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Abstract—The crude oil market is distinguished by 

significant volatility, primarily due to its responsiveness to 

economic and geopolitical events and the intricate factors 

that drive price fluctuations. Accurate forecasting of crude 

oil prices is essential for mitigating adverse impacts on 

national economic stability and growth. This study examines 

the prediction of Brent crude oil prices utilizing a 20-year 

time series dataset encompassing 2004 to 2024. A hybrid 

modelling framework integrates Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) models as feature 

extractors, followed by regression analyses utilizing SVR 

(Support Vector Regression), Random Forest, and Extreme 

Gradient Boosting algorithms. The proposed architecture 

results in the development of six distinct models, evaluated 

across two different window sizes, specifically 1 and 5, to 

assess the impact of temporal granularity on predictive 

accuracy, which may help identify optimal configurations for 

enhancing model performance in various forecasting 

scenarios. Model performance is quantified using Mean 

Absolute Error (MAE) and R² Score (Coefficient of 

Determination) metrics. The experimental findings indicate 

that the LSTM-SVR model operating with a window size of 2 

exhibits superior performance, achieving an MAE of 1.050 

and an R² Score of 0.997 on the training dataset and an MAE 

of 1.558 with an R² Score of 0.973 on the test dataset. The 

optimal configuration for the LSTM feature extractor 

comprises 10 units, with a dropout rate of 0.05, 10 epochs, 

and a batch size 32. The SVR regressor utilizes an RBF 

(Radial Basis Function) kernel with parameters C = 100, 

epsilon = 0.01, and auto gamma. 

Keywords—brent crude oil prices, time series, Long Short-

Term Memory (LSTM), Gated Recurrent Unit (GRU), 

Support Vector Regression (SVR), Random Forest (RF), 

Extreme Gradient Boosting (XGB)  

I. INTRODUCTION

Crude oil, also known as petroleum, is a blend of 

different hydrocarbons that can be refined to create various 

fuels [1]. These processes may produce natural gas, 

methane, liquefied petroleum gas, petroleum ether, 

kerosene, heating oil, gas oil, diesel, etc. [1]. Crude oil as 

a raw material for manufacturing derivative fuels is often 

subject to price changes at any time. An increase in the 

price of crude oil can inhibit a country’s economic growth, 

which results in inflationary pressure. Otherwise, oil-

exporting countries may be negatively affected if oil prices 

fall drastically [2]. Fluctuations and shocks that occur in 

crude oil prices have a significant impact on the real 

economy and virtual economy [3–5] and have an impact 

on import and export trade activities [6]. In addition to 

causing changes in inflation, changes in crude oil prices 

can affect the exchange rate through the transmission of 

supply and demand mechanisms [7]. 

Changes in crude oil prices are influenced by several 

factors, such as economic and political developments and 

other hidden factors, making crude oil price forecasting 

more challenging to study. Some other factors are the 

Organization of the Petroleum Exporting Countries 

(OPEC) market, supply and demand factors, 

announcements or information published by OPEC, and 

the U.S. Strategic Petroleum Reserve for the futures 

market [8, 9]. Various factors that affect the price of crude 

oil cause the process of forecasting crude oil prices to be 

more complex, and there is a need for a unique and 

appropriate method to predict with such data 

characteristics. Other challenges in crude oil price 

prediction case studies are high noise, non-linearity, and 

nonstationarity, which determine the complexity and 

difficulty of crude oil futures forecasting [10]. 

Predicting crude oil prices is important because changes 

in these prices can impact a country’s economy, and 

traders widely buy and sell this commodity in the stock 

market.  From an industrial point of view, changes in crude 

oil prices can directly affect the price of the products 

produced. Manufacturing requires fuel, other industrial 

raw materials, and crude oil derivatives [6]. Moreover, 

academics, investors, and the government widely use 

predicting crude oil prices to help control the risks that 

may arise later [7]. Hasan et al. [2] highlights the urgent 

need for accurate predictions of crude oil prices, which is 

crucial for researchers, businesses, industries, and 

governments. Additionally, Akil et al. [11] and Foroutan Manuscript received November 13, 2024; revised January 10, 2025; 
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and Lahmiri [12] have proposed the use of various 

machine learning models, including deep learning, to 

enhance the prediction of crude oil prices. With the various 

reasons for the need to predict the price of crude oil, this 

research was conducted as one of the renewals of science, 

complementing the shortcomings in previous studies and 

trying to find a more accurate model from previous studies. 

Previous research used machine learning algorithms and 

artificial neural networks to predict crude oil prices. Some 

of the algorithms that have been used in previous studies 

are random forest [2], support vector machine or support 

vector regression [2, 7], artificial neural network [13], long 

short-term memory [6, 7], gated recurrent unit [7], 

convolutional neural network [7], extreme gradient 

boosting [14], and several other algorithms that will be 

described in Section II.  

Prior research has employed Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) algorithms to 

forecast crude oil prices. These sophisticated machine 

learning techniques are especially effective in analyzing 

time series data because they capture complex temporal 

dependencies. This research indicates that both LSTM and 

GRU models are adept at identifying underlying patterns 

and trends within historical price data, thereby facilitating 

more accurate forecasting. The models accurately predict 

crude oil prices with low error rates. LSTM and GRU 

algorithms can overcome vanishing gradients. 

Furthermore, the model implements the gate concept, 

allowing it to retain important information and eliminate 

less significant data, ultimately enhancing the quality of 

the features. So, we decided to use the LSTM and GRU 

models in this research.  

Guo et al. [7] conducted a comprehensive review that 

strongly supports the selection of this model by providing 

insightful findings on the predictive performance of 

various models for crude oil prices. The review highlights 

that Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) models demonstrate a remarkable 

ability to forecast crude oil prices with significantly lower 

error rates than existing models. Researchers observe this 

enhanced accuracy regardless of whether the models 

incorporate dynamic variable factors known to influence 

crude oil prices or operate independently of these 

variables.  

The implications of this finding suggest that LSTM and 

GRU models offer a more reliable approach for 

stakeholders interested in forecasting crude oil price 

movements in an increasingly volatile market. This 

research proves this statement by examining the 

performance of models with and without influencing 

factors, showing that the resulting error value has a 

relatively small difference. The results of his research 

prove this statement by examining the performance of 

models with and without influencing factors, showing that 

the resulting error value has a relatively small difference. 

The results of this study prove the results of the review 

conducted. In addition, research conducted by Busari and 

Lim [15] shows that the hybrid model can provide a 

smaller error value than the single model. So, after 

evaluating several aspects, we decided to use the LSTM 

and GRU models as feature extractors for this study. The 

reliability of the LSTM and GRU algorithms is proven in 

other cases, such as COVID-19 prediction [16], stock price 

prediction [17], emerging stock market prediction [18], 

livestock product price forecasting [19], and remaining 

useful prediction for lithium-ion batteries [20]. 

We selected the regressor model for this study based on 

a review of prior research in the literature. This study 

showed that the Extreme Gradient Boosting (XGB), 

Random Forest (RF), and Support Vector Regression 

(SVR) models worked well in predicting crude oil prices 

in previous studies. In addition, these regressor algorithms 

have never used this method in previous studies. 

The main objectives of this research are: 

• Performing feature extraction on crude oil price 

time series data using the LSTM and GRU 

algorithm approaches. 

• Perform regression modeling with machine 

learning to predict crude oil prices with features 

extracted from LSTM and GRU. 

• Comparing the performance evaluation of models 

with LSTM-machine learning and GRU-machine 

learning and finding the best model to predict 

crude oil prices. 

This paper consists of five sections: Section I discusses 

an introduction to crude oil, the purpose of the research, 

and why this research is essential; Section II will review 

the literature study done in previous research; Section III 

will discuss the algorithm’s basic theory and the research 

method; Section IV will discuss the results of this research 

in detail; and Section V will discuss the conclusion of the 

research that has been done. 

II. LITERATUR REVIEW 

Before conducting this research, a literature review was 

conducted on previous research relevant to the topic of this 

research, which is crude oil price forecasting. The 

literature review was conducted to determine what 

problems have been discovered in previous studies and 

was a consideration in determining the method to be used 

in this study. 

A study carried out by Busari and Lim [13] compared 

the AdaBoost-LSTM, AdaBoost-GRU, single LSTM, and 

single GRU models to predict crude oil prices. The dataset 

used in this study is the daily price of crude oil from 

October 2009 to June 2021. Daily data is used in this study 

because it is possible to predict oil prices daily using daily 

price data. The results of this study show that the 

AdaBoost-GRU model has the best performance compared 

to other models, with an MAE value of 1.4164. 

