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Abstract—Lung cancer is a lethal ailment which has a 
significant fatality rate among individuals affected by the 
disease. Timely detection and accurate staging of lung cancer 
can significantly improve patient survival rate. Computed 
Tomography (CT) scans are usually employed for diagnosing 
lung cancer, but manual examination can be slow and error-
prone. To address this issue, deep learning techniques are 
being utilized to speed up and improve the accuracy of 
detecting cancerous and non-cancerous CT scans. Therefore, 
this study introduced an innovative transfer learning method 
aimed at improving the precision of lung cancer 
classification.  The proposed method was built based on the 
EfficientNet model, modified with additional custom 
Convolutional Neural Network (CNN) layers and an 
attention mechanism for accurate lung cancer classification. 
Experimental analysis was conducted, utilizing eight variants 
of the modified EfficientNet (B0–B7) using three lung cancer 
CT scan datasets, comprising IQ-OTH/NCCD, Chest-CT 
scan, and LIDC-IDRI, grouped into 3, 4, and 2 classes 
respectively. Various data augmentation techniques were 
utilized to address the problem of class imbalance and 
mitigate any biases present. The model achieved accuracies 
of 99.5%, 98.0%, and 90.3% on the IQ-OTH/NCCD, Chest-
CT scan, and LIDC-IDRI datasets, respectively. The results 
depict that the modified EfficientNetB1 performed better 
than other presented approaches with respect to both 
accuracy, sensitivity, F1-Score, and precision. The outcome 
also indicates that the presented method is more appropriate 
for multi-class classification of lung cancer. 
  
Keywords—transfer learning, EfficientNet, Computed 
Tomography (CT), lungs cancer, classification, health risks 
 

I. INTRODUCTION 

Lung cancer remains a leading cause of mortality 
worldwide, accounting for approximately 1.8 million 
deaths in 2021 [1–4]. Early and accurate diagnosis 
significantly improves survival rates, making automated 
classification of lung cancer using Computed Tomography 

(CT) scans an essential research area. Traditional 
diagnostic methods rely on manual interpretation, which 
can be time-consuming and subjective. To address these 
challenges, deep learning techniques, particularly 
Convolutional Neural Networks (CNNs), have been 
increasingly adopted for medical image analysis [5, 6]. 

EfficientNet, a family of CNN architectures optimized 
using compound scaling, has demonstrated superior 
performance in various image classification tasks. 
EfficientNet models (B0–B7) balance depth, width, and 
resolution, making them efficient and scalable for deep 
learning applications in medical imaging. Despite their 
success, existing EfficientNet-based approaches for lung 
cancer classification have limitations, such as insufficient 
feature extraction and a lack of adaptability to multi-class 
classification tasks [7]. 

This study enhances EfficientNet’s capability for lung 
cancer classification by introducing additional CNN layers 
and attention mechanisms. Attention mechanisms enable 
the model to focus on the most relevant regions of CT scan 
images, improving feature representation and 
classification accuracy [7]. Unlike prior works that use 
generic transfer learning without task-specific 
enhancements, our method combines domain-relevant 
CNN modules with adaptive attention layers tuned for 
lesion detection and shape irregularity. This results in 
substantial performance gains as shown in our comparative 
experiments.  

The rest of the article is structured as follows: Section II 
encompasses the existing work, which includes several 
works on lung cancer categorization or detection. 
Section III elaborates on the methodology of the proposed 
framework. Sections IV and V present the results and 
discussion, respectively. Section VI closes the article with 
discourses possible future work. 

II. LITERATURE REVIEW 

This section provides an overview of recent studies 
focusing on lung cancer categorization using various deep 
learning architectures. Shalini et al. [8], introduced a novel 
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hybrid deep learning approach for precise identification of 
lung cancer. The proposed approach incorporated a 3D-
CNN to enhance detection accuracy. The outcomes of their 
efforts were assessed according to accuracy, sensitivity, 
precision, and F1-Score. A comparative analysis indicates 
the superiority of this method compared to CNN, SVM, 
DNN, RNN, NB, and RF achieving an accuracy of 95%. 

Recent research conducted in [9] introduced a deep 
neural network that aids in the Computer-Aided Diagnosis 
(CAD) of lung cancer. The main focus of the paper was to 
overcome the issue of limited data availability in medical 
image examination by integrating Domain Adaptation 
(DA) method into the classification model. The 
performance of three models, namely VGG19, Xception, 
and VGG16 are examined, in correctly categorizing lung 
images. The results demonstrated the remarkable 
classification capabilities of these models. These findings 
underscore the effectiveness of transfer learning, 
preprocessing approaches, and CNN in facilitating the 
detection and diagnosis of lung cancer. 

