
Far Eastern Cultures and the Console User

Interface

Antoine Bossard

Graduate School of Science, Kanagawa University, Yokohama, Japan

Email: abossard@kanagawa-u.ac.jp

Abstract—Even as of 2024, the support of Far Eastern writing

systems by computers remains uneven, to say the least. For

example, vertical right-to-left user interfaces, as it could

naturally be expected in countries like Japan and China, are

extremely rare. In fact, it is the opposite that has been

happening since the broad adoption of computer systems:

people of these cultures have got accustomed to western, left-

to-right horizontal interfaces. In previous research, we have

started to technically investigate the current situation in the

case of Graphical User Interfaces (GUI); the results obtained

showed that although noticeable improvements have been

made, the support provided by current technologies (e.g.,

operating system features, browser features) in the

realisation of Far Eastern interfaces is still nowhere near that

of western ones. In this paper, we propose and evaluate an

extension to the Console User Interface (CUI) to improve its

support of Far Eastern writing systems. Concretely, the

vertical right-to-left application scenario is considered for the

CUI. The measured results are positive in that they match

those obtained in the case of the conventional, left-to-right

horizontal layout. Precisely, our proposal is slightly faster

when it comes to the text scrolling speed (between 3% and

9% in our experiments).

Keywords—cultural heritage, writing system, Chinese,

Japanese, Korean (CJK), vertical, Right-to-Left (RTL),

kanji, hanzi, hanja

I. INTRODUCTION

We start by reviewing several cultural patterns for the

users of Far Eastern cultures which are at the centre of our

research. Far Eastern cultures involve different countries,

and thus different writing systems. For instance, mainland

China relies on simplified Chinese while the writing

system of Taiwan and Hong-Kong is based on traditional

characters. Furthermore, the Japanese culture combines

Chinese characters (kanji) with the characters of local

syllabaries (hiragana and katakana) and Korea even

mingles Chinese characters (hanja) with its own script,

hangul.

Several common patterns can be inferred from these

transnational cultural facts: first, specific sets of characters

are required; second, those sets are comparatively large;

third, several writing directions can be necessary: vertical

(top-to-bottom) right-to-left writing is traditional, but not

exclusive: horizontal (top-to-bottom) left-to-right writing

is common [1].

The user interface of computer systems has seen major

improvements since the advent of commercial, general-

purpose computers. First developed by and for western

cultures, adjusting computers to Far Eastern needs has

been challenging: although hardware limitations have now

significantly eased, especially memory, deep software

issues remain, starting with character encoding [2, 3].

Considering user applications, and although desktop

publishing now supports advanced vertical typography and

typesetting [4, 5], user interfaces and the underlying

development technologies (e.g., Application Programming

Interfaces) still have much room for improvement [6].

Besides, the importance of software localization has been

recently recalled in [7].

In this paper, we describe an extension to the Console

User Interface (CUI) to improve its support of Far Eastern

writing systems. A CUI, also known as command-line

interface, is one special sort of Text User Interface (TUI)

that is typically used with terminal (emulator) software. It

is ubiquitous in computing, albeit for power users, and IT

system administration; console software is thus actively

developed by major operating system manufacturers [8].

Technical details are investigated and the performance of

the proposed system is then both qualitatively and

quantitatively evaluated. The obtained results are positive:

the achieved performance of the proposed system matches

that of conventional approaches. Precisely, the proposed

system succeeds in realising a vertical right-to-left console

user interface and the quantitative results show no

performance degradation in scrolling speed when

comparing to conventional left-to-right horizontal terminal

layouts.

The proposal is an extension, rather than a replacement,

to the console user interface, that enables to rely on

existing environments, which is critical for usability,

notably user-friendliness. In addition, although the system

has been designed and experimented on a Japanese system,

we show that it applies to other Far Eastern scripts as well,

like simplified and traditional Chinese.

The rest of this paper is organised as follows. Related

works are audited in Section II. The proposed system is

described in Section III and empirically evaluated in

Section IV. The experimental results are discussed in

Section V. Finally, this paper is concluded in Section VI.

