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Abstract—The task of generating accurately labeled datasets 

in Natural Language Processing (NLP) is notably challenging 

due to the high cost and extensive time requirements, 

compounded by the reliance on large volumes of 

unstructured data scraped from the web. Addressing this, 

our research introduces a novel framework utilizing 

Explanatory Interactive Machine Learning (XIL) and 

Explainable Artificial Intelligence (XAI). This framework 

enables the dynamic labeling of text data without predefined 

categories, significantly reducing the dependence on human 

annotators. Our methodology employs a topic modeling 

approach that allows a single annotator to label data 

efficiently with minimal oversight. In testing, this method 

trained a classifier on as few as 600 documents, achieving a 

precision of approximately 0.70. This precision is comparable 

to that of a classifier trained on a fully labeled dataset of 

13,000 documents, demonstrating our system’s effectiveness 

while using less than 5% of the labeled data typically 

required. These findings highlight how our approach not only 

enhances the transparency of the labeling process but also 

reduces its resource intensity, offering substantial 

improvements over traditional methods in both scalability 

and efficiency. This proof of concept paves the way for 

broader applications of explainable interactive NLP across 

various domains. 
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Explanatory Interactive Machine Learning (XIL), text 
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I. INTRODUCTION 

In recent decades, Artificial Intelligence (AI) has made 

significant strides, with systems achieving human-like 

performance across various complex tasks. Much of this 

progress is due to advancements in deep learning, which 

has transformed fields such as image recognition, 

autonomous driving, and, notably, Natural Language 

Processing (NLP) [1, 2]. NLP, a critical area within AI, 

enables machines to understand, generate, and interact 

with human language, powering applications from 

sentiment analysis to real-time language translation. Since 

its early days in the 1960s, when basic rule-based 

approaches dominated [3], NLP has evolved dramatically 

with the development of sophisticated architectures like 

transformer-based models. These models now underpin 

state-of-the-art applications that handle nuanced language 

understanding with a level of fluency that was previously 

unimaginable. 

However, despite these achievements, modern NLP 

models present significant challenges, particularly 

regarding transparency and data requirements. Many deep 

learning models function as “black boxes”, making it 

difficult to interpret their decision-making processes. This 

opacity can lead to accountability, ethics, and compliance 

issues, particularly in sensitive applications. Furthermore, 

NLP models typically require vast amounts of labeled data 

to achieve high performance. Yet, obtaining large, high-

quality annotated datasets is time-consuming and costly, 

especially as the volume of unstructured text data grows 

rapidly. This dependence on extensive labeled data has 

become a persistent obstacle for advancing NLP 

applications. 

Traditional data annotation in NLP involves either 

manual labeling by experts or crowdsourcing. Manual 

labeling, though reliable, is highly resource-intensive and 

impractical at scale. Crowdsourcing, on the other hand, 

speeds up the process by distributing the workload across 

multiple annotators. However, crowdsourcing introduces 

its issues, including inconsistencies in quality, biases from 

annotator backgrounds, and additional costs associated 

with managing and verifying data accuracy. Moreover, 

sharing sensitive data for crowdsourced annotation can 

raise privacy concerns, limiting the feasibility of this 

approach for certain datasets. These limitations underscore  
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the need for more efficient, scalable, and secure methods 

of data labeling. 

One particular challenge with crowdsourced or multi-

annotator labeling is variability in quality. The expertise 

and interpretation of annotators can vary, resulting in 

inconsistencies requiring further reconciliation processing. 

Additionally, managing a large team of annotators adds 

logistical complexities and costs, as quality control 

mechanisms—such as inter-annotator agreement checks—

are needed to maintain labeling accuracy. In many cases, 

reliance on multiple annotators can introduce biases and 

errors that ultimately compromise the quality of the 

labeled dataset. 

To address these challenges, this paper introduces a 

novel framework that enables high-quality data labeling 

with only a single expert annotator. By integrating 

Explanatory Interactive Machine Learning (XIL) [4] with 

Explainable Artificial Intelligence (XAI) [5], the 

framework reduces the need for multiple annotators and 

streamlines the labeling process. This approach leverages 

unsupervised NLP techniques to automatically generate 

initial labels for large volumes of unstructured text data, 

minimizing the need for extensive domain expertise 

upfront. These preliminary labels are then refined through 

iterative feedback from a single annotator who reviews 

model explanations, making adjustments to improve label 

accuracy. 

The framework employs a structured workflow to 

optimize the annotator’s input. Initially, a topic model 

automatically generates initial labels, which are then 

reviewed by the annotator. Using Local Interpretable 

Model-agnostic Explanations (LIME), the model provides 

transparent explanations for each assigned label, allowing 

the annotator to understand the model’s reasoning and 

make informed corrections. These corrections are fed back 

into the system to refine the model iteratively. This 

interactive feedback loop enables the model to learn from 

each correction, gradually improving its accuracy and 

reducing the need for additional human input. By relying 

on a single expert instead of multiple annotators, this 

framework minimizes the issues of variability and bias 

while maintaining high labeling quality and consistency. 

The proposed framework has broad applicability across 

various fields where large-scale text labeling is essential 

yet resource-intensive. For example, in materials science, 

it could streamline the classification of research articles, 

lab reports, and experimental data, helping researchers 

efficiently organize information based on material 

properties, applications, or composition types. This 

capability would enable scientists to focus more on 

discovery and analysis than data curation. Similarly, the 

framework could be used in healthcare to classify 

extensive datasets, such as medical literature or patient 

feedback, supporting healthcare providers in quickly 

identifying trends in patient outcomes, treatment efficacy, 

or common health concerns. These applications 

demonstrate the potential of the framework to enhance 

scalability and efficiency across fields reliant on large 

volumes of unstructured text data. 

The primary contributions of this study are as follows: 

first, we present a scalable, explainable, and interactive 

data labeling framework that minimizes the need for 

multiple annotators, addressing the challenges of quality 

inconsistency, cost, and complexity associated with 

traditional annotation methods. Second, the framework 

demonstrates how integrating XIL and XAI can support 

efficient labeling with a single annotator by using 

automated label generation combined with transparent 

explanations, enabling scalability without sacrificing label 

accuracy. 