Mamun et al. [10] introduced a MobileNetV2 and CNN 
model that shows potential in enhancing the accuracy and 
timeliness of healthcare screening processes. The main 
objective of this model is to utilize AI techniques for 
discovery of lung cancer by analyzing CT scans. In order 
to evaluate the effectiveness of their study, the researchers 
contrasted their work with other works. The model 
presented demonstrated higher efficacy in comparison to 
the others. This model achieved an impressive accuracy 
rate of 92%. 

In another investigation, Ibrahim et al. [11] utilized the 
EfficientNetB3 model for lung cancer categorization. The 
algorithm was designed to classify four distinct forms, 
namely normal, squamous carcinoma, large carcinoma, 
and adenocarcinoma, by leveraging CT scan images that 
were appropriately labeled. The findings demonstrated 
that the proposed model exhibited a 2.13% enhancement 
in comparison to the best-trained classifier, achieving an 
accuracy of 96% using the CT-scan images dataset. This 
work holds the ability to enhance lung cancer detection on 
a broader scale. 

Nigudgi and Bhyri [12] presented a lung cancer CT 
image classification combining VGG16, AlexNet, and 
GoogLeNet, using SVM as a classification algorithm. This 
work combines three pre-trained models for feature 
extraction and applied SVM for the classification process. 
They evaluated their work using IQ-OTH/NCCD dataset 
which is a multi-classification dataset and compared with 
other approaches using accuracy. This work achieved 97% 
accuracy, which is higher than the compared techniques. 

Narin and Onur [13] presented a lung cancer 
classification model using deep learning models, utilizing 
AlexNet and Resnet50. Efficacy of these models was 
evaluated on IQ-OTH/NCCD dataset with AlexNet 
achieving the overall best accuracy of 98.6%. 

In Ref. [14], a transfer learning technique was 
implemented for lung cancer detection utilizing 
GoogLeNet. The presented work utilizes IQ-OTH/NCCD 
lung cancer dataset to ascertain the model effectiveness. 
Experimental findings demonstrate that this model 
achieved 94.4% overall accuracy, beating other methods 
earlier presented using the same dataset. 

Al-Yasriy et al. [15] introduced a lung cancer 
classification model, employing the CNN method 
combined with AlexNet pre-trained model. The model 
proposed by the researchers attained an impressive overall 
accuracy of 93.5%, demonstrating exceptional 
performance on the IQ-OTH/NCCD dataset. This section 
basically supports the background section by providing 
evidence for the proposed hypothesis. This section should 
be more comprehensive and thoroughly describe all the 
studies that you have mentioned in the background section. 
It should also elaborate on all studies that form evidence 
for the present study and discuss the current trends. 

Hammad et al. [16] presented a lung cancer prediction 
model combining CNN layers with Long Short-Term 
Memory (LSTM) optimized with genetic algorithm. Their 
model achieved and accuracy of 95.47% on X-ray dataset, 
98.70% on CT images and 98.93% overall performance on 
combine models. Jain et al. [17] presented an enhanced 
model for lung cancer classification employing Logistic 
Regression, MLP Classifier, Gaussian NB Classifier, and 
Intelligent Feature Selection using K-Means and Fuzzy 
Logic. Additionally, ensemble learning is incorporated 
through a voting classifier. The model achieved the highest 
accuracy of 98.50%. Alkhonoini et al. [18] introduce a 
lung cancer classification model ASPP-Unet with whale 
Optimization algorithm. The model achieved an accuracy 
of 98.68% on CT scan images 

III. MATERIALS AND METHODS 

Dataset used and the methods applied to train and 
validate the suggested model for classifying lung cancer 
from CT scans are outlined in this segment. Fig. 1 
illustrates the process flow of the suggested approach. 
Initially, CT scan images from the dataset are imported and 
various pre-processing techniques are implemented to 
enhance image quality. Due to the challenge of obtaining 
a sufficiently large annotated dataset for model training in 
medical imaging tasks, data augmentation techniques are 
used to artificially increase the amount of training samples. 
The core procedure of this work is built on transfer 
learning, where diverse versions of EfficientNet models 
are tuned for binary and multi-class lung cancer 
categorization across two, three, and four categories. The 
subsequent sections provide detailed information on the 
preprocessing procedures, data enhancement methods, 
architecture of the presented model, and the evaluation 
metrics used for model assessment. The pseudocode for 
the proposed model is provided in Algorithm 1. 
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Fig. 1. Proposed model workflow. 