Manuscript received January 20, 2025; revised March 8, 2025; accepted

April 24, 2025; published September 5, 2025.

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1210doi: 10.12720/jait.16.9.1210-1216

https://orcid.org/0000-0001-9381-9346

II. RELATED WORKS

Shen et al. [9] have investigated culture-centred design,

notably applied to computer user interfaces. It is

interesting to note that in this related research work, a

computer interface specifically designed for Chinese users

was developed. The authors introduced the idea of a

garden metaphor to replace the traditional computer

desktop interface. Icons depicting items typical of the

Chinese garden culture were used. This previous work

focuses on graphical user interfaces, whereas our proposal

considers another user interface, the console user interface.

Still considering the graphical user interface scenario,

Gil and Collazos proposed to consider this time user

emotions and how they relate with interface issues. For

instance, they tried to connect user interfaces and music to

reach user emotions [10]. This is yet another cultural

pattern on which could rely user interface designers. These

two authors continued their investigations of cultural

patterns for graphical user interface realisation and they

tried to identify design patterns more specifically targeted

at web interfaces, such as translation, colour, and directly

related to our research, (writing) directions [11].

In general, cultural issues of human-computer

interaction design are reviewed and discussed in [12].

More directly related to the cultural patterns identified

for our proposal, we have noted that other related works

include right-to-left horizontal support, and in general

bidirectional text (i.e., bidi). Bidirectional text support is

uneven amongst terminals; a standardization effort has

been made though [13]. In addition, this standard draft

discusses bidirectional text support in the case of PuTTY,

Konsole, Mlterm, Terminal.app, Bicon and VTE. In our

proposal, we go even further by considering the right-to-

left vertical scenario.

Finally, there have been attempts at proposing a web-

based console user interface [14]. Relying on the browser

for rendering, such proposals can be considered steps

towards localization of the console user interface; they

relate to our previous work [6]. We can cite the anyterm,

ajaxterm and xterm.js projects, to only give a few. In this

paper, we consider a native console user interface, not its

emulation inside, say, a browser.

III. METHODOLOGY

The proposed system has been implemented in standard

C without relying on system-specific functions.

A. Input and Memory Issues

First and foremost, the terminal has to be setup for

Chinese, Japanese, Korean (CJK) support. Next, the

current locale of the program has to be set for Japanese and

Chinese characters support with the character-handling

functions of the standard C library (e.g. fputws). For

example, we have called setlocale (LC_ALL,
"ja_JP.UTF-8") to this end. Then, we rely on the

standard wide character data type wchar_t for multi-byte

character handling.

Because the amount of input data remains unknown, we

acquire them on the fly in blocks: the input data are stored

as is inside memory pages which are dynamically allocated

upon needs, that is, until all the input data has been stored.

(Precisely, input data are acquired until an End-of-File

(EOF) condition is satisfied.) Memory pages are

implemented as a linked list of character strings: see

Fig. 1. The page size does not really matter: it is the typical

trade-off between memory and time. On the one hand, the

larger the pages, the higher the (internal) fragmentation

(only at the last page in our case though), and on the other

hand, the smaller the pages, the more the memory

allocation requests.

Fig. 1. Dynamic memory allocation with pagination for input

acquisition. Memory pages are implemented as a linked list.

Data are read from the standard input stream (stdin),

which enables typical use cases involving piping. Just as

the conventional system utility more acquires its data from

stdin and provides user-friendly interfacing, the

proposed system vmore typesets the input data according

to the vertical right-to-left layout. Hence, amongst others,

the following sample use cases are supported:

• cat file.txt | ./vmore (piping),

• echo sample text | ./vmore (piping), and

• ./vmore for direct input, typically terminated

with Ctrl-D to emit EOF.

B. Transposition

Whereas in the first step, input data are acquired and

stored without modification, the second step,

transposition, starts transformation from the horizontal

left-to-right layout to the vertical right-to-left layout.