The remainder of this paper is structured as follows: 

Section II reviews the foundational concepts and related 

literature in NLP, setting the context for the research and 

highlighting the existing challenges that this framework 

addresses. Section III details the XIL framework, 

describing how it incorporates XAI to improve traditional 

data-labeling methods. Section IV evaluates the 

framework’s performance, demonstrating its efficiency 

and reliability compared to conventional multi-annotator 

approaches. Section V discusses broader implications, 

potential applications, limitations, and future research 

directions. Finally, Section VI summarizes the study’s 

contributions and proposes future advancements in 

scalable, explainable NLP and AI. 

II. RELATED WORKS 

Knowledge Discovery from Text (KDT) has emerged as 

an essential field for extracting valuable insights from 

unstructured text data. The demand for efficient and 

accurate text mining techniques has intensified with the 

exponential growth of textual information on the internet 

and in various databases [6]. This section explores 

foundational concepts and methodologies in text mining, 

highlighting their importance in analyzing and deriving 

meaningful information from text data. 

One approach that has gained attention in topic 

modeling is BERTopic, which combines BERT 

(Bidirectional Encoder Representations from 

Transformers), embeddings with class-based Term 

Frequency-Inverse Document Frequency (TF-IDF) 

weighting [7]. This method builds on traditional topic 

modeling by using pre-trained BERT embeddings to 

capture semantic relationships between words. BERTopic 

processes documents by first converting them into 

numerical representations, which are then reduced in 

dimensionality using the UMAP model [8], as clustering 

models often struggle with high-dimensional data. 

Afterward, the documents are clustered based on these 

embeddings through HDBSCAN [9], a density-based 

clustering technique. This clustering process results in a set 

of topics, each consisting of related documents. A class-

based TF-IDF procedure is then applied to each topic, 

assigning weights to words to identify the most relevant 

terms within each topic. The class-based TF-IDF weight 

𝑊𝑥,𝑐 for a term x within a class c is calculated as:  

 𝑊𝑥,𝑐 = ||𝑡𝑓𝑥,𝑐|| × 𝑙𝑜𝑔(1 + 𝑓𝑥) (1) 
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where 𝑡𝑓𝑥,𝑐 is the term frequency of x within class c, fx is 

the frequency of x, and ||·|| denotes the magnitude. As 

illustrated in Fig. 1, the BERTopic architecture involves 

several stages, allowing it to produce coherent and diverse 

topics across various datasets.  

In parallel with advancements in modeling techniques, 

XAI methods, such as LIME, address the need for 

transparency in AI systems. LIME works by constructing 

simplified, interpretable models for complex model 

behaviors using perturbed instances of the data [11]. By 

employing visualization techniques, feature importance 

analysis, and counterfactual explanations, XAI aims to 

develop AI systems whose model decisions can be easily 

understood and trusted by end users [12]. XIL builds on 

this by enabling user interaction with the model, where 

users can provide corrections based on explanations to 

help the model iteratively improve [4]. CAIPI, shown in 

Fig. 2, is one implementation of XIL. It combines Active 

Learning (AL) [13] by presenting model predictions and 

explanations to users, allowing them to clarify ambiguous 

cases and thereby enhancing model reliability. 

 

 

Fig. 1. BERTopic general architecture [10]. 

 

 

Fig. 2. CAIPI workflow [4]. 

Lapuschkin et al. [14] present a method to distinguish 

between genuine learning and reliance on spurious data 

patterns in machine learning models. The authors compare 

model performance on data from random processes and 

real data to identify reliance on spurious correlations. 

Transparent decision rationales in nonlinear models make 

it easier to assess validity and generalizability. They 

identify “Clever Hans” behavior in prevalent Computer 

Vision models, which may rely on non-linear confounding 

factors, emphasizing trust in the learner.  

Schramowski et al. [15] argue that classification accuracy 

is insufficient without understanding the reasoning behind 

predictions. They demonstrate through case studies using 

Convolutional Neural Networks (CNNs) that human 

interaction with the model can correct its predictions. 

Addressing ML trust, XIL was proposed [4], focusing on 

understanding the model’s decision-making process to 

build trust. Experiments showed that XIL could enhance 

model prediction and explanatory power, particularly 

using SVMs. Lertvittayakumjorn and Toni [16] propose 

Explanation Based Human Debugging (EBHD) for cases 

where training data are suboptimal. EBHD involves 

explainability, interactive and human-in-the-loop learning, 

and knowledge integration. EBHD leverages NLP model 

explanations to detect bugs and utilizes user input to 

correct these issues, thus improving model performance. 

This approach highlights the significance of integrating 

human expertise to validate and enhance learned models, 

particularly when dealing with biases or anomalies in the 

training data. 

Recent developments in NLP have popularized 

transformer-based Language Models (LMs).  

Devlin et al. [17] introduced BERT using a “masked 

language model” (MLM) pre-training goal to overcome 

the unidirectionality constraint in previous LMs.  

Ein-Dor et al. [18] analyzed BERT with AL techniques in 

challenging real-world situations like class imbalance and 

labeled data scarcity. BERT significantly improved recall 

when using the AL pipeline across various datasets. 

Friedrich et al. [19] focused on generating LM predictions 

with case-based reasoning explanations during inference. 

They introduced Proto-Trex Networks, which enhance 

model interpretability by adding a prototype layer to 

transformers, providing prototypical explanations by 
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comparing predictions to similar labeled training samples. 

Proto-Trex was also proposed for interactive learning 

settings. Maarten Grootendorst introduced BERTopic [8] 

in 2022, a dynamic topic model that creates topic 

representations in three stages. Unlike static topic models 

like LDA, it transforms documents into embedding 

representations, reduces dimensionality for better 

clustering, and extracts topic representations using a 

customized class-based TF-IDF variant. Despite model 

comprehension and evaluation advances, no “silver bullet” 

exists. Tenney et al. [20] provided a comprehensive open-

source toolkit called “The Language Interpretability Tool 

(LIT)”. LIT offers a unified user interface and components 

for visualizing and investigating NLP model behavior, 

supporting interactive study of entire datasets and 

individual data points. 