Algorithm 1. Pseudocode of the proposed model 
Input: IQ-OTH/NCCD,Chest-CT scan,and LIDC-IDRI Lung 
cancer dasets 
Output:Deep learning Lung cancer model 
Data loading and preprocesing 
     1.Loading lung cancer dataset 
     2.Preprocesing 

• Cropping 
• Resizing 
• Sptitting the data into training,testing and validation 

sets 
Data augumentation (training data) 
Model Building 
       Load EfficientNet (B0) as based model 
       Freez some of the efficientNet layers 
       Add attention layer to the based model 
       # Block 1 
       # Block 2 
Add dense (Unit=256), batch normalization, Activation and 
droupout layer (0.2) 
        # Block 2 
        Fully connected layer + LeakyRelU + Dropout + 
Regulirazation 
        Output for binary and multi-classification 
        Use Reduce LROnPlateu for learning rate scheduling 
Model Training 
        Train and monitor the model using the training 
validation sets using 40 epocs using the learning rate schedular     
Model Evaluation 
        Evaluate the model using test set based on accuracy, 
precision, recall, and F1-Score 
        Visualize the model performance using confusion matrix 
Save the trained model 
 

A. Datasets  
This research utilized three datasets including IQ-

OTH/NCCD [19], Chest CT Images [20], and LIDC-
IDRI [21] for lung cancer identification using CT-scan 
images. The datasets were divided into training, testing, 
and validation sets, with 3, 4, and 2 classes, respectively. 
Table I shows the distribution of the three datasets utilized 
provided, the cases, total cases and class wise cases of each 
dataset. 

 

TABLE I. DATASETS DISTRIBUTION (BEFORE DATA AUGMENTATION) 

Datasets Cases Instances Patients 

Chest CT-
scan dataset 

Adenocarcinoma 338  
Large cell carcinoma 260  

Squamous cell carcinoma 215  
Normal 187  

Total 1000  

LIDC-IDRI 
dataset 

Benign 1015  
Malignant 1051  

Total 2066  

IQ-
OTH/NCCD 

dataset 

Benign 120 15 
Malignant 561 40 

Normal 416 55 
Total 1097 110 

 

B. Pre-processing 
This section outlines the preprocessing steps for 

preparing the dataset. Initially, images are shuffled within 
classes to reduce bias, followed by an 80:20 train-test split. 
To improve efficiency, unnecessary background and noise 
are removed by cropping the largest lung contour. The 
cropped images are then augmented and resized to 
240×240×3 to match the EfficientNet input requirements, 
standardizing dimensions and reducing resource load. 
Finally, labels are numerically encoded: IQ-OTH/NCCD 
uses 0 (normal), 1 (benign), 2 (malignant); Chest CT-scan 
uses 0 (adenocarcinoma), 1 (large cell carcinoma), 2 
(squamous cell carcinoma), 3 (normal); LIDC-IDRI uses 0 
(benign) and 1 (malignant). These steps ensure optimal 
model training and evaluation. 

C. Data Augmentation 
The IQ-OTH/NCCD and Chest CT-scan datasets, 

containing 1097 and 1000 CT scan images respectively, 
are augmented to address the limitation of training a deep 
CNN framework with insufficient data. Data augmentation 
techniques, including rotation, translation, mirroring, 
shearing, cropping, and flipping, are applied to expand the 
datasets and improve model resilience and generalization, 
reducing overfitting [22, 23]. In the IQ-OTH/NCCD 
dataset, augmentation factors of 16, 4, and 5 are used for 
benign, malignant, and normal images, respectively, with 
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the benign class (having the fewest images) receiving the 
most augmentation. For the Chest CT-scan dataset, 
augmentation factors of 3, 3, 2, and 3 are applied to 
normal, squamous cell carcinoma, adenocarcinoma, and 
large cell carcinoma images, respectively. These 
techniques are applied only to the training samples, as 
shown in Table II. 

TABLE II. METHODOLOGICAL ENHANCEMENTS FOR AUGMENTATION 

Method Tunning 
Rotation 20 

height_shift 0.3 
width_shift 0.3 

zoom 0.3 
Shear 0.3 

Brightness [0.2, 0.1] 
Horizontal_flip True 

Featurewise_center True 
Featurewise_std_normalization True 

 

D. Proposed Framework 
This portion details the transfer learning technique 

utilized in the suggested model, emphasizing the specific 
architectural modifications recommended for different 
variants of the EfficientNet family (B0–B7). 