Concretely, characters of the input data are copied into

a new buffer, called the transposition buffer. The viewport

is smaller than or equal to the transposition buffer as

detailed next.

The height of the viewport is said to be fixed in the sense

that it always matches the height of character columns (i.e.,

the number of rows of the transposition buffer), which is

constant (it does not depend on the viewport content).

There is no vertical scrolling (just as there is no horizontal

scrolling for typical console applications).

Unlike the viewport height, the viewport width is

smaller than or equal to the number of columns of the

transposition buffer. The first character column displayed

by the viewport is an adjustable parameter which is used

for horizontal scrolling. An illustration is given in Fig. 2.

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1211

Fig. 2. 1-dimensional array that is the target of the horizontal-vertical

transposition operation. Some or all of its columns act as viewport for

rendering. The blue area is a sample viewport. Sample characters are

shown in the first (i.e., rightmost) column.

The height of character columns (i.e., the number of

rows) as well as the number of columns of the viewport

(i.e. the viewport width) can be set by passing parameters

when launching vmore, which is how the viewport can be

adjusted to the terminal dimensions as explained in

Section III-D.

In order to precisely calculate the amount of memory

required for transposition, the number of character

columns is first computed; here, the handling of new line

characters is key. Precisely, columns are counted as

follows: if the input data include at least one character (i.e.,

other than EOF), set the column counter to 1, and to 0

otherwise. Then, for each memory page, iterate the stored

characters according to the following set of rules:

• a carriage return character (\r) is in any case

ignored;

• a new line character (\n) that is at the top of the

column and not following another new line

character is discarded;

• a new line character (\n) that is not at the top of

the column or at least the second in a sequence of

new line characters triggers incrementing the

column counter;

• for any other character, increment the column

counter when reaching the last row of the column,

unless the current character is the final one.

(It should be noted that, unrelated to vmore, text

processing software often automatically appends a new

line at the end of the file, at least on Linux, and that it may

not always be rendered when opening the file in, say, a text

editor. This can be easily checked with the system utility

od.)

The total size of the memory allocated for transposition

is then directly obtained by multiplying the calculated

number of columns times the number of rows, plus one for

the terminal null character. After memory allocation, the

viewport is filled with full-width spaces (Unicode code

point 0x3000); cf. Section III-C.

C. Character Conversions

First issue: CJK characters are typically full-width

characters: considering a monospace font, the width of one

such character is twice that of, say, a Latin character. The

former are called full-width characters and the latter half-

width characters. In order to retain proper alignment of the

character columns, any half-width character is converted

to its full-width variant. This is typically the case of ASCII

characters, digits and symbols. Thanks to the definition of

the Unicode code points for half-width and full-width

characters, this is rather easily done as shown in Listing 1.

Listing 1. Half-width to full-width character conversion

wchar_t to_fullwidth(const wchar_t wc) {
 if(wc == 0x20) // half-width space
 return 0x3000; // full-width space
 else if(0x21 <= wc && wc <= 0x7E)
 return wc - 0x20 + 0xFF00;
 else // outside of the convertible range
 return wc;
}

Second issue: transposing glyphs as detailed in

Section III-B produces satisfactory results albeit with

some remaining refinements expected. It is well known

that vertical typography has its own set of challenges for

text processing software and font foundries. Some

characters effectively need to be rotated, or at least

adjusted, in accordance with vertical typesetting rules. For

example, transposing parentheses ‘(’, ‘)’ as is into the

viewport is not satisfactory for vertical typesetting.

Instead, these parentheses need to be rotated by 90 degrees

clockwise. Other symbols, like the comma, need to be

shifted from left to right. Lunde speaks of “Vertical

character variants” [1]. Such sample conversions are

illustrated in Table I. The support of such features of

vertical typography depends on the character sets

supported by the terminal application.