Both Lapuschkin et al. [14] and Schramowski et al. [15] 

focused on image data using CNNs without addressing 

natural language data. While Teso and Kersting [4] 

explored text data (text classification) using SVMs, it did 

not discuss the effects of XIL on transformer-based 

language models. Although Lertvittayakumjorn and  

Toni [16] examined RoBERTa (a BERT variant) for 

explanation-based human debugging, it assumed model 

bugs like spurious correlations and labeling errors in text 

classification tasks without considering incorrect model 

explanations as a bug. Friedrich et al. [19] assessed the 

Proto-Trex approach for sentiment analysis; however, 

other NLP tasks remain unexplored. Ein-Dor et al. [18] 

analyzed BERT with AL techniques, yet lacked an 

explanatory interactive setting. Tenney et al. [20] provided 

the comprehensive open-source toolkit LIT, demonstrating 

BERT in a sentiment analysis task, although not fully 

exploring transformer models’ potential. None of these 

works discuss the impact of the XIL approach on other 

NLP tasks such as text mining without predetermined 

labels or unsupervised learning tasks like topic modeling 

and clustering.  

While existing methods, such as manual annotation and 

crowdsourcing, have traditionally been employed for text 

labeling, they often face scalability, cost, and labeling 

consistency limitations. Advanced models like BERTopic, 

which combines BERT embeddings with class-based TF-

IDF weighting, improve topic coherence but still rely on 

significant amounts of labeled data and human 

intervention for quality control. In contrast, our proposed 

framework integrates XIL and XAI to streamline and 

enhance the labeling process. By employing a single 

annotator who iteratively refines automatically generated 

labels through model explanations, our approach 

significantly reduces labor costs, improves label 

consistency, and provides a transparent annotation process 

that adapts dynamically to new data. These advancements 

make our framework uniquely contribute to scalable and 

efficient NLP data labeling. 

III. METHODOLOGY 

This section proposes a pipeline, as illustrated in Fig. 3. 

The pipeline is divided into four steps. Step 1 uses the 

unlabeled pool of documents to train a topic model. Step 2 

predicts the topics for the entire dev set documents and 

selects documents for the AL query. Step 3 explains the 

topic model’s prediction for the queried documents and 

presents it to the user to obtain the correction. Step 4 

generates augmented documents using the correction 

obtained in Step 3 before adding the augmented set to the 

initial training data. The topic model is then re-trained 

using this partially labeled dataset in semi-supervised 

mode. 

 

 

Fig. 3. Modeling pipeline for text mining using XIL. 
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A. Train Topic Model and Generate Initial Labels 

The first step in the modeling pipeline is training a topic 

model with a fixed number of topics N, as identified in the 

data understanding phase. For datasets with unknown 

topics, such as the 20Newsgroups dataset, the initial 

training of the topic model helps determine the appropriate 

number of topics N for the subsequent pipeline steps. In 

this example, since the 20Newsgroups dataset contains 20 

document categories, N is set to 20. After training the 

baseline topic model, topics are labeled based on the 

dominant document class within each topic. The 

distribution of documents for each topic across all 

document classes is analyzed to assign initial labels. For 

instance, most documents assigned to Topic 10 belong to 

the “talk.politics.guns” class. Therefore, Topic 10 is 

labeled as “politics guns”. Similarly, other topics are 

labeled based on the dominant document class they 

represent, such as “space”, “medicine”, “crypto”, and 

“politics mideast”, among others. It’s essential to note that 

the number of topics and document categories should be 

roughly equivalent. However, adjustments can be made 

during retraining if the number of labels exceeds the 

number of categories. Additionally, topics can represent 

more specific distributions within a class, such as “politics-

europe” or “politics-usa”. These labels are generated for 

user understanding, but the pipeline only utilizes numeric 

identifiers (1, 2, 3, ..., n) to identify topics, not the string 

labels (“crypto”, “space”, etc.). 

B. Predict and Query from Dev Set 

After labeling the generated topics, the next step 

involves predicting topics and their probabilities for all 

documents in the Dev set. Subsequently, documents are 

queried from the Dev set using the Uncertainty Sampling 

with Diversity Maximization (USDM) strategy [21] 

chosen for its effectiveness in selecting informative 

documents from the unlabeled Dev set in each iteration of 

AL. The topic probability serves as the measure of 

informativeness, with USDM aiming to select the least 

certain instances while maximizing diversity among them. 

For the 20Newsgroups dataset, each query should consist 

of the least certain documents from all 20 topics, ensuring 

adequate representation across all categories. Three 

variations of the USDM query strategy are tested to 

determine the most effective approach: 

(1) USDM: USDM is applied without any 

modifications in this strategy. The two least 

certainly predicted documents are queried based 

on the predicted topic probabilities of each topic 

from the Dev set. 

(2) USDM with filtering: This strategy involves 

filtering out documents with very low topic 

probabilities (<0.4) before querying. 

Subsequently, the two least certainly predicted 

documents are selected from the filtered Dev set, 

aiming to avoid using documents for which the 

model is most uncertain. 

(3) USDM with high probability documents: In this 

variation, the most certainly predicted documents, 

along with the least uncertainly predicted ones, are 

queried from the Dev set based on the predicted 

topic probabilities of each topic. This approach 

leverages the behavior of the BERTopic model, 

which utilizes UMAP for dimensionality 

reduction. By forcing UMAP to place documents 

with high and low topic probabilities together, a 

significant impact on the embedding space is 

expected, potentially leading to the formation of 

clusters even among unlabeled documents. 

Since 20 topics are generated for the 20Newsgroups 

dataset, each query comprises 40 documents for further 

processing. To prevent duplication, selected documents 

are marked as “picked” after each query iteration. The 

impact of these three strategies on the framework’s 

performance is discussed in detail in the evaluation 

section. 