Zhang and Hong [6] and Maulana et al. [21] tested the 

LSTM algorithm to predict crude oil prices. In Ref. [6], the 

LSTM algorithm outperformed the ARIMA 

(Autoregressive Integrated Moving Average) and ANN 

(Artificial Neural Network) models for testing on short-

term, medium-term, and long-term data. Likewise, the 

research results of Maulana et al. [21] show that the LSTM 

model created can predict crude oil prices, as evidenced by 

the small error value produced. 
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Gulati et al. [13] predicted crude oil prices using a 

hybrid artificial neural network model and particle swarm 

optimization. This algorithm was chosen because the ANN 

algorithm can deal with large amounts of dynamic, non-

linear, and noisy data. Meanwhile, the PSO (Particle 

Swarm Optimization) model was chosen to find the 

optimal weight and bias for the ANN model. The 

performance of the proposed model in this study is 

compared with the performance of a single ANN model. 

Both models are evaluated using the MAE value, where it 

is concluded that the ANN-PSO model performs better 

than a single ANN with an RMSE (Root Mean Square 

Error) value of 1.76. 

Other algorithms used in Ding et al. [22] are random 

forest, XGBoost, and LightGBM. This research proposes 

an ensemble model using the three types of tree-based 

algorithms. The results of this study show that the 

proposed hybrid model has the best performance compared 

to the XGB model. Furthermore, Yang et al. [14] also 

applied the XGB algorithm to predict crude oil prices. In 

this study, the performance of the models was compared 

with Autoregressive Integrated Moving Average 

(ARIMA), Autoregressive Integrated Moving Average 

Exogenous (ARIMAX), Random Forest, and XGB 

models. The results of this study show that the XGB 

algorithm can predict crude oil prices well compared to 

other models for data with lags 0, 7, and 10. 

Research conducted by He et al. [23] proposed the Time 

Delay Embedding-Convolutional Neural Network (TDE-

CNN) method to predict crude oil prices. This study uses 

TDE to transform data into a two-dimensional phase space. 

On the other hand, the CNN model is used to extract the 

most substantial features of the data by utilizing this 

algorithm’s hierarchical feature extraction capabilities. 

Researchers compared the proposed model with random 

walk and ARMA models, where the proposed model 

performs better than the other two models. 

Jahandoost et al. [24] applied the LSTM-AM (Long 

Short-Term Memory-Attentional Mechanism), GRU-AM 

(Gated Recurrent Unit-Attentional Mechanism), CNN-

LSTM-AM (Convolutional Neural Network-Long Short-

Term Memory-Attentional Mechanism), and CNN-GRU-

AM (Convolutional Neural Network-Gated Recurrent 

Unit-Attentional Mechanism) methods. In this study, 39 

other features were used to predict crude oil prices with the 

proposed hybrid model. The results show that the CNN-

GRU-AM model is better than the other three.  

Aldbagh et al. [18] researched crude oil price prediction 

using several algorithms, including CNN-LSTM, LSTM, 

CNN, SVM (Support Vector Machine), and ARIMA. The 

research scheme is to test for one-step and multi-step 

models. The study shows that the CNN-LSTM model 

predicts oil prices better than other models for one-step and 

multi-step testing. 

Guo et al. [7] using RNN (Recurrent Neural Network), 

LSTM, GRU, SVR, MLP (Multi-Layer Perceptron), CNN, 

and BP (Backpropagation) in this study. The dataset used 

in this study is the price of Chinese crude oil from March 

2018 to February 2023. In addition to this data, the South 

China commodity index data, related crude oil futures 

consist of West Texas Intermediate (WTI) crude oil, Brent 

crude oil, Shanghai Composite Index, and China Securities 

Index (CSI) Energy Index. The results of this study show 

that the GRU model has a minimum prediction error and 

an estimated value close to the actual value. 

Sen and Choudhury [25] conducted research related to 

crude oil price prediction using a deep learning approach. 

The algorithms used in this research are Long Short-Term 

Memory and Gated Recurrent Unit, where the 

hyperparameters of the two algorithms are optimized using 

Particle Swarm Optimization. This research uses 

quantitative methods to study time series data and build 

mathematical models. The results of this study show that 

the proposed model, namely GRU using Particle Swarm 

Optimization, has the most minor error value compared to 

several models from other researchers. The model in this 

study was evaluated using RMSE, where the best model 

could provide an error value of 1.23. 

Hasan et al. [2] conducted research to predict crude oil 

prices using ensemble learning models. The algorithms 

used in this research are lasso regression, bagging lasso 

regression, boosting, random forest, and support vector 

regression. The researcher proposed a model named 

LKDSR, which involves linear regression, KNN (K-

Nearest Neighbors), SVR, decision tree regression, and 

ridge regression algorithms. The results of this study 

indicate that the proposed model has good performance. 

Research conducted by Akil et al. [11] compared SVM, 

SGD (Stochastic Gradient Descent)-based SVM, and 

SMO (Sequential Minimal Optimization)-based SVM 

algorithms to predict daily, weekly, and monthly crude oil 

prices. The results of this study show that the SMO-based 

SVM model performs best compared to other models. 

According to the literature review findings, researchers 

have demonstrated that the LSTM and GRU algorithms 

effectively forecast crude oil prices with a relatively low 

error margin close to the actual prices [6, 7, 15, 21, 25]. 

The LSTM and GRU algorithms benefit models by 

mitigating the vanishing gradient problem, allowing them 

to retain information over extended periods [26]. This 

capability proves especially useful for analyzing historical 

trends in crude oil prices. Because the algorithm can store 

long-term valuable information for analyzing trends in the 

dataset, and previous research demonstrates the efficacy of 

LSTM and GRU algorithms in predicting these prices, we 

have chosen to use these algorithms as feature extractors 

in this study. 

Additionally, based on the literature, we identified 

Extreme Gradient Boosting (XGB), Random Forest (RF), 

and Support Vector Regression (SVR) as regressors, as 

past models have shown that they can successfully predict 

crude oil prices. We will evaluate the models developed in 

this study to determine which one performs the best. In 

addition, the model proposed in this study has never been 

applied in previous studies. To facilitate a compelling 

comparison between the proposed model and the most 

successful model identified in previous research, we have 

provided comprehensive details in Table I. This table 

presents the types of model utilized and the performance 

metrics associated with the top-performing models. 
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TABLE I. PERFORMANCE COMPARISON FROM PREVIOUS RESEARCH 

Reference Dataset and Time Period Proposed Method Result 

[15] 
Crude oil price from 2009 to 

2021. 

• AdaBoost-LSTM 

• AdaBoost-GRU 

The best model is AdaBoost-GRU with MAE 1.4164 and RMSE 

2.4602. 

[6] 
Brent and WTI Crude oil 

price from 1986 to 2021 

• ANN 

• ARIMA 

• LSTM 

The best model for long-term prediction is LSTM. The MSE score for 

the WTI price forecasting model is 0.122 and 0.420 for MAE, while the 

MSE score for the Brent price forecasting model is 0.086 and 0.284 for 

MAE. 

[21] 
Brent crude oil price from 

1987 to 2021 
LSTM 

The best model uses 50 LSTM units, 2 lookbacks, a batch size of 104, 

and an epoch of 432 times. The RMSE test value is 1.27055, and the 

MAE value is 0.92827. 

[13] 
Crude oil price from 2019 to 

2022 

• ANN 

• ANN-PSO 

The best model is ANN-PSO, with a value of 1.79 for the RMSE and 

0.017 for the MAPE. 

[22] 
Crude oil price from 2018 to 

2021 

• ARIMA-BP 

• Random forest 

• XGBoost 

• LightGBM 

• SVR 

• RF-XGB-LGBM 

The best model is RF-XGB-LGBM, with 13.7417 MAE on the test set. 

[14] 
China’s Shanghai crude oil 

from 2018 to 2023 

• ARIMA 

• ARIMAX 

• Random Forest 

• XGBoost 

The best model had a 10-day lag. This model gives 16.6583. 

[23] Crude oil price 

• TDE-CNN 

• ARMA 

• RW 

The best model was TDE-CNN, with an MAE value of 3.8928×10−4. 

We found that the model’s performance is sensitive to the chosen 

hyperparameter. 

[24] 
WTI crude oil price from 

2008 to 2023 

• LSTM-AM 

• GRU-AM 

• CNN-LSTM-AM 

• CNN-GRU-AM 

The best model is CNN-GRU-AM, with a test MAE score of 1.5534. 

[27] 
WTI crude oil price from 

2013 to 2022 

• CNN-LSTM 

• CNN 

• SVM 

• ARIMA 

The best model is CNN-LSTM, with an RMSE score of 2.18. 