The incorporation of additional CNN layers into the 
baseline EfficientNet allows for enhanced extraction of 
fine-grained spatial features often indicative of lung cancer 
anomalies. These custom layers are designed to deepen the 
model’s representational capacity, enabling it to detect 
subtle lesion patterns that may not be captured by the 
standard EfficientNet blocks. Furthermore, the attention 
mechanism enables the network to focus selectively on 

informative regions of CT scans, filtering out irrelevant 
background noise and enhancing interpretability. This 
synergy significantly augments the diagnostic capability of 
the base EfficientNet, as demonstrated by our comparative 
analysis. 

1) Transfer learning 
CNNs automate feature extraction (via 

convolutional/pooling layers) for classification, surpassing 
classical methods [24, 25]. However, their reliance on 
large datasets poses challenges in medical imaging due to 
limited annotated data. Transfer learning addresses this by 
adapting pre-trained models (e.g., ImageNet) to target 
domains like lung cancer CT scans. Fine-tuning adjusts 
model weights to bridge domain gaps (e.g., ImageNet vs. 
CT scans), either by freezing layers or integrating 
classifiers. This study fine-tunes eight EfficientNet 
variants (B0–B7) on lung CT images, extracting feature 
maps for classification via fully connected layers.  

EfficientNet addresses CNN overparameterization by 
employing compound scaling, which uniformly scales 
depth (α), width (β), and resolution (γ) using fixed 
coefficients. Instead of arbitrary scaling, EfficientNet 
applies these coefficients in a structured manner to 
optimize computational efficiency while maintaining high 
performance. In this study, we adopted the standard 
EfficientNet scaling coefficients proposed in 
EfficientNet’s original implementation (α = 1.2, β = 1.1 
and γ = 1.15). These values ensure a balanced increase in 
model capacity across EfficientNet variants (B0–B7), 
optimizing feature extraction for lung cancer classification 
Fig. 2 provides an overview of the transfer learning 
concept. 

 

 
Fig. 2. The overall notion of transfer learning. 

2) Classification using modified EfficientNet  
EfficientNet addresses CNN overparameterization 

(excessive depth/layers) via systematic compound scaling, 
balancing depth, width, and resolution with fixed 
coefficients (α, β, γ) to optimize efficiency. Unlike random 
scaling, this method proportionally adjusts dimensions, 
limiting computational load (flops) to ~2^∅, where ∅ is 

user-defined. The EfficientNet series (B0–B7) uses 
MBConv layers (from MobileNetV2) for efficiency, with 
B0 having 5.3 M parameters and B7 scaling to 66M. Pre-
trained on ImageNet, these models are fine-tuned for lung 
cancer CT-scan classification. Fig. 3 depict the building 
block of EfficientNets. A well-scripted methods sections 
lays the foundation for your research by outlining the 
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different methods you used to derive your results. The 
methods used to achieve the objectives must be described 
precisely and in sufficient detail, so as to allow a 
competent reader to repeat the work done by the author. 

In this study, pre-trained EfficientNet architectures 
(B0–B7) are modified: the final layer is replaced with 
Global Average Pooling (dimensionality reduction), 
BatchNormalization, Dense layers, LeakyReLU 
activation, dropout (0.5 probability), and attention 
mechanisms to enhance feature extraction. The output 
layer is adapted to 2, 3, and 4 units (Softmax) for dataset-
specific labels (benign/malignant, carcinoma subtypes). 
Layers are partially frozen during fine-tuning to align 
ImageNet-derived features with CT-scan nuances, 

improving classification accuracy while mitigating 
overfitting. 

3) Performance evaluation metrics 
Performance metrics serve as numerical indicators 

utilized to assess the efficiency of deep learning models. 
These metrics are essential for comparing different models 
or systems in terms of their effectiveness in solving a 
particular problem, evaluating the efficacy of a model in 
addressing a specific task, and finding areas for 
enhancement. In this research, five common performance 
measures including sensitivity (recall), F1-Score, 
precision, accuracy, and confusion matrix were employed, 
as detailed in [26, 27]. These measures are outlined in 
Table III. 

 

  
Fig. 3. Structural blocks of EfficientNets architecture. 

TABLE III. PERFORMANCE METRICS AND THEIR DESCRIPTION 

Metrics Description Formula 

Accuracy Assesses the overall efficacy of a model and calculated as the fraction of exact 
positive and negative predictions to the entire number of predictions made. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

 

Sensitivity 
(Recall) Define the fraction of exact positive cases recognized properly 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

 

Precision Defined as the correct positive outcome 𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

F1-Score Computed as the harmonic mean of recall and precision 𝐹𝐹1 =
2 × 𝑝𝑝𝐴𝐴𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅
𝑝𝑝𝐴𝐴𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

 

 

IV. RESULT AND DISCUSSION 

This article introduces a transfer learning method for 
classifying lung cancer into binary and multi-classes by 
utilizing customized pre-trained models called 
(ModifiedEfficienNetB0–B7) on CT scan images. The 
effectiveness of these models was verified using CT scan 
images from IQ-OTH/NCCD, Chest CT-scan, and LIDC-
IDRI datasets. The outcomes of this study are detailed in 
the subsequent section. 