TABLE I. SAMPLE CHARACTER CONVERSIONS FOR VERTICAL

TYPESETTING: PARENTHESES, ANGLE BRACKETS, ELLIPSIS

Character Type Parentheses Angle brackets Ellipsis

Horizontal typesetting () 〈 〉 …

Vertical typesetting ︵ ︶ ︿ ﹀ ︙

In practice, we have defined for vmore a conversion

function that is mostly based on the two Unicode ranges

“Vertical Forms” (0xFE10–0xFE1F) and “CJK

Compatibility Forms” (0xFE30–0xFE4F), the latter being

used especially for rotated brackets (including

parentheses). Other than these two character ranges, we

have used the range “CJK Unified Ideographs” (4E00–

9FFF) in order to convert the glyph U+30FC (kana

prolonged sound mark) to the character U+4E28 (vertical

stroke). It should be noted that it is critical that the glyph

resulting from such a conversion be full-width too.

The rendering by vmore of two lines of text including

characters to which apply such adjustments is illustrated in

Fig. 3. Brackets, the ellipsis and the long vowel Japanese

symbol are rotated and the comma and period are moved

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1212

from the bottom left-hand corner to the top right-hand

corner.

Fig. 3. Sample vertical typography adjustments: brackets, the ellipsis and

the long vowel Japanese symbol are rotated and the comma and period

are moved from the bottom left-hand corner to the top right-hand corner.

D. The User Interface

First, so as to maximise system portability, the user

interface (i.e., CUI) has been realised solely with standard

functions. Precisely, we emphasise the solutions to the

following three main issues.

• User input to control the program is realised with

functions of the standard C library such as

getwchar. Non-standard functions such as

_kbhit of Microsoft’s conio.h are completely

avoided.

• Elements of the user interface, also known as

chrome, like toolbars are created with ANSI

escape codes [15].

• Dimensions of the terminal are obtained with a

shell script to avoid relying on non-standard

console I/O functions to this end. The tput Linux

command and the mode CON Microsoft Windows

command suffice therefor.

Because input data can be acquired with the pipe system

feature of terminals, the standard input (stdin) can be

connected to a file rather than the default terminal input

feature which reads data directly input by the user, say with

his keyboard. So, in the case stdin is connected to a file,

we had to reconnect it to the console input. To this end,

although not breaking portability and standard

compliance, we had to conditionally define the constant

value for the first parameter of the freopen function, that

is the file (path) to which stdin is to be reconnected after

acquiring the input data. On Microsoft Windows, it is set

to the character string CONIN$ whereas it is set on Linux

to the character string /dev/tty, as required by these

operating systems. This adjustment is seamlessly realised

with a preprocessor conditional directive.

IV. EVALUATION

The experiments described hereinafter have been

conducted on mainstream terminal applications for

different operating systems.

A. System Usability

First and foremost, regarding the usability of the

proposal, we have considered the three major cultural

patterns identified in introduction to evaluate our proposal.

First, the specific sets of characters used for the various Far

Eastern cultures were successfully supported by the

system: we have made experiments with both simplified

Chinese text, traditional Chinese text, Japanese text and

even Latin text since, for example, Japanese documents

can include Latin words. We also confirmed that the large

number of the involved characters did not pose any

problem. Last but not least, we have confirmed that the

proposed system satisfies the vertical right-to-left

typesetting requirements of Far Eastern writing systems.

In practice and more concretely, this has been confirmed

on a desktop computer running the Linux operating system

(Debian 12, Japanese version) with various scenarios

(Latin text, Japanese text, text piped from a text file, text

input on the fly, scrolling, and so on). The case a sample

Japanese text file is piped into vmore via the shell script

to retrieve the console dimensions as explained is

illustrated in Fig. 4.

Fig. 4. Background: sample Japanese text file opened in a conventional

text editor (left-to-right horizontal layout). Foreground: result in a

terminal when this text file is piped into the proposed system (right-to-

left vertical layout).

Importantly, Japanese is not the only writing system

supported: Fig. 5 illustrates the case of Chinese, both

simplified and traditional, with screenshots of outputs of

the first stanza of the Chinese classic text Tao Te Ching.

And writing systems can be mixed, for instance Japanese

text including Chinese quotations.