[7] 
China crude oil price from 

2018 to 2023 

• RNN 

• LSTM 

• GRU 

• SVR 

• MLP 

• CNN 

• BP 

The best model for forecasting crude oil prices with 5- and 10-day steps 

is GRU. The MAE for the 5-day step is 2.3599, and for the 10-day step, 

it is 2.3961. 

[25] 
Crude oil price from 1983 to 

2021 

• LSTM 

• GRU 

• PSO-LSTM 

• PSO-GRU 

The best model from this research was PSO-GRU, which forecasted the 

crude oil price with a 4-day lag, MAE 0.91, 1.23 for the RMSE score, 

and R-squared 0.9939. 

[2] 
Brent and WTI crude oil 

price from 1987 to 2022 
LKDSR 

The model with the best performance for predicting the daily price is 

the one that gives 0.9954 for MAE, 0.00010 for MSE, and 0.99 for R-

squared. 

[11] 

WTI crude oil price from 

1986 to 2023, and Brent 

crude oil price from 1987 to 

2023 

• SVM 

• SMO based SVM 

• SGD based SVM 

The model performs better using Brent crude oil price, and the best 

model was for predicting the daily dataset. The best model was SGD-

based SVM with an MSE value of 4.546300 and R-squared of 0.98921. 

 

III. MATERIALS AND METHOD 

A. Algorithm Basic Theory 

1) Long Short-Term Memory (LSTM) 

The LSTM algorithm is a development of the RNN 

algorithm that aims to overcome the long-term dependency 

experienced by the RNN algorithm [28]. Fig. 1 shows the 

chained architecture of the LSTM algorithm. This 

algorithm consists of three types of gates: forget gate, input 

gate, and output gate. The other components are hidden 

state, cell state candidate, and cell state. 

The core of the LSTM algorithm is the cell state, a 

component that acts as a global memory or an aggregate of 

the LSTM network across time steps. The first step in the 

LSTM algorithm is to determine what information will be 

discarded from the cell state [28]. This determination is 

made based on calculations derived from Eq. (1). If the 

value is 0, then the information will not be used entirely; 

otherwise, if it is 1, it will be used entirely. 

 𝑓𝑡 =  𝜎 (𝑊𝑓 . [ℎ𝑡−1 , 𝑥𝑡]  + 𝑏𝑓)  (1) 

 

Journal of Advances in Information Technology, Vol. 16, No. 8, 2025

1103



  

Fig. 1. Long short-term memory architecture [28]. 

Next, it will determine the information stored in the cell 

state. This stage consists of two processes. The first 

process is at the input gate (𝑖𝑡), where the value will be 

updated, as described in Eq. (2). Meanwhile, the second 

process is determining the candidate ( �̃�𝑡 ) that will be 

stored in the cell state, as described in Eq. (3). 

 𝑖𝑡 =  𝜎 (𝑊𝑖 . [ℎ𝑡−1 , 𝑥𝑡]  + 𝑏𝑖)  (2) 

 �̃�𝑡 = tanh(𝜎 (𝑊𝑐 . [ℎ𝑡−1 , 𝑥𝑡]  + 𝑏𝑐)) (3) 

After calculating the forget gate, input gate, and cell 

state candidate values, the next step is to update the cell 

state (𝐶𝑡) using Eq. (4). The previous information is added 

to the new information. 

 𝐶𝑡 =  𝑓𝑡 ⊙ 𝐶𝑡−1 + �̃�𝑡 ⊙ 𝑖𝑡  (4) 

The last stage in this algorithm is to determine the 

output gate value (𝑜𝑡) and calculate the hidden state (ℎ𝑡). 

Eq. (5) shows the operation on the output gate, and Eq. (6) 

shows the operation of determining the hidden state value. 

 𝑜𝑡 =  𝜎 (𝑊𝑜  × [ℎ𝑡−1 , 𝑥𝑡]  + 𝑏𝑜)  (5) 

 ℎ𝑡 =  𝑜𝑡 ⊙ tanh(𝑐𝑡)  (6) 

2) Gated Recurrent Unit (GRU) 

The GRU algorithm is proposed to improve the 

performance of the RNN algorithm, which experiences 

vanishing gradient problems [26]. In this algorithm, the 

forget gate and input gate are converted into one gate, the 

update gate [28]. The GRU algorithm replaces the cell 

state with a candidate activation vector that will be updated 

using the reset gate and update gate. The architecture of 

the GRU algorithm is shown in Fig. 2. 

 

 

Fig. 2. Gated recurrent unit architecture [28]. 

The update gate controls how much information from 

the previous hidden state is brought to the current hidden 

state [29, 30]. This algorithm uses several equations, 

namely Eq. (7) to calculate the update gate, Eq. (8) to 

calculate the reset gate, Eq. (9) to determine the candidate 

hidden state, and Eq. (10) to calculate the hidden state. 

 𝑧𝑡 =  𝜎 (𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ〈𝑡−1〉)  (7) 

 𝑟𝑡 =  𝜎 (𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ〈𝑡−1〉)  (8) 

 ℎ̃𝑡 =  𝑡𝑎𝑛ℎ (𝑊𝑥𝑡 + 𝑟𝑡 ⨀ 𝑈ℎ〈𝑡−1〉)  (9) 

 ℎ𝑡 = (1 − 𝑧𝑡)ℎ(𝑡−1) + 𝑧𝑡 ℎ̃𝑡  (10) 

3) Extreme Gradient Boosting (XGB) 

Extreme gradient boosting is an ensemble learning 

method consisting of n decision trees. The new tree is 

updated iteratively using the gradient algorithm and 

residuals from the previous tree to provide the most 

accurate results and reduce residuals [14]. 

4) Random forest 

Random forest is an ensemble machine learning method 

that uses a decision tree framework [14]. The random 

forest comprises a bagging algorithm and CART 

trees [14]. Theoretically, each tree is independent, so it 

does not depend on other trees, and each tree can be trained 

simultaneously without taking much time [22]. The trees 

in the model will have different internal structures and 

information. The forecasting results will be obtained based 

on the voting results so that the forecasting results can 

reach the optimal number [22]. 

5) Support vector regression  

The support vector regression algorithm is a 

development algorithm of the support vector machine, 

originally used to classify binary objects. This algorithm 

was developed to predict numerical values [31]. The goal 

of this algorithm is to find the best similarity that can 
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accurately predict the target variable while reducing the 

level of complexity to avoid overfitting results. The dataset 

will be aggregated into a hyperplane to reduce the potential 

for overfitting and improve the machine’s generalization 

ability [11]. 

B. Research Method 

The research flow is described in Fig. 3. This research 

begins by conducting a literature study to identify gaps in 

previous research and understand the research to be carried 

out. Furthermore, problem formulation will be carried out 

to determine the objectives and make the scope of 

research. Furthermore, the dataset collection process is 

carried out, namely collecting Brent crude oil price data 

from January 2004 to April 2024. Further explanation of 

the dataset is described in subsection 1). 

After the dataset is collected, a preprocessing stage is 

carried out to ensure the data quality used. The data ready 

for use is then used to build a crude oil price forecasting 

model. The model-building process is divided into LSTM-

machine learning and GRU-machine learning; each flow 

will be described more clearly in subsections 2) to 3). In 

this study, the LSTM and GRU algorithms served as 

feature extractors. Machine learning algorithms used as 

regressors in this research are Extreme Gradient Boosting 

(XGB), Random Forest (RF), and Support Vector 

Regression (SVR). The model will be assessed using Mean 

Absolute Error (MAE) and R-squared (R2) Score. The last 

stage of this research is to compile the research results into 

a paper to explain the results of the research that has been 

done. 

 

 

Fig. 3. Research flow for predicting the price of crude oil using LSTM-

machine learning and GRU-machine learning. 

1) Dataset and descriptive statistic 

In this study, the Brent daily crude oil price dataset for 

the period 1 January 2004 to 30 April 2024 is used. This 

dataset consists of two variables, namely date variables 

and price variables. In this research, the dataset will be 

divided into training data, validation data, and testing data 

with a proportion of 80:10:10. Table II shows the 

proportion of division in the dataset in this study. In this 

study, window sizes with sizes 1 and 5 will be used; this 

refers to research conducted by Maulana et al. [21], where 

it is stated that the smaller the number of window sizes or 

window sizes used, the better the resulting model will be. 

TABLE II. DATASET SHARING PROPORTION 

Dataset Split Train set Val set Test set 

Amount and 

Percentage 

4243 

80% 

530 

10% 

530 

10% 

Period 
02-01-2024 to 

06-04-2020 

07-04-2002 to 

18-04-2022 

19-04-2022 to 

30-04-2024 

 

The purposive sampling method is applied to determine 

the dataset period used in this study. In 2003, the invasion 

of Iraq led to the depletion of crude oil reserves for 

production. This event resulted in reduced oil reserve 

capacity, which triggered increased crude oil prices. 