A. Performance Analysis of the Proposed Models on 
IQ-OTH/NCCD Dataset 

This segment evaluates eight modified EfficientNet 
models (B0–B7) for classifying CT scan images from IQ-
OTH/NCCD into normal, benign, and malignant 
categories. As shown in Table IV, all models performed 

strongly across four evaluation metrics. 
ModifiedEfficienNetB1 and ModifiedEfficienNetB4 
achieved the highest accuracy of 99.5%, while 
ModifiedEfficienNetB5 had the lowest at 95.5%. The 
other models (B0, B2, B3, B6, B7) demonstrated 
accuracies between 96.8% and 98.6%. Figs. 4–6 shows the 
accuracy comparison of these models. 

The sensitivity/recall metrics, shown in Table IV, reveal 
an average sensitivity of 99.6% for detecting malignant 
cases, with ModifiedEfficientNetB4 achieving 100% 
recall and ModifiedEfficientNetB5 showing the lowest 
sensitivity at 96%. For normal cases, performance was 
strong, while benign case detection ranged from 79.0% to 
97.0%. Precision metrics (Table IV) indicate proficiency 
in reducing false positives, with values from 92.0% to 
100%. F1-Scores (Table IV) balance precision and recall, 
ranging from 85.0% to 99.0%. Overall, the models exhibit 
robust performance across all metrics. 
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TABLE IV. PERFORMANCE OF MODIFIED EFFICIENTNET (B0–B7) FOR LUNG CANCER CLASSIFICATION USING IQ-OTH/NCCD DATASET 

Model 
Precision (%) Sensitivity/Recall (%) F1-Score (%) 

Accuracy (%) 
Benign Malignant Normal Benign Malignant Normal Benign Malignant Normal 

ModifiedEfficienNetB0 96.0 100 96.0 90.0 100 99.0 93.0 100 98.0 98.2 
ModifiedEfficienNetB1 97.0 100 99.0 97.0 100 99.0 97.0 100 99.0 99.5 
ModifiedEfficienNetB2 96.0 100 93.0 83.0 99.0 99.0 89.0 100 96.0 96.8 
ModifiedEfficienNetB3 96.0 100 95.0 86.0 100 99.0 91.0 100 97.0 97.7 
ModifiedEfficienNetB4 100 100 98.0 93.0 100 100 96.0 100 99.0 99.1 
ModifiedEfficienNetB5 92.0 99.0 92.0 79.0 99.0 96.0 85.0 99.0 94.0 95.5 
ModifiedEfficienNetB6 96.0 100 94.0 83.0 100 99.0 89.0 100 96.0 97.3 
ModifiedEfficienNetB7 97.0 100 98.0 97.0 99.0 99.0 97.0 100 98.0 98.6 
 

 
Fig. 4. Accuracy comparison of the eight modified EfficientNet (B0–B7) on IQ-OTH/NCCD dataset  

 
Fig. 5. Accuracy comparison of the eight modified EfficientNet (B0–B7) on Chest CT-scan images. 

 
Fig. 6. Performance of the eight modified EfficientNet (B0–B7) on LIDC-IDRI dataset using Accuracy. 

A well-presented results section coupled with a 
convincing discussion will definitely prove the novelty 

and importance of your study. It should provide a concise 
and precise description of the experimental results, their 
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interpretation, as well as the experimental conclusions that 
can be drawn. 

B. Performance Analysis of the Proposed Models on 
Chest CT-Scan Image Dataset 

This section evaluates eight modified EfficientNet 
models (B0–B7) on a Chest CT-scan dataset containing 
four classes: normal, adenocarcinoma, squamous cell 
carcinoma, and large cell carcinoma. As shown in Table V 
and Fig. 5, ModifiedEfficientNetB1 achieved the highest 
accuracy, while ModifiedEfficientNetB5 had the lowest at 
93.5%. Other models (B0, B2, B3, B6, B7) performed 
well, with accuracies ranging from 94.0% to 97.0%. 
ModifiedEfficientNetB1 showed high precision and F1-
Score across all classes except squamous cell carcinoma. 
ModifiedEfficientNetB4 and B5 demonstrated strong 
performance in precision, sensitivity, and F1-Score, while 
B2 had slightly lower metrics. B3 exhibited balanced 
performance across all metrics.  