Fig. 5. The proposed system does not apply only to Japanese: sample

screenshots are given here for traditional Chinese (top) and simplified

Chinese (bottom).

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1213

B. User Experience

Next, regarding user experience (UX), we have

conducted an experiment to measure the display

performance of the proposal, more precisely the

performance of its scrolling feature, which is a notorious

issue of both text processing software and user

experience [16]. On a desktop computer equipped with an

Intel Core i5-12400 CPU and 16 GB RAM and running a

64-bit Japanese Debian 12 operating system, we have

compared the time required to fully scroll the data output

by vmore the proposed system, more and man, two well-

known system utilities. We have relied on the time

command and recorded its real time value. The console

used was the default GNOME Terminal, whose default

dimensions are 24 rows and 80 columns. vmore was run

via the shell script launcher to adjust to the terminal

dimensions.

In this experiment, the scrolling performance of vmore,

more and man were compared with the following

commands:

Command 1 time man ls | ./launcher.sh

Command 2 time man ls | more

Command 3 time man ls

These time measurements were semi-automatic as

scrolling was done by keeping the keyboard’s Enter key

pressed until reaching the end of the data to display, after

which the programs were manually terminated by

inputting the quit command Q (in the case of more, Q was

input as soon as the user saw the (END) signal; for

fairness, the -e switch was not used). Because running on

a Japanese operating system, the man pages used in this

experiment were Japanese versions. A flowchart

illustrating this testing procedure is shown in Fig. 6 and the

obtained results are detailed in Table II.

Fig. 6. Flow of the user experience (UX) experimentation. (Time

measurement itself is included in the command.)

TABLE II. SCROLLING PERFORMANCE EVALUATION: vmore IS

COMPARED TO THE CONVENTIONAL SYSTEM UTILITIES more AND man

INSIDE DEBIAN’S GNOME TERMINAL

Properties and

measurements

Command

1

(vmore)

Command

2

(more)

Command

3

(man)

number of columns 485 n/a n/a

number of rows n/a 255 255

full scroll time (s) 14.37 7.80 7.88

columns per second 33.75 n/a n/a

rows per second n/a 32.70 32.34

Because involving, even minor, manual operations, the

same experiment in the same conditions was conducted

several times: the obtained times remained in line with

those of Table II.

We have conducted the same experiment inside a

Microsoft Windows console (cmd, not PowerShell, run

inside Windows Terminal) with vmore run with SSH—

the SSH server is the same machine as in the previous

experiment (Debian 12). The computer running the cmd

console is equipped with an AMD Ryzen 9 5900HX CPU

and 16 GB RAM and running a 64-bit Japanese

Windows 11 operating system. The default dimensions of

this terminal are 30 rows and 120 columns. vmore was

once again run via the shell script launcher to adjust to the

terminal dimensions. A screenshot illustrating

Command 1 is given in appendix. The obtained results are

detailed in Table III.

TABLE III. SCROLLING PERFORMANCE EVALUATION: vmore IS

COMPARED TO THE CONVENTIONAL SYSTEM UTILITIES more AND man

INSIDE A MICROSOFT WINDOWS CONSOLE (cmd) WITH SSH

Properties and

measurements

Command

1

(vmore)

Command

2

(more)

Command

3

(man)

number of columns 400 n/a n/a

number of rows n/a 233 233

full scroll time (s) 12.23 7.76 7.55

columns per second 32.70 n/a n/a

rows per second n/a 30.02 30.87

For the sake of readability, the results of these two

experiments are summarised in Fig. 7.

Fig. 7. A summary of the experimental results: scrolling speed inside

GNOME Terminal and the Microsoft Windows console (cmd) with SSH.