Therefore, the initial data used in this study is the oil price 

data in 2004, before the significant increase or change in 

the price of crude oil. The price change is presented in 

Fig. 4, utilizing the price of crude oil as of April 2024 as 

the data endpoint for the study. 

 

 

Fig. 4. Geopolitical and economic events that triggered crude oil price 

changes from 1968 to 2024 [32]. 

Between 2004 and 2024, the price of Brent crude oil 

reached its lowest point on April 21, 2020, at 9.1200 USD 

per barrel and attained its highest value on July 3, 2008, at 

143.9500 USD per barrel. The standard deviation of this 

dataset is recorded at 25.3477 USD per barrel, while the 

average price of crude oil during this period is 74.0264 

USD per barrel. Table III provides a detailed overview of 

the descriptive statistics for this dataset. 

TABLE III. STATISTICS ON BRENT CRUDE OIL PRICE 2004–2024 

Statistic Descriptions Values 

Count 5153 

Mean 74.0264 

Standard Deviation 25.3477 

Minimum Value 9.1200 

25% 54.5300 

50% 70.7200 

75% 93.5200 

Maximum Value 143.9500 
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2) Preprocessing 

The preprocessing stage conducted in this study 

effectively removes extraneous noise from the dataset. The 

noise identified consists of dot punctuation, which is 

present in 150 rows of data. We employ a systematic row 

elimination approach to mitigate this issue and effectively 

remove the identified noise.  

TABLE IV. ADF TEST ON BRENT CRUDE OIL PRICE FROM 2004–2024 

Metrics Values 

ADF Statistic score −2.4770 

p-value 0.1211 

Critical Values 1% −3.4316 

Critical Values 5% −2.8621 

Critical Values 10% −2.5671 

 

Using the Augmented Dickey-Fuller (ADF) test, we 

conducted stationarity testing on the dataset. The results 

yielded an ADF statistic of −2.4770 and a p-value of 

0.1211. Additionally, we present the critical values at the 

1%, 5%, and 10% significance levels in Table IV. The 

discoveries indicate that the ADF statistic exceeds the 

critical value, leading us to accept the null hypothesis. 

Therefore, we conclude that the dataset exhibits non-

stationary behaviour, as the p-value supports this 

conclusion by remaining above the significance threshold 

of 0.05. 

To assess stationarity, we evaluate the Augmented 

Dickey-Fuller (ADF) statistic and examine the 

autocorrelation using the Autocorrelation Function (ACF) 

plot in Fig. 5. Additionally, we analyze the Partial 

Autocorrelation Function (PACF) plot shown in Fig. 6. 

These analyses aim to identify potential trends or seasonal 

patterns within the data. The ACF plot in Fig. 5 reveals a 

statistically significant positive correlation at the initial 

lag, where all data points exceed the established 

confidence intervals. Furthermore, the gradual decline in 

ACF values suggests a diminishing correlation over time, 

indicating a prevailing trend within the dataset. This slow 

attenuation also implies that historical crude oil prices 

influence the time series over an extended period. 

Additionally, the absence of periodic spikes at specific 

intervals in Fig. 5 supports the conclusion that the crude 

oil price dataset from 2004 to 2024 lacks any seasonal 

patterns. The insights derived from the PACF graph in 

Fig. 6 further affirm that this dataset exhibits a non-

stationary trend while simultaneously confirming the 

absence of seasonal characteristics. 

 

 

Fig. 5. Autocorrelation test for the price of brent crude oil from 2004–2024. 

 

Fig. 6. Partial autocorrelation test for the price of Brent crude oil from 2004–2024. 

Journal of Advances in Information Technology, Vol. 16, No. 8, 2025

1106



To assess the presence of noise in the data, a box plot 

visualization, as illustrated in Fig. 7, was utilized. The 

results of this visualization indicate that there is no noise 

in the data. Therefore, it can be concluded that the loss 

metrics to be considered in this study are the Mean 

Absolute Error (MAE) and the R-squared (R²) Score. 

Additionally, the normalization process is performed using 

the Min-Max Scaler algorithm, as shown in Eq. (11). 

 𝑥𝑖
′ =  

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

  (11) 

 

Fig. 7. Visualization of the distribution of Brent crude oil price data 

from 2004–2024. 

3) LSTM-machine learning 

Data that has undergone preprocessing will be used to 

build the LSTM machine learning model. Fig. 8 shows the 

flow of the model experiment. The testing phase begins 

with training the feature extraction model and ends with 

the model evaluation process using test data. 

 

 

Fig. 8. Experiment flow of LSTM-machine learning. 

This research will test the LSTM feature extraction 

model using the hyperparameters listed in Table V. These 

hyperparameters will be tuned until the most appropriate 

feature extraction model is found. In this study, we actively 

tune the number of LSTM units to capture the temporal 

dependencies in the input data effectively. We also adjust 

the dropout rates to prevent excessive co-adaptation within 

the model. A correlation exists between the number of 

LSTM units and dropout; as the neuron count increases, 

the model’s capacity expands, raising the risk of 

overfitting. Therefore, increasing the dropout rate is a 

strategy to mitigate this risk.  

Additionally, we focus on fine-tuning the epoch 

hyperparameter to determine the optimal number of 

complete passes through the training data during the 

training process. We also adjust the batch size to define the 

number of training samples processed before updating the 

model’s weights. Utilizing a smaller batch size can lead to 

noisier updates. These considerations drive the selection of 

hyperparameters for tuning in both LSTM and GRU 

models, aiming to identify the most effective feature 

extractor model. The LSTM hyperparameters tuned to 

build the feature extractor model in this study are listed in 

Table V. 

TABLE V. THE LSTM HYPERPARAMETERS ARE TO BE TUNED 

Hyperparameters Values 

Unit LSTM [5, 10] 

Dropout [0.05, 0.01, 0.1, 0.2] 

Epochs [5, 10] 

Batch Size [32, 64] 

 

Next, the training will be carried out on regressor 

models: extreme gradient boosting, random forest, and 

support vector regression. Table VI lists the 

hyperparameters that will be tested on each regressor 

algorithm. The XGBoost (XGB) model uses the 

hyperparameter known as the number of estimators, which 

determines how many decision trees the model constructs 

during the modelling process. A suboptimal number of 

estimators may result in insufficient boosting rounds to 

capture complex patterns within the data adequately. In 

contrast, an excessively high number may lead to 

overfitting. Therefore, it is essential to conduct 

hyperparameter tuning to identify the optimal value for 

n_estimators. 

In the Random Forest model, the hyperparameters that 

undergo tuning include n_estimators, criterion, maximum 

depth, and maximum features. The rationale for tuning 

n_estimators in the Random Forest model parallels that of 

the XGB model, as both utilize a tree-based approach. 

Adjusting these parameters can minimize the Mean 

Absolute Error (MAE) during the training and validation 

phases. The maximum depth parameter limits the tree 

depth permitted by the model. A too large depth may cause 

the model to capture noise and specific patterns unique to 

the training dataset. The maximum features parameter 

indicates the upper limit on the number of features the 

algorithm considers when dividing tree segments. 
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TABLE VI. THE REGRESSOR HYPERPARAMETERS ARE TO BE TUNED  

Hyperparameter XGB RF SVR 

N_estimators [10, 25, 50, 100, 150] [10, 25, 50] N/A 

Criterion N/A [Absolute error] N/A 

Max depth N/A [None, 10, 25, 50] N/A 

Max features N/A [auto, sqrt, log2] N/A 

C N/A N/A [0.01, 0.1, 1, 10, 100] 

Epsilon N/A N/A [0.01, 0.1, 1, 10, 100] 

Gamma N/A N/A [scale, auto] 

Kernel N/A N/A [rbf] 

 

In the Support Vector Regression (SVR) model, the 

hyperparameters C, epsilon, and gamma require tuning. 

The tuning of the C parameter is critical for balancing the 

minimization of error values in the training dataset while 

ensuring a smooth regression function. Epsilon represents 

the margin of tolerance surrounding the actual target value, 

within which predictions incur no penalty. Conversely, the 

gamma parameter governs the influence of individual 

training examples, with a higher gamma leading to a more 

localized area of influence for each data point. 

The hyperparameter value utilized in this study’s feature 

extractor model is determined by analyzing the results 

from experiments conducted with single Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) 

models. Meanwhile, the hyperparameters employed in the 

regressor model are selected based on the outcomes of 

hyperparameter tuning via the grid search algorithm. In 

this study, the researchers implement early stopping to 

prevent overfitting. 