C. Explain and Correct 

The subsequent step after querying documents for 

processing involves explaining the topic predictions for 

the queried documents and presenting the input, predicted 

topic, and prediction explanation to the human annotator 

iteratively. Each iteration involves presenting information 

about 40 queried documents to the annotator, who then 

provides feedback in the form of correct labels and 

correction terms. LIME text explainer is employed for 

elucidating the topic model predictions. Being a model-

agnostic explainer, LIME can generate explanations for 

any probabilistic model. To implement this, a wrapper is 

created around the BERTopic model to generate 

probabilities for each text instance. The details of this 

wrapper’s implementation are elaborated in the 

implementation section. Fig. 4 showcases a sample 

explanation produced by the LIME text explainer for a 

specific instance from the 20Newsgroups dataset. 

 

 

Fig. 4. LIME explanation for a text instance from 20Newsgroups Dev 

dataset. 

D. Generated Augmented Examples 

The subsequent step in the modeling pipeline involves 

accepting the annotator’s corrections and generating 

augmented documents using both the original documents 

from the query and the corrections provided. Further 

details about the implementation of this step can be found 

in the implementation section. In each iteration, 40 

documents are queried; for each queried document, M 

augmented documents are generated using pre-trained 

BERT-based embeddings. All the augmented documents 

inherit the same labels as the original document. 
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Subsequently, corrections provided by the annotator are 

applied to all augmented documents. Relevant terms are 

added to the documents, while irrelevant terms are 

removed. Thus, in a single iteration, a total of 40*M new 

documents was generated from the 40 originally queried 

documents. These 40*M newly generated documents and 

the 40 queried documents are incorporated into the initial 

training corpus for subsequent re-training. These 

explanation terms, along with their respective weights, are 

presented to the human annotator. Based on this 

information, the annotator provides corrections by 

specifying: 1) the true label; 2) Relevant terms to be added 

or retained from the explanation; and 3) Irrelevant terms to 

be removed. This feedback is crucial for generating 

augmented documents in the subsequent step of the 

modeling pipeline. 

 

E. Model Re-Training 

Once a small, labeled set has been generated from the 

correction and data augmentation process, the labeled 

corpus is integrated into the initial pool of unlabeled 

training data. This forms the training set for the subsequent 

iteration. The new training data now includes both labeled 

documents and the initial unlabeled documents. The topic 

model is re-trained in semi-supervised mode using this 

data. BERTopic offers several options to guide the creation 

of topics toward certain pre-specified topics. Fig. 5 

illustrates the step sequence in semi-supervised topic 

modeling with BERTopic. Semi-supervised modeling 

enables steering the dimensionality reduction of the 

embeddings into a space that closely aligns with any 

provided labels. 

 

Fig. 5. Feedback simulator. 

F. Classification Benchmark for 20Newsgroups Data 

A classifier with reasonable performance can be utilized 

to establish a benchmark for the performance of the 

labeling task. Linear SVMs with TF-IDF vectorization 

have achieved benchmark performance for the 

20Newsgroups dataset based on the latest data collected by 

paperswithcode [22]. Therefore, a linear SVM classifier is 

trained on the 20Newsgroups Dataset with TF-IDF using 

the 20Newsgroups training set. This classifier is then 

employed to predict and explain the predictions on the test 

dataset. The explanation terms with weights obtained from 

explaining the classifier’s prediction are stored for later 

comparison with the Topic Model’s explanations produced 

for test instances. 

G. Agreement Index 

Now that there are two sets of explanation terms and 

term weights (indicating the term importance in the 

explanation), one from the classifier and the other from the 

topic model, an Agreement Index can be calculated 

between these two sets (Sa and Sb) of explanation terms and 

their respective weights. The two sets can be represented 

as shown in the equations below:  

 [(𝑎1, 𝑤𝑎1), (𝑎2, 𝑤𝑎2), … , (𝑎𝑛, 𝑤𝑎𝑛)] ∈ 𝑆𝑎 (2) 

 [(𝑏1, 𝑤𝑏1), (𝑏2, 𝑤𝑏2), … , (𝑏𝑛, 𝑤𝑏𝑛)] ∈ 𝑆𝑏 (3) 

To calculate the agreement index, all terms existing in 

Sb but missing from Sa are added to Sa with weights of 0, 

and vice versa for Sb. After updating both sets to have the 

same terms, the agreement index is calculated as shown in 

the equation:  

 Agreement Index (𝑆𝑎, 𝑆𝑏)  =  1 −
| ∑(𝑤𝑎−𝑤𝑏)|

| ∑(𝑤𝑎+𝑤𝑏)|
 (4) 

The agreement index rewards the occurrence of 

common terms (agreement) between the two sets and 

penalizes the non-occurrence (disagreement). The 

threshold agreement index value is decided by calculating 

the agreement index between the classifier’s explanation 

and the topic model’s explanation on a stratified sample of 

training data, followed by normalization for this sample. 

After plotting the distribution of the normalized agreement 

index, the threshold value was decided to be 0.5. A 

normalized agreement index value exceeding 0.5 indicates 

model agreement, while a value below 0.5 indicates 

disagreement. 

Journal of Advances in Information Technology, Vol. 16, No. 8, 2025

1053



H. Feedback Simulator 

Providing corrections for every document manually is 

time-consuming and requires domain knowledge of each 

category. To mitigate these challenges and reduce reliance 

on human feedback, a simulation mechanism named 

Feedback Simulator is introduced. The Feedback 

Simulator simulates human feedback by training a 

classifier based on the true labels of the documents. This 

classifier, being a supervised model trained on the true 

labels, predicts labels and provides prediction 

explanations, which are then used to generate correction 

terms. Fig. 6 illustrates the conceptual diagram of the 

Feedback Simulator. 

 

 

Fig. 6. BERTopic Topic Modeling steps sequence for semi-supervised mode. 