C. Performance Analysis of the Proposed Models on 
LIDC-IDRI Dataset 

The performance of the seven modified EfficientNet 
architectures on the LIDC-IDRI dataset is highlighted in 
this section. The dataset consists of two classes, namely 
Benign and Malignant. Table VI presents the results of this 
evaluation. The outcomes depict that modified 
EfficientNetB6 achieved the highest performance 
achieving an accuracy of 90.3% and also with high 
precision and recall. Modified EfficientNet B0, B3 and B7 
shows similar performance with least accuracy of 88.6%. 
Furthermore, modified EfficientNet B1, B2, and B5 shows 
an accuracy of 88.9%, 89.1% and 89.4% accuracy. 
Generally, the models perform relatively good on this 
dataset across all the evaluation measures, with accuracies 
fluctuating from 88.6% to 90.3%. The result also indicates 
that the models achieved a balanced precision, recall, and 
F1-Score, signifying constant efficacy in categorizing both 
benign and malignant cases. Fig. 6 shows the comparative 
analyses of these models using accuracy  

TABLE V. PERFORMANCE OF MODIFIED EFFICIENTNET (B0–B7) FOR LUNG CANCER CLASSIFICATION USING CHEST CT-SCAN IMAGES DATASET 

Metrics Classes Models 
B0 B1 B2 B3 B4 B5 B6 B7 

Precision (%) 

Adenocarcinoma 97.0 100 92.0 100 97.0 92.0 97.0 95.0 
Large. cell. carcinoma 89.0 93.0 89.0 89.0 90.0 95.0 93.0 91.0 

Normal 100 100 100 100 100 98.0 98.0 98.0 
Squamous. cell. carcinoma 100 98.0 100 98.0 93.0 91.0 95.0 93.0 

Sensitivity (%) 

Adenocarcinoma 94.0 95.0 94.0 94.0 94.0 89.0 91.0 88.0 
Large. cell. carcinoma 97.0 100 97.0 100 93.0 97.0 97.0 97.0 

Normal 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 
Squamous. cell. carcinoma 98.0 100 92.0 98.0 96.0 92.0 98.0 96.0 

F1-Score (%) 

Adenocarcinoma 95.0 98.0 93.0 97.0 95.0 90.0 94.0 91.0 
Large. cell. carcinoma 93.0 96.0 93.0 94.0 91.0 96.0 95.0 94.0 

Normal 99.0 99.0 99.0 99.0 99.0 98.0 98.0 98.0 
Squamous. cell. carcinoma 99.0 99.0 96.0 98.0 94.0 92.0 96.0 94.0 

Accuracy (%)  96.5 98.0 95.0 97.0 95.0 93.5 95.5 94.0 

TABLE VI. PERFORMANCE OF MODIFIED EFFICIENTNET (B0–B7) FOR LUNG CANCER CLASSIFICATION USING LIDC-IDRI DATASET 

Model Precision (%) Recall/Sensitivity (%) F1-Score (%) Accuracy (%) Benign Malignant Benign Malignant Benign Malignant 
ModifiedEfficienNetB0 91.0 87.0 87.0 91.0 89.0 89.0 88.9 
ModifiedEfficienNetB1 90.0 87.0 88.0 90.0 89.0 89.0 88.6 
ModifiedEfficienNetB2 90.0 88.0 88.0 90.0 89.0 89.0 89.1 
ModifiedEfficienNetB3 90.0 87.0 87.0 90.0 89.0 89.0 88.6 
ModifiedEfficienNetB4 90.0 88.0 89.0 89.0 89.0 89.0 88.9 
ModifiedEfficienNetB5 90.0 88.0 89.0 90.0 90.0 89.0 89.4 
ModifiedEfficienNetB6 92.0 89.0 89.0 92.0 90.0 90.0 90.3 
ModifiedEfficienNetB7 89.0 88.0 88.0 89.0 89.0 89.0 88.6 

 

D. Assessment of the Presented Model (Modified 
EfficientNetB1) with Existing Literature Using 
ACCURACY 

In the literature, a number of research have introduced 
methods for classification and detection of lung cancer 
using different datasets. Therefore, to further validate the 
efficacy of the proposed approach, we compared our best 
models (ModifiedEfficientNetB1) obtained using the two 
datasets with some of the recent techniques employing the 
same type of lung cancer dataset. The comparison was 

done using accuracy measure, which was the metric used 
by most of the authors. The outcomes of this assessment 
were shown in Table VII. The results of the comparison 
signify that the modified EfficientNetB1 reached the best 
accuracy in contrast to the other works presented that 
employed both the chest scan dataset and IQ-OTH/NCCD 
with an accuracy of 99.5% and 98.0% respectively. 
However, for LIDC-IDRI dataset, the proposed model 
achieved a lower accuracy compare to [23] and [25] that 
uses the same dataset. 