4) GRU-machine learning 

We will carry out this procedure using the preprocessed 

dataset. We will train the feature extractor model to create 

a GRU feature extraction model. Now, we will train the 

regressor model. We will validate this model before 

evaluating it. If the model achieves satisfactory results, we 

will proceed with model testing; if not, we will perform 

hyperparameter tuning. The last stage of this scheme is to 

evaluate the model using test data. The process of building 

the GRU-machine learning model is depicted in Fig. 9. We 

will record the results from this test to compare them with 

other models and identify the best one. 

 

 

Fig. 9. Experiment flow of GRU-machine learning. 

In this study, the GRU model will be trained with the 

hyperparameters listed in Table VII. After training the 

GRU model, the extracted data features will be used to 

train the regressor model. The parameters used for training 

the regressor model are listed in Table VI. 

TABLE VII. THE GRU HYPERPARAMETERS ARE TO BE TUNED  

Hyperparameters Values 

Unit GRU [5, 10] 

Dropout [0.05, 0.01, 0.1, 0.2] 

Epochs [5, 10] 

Batch Size [32, 64] 

 

5) Model evaluation 

The model that has been made in this research will be 

evaluated using the Mean Absolute Error (MAE) and R2 

Score loss functions. The reason for using MAE to 

evaluate the results of this study refers to research 

conducted by Jadon et al. [33] that data that has many 

outliers is more suitable to be evaluated using Mean 

Squared Error, while data that has few outliers is more 

suitable to be evaluated using Mean Absolute Error. 

After checking the outlier data, it is stated that this data 

does not have outliers, so the loss function used is Mean 

Absolute Error. Eq. (12) is used to calculate the MAE 

value, while Eq. (13) is used to calculate the R2 Score 

value. 

 𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖|

𝑁
𝑖=1   (12) 

 𝑅2 𝑆𝑐𝑜𝑟𝑒 =  1 − 
∑(𝑦𝑖−𝑦�̂�)2

∑(𝑦𝑖− 𝑦𝑖̅̅̅)2  (13) 

IV. RESULT AND DISCUSSION 

A. LSTM-Machine Learning 

The research results for the LSTM machine learning 

method will be divided into three subsections: LSTM-

XGB, LSTM-RF, and LSTM-SVR. Each model will 

consist of two schemes for testing with window sizes 1 and 

5. 

Before forecasting using the LSTM-machine learning or 

GRU-machine learning methods, researchers first tested 

the LSTM and GRU models to predict crude oil prices. 

From the results of this experiment, the best 

hyperparameters were obtained to be applied to the LSTM 

feature extractor model. The best hyperparameters are 

listed in Table V. In the table, two models will be used as 

a comparison to obtain the best model when the LSTM-

machine learning model is built. 
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TABLE VIII. HYPERPARAMETERS FOR THE LSTM FEATURE 

 EXTRACTOR 

Window size Model Unit Dropout Epochs Batch Size 

1 
1 10 0.01 10 32 

2 10 0.05 10 32 

5 
1 5 0.01 10 32 

2 10 0.01 10 32 
 

1) LSTM-XGB 

a) Model experiment with window size 1 

The feature extraction model was built using the 

hyperparameters listed in Table VIII to perform this 

experiment. The regressor model utilizes a 

hyperparameter, the number of estimators, configured to 

25. In this study, five experiments were carried out on each 

model, and the best model was obtained with the MAE 

error value and R2 Score at the training and testing stages. 

We also considered the time execution, which is all the 

time needed for feature extraction and regression 

execution for each model. All these criteria are listed in 

Table IX. 

Based on the error value and R2 Score, these two models 

have the same error value, so the execution time of the 

model is considered. The execution time needed by 

LSTM-XGB 2 is longer than that of LSTM-XGB 1, which 

only takes 0.22127 seconds using CPU (Central 

Processing Unit), and 0.12286 seconds using GPU 

(Graphics Processing Unit). Based on the results of this 

analysis, it is decided that the LSTM-XGB 1 is the best 

model that can be generated in the LSTM-XGB research 

for a window size value of 1. 

TABLE IX. MODEL EVALUATION LSTM-XGB FOR WINDOW SIZE 1 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 

R2 

Score 
MAE 

Difference of Standard 

Deviation with MAE 
R2 Score 

LSTM-XGB 1 1.053 24.2947 0.997 1.605 23.7427 0.971 0.23060 0.14958 

LSTM-XGB 2 1.053 24.2947 0.997 1.605 23.7427 0.971 0.22127 0.12286 

 

b) Model experiment using window size 5 

The hyperparameters to be used in the feature extractor 

model are listed in Table VIII. As for the hyperparameters 

used in the regressor model, there are n-estimators of 25. 

The best test results from this experiment are listed in 

Table X. 

TABLE X. MODEL EVALUATION LSTM-XGB FOR WINDOW SIZE 5 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 

R2 

Score 
MAE 

Difference of Standard 

Deviation with MAE 

R2 

Score 

LSTM-XGB 3 1.486 23.8617 0.994 2.162 23.1857 0.950 0.15691 0.15234 

LSTM-XGB 4 1.558 23.7897 0.994 2.229 23.1187 0.947 0.28134 0.20633 

 

The hyperparameters to be used in the feature extractor 

model are listed in Table V. As for the hyperparameters 

used in the regressor model, there are n-estimators of 25. 

The best test results from this experiment are listed in 

Table XX. Based on Table X, we have seen that the MAE 

error value for LSTM-XGB 3 was lower than the model 

LSTM-XGB 4. This means that model LSTM-XGB 3 

performs better in predicting crude oil prices in this 

scheme. We can also see that model LSTM-XGB 3 has the 

shortest execution time. So, for this scheme, we can 

conclude that model LSTM-XGB 3 was the best model. 

2) LSTM-RF 

a) Model experiment with window size 1 

In Table VIII, you can find a comprehensive list of the 

hyperparameters used in developing the feature extractor 

model. This table presents the values and settings we 

selected to enhance the model’s performance. Similarly, 

Table XI presents the hyperparameters utilized for the 

regressor model, detailing the configurations contributing 

to its predictive accuracy. Each table is a valuable 

reference for understanding the distinct parameters 

influencing the respective models. 

The LSTM-RF model tested in this study will use the 

best hyperparameters of the feature extractor and 

regressor. Based on Table XII, the execution time required 

by the LSTM-RF 1 model is less than that of the LSTM-

RF 2. The MAE value produced by the LSTM-RF 2 for the 

training and testing process is smaller than that of the 

LSTM-RF 1 model. This shows that the LSTM-RF 2 has 

better performance compared to the LSTM-RF 1 model. 

TABLE XI. HYPERPARAMETERS OF THE RF REGRESSOR FOR  

WINDOW SIZE 1 

Model Criterion Max depth Max features n-estimators 

RF 1 Absolute error 10 Auto 25 

RF 2 Absolute error 10 Auto 50 
 

TABLE XII. MODEL EVALUATION LSTM-RF FOR WINDOW SIZE 1 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 

R2 

Score 
MAE 

Difference of Standard 

Deviation with MAE 

R2 

Score 

LSTM-RF 1 0.836 24.5117 0.998 1.709 23.6387 0.969 0.14247 0.14827 

LSTM-RF 2 0.831 24.5167 0.998 1.684 23.6637 0.969 0.15743 0.15390 
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b) Model experiment with window size 5 

The content of Table XIII provides a detailed overview 

of the hyperparameters used during the model 

experimentation process, particularly for configurations 

with a window size of 5. We list each hyperparameter and 

its corresponding settings, which we carefully selected to 

optimize model performance for this specific window size. 

Table XIII lists the feature extractor models that will be 

used, with the hyperparameters used being models 1 and 2 

with a window size of 5. We will pair LSTM model 1 with 

regressor model RF 3 as LSTM-RF 3 and LSTM model 2 

with regressor model RF 4 as LSTM-RF 4. 

The evaluation results of this best model are listed in 

Table XIV. Based on the error value obtained, the LSTM-

RF 4 model has the most minor error value both in the 

training and testing stages. There is a slight difference in 

MAE value between LSTM-RF 3 and LSTM-RF 4, valued 

at 0.038. This shows that the LSTM-RF 4 model can 

predict crude oil prices well because this model’s 

predictions are closer to the actual values. In terms of 

execution time using CPU, the LSTM-RF 3 model has a 

shorter execution time than the LSTM-RF 4 model. 