A correction comprises three items: 1) True label; 2) 

Relevant terms to be added to the documents; 3) Irrelevant 

terms to be removed from the documents. The classifier’s 

prediction 𝑦𝑐
∗  is considered as the true label of the 

document. Relevant terms to be added are the explanation 

terms provided by the classifier but not by the topic model, 

while irrelevant terms to be removed are the explanation 

terms given by the topic model but not by the classifier. 

To demonstrate the practical application of our 

methodology, we applied the framework to the 

20Newsgroups dataset, which consists of documents 

across topics like “politics”, “technology”, and “sports”. 

Initial clusters were generated based on document 

embeddings in the topic modeling step, forming topic 

groups that loosely aligned with general categories. During 

the AL phase, documents with uncertain or ambiguous 

classifications were selected for review by the feedback 

simulator, which provided corrections to refine these 

classifications, allowing the model to learn iteratively. The 

framework continuously improved its classification 

accuracy through these iterative corrections, 

demonstrating its adaptability to large, unstructured 

datasets with minimal human intervention. 

IV. IMPLEMENTATION 

This section details the implementation of the 

methodology, starting with the general setup and then 

mapping the methodology steps to the Kedro pipelines. It 

also lists the essential Python packages utilized in the 

pipeline and provides source code listings for important 

methods. 

A. General Implementation 

The methodology pipeline is implemented in Python 2, 

leveraging its widespread usage, open-source nature, and 

flexibility. Python Poetry is employed as the dependency 

manager to ensure the correct and latest versions of 

external packages are used consistently throughout the 

project. Kedro serves as the pipeline manager, offering 

reproducibility, modularity, and portability. The source 

code is managed using Azure Git, accessible through the 

repository. The implementation relies on various Python 

packages, with pandas, numpy, regex, and scikit-learn 

being used extensively for data extraction, preparation, and 

manipulation. Matplotlib and seaborn are employed for 

data visualization. The pipeline is highly configurable, 

supporting different model hyperparameter variations via 

Kedro configuration YAML files. 

B. Kedro Pipeline Mapping of Methodology Steps 

The methodology steps are mapped to Kedro pipelines 

as follows:  

• Data extraction: Implemented in the “data 

extraction” pipeline. 

• Data preparation: Performed in the “data 

preparation” pipeline, utilizing pandas, numpy, 

scikit-learn, and regex packages for extraction and 

cleaning. 

• Model training: Training of the benchmark 

classifier and topic model is conducted in the 

“model training” pipeline, utilizing scikit-learn’s 

SGDClassifier for the classifier and the BERTopic 

package for the topic model. 

• Threshold value calculation: The steps to 

calculate the threshold value of the agreement 

index on the training set are executed in the 

“explain evaluate train” pipeline. 

• Label and topic prediction on Dev set: 

Implemented in the “explain evaluate dev” 

pipeline, which also prepares the Dev dataset for 

AL query. 

• AL query, feedback simulation, correction, and 

re-training: Conducted in the “query compare 

correction retrain” pipeline. 

• Model evaluation after retraining: Evaluation of 

the retrained model is performed in the “explain 

evaluate dev retrained” pipeline. 

Fig. 7 highlights the one-time steps in blue and the 

iterative steps in green. Since Kedro does not support 

running pipelines iteratively, the iteration process is 

manually applied in “kedro batch.py” under the notebooks 

folder in the Kedro pipeline directory.  
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Fig. 7. Kedro pipelines. 

C. Important Software Packages 

Key Python packages used in the implementation 

include:  

• Word representations: Created using scikit-

learn’s TfIdfVectorizer, which transforms text raw 

content into features and generates a sparse matrix 

of tf-idf weights for each word in a document. Stop 

words are removed using the stop words 

parameter. 

• Benchmark classifier: Implemented with scikit-

learn’s SGDClassifier, tuned with a learning rate 

of 0.001 and l2 penalty. Integrated with the 

TfIdfVectorizer using scikit-learn’s Pipeline 

object. 

• Topic model: Implemented using the BERTopic 

package, with modifications to fix random state 

issues in the default configuration. Consistency in 

word representations is maintained by reusing the 

scikit-learn TF-IDF vectorizer. 

• Explanations: Generated using LIME text 

explainer, supporting scikit-learn classifiers. A 

wrapper around the topic model is created to 

produce input and output compatible with LIME. 

• Agreement index: Implemented as per the 

algorithmic pseudo-code provided, facilitating the 

comparison of two explanation sets with weights 

and words. 

• Data augmentation: Utilizes the nlpaug library, 

specifically the Contextual Word Embeddings 

Augmenter, which inserts/substitutes words using 

contextual word embeddings like BERT, 

DistilBERT, RoBERTA, or XLNet. 

D. Model Evaluation 

Following the re-training step, the task is to assess the 

framework’s performance. As topic modeling is an 

unsupervised task, evaluating its performance after each 

iteration poses challenges due to the absence of a reference 

point or benchmark performance indicator. Conventional 

topic modeling or clustering evaluation metrics like 

coherence and perplexity are unsuitable since the objective 

is to label the dataset rather than cluster the documents. 

These metrics do not provide a reliable assessment of 

whether the labels accurately represent the document 

contents. To address this challenge, a classifier is 

employed as the reference point for the labeling task. 

V. DATA PREPARATION 

In the CRISP-DM methodology, the data understanding 

phase follows the business understanding phase, ensuring 

alignment between goals and data insights. Initially, a 

general Exploratory Data Analysis (EDA) is conducted to 

comprehend various aspects of the input dataset, such as 

volume, distribution across categories (Fig. 8), and quality 

of text. Additionally, an initial understanding of 

underlying themes or topics in the unlabeled data is crucial 

for determining the number of topics for modeling. 

The 20Newsgroups dataset used in this study is a widely 

recognized dataset in text classification and clustering 

research. It consists of approximately 18,828 documents 

across 20 distinct newsgroups, each representing a 

different topic, such as “politics,” “technology,” or 

“sports”. The dataset is organized into files where each file 

corresponds to a specific newsgroup. Messages within the 

dataset include only the “From” and “Subject” headers, 

with duplicate messages removed to ensure data quality. 

