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Abstract—In the USA, math proficiency levels these days are 
lower than ever before, which is problematic, since math is 
commonly used throughout life and math enables people to 
better solve problems, understand patterns, quantify 
relationships, and make predictions of the future. While 
Math Information Retrieval (MIR) as an area of study is 
relatively new, it is essential and provides a means to search 
for relevant sources of math information to those who are 
studying math, something which is difficult to do for people 
without prior knowledge of a specific math subject area they 
are looking for. In order to develop a robust MIR system, 
designers must be able to process Math Equations (MEs) to 
a format that the system can use, which is difficult due to 
various formats math information are stored in, including 
visual images and document texts. In solving this problem, 
we propose a ME extraction system that (i) applies a one 
shot object detector to identify math equations in digital 
images using an efficient neural architecture search method 
and (ii) employs a Sequence-to-Sequence (Seq2Seq) encoder-
decoder system to recognize math equation symbols based 
on the Bayesian Neural Network (BNN) row encoding. The 
proposed system balances speed and accuracy of a Math 
Information Retrieval (IR) system.  
 
Keywords—image detection, image recognition, math 
questions, math answers  
 

I. INTRODUCTION 

Math is a major contributor to many areas of study, 
and gives someone skills that (s)he can use across other 
subjects and different job roles. It makes a person better 
at solving problems. Math is also considered a universal 
language, since it conveys quantitative properties and 
values as well as how processes work, and is used in 
many different parts of life, such as scheduling, cooking, 
finances, measurements, and organization. Unfortunately, 
math proficiency levels for people around the world have 
dropped drastically, particularly in the USA. According 
to the National Assessment of Educational Progress [1], 
12th graders in the USA are considered to be proficient in 
math if they have a score of 176 or higher, but the grade 
average in 2019, the most recent recorded year, was 150. 
The national average for students’ math proficiency in US 
public schools was merely 38% in the year of 2023 [2]. 
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To make matters worse, it is very difficult for people to 
locate viable sources of math information in order to 
learn math or familiarize themselves with an area of study 
or research which involves math, especially if they are 
not familiar with the subject area. Since understanding of 
math is beneficial yet so difficult to attain, having systems 
in place which can reliably locate, extract, and return 
math resources for people to use and learn from is 
essential. 

Math Information Retrieval (MIR), a relatively new 
field of study which involves organizing, storing, 
retrieving, and evaluating math information from 
document repositories, has been developed to retrieve and 
rank math information to prospective users. With the 
design goal of assisting users to retrieve relevant math 
information, MIR systems aid users in increasing their 
understanding of math concepts. One of the main design 
issues of MIR systems, however, is to process sources of 
math information so that they become visible and 
accessible to the users. While some of these sources are 
just stored in textual format, others are archived in a 
visual format, whether this be a PDF, a physical 
document, or a digital image. Besides processing textual 
math information in math questions and answers posted 
by users on a social media website, such as Mathematics 
Stack Exchange, a sophisticated Math Information 
Retrieval (IR) system is expected to handle the plethora 
of other sources of digital math information, such as 
geometric figures or graphs. Doing so would improve 
Science, Technology, Engineering, and Mathematics 
(STEM) education by allowing more sophisticated 
search, storage, and production of math information, as 
well as enable automatic document digitization, which is 
considerably more efficient than manually digitizing 
documents. Extraction of math from visual sources 
allows online learning platforms to more easily interpret 
the content of user submitted images for answering 
questions, giving recommendations, and retrieving 
information, which is particularly helpful for returning 
relevant information to users which is either difficult to 
transcribe textually or more visual in nature, such as a 
complex multi-layer equations, graphical diagrams, and 
tabular data. Converting Math Equation (ME) images into 
textual format, however, is non-trivial. 

While natural language text is arranged in relatively 
easy to parse lines, having characters aligned in a single 
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dimension, math notation may appear both in-line with 
surround text or isolated from the rest of a document as 
an image. To further complicate matters, some math 
equation symbols can be used for multiple purposes. For 
instance, A • B could be referring to algebraic 
multiplication, matrix multiplication, or concatenation, 
whereas f ◦ g can refer to the Hadamard product with 
matrix multiplication or for function composition. 
Moreover, subscripts and superscripts alter the sizes and 
location of the equation symbols involved, and these 
symbols can be arranged in two spatial dimensions rather 
than one. All of these factors are critical for accurately 
extracting a math equation with the intended meaning. 
Even when math formulas are correctly extracted from 
images, most existing methods for equation extraction 
designed with accuracy in mind rather than speed, with 
ScanSSD-XYc being one of the only methods listed in 
the present that even addressed speed when it came to 
equation extraction systems. This is problematic, since 
MIR systems require both reasonable accuracy and real 
time speeds in order to be deployed in real world 
environments, and equation extraction systems would fall 
under similar constraints. 

In solving the design problems mentioned above, we 
propose a MIR system that is capable of extracting digital 
math information by detecting and recognizing math 
equations in images and converting them into a usable 
text-based format, namely LaTeX, with high efficiency 
and accuracy, a contribution to the Math IR 
community [3]. For the proposed system we specifically 
focus on extracting math equations from digital or 
scanned documents, one of the most commonly existing 
and used mediums for storing math information online. 
The extraction model consists of two components: a 
detection model and a recognition model. To detect math 
equations in images, a Fully Convolutional One-Stage 
(FCOS) object detection model is adapted for identifying 
different kinds of math formulas in images, creating 
labels, and performing bounding box regression with the 
addition of Fast And Diverse (FAD) with Representation 
Sharing (RepShare) to improve model efficiency [4]. To 
recognize and retrieve math equations in the resulting 
bounding boxes as text, an encoder-decoder architecture 
using soft attention with Bayesian Neural Network row 
encoding is utilized to convert the images into LaTeX [5]. 