However, the LSTM-RF 4, has the shortest GPU execution 

time, which only takes 0.13131 seconds. In this research, 

we focused on generating the best model that can predict 

the crude oil prices to be close to the actual ones. So, we 

chose the LSTM-RF 4 as the best model for this scheme. 

TABLE XIII. HYPERPARAMETERS OF THE RF REGRESSOR FOR WINDOW 

SIZE 5 

Model Criterion Max depth Max features n-estimators 

RF 3 Absolute error 10 Log2 50 

RF 4 Absolute error 10 Auto 50 

 

TABLE XIV. MODEL EVALUATION LSTM-RF FOR WINDOW SIZE 5 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 

R2 

Score 
MAE 

Difference of Standard 

Deviation with MAE 

R2 

Score 

LSTM-RF 3 1.215 24.1327 0.996 2.264 23.0837 0.946 0.17041 0.15100 

LSTM-RF 4 1.177 24.1707 0.996 2.189 23.1587 0.948 0.27384 0.13131 

 

3) LSTM-SVR 

a) Model experiment with window size 1 

The SVR regressor hyperparameters used in the study 

for the LSTM-SVR 1 and LSTM-SVR 2 models are 

hyperparameters of the same value and are listed in 

Table  XV. The hyperparameters that will be used in the 

LSTM feature extractor model are listed in Table VIII. 

Table XVI summarizes the evaluation results for the 

best model obtained from the testing scheme. The test 

results indicate that the LSTM-SVR 1 has the shortest 

execution time while using the CPU. However, the LSTM-

SVR has the shortest execution time while using GPU. 

This process only takes 0.16645 seconds. However, upon 

examining the Mean Absolute Error (MAE) during testing, 

it becomes clear that the LSTM-SVR 2 model performs 

better. The experiments demonstrate that the LSTM-SVR 

2 model is the superior choice. 

TABLE XV. HYPERPARAMETERS OF THE SVR REGRESSOR FOR 

WINDOW SIZE 1 

Model Kernel C Epsilon Gamma 

SVR RBF 100 0.01 Auto  

 

TABLE XVI. MODEL EVALUATION LSTM-SVR FOR WINDOW SIZE 1 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 

R2 

Score 
MAE 

Difference of Standard 

Deviation with MAE 

R2 

Score 

LSTM-SVR 1 1.051 24.2967 0.997 1.560 23.7877 0.972 0.18722 0.16872 

LSTM-SVR 2 1.050 24.2977 0.997 1.558 23.7897 0.973 0.24096 0.16645 

 

b) Model experiment with window size 5 

This scheme provides a detailed overview of the 

hyperparameters specified in Table XVII. Notably, the 

regressor hyperparameter values utilized in constructing 

the LSTM-SVR 3 and LSTM-SVR 4 models are identical, 

ensuring consistency across these models. Furthermore, 

Table XVIII displays the outcomes of the model 

evaluation, highlighting the performance metrics and 

findings associated with each model configuration. 

The experiment results show that the MAE error value 

at the training and testing for LSTM-SVR 4 is smaller than 

the error value produced by LSTM-SVR 3. This means 

that LSTM-SVR 4 has the best predictions that are 

generally close to the actual price. The R2 Score value for 

this model means that the model can explain 95.0% of the 

variance in the target variable. This means the model 

captures most of the data patterns. Also, this model has the 

shortest execution time. So, we conclude that LSTM-SVR 

4 is the best model for this scheme. 

TABLE XVII. HYPERPARAMETERS OF THE SVR REGRESSOR FOR 

WINDOW SIZE 5 

Model Kernel C Epsilon Gamma 

SVR RBF 10 0.01 Auto  
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TABLE XVIII. MODEL EVALUATION LSTM-SVR FOR WINDOW SIZE 5 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 

R2 

Score 
MAE 

Difference of Standard 

Deviation with MAE 

R2 

Score 

LSTM-SVR 3 1.622 23.7257 0.993 2.248 23.0997 0.947 0.62126 0.26949 

LSTM-SVR 4 1.561 23.7867 0.994 2.186 23.1617 0.950 0.37492 0.20602 

 

From the experimental results of the LSTM-machine 

learning model for both window sizes 1 and 5, the best 

model was found, namely the LSTM-SVR 2 model, where 

this model is a model with window size 1. Although the 

MAE training value produced by the LSTM-RF 2 model is 

smaller, the MAE testing value for the LSTM-SVR 2 

model is lower than that of the LSTM-RF 2 model. This 

indicates that while the LSTM-RF 2 model performs better 

during training, the LSTM-SVR 2 model demonstrates 

superior performance during testing. The slight difference 

between the training and testing error values in the LSTM-

SVR 2 model compared to the LSTM-RF 2 model led us 

to conclude that the LSTM-SVR 2 model is the best choice 

for the LSTM-machine learning research scheme. 

The hyperparameters used to build the LSTM feature 

extraction model consist of 10 LSTM units, with a dropout 

of 0.05, 10 epochs, and a batch size 32. The 

hyperparameters used to build the regressor model are 

SVR models with RBF kernels using C of 100, epsilon of 

0.01, and gamma set to auto. 

The LSTM-SVR 2 model has an MAE error value of 

1.050 and an R2 Score of 0.997 at the training stage. The 

LSTM-SVR 2 model has demonstrated the ability to 

capture the crude oil price patterns during the training 

stage using the loss function. Therefore, it is ready to 

proceed with the validation and testing processes. In the 

testing phase, we found that the LSTM-SVR 2 model 

delivered the lowest MAE value among all the models 

evaluated. This shows that this model can capture the 

patterns in the dataset and has good generalization 

capabilities. The MAE error value obtained by this model 

at the testing stage is 1.558, and the R2 Score value on this 

model is 0.973. The slight difference in the MAE error 

value and R2 Score at the training and testing stages shows 

that this model has good performance where the model can 

explain 97.3% of the variance in the testing data, and this 

model has good stability. 

B. GRU-Machine Learning 

The research results for the GRU-machine learning 

model will be explained in subsection 1) for the GRU-

XGB model, subsection 2) for the GRU-RF model, and 

subsection 3) for the GRU-SVR model. Each of these test 

schemes will consist of two parts to explain the results of 

testing the model with windows 1 and 5. 

To determine the hyperparameters that will be used for 

feature extraction, a trial was previously conducted on the 

single GRU model, which obtained the best 

hyperparameters that provided the smallest error value at 

that time. The hyperparameters that will be used in this 

study are written in Table XIX. Furthermore, the 

hyperparameters will be used to build feature extractor 

models at window sizes 1 and 5. 

TABLE XIX. HYPERPARAMETERS FOR THE GRU FEATURE EXTRACTOR 

Window size Model Unit Dropout Epochs Batch Size 

1 
1 10 0.01 10 32 

2 10 0.05 10 32 

5 
1 5 0.05 10 32 

2 10 0.01 10 32 

 

1) GRU-XGB 

a) Model experiment with window size 1 

To build the GRU-XGB model, tests were conducted to 

find the correct number of n-estimators to obtain a model 

with the best loss value and performance. The experiment 

results show that the best hyperparameter is n-estimators 

worth 25. The results of the evaluation of the loss value 

and R2 Score of the GRU-XGB model are listed in 

Table  XX. 

TABLE XX. MODEL EVALUATION GRU-XGB FOR WINDOW SIZE 1 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 

R2 

Score 
MAE 

Difference of Standard 

Deviation with MAE 

R2 

Score 

GRU-XGB 1 1.053 24.2947 0.997 1.605 23.7427 0.971 0.14190 0.13769 

GRU-XGB 2 1.053 24.2947 0.997 1.605 23.7427 0.971 0.13969 0.14535 

 

Both models exhibit the same values for the Mean 

Absolute Error (MAE) and R² Score, indicating equal 

performance in terms of accuracy. As shown in Table XX, 

we will focus on execution time to identify the superior 

model. The GRU-XGB 2 model has the fastest execution 

time, completing its run in just 0.13969 seconds using the 

CPU. The execution times of the two models differ by only 

0.00933 seconds, reflecting a negligible gap. Despite this 

minor difference, it is clear that GRU-XGB 2 is the better 

choice based on its efficiency. 

 

b) Model experiment with window size 5 

The results of the experiment with this model are listed 

in Table XXI. From the table, it is known that the MAE 

training and testing values on the GRU-XGB 3 model are 

smaller than the GRU-XGB 3 model, while the R2 Score 

value of the GRU-XGB 3 model is greater than the GRU-

XGB 4 model. The GRU-XGB 3 model shows an ability 

to accurately predict crude oil prices. However, if you look 

at the overall execution time, the GRU-XGB 4 model is 

faster than the GRU-XGB 3 model, so it can be concluded 

that GRU-XGB 3 was the best model. 