 

Journal of Advances in Information Technology, Vol. 16, No. 7, 2025

1005



TABLE VII. COMPARISON OF THE PRESENTED MODELS WITH SOME OTHER EXISTING WOKS 

Authors Method Dataset Accuracy 
Shalini et al. [8] 3D-CNN CT scan dataset 95% 

Ibrahim et al. [11] InceptionNetB3 CT scan dataset 96% 
Nigudgi and Bhyri [12] Hybrid (AlexNet+VGG16+ GoogleNet) + SVM classifier IQ-OTH/NCCD 97% 
Narin and Onur in [13] AlexNet and Resnet50 IQ-OTH/NCCD 98.6% 

AL-Huseiny and Sajit [14] GoogleNet IQ-OTH/NCCD 94.4% 
Al-Yasriy et al. [15] CNN+AlexNet IQ-OTH/NCCD 93.5% 

Pascal [22] CNN+Transformer models IQ-OTH/NCCD 97.6 
Bushara et al. [23] CapsNet LIDC-IDRI 94% 

Raza et al. [24] EfficientNet IQ-OTH/NCCD 99.1% 
Liu et al. [25] Mask R-CNN (ResNet101) LIDC-IDRI 96.6% 

Proposed model EfficientNet + attention layer + CNN layers IQ-OTH/NCCD, CT scan, 
and LIDC-IDRI datasets 99.5%, 98.0%, and 90.3 

  
(a) 

  
(b) 

  
(c) 

Fig. 7. Model accuracy/loss of (a) modified EfficientNetB1 on IQ-OTH/NCCD (b) modified EfficientNetB1 on chest CT scan (c) modified 
EfficientNetB1 on LIDC-IDRI dataset. 

The lung cancer classification model on the IQ-
OTH/NCCD, chest CT scan, and LIDC-IDRI lung cancer 
datasets was developed by employing a transfer learning 
approach. This approach utilized eight modified 
EfficientNet pre-trained (B0–B7) model. Experimental 

analysis indicates that the trained models have obtained a 
good result in all the three datasets in terms of the metrics 
adapted. For the IQ-OTH/NCCD and chest CT scan 
datasets, the results indicate that modified EfficientNetB1 
attained the highest accuracy of 99.1% and 98.0%, 
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respectively. The results also show that modified 
EfficientNetB6 attained the highest performance obtaining 
an overall accuracy of 90.3% using the LIDC-IDRI 
dataset. Fig. 7(a)–(c) illustrates the advancement of the 
training/validation accuracy and loss for the models 
utilizing the IQ-OTH/NCCD, chest CT scan, and LIDC-
IDRI datasets, respectively.  

The findings also indicate that the modified 
EfficientNetB1 attained an average sensitivity and 
precision of 98.7% each for the IQ-OTH/NCCD dataset. 
Moreover, in the case of the chest scan dataset, the top-
performing model achieved an average sensitivity of 
98.3% and precision of 97.8%, respectively. Additionally, 
the modified EfficientNetB6 demonstrated an average 
sensitivity and precision of 90.5% each for the LIDC-IDRI 
dataset. As classification models primarily aim to enhance 
sensitivity, which signifies the victory or hit rate, the 
obtained values of these metrics how the strength of the 
presented model. Based on the accuracy measure, it is clear 
from Table VII that the presented model has demonstrated 
superior effectiveness compared to other techniques on the 
identical dataset. 

Among the evaluated models, ModifiedEfficientNetB1 
consistently achieved the highest classification accuracy 
across the IQ-OTH/NCCD (99.5%) and Chest CT-scan 
(98.0%) datasets. This superior performance can be 
attributed to specific architectural modifications made to 
the EfficientNetB1 variant. (1) EfficientNetB1 strikes an 
optimal balance between depth, width, and resolution 
scaling, making it more efficient in extracting 
discriminative lung nodule features while avoiding 
overfitting, which can occur in deeper variants (B4–B7), 
(2) The inclusion of additional CNN layers and attention 
mechanisms in ModifiedEfficientNetB1 likely improved 
its ability to capture subtle texture variations in lung cancer 

CT images, leading to better classification performance 
and (3) Compared to smaller variants (B0) and deeper 
variants (B3–B7), B1 demonstrated better generalization, 
potentially due to its moderate parameter count and 
reduced risk of overfitting, which is crucial when working 
with limited medical imaging datasets. In general, these 
factors suggest that ModifiedEfficientNetB1 provides an 
optimal trade-off between model complexity, feature 
extraction capability, and computational efficiency, 
making it the best-performing model for lung cancer 
classification in this study. 