Each document is assigned a newsgroup label, which 

serves as the classification target for text processing. This 

dataset is publicly available and can be accessed on Kaggle 

at https://www.kaggle.com/datasets/crawford/20-

newsgroups. 

Outliers, including empty documents and those 

exceeding 1000 words, were identified and considered for 

removal in the data preparation step. Observations 

revealed the presence of numbers, newline, and tab 

characters, which needed cleaning. Additionally, lengthy 

documents were trimmed to enhance processing 

efficiency, as excessively long documents can increase 

time and model complexity without significant gains in 

accuracy. 

 

 

Fig. 8. Class distribution of 20Newsgroupss Data. 

In the initial phase of the data preparation pipeline, data 

cleaning is conducted to ensure the data is ready for 

subsequent analysis. This process involves addressing 

issues identified during the data understanding phase. 

Initially, numeric characters, newline characters, tabs, and 

punctuation are removed from the dataset. Following this, 
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the number of words per document is calculated to identify 

outliers based on document size, which are filtered out 

along with any empty documents. Once the dataset is 

cleaned, it is partitioned into three subsets: train, dev, and 

test. The train set is utilized for the initial training of the 

topic model, while the dev set serves for user feedback and 

model refinement. Lastly, the test set is employed to 

evaluate the performance of the entire framework. The 

partitioning of the clean dataset into train, dev, and test sets 

follows a ratio of 70%, 15%, and 15%, respectively. Fig. 9 

illustrates the sequential steps involved in the data cleaning 

process, ensuring clarity and coherence in the workflow. 

Additionally, Fig. 10 depicts a sample text document post-

cleaning, demonstrating the effectiveness of the cleaning 

steps applied. 

 

 

Fig. 9. Data cleaning steps.  

 

Fig. 10. Document text obtained for a sample document after data 

cleaning steps. 

In the data preparation pipeline, text preprocessing 

plays a pivotal role in ensuring the quality of the input data. 

As part of this process, the document texts were initially 

converted to lowercase. Subsequently, tokenization was 

employed, breaking down the document text into smaller 

units known as tokens. Following tokenization, the 

removal of stop words became imperative to reduce the 

dimensionality of the corpus dictionary. Sklearn 

vectorizers offer predefined stop word lists for English, 

facilitating this elimination process based on the presence 

of words in the stop word list. Once preprocessing is 

complete, the next step involves feature extraction from 

the preprocessed text, where the document text is 

transformed into numerical representations understandable 

by machine learning models. This conversion is achieved 

using the Vector Space Model with TF-IDF. The Vector 

Space Model represents text documents or objects as 

vectors of identifiers, with document vectors constructed 

from the document text. Vectorization was carried out 

using scikit-learn’s TfIdfVectorizer. 

After completing the data cleaning step, 17,920 clean 

documents were obtained. To facilitate modeling and 

evaluation, distinct datasets are necessary. For the AL 

query process, 20 documents per iteration are needed, 

amounting to approximately 600 documents for 20–30 

iterations. However, a specific AL query configuration 

mandates 40 documents per iteration, resulting in 

approximately 2,000 documents for the development set. 

To organize the data effectively, it is partitioned into three 

main sets: the train set comprising 70% of the data, utilized 

for training the initial topic model; the dev set, comprising  

15% of the data, used for iterative retraining of the topic 

model after each AL query; and the test set, consisting of 

the remaining 15% of the data, employed for evaluating 

the entire framework. Instances within each set are chosen 

randomly. Further details regarding the metadata of these 

partitions can be found in Table I. 

TABLE I. METADATA FOR TRAIN, DEV AND TEST SPLIT 

Metadata Train Dev Test 

Percentage split 70 15 15 

Number of documents 12544 2688 2688 

 

VI. EVALUATION  

A. Evaluation Using Agreement Index 

In our evaluation strategy, after each iteration of the 

modeling pipeline, a topic model is generated using semi-

supervised training with partial labels. This model assigns 

labels to the test set, and explanations for these labels are 

compared with those provided by the classifier using an 

agreement index. While BERTopic is utilized for topic 

modeling due to its effectiveness, explaining its 

predictions using LIME proves time-consuming, making 

this strategy impractical given hardware limitations. 

Hence, an alternative evaluation approach is sought to 

assess the achievement of business objectives. 

To illustrate the labeling process, consider a document 

from the 20Newsgroups dataset initially categorized under 

the broad topic of “politics”. In the first pass, the 

framework assigns this label based on prominent 

keywords within the text, such as “government” and 

“policy”. However, during the AL phase, the framework 

identifies terms such as “rights” and “equality” within the 

document, which could imply a more specific focus within 

the political sphere, such as “civil rights”. This ambiguity 

prompts the feedback mechanism to request human input, 

allowing the annotator to refine the label to “civil rights”. 

As a result, the framework updates its understanding, 

enabling it to apply more precise labels to similar 

documents in subsequent iterations. 

To evaluate how well our framework aligns with 

baseline models, we also performed comparisons across 

multiple documents where label assignments were initially 

unclear. For instance, a document in the “sports” category 

contains phrases like “game”, “team”, and “score”, which 

the baseline classifier categorizes as “sports”. However, 

the framework goes further, identifying additional terms 

like “season” and “playoffs”, allowing it to assign a more 

specific subtopic of “sports playoffs”. This refinement 

demonstrates the framework’s ability to enhance general 

labels by recognizing terms that contribute to more 

nuanced classifications, providing a closer match with the 

document’s actual content. 

For instance, a document in the “sports” category 

contains phrases like “game”, “team”, and “score”, which 

the baseline classifier categorizes as “sports”. However, 

the framework goes further, identifying additional terms 

like “season” and “playoffs”, allowing it to assign a more 

Remove 
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specific subtopic of “sports playoffs”. This refinement 

demonstrates the framework’s ability to enhance general 

labels by recognizing terms that contribute to more 

nuanced classifications, providing a closer match with the 

document’s actual content. 