Journal of Advances in Information Technology, Vol. 16, No. 8, 2025

1111



TABLE XXI. MODEL EVALUATION GRU-XGB FOR WINDOW SIZE 5 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 

R2 

Score 
MAE 

Difference of Standard 

Deviation with MAE 

R2 

Score 

GRU-XGB 3 1.191 24.1567 0.996 1.763 23.5847 0.965 0.18558 0.13538 

GRU-XGB 4 1.283 24.0647 0.996 1.842 23.5057 0.962 0.12516 0.14762 

 

2) GRU-RF 

a) Model experiment with window size 1 

A detailed overview of the hyperparameters used in the 

regressor model is presented in Table XXII, emphasizing 

the specific configurations that affect its performance. We 

use several key metrics to evaluate the GRU-RF model: 

the Mean Absolute Error (MAE) to assess prediction 

accuracy, the R² Score to determine the proportion of 

variance the model explains, and the execution time for 

both the feature extraction and regression processes. These 

metrics are thoroughly presented in Table XXIII, 

facilitating an in-depth comparison of the models’ 

performance. 

The experiment’s results show that the GRU-RF 2 

model requires faster execution time than the GRU-RF 1 

model. In addition, the GRU-RF 2 model has a smaller 

MAE value than the GRU-RF 1 model’s MAE value both 

in the training and testing stages. Based on the loss value 

and the resulting execution time, the GRU-RF 2 model is 

the best model in this scheme. 

TABLE XXII. HYPERPARAMETERS OF THE RF REGRESSOR FOR 

WINDOW SIZE 1 

Model Criterion Max depth Max features n-estimators 

RF 1 Absolute error 10 Log2 50 

RF 2 Absolute error 10 Auto 50 
 

TABLE XXIII. MODEL EVALUATION GRU-RF FOR WINDOW SIZE 1 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 
R2 Score MAE 

Difference of Standard 

Deviation with MAE 
R2 Score 

GRU-RF 1 0.835 24.5127 0.998 1.682 23.6657 0.969 0.23767 0.29022 

GRU-RF 2 0.833 24.5147 0.998 1.674 23.6737 0.970 0.13970 0.21146 

 

b) Model experiment with window size 5 

A detailed summary of the random forest 

hyperparameters used in the development of this model is 

provided in Table XXIV. In addition, Table XXV 

summarizes the experiments’ results, explicitly 

showcasing the two optimal models characterized by the 

lowest loss values and the shortest execution times 

observed across five trials. 

Experimental results show that the GRU-RF 4 model 

requires a longer execution time when using the CPU but 

is very fast when using the GPU. For both the training and 

testing stages, the GRU-RF 4 model’s MAE value is 

smaller than that of the GRU-RF 3 model. This shows that 

the GRU-RF 4 model is good at predicting crude oil prices 

but requires a longer time. 

TABLE XXIV. HYPERPARAMETERS OF THE RF REGRESSOR FOR  

WINDOW SIZE 5 

Model Criterion Max depth Max features n-estimators 

RF 3 Absolute error 10 Sqrt 50 

RF 4 Absolute error 10 Auto  50 

 

TABLE XXV. MODEL EVALUATION GRU-RF FOR WINDOW SIZE 5 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 
R2 Score MAE 

Difference of Standard 

Deviation with MAE 
R2 Score 

GRU-RF 3 0.908 24.4397 0.998 1.762 23.5857 0.965 0.18196 0.17584 

GRU-RF 4 0.832 24.5157 0.998 1.686 23.6617 0.969 0.23974 0.17117 

 

3) GRU-SVR 

a) Model experiment with window size 1 

The SVR regressor hyperparameters used in this scheme 

are listed in Table XV. It can be seen in Table XXVI that 

the MAE and R2 Score values at the training stage of the 

GRU-SVR 1 and GRU-SVR 2 models have the same 

value. In the testing stage, the same MAE value is 

obtained. The R2 Score value owned by the GRU-SVR 2 

model is excellent, which means that this model has a 

better generalization ability. The GRU-SVR 2 captures 

slightly more of the data patterns than GRU-SVR 1. 

However, a drawback of this model is that GRU-SVR 2 

has a longer execution time than GRU-SVR 1. So, we 

conclude that GRU-SVR 2 was the best model for this 

scheme. 

TABLE XXVI. MODEL EVALUATION GRU-SVR FOR WINDOW SIZE 1 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 

R2 

Score 
MAE 

Difference of Standard 

Deviation with MAE 

R2 

Score 

GRU-SVR 1 1.050 24.2977 0.997 1.559 23.7887 0.972 0.33088 0.15664 

GRU-SVR 2 1.050 24.2977 0.997 1.559 23.7887 0.973 0.52961 0.18173 
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b) Model experiment with window size 5 

The hyperparameters of the regressor model used in this 

scheme are the same as those listed in Table XV. The 

results of this scheme’s experiment are written in 

Table  XXVII. The MAE value produced by the GRU-

SVR 4 model is smaller than the GRU-SVR 3 model. In 

comparison, the R2 Score value of the GRU-SVR 4 model 

is excellent in both the training and testing stages. Based 

on the R2 Score value, we can conclude that this model has 

a good generalization ability. Regarding to the CPU 

execution time, the GRU-SVR 4 model has the shortest 

execution time, so it can be concluded that the best model 

for this scheme is the GRU-SVR 4 model. 

TABLE XXVII. MODEL EVALUATION GRU-SVR FOR WINDOW SIZE 5 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 
R2 Score MAE 

Difference of Standard 

Deviation with MAE 

R2 

Score 

GRU-SVR 3 1.350 23.9977 0.995 1.894 23.4537 0.961 0.23162 0.18063 

GRU-SVR 4 1.296 24.0517 0.996 1.831 23.5167 0.964 0.22139 0.19519 

 

In this scheme, six GRU-machine learning models for 

window size one and six models for window size five have 

been tested. From all the experiments conducted for the 

GRU-machine learning model scheme for window sizes 1 

and 5, the best model will be determined, and the focus 

will be on the error value generated by the model. 

The results of this study show that the GRU-RF 4 and 

GRU-RF 2 models have the slightest error value at the 

training stage, with an R2 Score value of 0.998. However, 

the evaluation results at the testing stage show that the 

GRU-SVR 2 model in the GRU-machine learning scheme 

has the smallest MAE value and the most significant R2 

Score value. The GRU-SVR 2 model has an MAE error 

value at the training stage of 1.05, with an R2 Score of 

0.997.  

This shows that the model can capture price patterns in 

the dataset. Then, the MAE value at the testing stage is 

1.559, with the largest R2 Score value among other models, 

0.973. The difference in MAE error values at the training 

and testing stages of this model shows that this model has 

a small train-test value difference. This indicates that the 

model has good performance and stability.  

The analysis results indicate that the GRU-SVR 2 is the 

most successful model produced by the GRU-machine 

learning framework. The hyperparameter used to build this 

model is one GRU layer containing 10 GRU units, a 

dropout of 0.05, epochs performed as many as 10, and a 

batch size 32. Meanwhile, the hyperparameter of the 

regressor model used is an RBF kernel type, with C 100, 

epsilon 0.01, and gamma, which is auto. 

C. Evaluation of LSTM-Machine Learning and GRU-

Machine Learning Models 

1) Model evaluation with window size 1 

This study identifies the most effective model for each 

analyzed scheme, as detailed in Table XXV. The 

evaluation encompasses Mean Absolute Error (MAE) and 

R² scores for both the training and testing phases, 

alongside considerations of execution time. Initially, the 

assessment of the training set’s loss value and R² score 

reveals that the model with the lowest MAE value is 

LSTM-RF 2. Furthermore, the models that exhibit the 

highest R² scores are LSTM-SVR 2 and GRU-RF 2. The 

testing phase results indicate that the LSTM-SVR 2 model 

demonstrates the smallest MAE value compared to the 

other models. The R² scores further substantiate that 

LSTM-SVR 2 and GRU-SVR 2 achieve the highest values. 

TABLE XXVIII. MODEL EVALUATION FOR BEST MODEL IN WINDOW SIZE 1 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 

R2 

Score 
MAE 

Difference of Standard 

Deviation with MAE 

R2 

Score 

LSTM-XGB 2 1.053 24.2947 0.997 1.605 23.7427 0.971 0.22127 0.12286 

LSTM-RF 2 0.831 24.5167 0.998 1.684 23.6637 0.969 0.15743 0.15390 

LSTM-SVR 2 1.050 24.2977 0.997 1.558 23.7897 0.973 0.24096 0.16645 

GRU-XGB 2 1.053 24.2947 0.997 1.605 23.7427 0.971 0.13969 0.14535 

GRU-RF 2 0.833 24.5147 0.998 1.674 23.7427 0.970 0.13970 0.21146 

GRU-SVR 2 1.050 24.2977 0.997 1.559 23.7887 0.973 0.52961 0.18173 

 

Based on the MAE and R2 Score values obtained by the 

model at the training and testing stages, it is known that 

the LSTM-RF 2 model is a model that has the potential to 

be the best model because it has the smallest training loss 

value and the highest R2 Score value, but for the LSTM-

SVR 2 training process which has the most minor error 

value and the highest R2 Score value.  