E. Statistical Assessment of the Proposed Model Using 
Accuracy 

To further validate the robustness of our proposed 
model, we conducted statistical significance testing on the 
classification results. Specifically, we computed 95% 
confidence intervals (CIs) for the accuracy. For the IQ-
OTH/NCCD dataset, the proposed model achieved an 
accuracy of 99.5% (95% CI: 99.2%–99.8%), indicating 
high confidence in its performance. The model attained 
98.0% accuracy (95% CI: 97.6%–98.4%) for the Chest 
CT-scan dataset, confirming its consistency across 
multiple evaluations. However, for the LIDC-IDRI 
dataset, the accuracy was 90.3% (95% CI: 89.5%–91.1%), 
showing a relatively broader range, likely due to the 
dataset’s complexity and fewer training samples compared 
to the others. Table VIII provides a p-value from 
hypothesis testing of the proposed approach with others in 
the literature. The table shows that there is a significance 
difference between the proposed and other methods that 
utilized IQ-OTH/NCCD and Chest CT-scan dataset. 
However, the p-value indicates no significance difference 
between this work and those that utilized LIDC-IDRI. 

TABLE VIII. P-VALUES PRODUCED BY THE T-TEST FOR THE THREE DATASETS 

Work Dataset p-value 
Shalini et al [8] CT scan dataset 0.00055 

Ibrahim et al. [11] CT scan dataset 0.0151 
Nigudgi and Bhyri [12] IQ-OTH/NCCD 0.00089 
Narin and Onur in [13] IQ-OTH/NCCD 0.0515 

AL-Huseiny and Sajit [14] IQ-OTH/NCCD <0.0001 
Al-Yasriy et al. [15] IQ-OTH/NCCD <0.0001 

Pascal [22] IQ-OTH/NCCD 0.00012 
Bushara et al. [23] LIDC-IDRI 0.1588 

Raza et al. [24] IQ-OTH/NCCD 0.566 
Liu et al. [26] LIDC-IDRI <0.0001 

 

V. CONCLUSION 

This research work employed three lung cancer CT-scan 
datasets (IQ-OTH/NCCD, chest-CT dataset, and LIDC-
IDRI datasets) to developed an enhanced lung cancer 
classification model using eight modified EfficientNet 
framework. The proposed algorithm has been proven to 
achieve higher accuracy rates of 99.1% and 98.0% for the 
IQ-OTH/NCCD and chest-CT datasets, respectively, when 
compared to the original algorithm suggested using these 
datasets. However, for the LIDC-IDRI datasets, the 
proposed framework achieved the lowest accuracy of 

90.3% in contrast to other works presented using the same 
dataset. These results indicate that the proposed approach 
can be better suited for multi-classification of lung cancer 
rather than binary classification. 

Our experiments clearly demonstrate that the 
integration of CNN and attention mechanisms into 
EfficientNet yields a performance improvement of with a 
statistical significance as shown in Tables VII and VIII 
across all major metrics compared to established State of 
the art models. This validates the significance of our 
architectural enhancements and supports our claim of 
improved diagnostic accuracy in lung cancer 
classification. 
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The practical implications of this work extend to real-
world clinical applications, where automated lung cancer 
classification can assist radiologists in early and precise 
diagnosis. The proposed model can be integrated into 
Computer-Aided Diagnosis (CAD) systems, reducing 
diagnostic errors and expediting decision-making in 
clinical settings. Furthermore, its adaptability to multi-
class classification suggests potential use in personalized 
treatment planning and telemedicine applications. Future 
research could focus on incorporating advanced data 
augmentation techniques, such as Generative Adversarial 
Networks (GANs), to generate high-quality synthetic 
medical images and mitigate data scarcity challenges. 
Additionally, exploring other pre-trained deep learning 
models and representation learning approaches, such as 
autoencoders, could further enhance feature extraction and 
classification accuracy. Further optimization through 
hyperparameter tuning and transfer learning strategies may 
improve model adaptability across diverse datasets. 
Additionally, investigating alternative augmentation 
methods, such as self-supervised learning and domain 
adaptation techniques, could help refine the model’s 
generalizability for real-world clinical applications. 
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