Another example involves a document initially labeled 

as “technology”. Upon review, the framework identifies 

the terms “software”, “update”, and “version”, and 

categorizes the document as relating to “software 

development”. In the feedback phase, the annotator 

confirms this subtopic label, enabling the framework to 

recognize similar patterns in other documents. As this 

iterative process continues, the framework becomes 

increasingly accurate in distinguishing between general 

topics like “technology” and more specific classifications 

like “software development”, improving the overall 

consistency and accuracy of the labeling. 

B. Evaluation Using Classifier 

To objectively evaluate the framework’s performance in 

generating labeled data from unannotated text, we adopt a 

classification approach. We compare our framework’s 

classifier with a benchmark classifier trained on true labels 

from the newsgroup dataset. Recent research suggests 

Linear SVMs with TF-IDF vectorization achieve 

benchmark performance for the 20Newsgroups dataset. 

This approach is feasible within our hardware limitations 

and offers straightforward evaluation through standard 

statistical measures. 

C. Experimental Setup 

In the implementation of our framework, we conducted 

experiments with three different USDM-based query 

strategies as shown in Table II. Additionally, we explored 

variations in the correction strategy, which comes into play 

only during simulated feedback scenarios, not with human 

annotators. Unconditional Correction: Correction terms 

and labels are provided for all documents regardless of 

agreement or disagreement between the feedback-

simulating classifier and the topic model. Correction at 

Model Disagreement: Correction terms are provided only 

for documents where the models disagree. However, labels 

are provided for all documents. Agreement or 

disagreement is determined based on the normalized value 

of the agreement index between the explanation terms of 

the feedback-simulating classifier and the topic model. An 

agreement is indicated by a normalized agreement index 

value greater than or equal to 0.5, while disagreement is 

indicated by a value less than 0.5. 

TABLE II. EXPERIMENTAL SETUP 

Experiment ID Query Strategy Correction Strategy 

1 USDM Unconditional correction 

2 USDM with filtering Unconditional correction 

3 
USDM with high 

probability 
Unconditional correction 

4 USDM 
Correction at model 

disagreement 

5 USDM with filtering 
Correction at model 

disagreement 

6 
USDM with high 

probability 

Correction at model 

disagreement 

D. Benchmarking 

In the benchmarking phase, two benchmarks are 

established for evaluation:  

• Benchmark 1: A Linear SVM classifier trained on 

13,000 randomly selected documents (70% of the 

original labeled data) from the 20Newsgroups 

dataset with actual category labels. 

• Benchmark 2: A Linear SVM classifier trained on 

a stratified sample of 600 documents (15 

documents from each class) from the 

20Newsgroups dataset, representing 

approximately 3.33% of the original labeled data. 

Both benchmarks are tested on a test set consisting of 

2,688 labeled instances. Table III presents the 

classification report for Benchmark 1 and Benchmark 2 

with accuracy of 0.69 and 0.57, precision of 0.70 and 0.57, 

recall of 0.67 and 0.56, and F1-Score of 0.65 and 0.54, 

respectively. 

TABLE III. CLASSIFICATION REPORT FOR BENCHMARK 1 AND 

BENCHMARK 2 

Experiment ID Accuracy Precision Recall F1-Score 

Benchmark 1 0.6927 0.7018 0.6725 0.6552 

Benchmark 2 0.5721 0.5480 0.5575 0.5434 

 

VII. RESULTS 

This section presents the outcomes of experiments 

conducted in the previous section individually, followed 

by a summary table comparing all experiments. For each 

experiment, 40 documents per iteration were selected for 

correction, resulting in 1200 labeled documents by the end 

of 15 iterations. The performance changes of classification 

evaluation measures were recorded iteratively across all 

experiments. Fig. 11 graphically presents the evaluation, 

which involved plotting four classification metrics 

(accuracy, precision, recall, and F1-Score) against the 

iterations of model training. The x-axis represents 

iterations, and the y-axis denotes the metric values. The 

green line indicates precision, orange represents precision, 

blue signifies recall, and brown illustrates the F1-Score. 

Dotted lines of the same colors highlight the benchmark 

values discussed earlier. Each experiment is individually 

detailed, showing the metrics plotted for 15 iterations. A 

comparison with benchmark values is provided for each 

experiment, helping to evaluate performance 

improvements. The results demonstrate the performance 

trends and effectiveness of different combinations of query 

and correction strategies in the iterative labeling process. 

Fig. 11(c) illustrates that Experiment 3, employing a 

combination of USDM with high probability documents 

and unconditional correction, achieved the highest 

accuracy (0.5066), recall (0.4899), and F1-Score (0.4707). 

This strategy selects uncertain documents alongside 

certain ones, influencing the topic model’s training to 

cluster documents more effectively, resulting in improved 

evaluation metrics. Observing precision values across 

experiments, all surpassed the precision of Benchmark 2, 

which used a stratified sample of 600 documents from the 

training set. Experiment 5 achieved the highest precision 
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(0.6942) by employing USDM with filtering and 

correction only when models disagree. This strategy 

removes uncertain documents, leading to a more 

representative training set for the topic model and 

subsequent classifier. Notably, this precision was achieved 

using less than 5% of the documents compared to 

Benchmark 2, showcasing the framework’s efficiency in 

achieving comparable precision with fewer labeled 

documents. 

 

 

Fig. 11. Evaluation results. 

VIII. DISCUSSION 

The framework successfully accomplishes the research 

goal of generating labeled data from an unlabeled dataset 

by implementing an XIL-based text mining approach. 

Experiment 3 yielded the highest accuracy (0.5066), recall 

(0.4899), and F1-Score (0.4707) by combining USDM 

with high probability documents and correcting all 

documents in a query, irrespective of model agreement. On 

the other hand, experiment 5 achieved the highest 

precision (0.6942) by using the query strategy of USDM 

with filtering and providing correction only when the 

models disagreed. This precision level matches the 

benchmark precision obtained with a training set of 13,000 

labeled documents, despite training the evaluation 

classifier with only around 600 documents, which is less 

than 5% of the total. Comparing the number of labeled 

documents used for training with the precision achieved, it 

is evident that the framework requires fewer documents to 

achieve similar precision compared to supervised 

classification models. This section addresses the research 

question: “How to create a prototype framework for text 

mining using an Explanatory Interactive Learning 

approach?” Sub-questions RQ(a) through RQ(d) are 

examined below in the context of the experiment results. 

