet transformations, 
and larger datasets [36]. 

The impact of the small sample size was mitigated by 
two important factors, even though the total number of 
original EEG recordings used in this study was limited to 
five subjects [37]. First, every EEG record was split into 
several 35-minute epochs, producing 60 samples total—30 
assigned as “normal”, and 30 as “sleep-disordered 
breathing”. This segmentation technique assures that the 
CNN model is trained and assessed on a sufficiently large 
number of input instances, therefore enabling the model to 
learn temporal and morphological patterns efficiently 
across many segments [22]. Second, the dataset was 
carefully balanced between the two classes—normal and 
apnea—so avoiding class imbalance from distorting the 
performance or evaluation measures of the model [15]. 
Although the variety of topics is modest, the great number 
of uniformly spaced segments offers a rich training set for 
the CNN, therefore supporting significant learning and 
dependable performance evaluation within the parameters 
of this work [10, 21]. However, we recognize that the 
generalizability of the model could be further improved by 
broadening the subject pool in future research. 

In this paper, we proposed a new deep learning 
approach for automatic detection of sleep apnea using 
EEG signal by utilizing CNN combined with and without 
FFT algorithm as a feature extraction algorithm for the 
dataset. This study emphasizes the efficacy of raw EEG 
data when processed with CNNs, attaining higher accuracy 
and recall, in contrast to previous studies that primarily 
relied on MLPs or FFT-enhanced features. This 
emphasizes the significance of customizing preprocessing 
techniques to suit particular applications [9, 11, 15, 19, 
38]. The findings of this study demonstrate the potential of 
CNNs for sleep apnea detection using raw EEG signals, 
paving the way for developing portable, low-cost 
diagnostic tools. Such advancements could reduce reliance 
on traditional polysomnography, making sleep apnea 
diagnosis more accessible and efficient [39–41].  

A significant limitation of this study is the relatively 
small size of our dataset. Training deep learning models, 
particularly Convolutional Neural Networks, effectively 
requires substantial amounts of data to learn robust and 
generalizable features. With a limited dataset, there is a 
heightened risk of overfitting, where the model learns to 
perform exceptionally well on the training data but fails to 
generalize new, unseen data. This means that while our 
model might achieve promising results on our specific 
dataset, its performance could degrade significantly when 
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applied to different datasets or in real-world clinical 
settings [25].  

This study recognizes the dataset’s limitation regarding 
the number of original subjects. The division of EEG 
recordings into 35-minute epochs yielded 60 balanced 
samples, offering adequate data instances for training and 
assessment. The dataset was extensively chosen to 
guarantee equitable class representation and eradicate bias, 
while standardized performance criteria were employed to 
assess the model [42]. Although we acknowledge that 
larger datasets could enhance generalizability, the present 
results are consistent and offer a reliable basis for future 
research with more varied and comprehensive EEG 
datasets. To improve the generalization of our sleep apnea 
detection model, future work should prioritize the 
exploration of domain adaptation techniques. Specifically, 
adversarial learning presents a promising direction for 
training domain-invariant features and mitigating dataset 
bias. Beyond adversarial approaches, research could also 
investigate other domain adaptation methods such as 
domain-invariant feature normalization or transfer 
learning [19]. Implementing and evaluating these 
techniques will be critical steps towards developing a more 
robust and widely applicable sleep apnea detection system. 

V. CONCLUSION 

This study demonstrates the significant potential of 
Convolutional Neural Networks (CNNs) for the accurate 
detection of sleep apnea using EEG signals. Notably, a 
CNN model without Fast Fourier Transform (FFT) 
preprocessing achieved a 92% accuracy, surpassing both 
CNN models incorporating FFT and traditional Multi-
Layer Perceptron (MLP) approaches. In contrast, Model 2 
exhibited a slightly diminished performance, achieving an 
accuracy of 83% across key metrics. While FFT is 
theoretically beneficial for feature extraction, it did not 
yield performance improvements in our experiments. This 
suggests that, in the context of sleep apnea detection using 
our specific dataset, the most discriminative features may 
not reside solely in the frequency domain as extracted by 
FFT. The superior performance of the CNN models in 
comparison to previous studies that implemented Multi-
Layer Perceptron (MLP) further emphasized the reliability 
and robustness of CNNs for this task. The evaluation 
underscores the potential of CNN-based systems as a 
foundation for portable and efficient sleep apnea 
diagnostic instruments, thereby reducing reliance on 
traditional, overpriced Polysomnography (PSG).  

Nevertheless, there were a number of constraints 
encountered in the research that could affect the 
generalization and scope of its findings. For instance, the 
dataset used was very small-five records from the 
Physionet Sleep-EDF database-and this greatly limited the 
diversity of the training data. Besides, working with 
segmented EEG data instead of full-length records might 
have resulted in the lack of precious temporal patterns that 
are very important for sleep apnea detection. Another 
limitation is the age of the dataset since real-world EEG 
data may currently be different due to changes in 
diagnostic standards and recording techniques. 

Furthermore, FFT-based feature extraction did not 
improve the performance of the model, although it had a 
theoretical justification.  

To enhance the model performance, exploring 
alternative feature extraction techniques beyond frequency 
domain analysis, such as time-domain features (statistical, 
morphological, nonlinear) or Wavelet Transform maybe 
beneficial. Additionally, optimizing the hyperparameters 
through systematic hyperparameter tuning are also crucial. 
Future research should include model evaluation on larger 
datasets. Additionally, alternative EEG signal 
preprocessing techniques can be used to improve the 
performance of the model. 
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