V. RESULTS DISCUSSION

We start by considering the user experience

experimental evaluation (cf. Section IV-B). First, we

discuss the results obtained in the case of GNOME

Terminal. From the data of Table II, although vmore has

a slightly faster scrolling (in columns per second) than

more and man (in rows per second), there is no significant

difference in scrolling performance between the three

programs. Precisely, a difference of 3.21% was obtained

when comparing vmore to more and a difference of 4.36%

when comparing vmore to man. Since these measurements

were obtained after conducting a semi-automatic

experiment (it is recalled that all three programs were

terminated manually with the Q command as explained),

this difference could amount to measurement error or

deviation. Of course, due to the vertical interface and

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1214

console dimensions (24 rows, 80 columns), columns are

shorter than rows (even with full-width characters: 80/2 =

40 columns but only 24 rows), which could be another

explanation of the scrolling performance difference

between vmore and more, man.

Second, we discuss the results obtained in the case of

the Microsoft Windows console cmd with SSH. From the

data of Table III, vmore has once again a faster scrolling

(in columns per second) than more and man (in rows per

second). Precisely, a difference of 8.92% was obtained

when comparing vmore to more and a difference of 5.92%

when comparing vmore to man. Once again, due to the

vertical interface and console dimensions (30 rows, 120

columns), columns are shorter than rows (even with full-

width characters: 120/2 = 60 columns but only 30 rows),

which could be another explanation of the scrolling

performance difference between vmore and more, man.

We then consider the usability experimental evaluation

(cf. Section IV-A). On the other hand, these results also

show the applicability of the vertical right-to-left layout:

short columns are more efficient than long rows in this use

case as rows are not always full.

As explained, since using full-width characters, only

half of the console character columns are available: only

80/2 = 40 (resp. 120/2 = 60) columns (at most) are

displayed at once in GNOME Terminal (resp. Windows

console cmd), that is, one screen. (The number of displayed

rows is not impacted.) It is unclear how this could affect

performance and performance comparison though. In any

case, the number of character columns is clearly

established, hence the validity of our measurements.

In addition, whereas vmore handles itself (horizontal)

scrolling, it might be the case—it obviously depends on

implementations—that (vertical) scrolling in man or more

is directly handled by the terminal host program (i.e. not

by man or more), which would likely be faster in this case.

In any case, the obtained results are a positive indicator of

the high performance of vmore.

VI. CONCLUSION

Far Eastern writing systems induce non-trivial human-

computer interaction design issues, such as right-to-left

and vertical writing and typesetting. In continuation of

previous and related work focused on Graphical User

Interfaces (GUI), we have considered in this paper such

issues in the case of the Console User Interface (CUI).

Precisely, we have described an extension to current

terminal software so as to support, even partially, right-to-

left vertical layouts. Then, we have qualitatively and

quantitatively shown the practicability of the proposed

CUI extension for Far Eastern writing systems such as

Japanese and Chinese. To this end, both the usability and

user experience issues were considered.

Regarding future work, one potential improvement

could be enhancing the user interface, although this would

likely require using non-standard features to better control

the console environment. A specialised library such as

ncurses could be used to this end. In addition, although it

may not apply directly to vmore since in most cases its

input data are acquired with piping, vertical right-to-left

input is an important issue for the CUI in general. Its

support would however require relying on non-standard

console features, with thus a library such as ncurses key to

portability. Finally, although vmore has been developed in

accordance with the C and ANSI standards as explained,

cross-compiling issues, precisely issues specific to the

Microsoft Windows console, require additional work,

beginning with code page and encoding issues.

APPENDIX

A sample output of vmore when used inside the

Microsoft Windows console (cmd) with SSH on a

Japanese Windows 11 operating system is given in

Fig. A1. This figure illustrates the case of Command 1:

time man ls | ./launcher.sh as detailed in

Section IV.

Fig. A1. Output in the case of Command 1 (time man ls | ./launcher.sh) inside the Microsoft Windows console (cmd) with SSH.

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1215

CONFLICT OF INTEREST

The author declares no conflict of interest.

ACKNOWLEDGEMENT

The author is sincerely grateful towards the reviewers

for their insightful comments and suggestions which

helped improved this article.

REFERENCES

[1] K. Lunde, CJKV Information Processing, 2nd ed. Sebastopol, CA,

USA: O’Reilly Media, 2009.