RQ(a) assesses whether identifying labels using 

unsupervised NLP techniques can diminish the reliance on 

prior domain knowledge for text labeling tasks. By 

consistently assigning labels from a topic model to as few 

as 600 documents, the framework could train a classifier 

that matched the precision results of a classifier trained on 

a fully labeled dataset of 13,000 documents. This approach 
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eliminates the need to define categories upfront if a human 

were to perform the labeling task. 

RQ(b) evaluates whether applying Explanatory 

Interactive NLP methods to text mining problems can 

achieve performance levels comparable to, if not better 

than, non-interpretable and non-explanatory learner 

methods. While the method falls short in terms of overall 

accuracy, recall, and F1-Score, it attains benchmark levels 

of precision (approximately 0.70) when compared to the 

benchmark classifier trained in a non-interpretable and 

non-explanatory setting. 

RQ(c) investigates whether Explanatory Interactive 

NLP for text mining tasks can reduce the labeling data 

cost, considering the amount of labeled input data and user 

interaction required. The precision achieved by the 

evaluation classifier (trained on 600 labeled documents) 

matches that of the benchmark classifier (trained on 

approximately 13,000 labeled documents). This similar 

precision level was achieved using less than half the 

number of documents, indicating that the framework 

demands less data than supervised classification models to 

yield comparable results, thereby reducing labeling costs.  

Compared to existing models, our framework presents 

several key advantages for efficient, high-quality labeling 

of unstructured text data, especially in scenarios with 

minimal labeled data and limited annotator involvement. 

Unlike traditional approaches, such as crowdsourcing or 

manual annotation, which are often costly and prone to 

inconsistencies, our framework leverages XIL and 

Explainable AI (XAI) principles to enhance labeling 

precision and scalability. For instance, tools like 

BERTopic perform topic modeling effectively but still 

require substantial human oversight to ensure quality, 

especially with large datasets. This requirement is met by 

iteratively refining labels through a dynamic feedback 

loop, which allows a single annotator to guide the model’s 

learning process efficiently. 

Compared with methods like Proto-Trex, which 

introduces prototype-based explanations for model 

predictions, or LIT, which provides interpretability tools 

primarily in sentiment analysis and text classification, our 

approach extends interactive learning to unsupervised 

tasks such as topic modeling and clustering. 

This makes it highly versatile for scenarios where 

predefined labels are unavailable or limited. The 

integration of LIME further supports this process, making 

the framework accessible to non-expert annotators while 

ensuring reliable label refinement across iterations. 

Moreover, the framework’s adaptability opens 

possibilities for diverse applications beyond traditional 

NLP tasks. In healthcare, for example, it could streamline 

the classification of clinical documents and research 

articles, thereby aiding healthcare professionals in 

managing unstructured data more effectively. Similarly, 

the framework could help researchers categorize technical 

papers or patents in materials science by automatically 

identifying emerging research trends and themes, 

facilitating knowledge discovery, and accelerating 

innovation in the field. 

Future research could explore integrating this 

framework with domain-specific ontologies or knowledge 

graphs, further enhancing labeling accuracy in specialized 

domains. Additionally, examining the application of this 

approach across other sectors, such as finance or legal, 

could demonstrate its broader applicability for organizing 

and extracting insights from large volumes of domain-

specific textual data. By incorporating domain knowledge 

into the labeling process, the framework could be adapted 

to capture more nuanced themes, making it a powerful tool 

for interactive text mining across industries. 

IX. CONCLUSION AND FUTURE WORK  

This study presents a novel framework using 

Explanatory Interactive Learning to improve the labeling 

of unstructured text data. By combining unsupervised 

topic modeling with limited human feedback, the 

framework effectively reduces the need for extensive 

labeled datasets. Experimental results demonstrate that our 

framework achieves a precision level comparable to 

traditional supervised classifiers trained on much larger 

labeled datasets. For instance, in Experiment 5, the 

framework achieved a precision of 0.6942 using only 

around 600 labeled documents—less than 5% of the data 

required by benchmark models to achieve similar 

performance. This efficiency demonstrates the potential of 

the framework to reduce labeling requirements by up to 

95%, while maintaining comparable labeling quality to 

more data-intensive methods. Our approach, which utilizes 

models like BERTopic and explanations through LIME, 

enables a single annotator to guide the labeling process 

iteratively. The interactive learning mechanism, coupled 

with explainability, ensures the labels are accurate and 

trustworthy, enhancing model transparency. The 

framework’s adaptability has promising applications 

across various fields. In materials science, it can assist in 

categorizing research papers, technical reports, and patents 

according to material properties or methods, facilitating 

knowledge discovery. It can support patient data 

categorization in healthcare, such as grouping clinical 

notes by symptoms or treatment outcomes, enabling more 

efficient data handling in clinical settings. Additionally, in 

domains like finance and legal research, this framework 

could aid in managing vast datasets by identifying and 

clustering relevant text topics with minimal annotation 

costs.  

To expand this work, future research could explore 

integrating domain-specific knowledge resources, such as 

ontologies, to enhance the model’s ability to recognize 

complex industry-specific terms. Moreover, incorporating 

advanced Large Language Models (LLMs) could further 

improve the framework’s adaptability, allowing it to 

capture finer semantic nuances across specialized texts. 

Another promising avenue is to evaluate this framework 

with diverse datasets and real-world human annotations, 

enabling it to adapt dynamically and maintain high 

precision even in unique or evolving domains. By refining 

the interactive learning and topic modeling components, 

this framework holds significant potential to transform 

scalable text labeling across diverse fields. 
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