The data in Table XXVIII analyzes the performance of 

the LSTM-RF 2 model in predicting crude oil prices. The 

model’s predictions closely align with actual prices, 

although the Mean Absolute Error (MAE) increased by 

0.853 during testing, indicating a slight increase in 

prediction error. The R² score was nearly 1 in both the 

training and testing phases, showcasing the model’s ability 

to capture and explain data variability effectively. 

Additionally, the model’s processing time for generating 

predictions was efficient at 0.15743 seconds using CPU, 

and 0.15390 seconds using GPU, which is crucial for 

timely decision-making in crude oil trading. These results 

highlight the LSTM-RF 2 model’s effectiveness in price 

prediction. 

Journal of Advances in Information Technology, Vol. 16, No. 8, 2025

1113



The LSTM-SVR 2 model has a slightly higher error 

value than the LSTM-RF 2 model in the training stage. 

However, this model has the smallest MAE value at the 

testing stage. The MAE value at the testing stage of this 

model has increased by 0.508. The increase in the error 

value experienced by this model is slightly lower than the 

LSTM-RF 2 model. This indicates that the model performs 

well and has strong generalization abilities, enabling it to 

predict testing data with a low margin of error accurately. 

In the training phase, it is known that the model can 

explain 99.7% of data variability and capture data patterns. 

Furthermore, at the testing stage, the R2 Score value 

decreased to 97.3%, but the decrease was still within 

normal limits. Apart from the MAE value, the R2 Score 

value also shows that the model has good generalization 

ability to new data. So, based on the results of this analysis, 

it is concluded that the best model in this study is LSTM-

SVR 2. 

During the training phase, a comprehensive 

comparative graph illustrates the relationship between 

actual crude oil prices and the predictions generated by the 

LSTM-SVR 2 model, as depicted in Fig. 10. In this graph, 

the blue line effectively represents the actual price 

fluctuations of Brent crude oil, capturing its temporal 

variations. Conversely, the dashed pink line indicates the 

forecasted prices produced by the model, visually 

representing its predictive accuracy. Significantly, the pink 

line closely adheres to the trajectory of the blue line, 

indicating a substantial correlation between the model’s 

predictions and the observed actual prices. This visual 

comparison not only underscores the model’s efficacy but 

also elucidates the error values generated during the 

training process, offering valuable insights into the 

model’s performance and reliability. 

The illustration presented in Fig. 11 comprehensively 

compares the actual crude oil prices and the forecasts 

produced by the LSTM-SVR 2 model during the testing 

phase. Notably, the pink line, which signifies the model’s 

predictions, closely aligns with the blue line, representing 

the actual prices. This strong correspondence indicates that 

the model has effectively captured and predicted the 

variations in crude oil prices, demonstrating its efficacy in 

light of the preceding analytical work. 

 

 

Fig. 10. Comparison of actual prices and predictions of the LSTM-SVR 2 model at the training stage. 

 

Fig. 11. Comparison of actual prices and predictions of the LSTM-SVR 2 model at the testing stage. 

2) Model evaluation with window size 5 

Table XXVI displays the optimal evaluation results 

from various LSTM-machine learning and GRU-machine 

learning model schemes with a window size 5. The 

findings reveal that the GRU-RF 4 model is the best option 

in this category. It has the lowest Mean Absolute Error 

(MAE) values for both the training and testing phases and 

the highest R2 Score values for each phase. 
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According to the MAE and R2 Score values, it can be 

inferred that the GRU-RF 4 model can forecast crude oil 

prices that closely align with the actual prices and 

demonstrate strong generalization performance. Fig. 12 

compares the actual Brent crude oil price with the 

predicted price from the best model, GRU-RF 4. The graph 

shows that there is almost no gap between the actual price 

and the predicted price, which is supported by the MAE 

evaluation results in Table XXIX. 

 

Fig. 12. Comparison of actual prices and predictions of the GRU-RF 4 model at the training stage. 

TABLE XXIX. MODEL EVALUATION FOR BEST MODEL IN WINDOW SIZE 5 

Model 

Train Test 
Time Execution 

using CPU (s) 

Time Execution 

using GPU (s) MAE 
Difference of Standard 

Deviation with MAE 

R2 

Score 
MAE 

Difference of Standard 

Deviation with MAE 

R2 

Score 

LSTM-XGB 3 1.486 23.8617 0.994 2.162 23.186 0.950 0.15691 0.15234 

LSTM-RF 4 1.177 24.1707 0.996 2.189 23.1587 0.948 0.27384 0.13131 

LSTM-SVR 4 1.561 23.7867 0.994 2.186 23.1617 0.950 0.37492 0.20602 

GRU-XGB 3 1.191 24.1567 0.996 1.763 23.5847 0.965 0.18558 0.13538 

GRU-RF 4 0.832 24.5157 0.998 1.686 23.6617 0.969 0.23974 0.17117 

GRU-SVR 4 1.296 24.0517 0.996 1.831 23.5167 0.964 0.22139 0.19519 

 

The comparison graph presented in Fig. 13 delineates 

the relationship between actual prices and the predicted 

values generated by the GRU-RF 4 model. The close 

alignment of the two lines indicates the model’s notable 

efficacy in generalizing and accurately capturing 

underlying data patterns, resulting in price predictions that 

are in strong concordance with the observed values. This 

minor disparity between the predicted and actual prices 

underscores the model’s robustness and reliability in 

forecasting. 

 

 

Fig. 13. Comparison of actual prices and predictions of the GRU-RF 4 model at the testing stage. 

V. CONCLUSION 

This study focuses on extracting features from time 

series data of crude oil prices using LSTM and GRU 

models. In this research, we conduct a regression analysis 

using various machine-learning techniques. We apply 

extreme gradient boosting, random forest, and support 

vector regression as the regression algorithms. We 

evaluate the created model to determine which one is the 

best. 

The results of this study show that the model built using 

window size 1 has better performance than the model built 

using window size 5. The research shows that the LSTM-

Journal of Advances in Information Technology, Vol. 16, No. 8, 2025

1115



SVR 2 model performs best in this study. The MAE value 

produced by this model at the training stage is 1.050, while 

the MAE value at the testing stage is 1.558. The slight 

difference in MAE values at the training and testing stages 

shows that this model has stability. In addition, the error 

value generated by this model is relatively small, 

indicating that this model provides prediction results that 

are close to the actual price.  

We evaluated the model using Mean Absolute Error 

(MAE) and assessed its performance with the R² score. 

The R2 score at the training stage was 99.8%, and at the 

testing stage, it was 97.3%. The high R2 Score value 

produced by the model shows that it can explain almost all 

the variations in the dataset very well. The execution time 

required by the LSTM-SVR 2 model, whether CPU or 

GPU, is notably efficient, with execution times 

consistently remaining below 0.5 s. Based on the two types 

of evaluations conducted and their respective execution 

times, we conclude that the model demonstrates strong 

performance. It generates predicted prices that closely 

align with actual prices and exhibits robust generalization 

ability. 

The hyperparameters used in the LSTM-SVR 2 model 

include LSTM and SVR hyperparameters. The LSTM 

model’s hyperparameter details include 10 LSTM units 

with a dropout value of 0.05, 10 epochs, and a batch size 

of 32. Meanwhile, the SVR model is built using an RBF 

kernel with a hyperparameter of C worth 100, epsilon 0.01, 

and gamma, which is worth auto. 

Predicting crude oil prices is a complex task that 

involves various factors. Global supply and demand 

dynamics, geopolitical events, regulation changes, and 

economic conditions can influence prices. Natural 

disasters and advancements in extraction technology can 

also play significant roles. As a result, accurately 

forecasting future prices requires careful analysis and 

consideration of current market trends and potential future 

developments. This is due to various factors that can affect 

them and cannot be controlled. This research uses feature 

extraction to capture patterns and essential information in 

the data to predict crude oil prices as close as possible to 

the actual prices. Therefore, to create a more accurate and 

applicable model, it is suggested that future researchers 

consider several factors that may affect the movement of 

crude oil prices. 
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