[2] A. Bossard and K. Kaneko, “Unrestricted character encoding for

Japanese,” in Databases and Information Systems X, IOS Press,

2019, vol. 315, pp. 161–175. https://doi.org/10.3233/978-1-61499-

941-6-161

[3] A. Bossard, “Proposal and evaluation of a Chinese character hash

function based on strokes for fingerprinting,” International Journal

of Computers and Their Applications, vol. 29, no. 2, pp. 59–65,

2022.

[4] H. Okumura, “pTeX and Japanese typesetting,” The Asian Journal

of TeX, vol. 2, no. 1, pp. 43–51, Apr. 2008.

[5] H. Mukai, An Introduction to Japanese Typography Based on

Structure and Algorithm, Tokyo, Japan: Seibundo-shinkosha, 2018.

(in Japanese)

[6] A. Bossard, “On bridging the gap between Far Eastern cultures and

the user interface,” in Trends and Applications in Information

Systems and Technologies, Springer International Publishing, 2021,

pp. 415–424. https://doi.org/10.1007/978-3-030-72657-7_40

[7] A. Tray, “Why bother localizing information technology products?”

Communications of the ACM, vol. 67, no. 2, pp. 6–7, Feb. 2024.

https://doi.org/10.1145/3638537

[8] P. Bhojwani. (August 2024). Windows Terminal preview

v1.22.2362.0. Microsoft’s official GitHub repository. [Online].

Available: https://github.com/microsoft/terminal/releases

[9] S.-T. Shen, M. Woolley, and S. Prior, “Towards culture-centred

design,” Interacting with Computers, vol. 18, no. 4, pp. 820–852,

2006. https://doi.org/10.1016/j.intcom.2005.11.014

[10] R. Gil and C. A. Collazos, “Integrating emotions and knowledge in

aesthetics designs using cultural profiles,” in Proc. the Second

International Conference on Usability and Internationalization

(UI-HCII), 2007, pp. 344–353. https://doi.org/10.1007/978-3-540-

73289-1_40

[11] C. A. Collazos and R. Gil, “Using cross-cultural features in web

design patterns,” in Proc. the Eighth International Conference on

Information Technology: New Generations (ITNG), 2011, pp. 514–

519. https://doi.org/10.1109/ITNG.2011.95

[12] R. Heimgärtner, “Intercultural user interface design—culture-

centered HCI design—cross-cultural user interface design:

Different terminology or different approaches?” in Proc. Design,

User Experience, and Usability. Health, Learning, Playing,

Cultural, and Cross-Cultural User Experience (DUXU), 2013, pp.

62–71. https://doi.org/10.1007/978-3-642-39241-2_8

[13] E. Koblinger. (January 2019). A draft proposal for handling RTL

and BiDi text in terminal emulators. [Online]. Available:

https://terminal-wg.pages.freedesktop.org/bidi/

[14] H. Yanagisawa and K. Kondou, “Interactive interface for web-

based programming environment,” in Proc. the 27th International

Conference on Advanced Information Networking and Applications

Workshops (AINAW), 2013, pp. 168–173.

[15] Standard ECMA-48: Additional control functions for character-

imaging I/O devices, 2nd ed. European Computer Manufacturers

Association (ECMA), 114 rue du Rhône, 1204 Geneva, Switzerland,

Aug. 1979.

[16] P. Quinn, A. Cockburn, G. Casiez, N. Roussel, and C. Gutwin,

“Exposing and understanding scrolling transfer functions,” in Proc.

the 25th Annual ACM Symposium on User Interface Software and

Technology (UIST), 2012, pp. 341–350.

https://doi.org/10.1145/2380116.2380161

Copyright © 2025 by the author. This is an open access article distributed

under the Creative Commons Attribution License which permits

unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited (CC BY 4.0).

Journal of Advances in Information Technology, Vol. 16, No. 9, 2025

1216

https://creativecommons.org/licenses/by/4.0/

	JAIT-V16N9-1210