II. LITERATURE REVIEW 

While Math Equation Detection and Recognition 
(MEDR) is a relatively new area of study, work has been 
done in this area over a decade ago. It focuses on 
extraction from PDFs and images that include printed or 
handwritten math equations. 

A. Math Equation Detection Models 
Even though there have been methods created to 

process math equations based on techniques other than 
Machine Learning (ML), ML is still used more frequently 
in recent times, with Support Vector Machines (SVM), 
K-Nearest-Neighbor (KNN), Convolutional Neural 
Network (CNN), and Long Short-Term Memory (LSTM) 

being the most commonly-used techniques [6–8]. Some 
previous work which relates to math equation detection 
typically utilizes some form of CNN, as this enables 
storing feature information and scanning for features 
which indicate ME locations. There are several variants 
of this particular method. For instance, ScanSSD and 
ScanSSD-Xyc slide windows over images using a CNN 
to select equation bounding boxes. Chu and Liu [9] 
separate text from the rest of the document and then 
employ a SVM to determine if the segmented line is a 
math equation E to classify E as either inline or isolated. 
A similar method segments the text before running a 
CNN for feature extraction [8]. Other techniques pair a 
U-Net with a CNN, or a Conditional Random Field 
(CRF) with a Recurrent Neural Network (RNN) [7]. Yet 
another approach is to use previously implemented object 
detectors for ME detection, such as using Faster R-CNN 
or Cascade Mask R-CNN [6]. 

B. Math Equation Recognition Models 
The earliest math equation recognition methods 

typically used conventional OCR with SVMs for 
classification. Most methods, which were created later, 
utilized some form of encoder-decoder architecture, 
usually included a LSTM variant or attention [10]. Some 
of the more recent methods use Visual Transformers 
(ViT) as well [3]. The persistent use of encoder-decoder 
architectures for this problem indicates that this approach 
is an effective solution for this problem, and is one of the 
few currently existing methods which can be configured 
to convert images to text in a similar fashion to image 
captioning, which is needed for math equation 
recognition. The majority of these methods have some 
form of recurrence or attention in place to enable keeping 
track of sequential and spatial data, due to the importance 
of contextual and semantic information for recognizing 
equation text in images. We have found no existing work 
which combines Bayesian uncertainty modeling with 
math equation recognition, let alone combines anchor-
free detection (such as FCOS) with Bayesian uncertainty 
modeling for math equation recognition. 

III. THE PROPOSED MIR SYSTEM 

In this section, we detail the design methodology of the 
proposed math image detection and recognition system 
for retrieving math information.  

A. Our Math Equation Detection Model 
The design goal for our math equation detection model 

is to recognize math equations in images with high 
efficiency and accuracy in order to be usable for Math IR 
and other real-world systems. In developing such a 
model, we focus on extracting math equations from 
images of printed scientific documents, as this is one of 
the most commonly-existing and widely-used mediums 
for math equation information stored on the Web. To 
detect equations in images, a Fully Convolutional One-
Stage (FCOS) object detection model is adapted for 
identifying different math formulas in images, creating 
labels, and performing bounding box regression. 
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Most of the existing math equation detection 
approaches deliberately combine different methods 
together, and almost all of them rely on using CNNs for 
the task of equation detection. Our math equation 
detection model, however, implements FCOS, which is a 
one-shot object detection that utilizes a Resnet-based 
back bone, essentially a CNN with skip connections, 
combined with a Feature Pyramid Network to perform 
anchor free object detection [11]. All of these parts 
enable the network to perform with a good balance of 
speed and accuracy, which make FCOS ideal to use for 
Math IR systems. There is no current method which 
implements FCOS to detect math equations, and our 
model for detecting equations in images provides a viable 
method for equation detection which achieves high 
precise results and efficient performance. 

Our math equation detection model utilizes a FCOS 
frame-work to identify different kinds of equations and 
form bounding boxes around them. The model takes 
images of printed documents, locates math equations 
within them, and forms bounding boxes around them 
while identifying them as embedded formulas, which are 
surrounded by text or isolated equations that are separate 
from the rest of the text. These equations might be split 
across lines or pages. While this approach has not been 
used for this kind of problem before, a related method 
called Faster R-CNN has been used for extracting math 
equation from images previously, so there is a precedent 
for using ML as object detectors for Math IR systems. 
FCOS, in particular, is both faster than most detection 
methods while also being lightweight, relatively new with 
iterated additions that provide improvements to 
performance, and having high accuracy. While FCOS 
method does not translate math equations in images into 
some form of markup language, it is capable of locating 
them and identifying whether an equation is separated 
from the rest of the text or split across lines. Doing so 
makes it easier for those equations to be extracted later 
and used by math equation recognition methods. Using 
FCOS to extract equations of different types from images 

achieves high accuracy and speed, which are our design 
goals. It also works as a reliable method as part of the 
overall Math IR model that can operate in real time. 

1) The architecture of FCOS 
In terms of function, FCOS is an anchor-free object 

detector which solved object detection problems in a per-
pixel prediction fashion, similar to segmentation. It is 
primarily based off of Fully Convolutional Networks 
(FCN) for semantic segmentation. The model architecture 
has three sections as depicted in Fig. 1, the backbone, 
feature pyramid, and head [4]. Feature maps extracted by 
the backbone are fed into the Feature Pyramid Network 
(FPN) at different levels of scale, and the different layers 
feed into each other from smallest to largest [11]. This 
enables robustness to scale variance and also allows 
choosing plausible object locations at a smaller scale 
before narrowing down on locations on a larger scale, 
which is efficient. The FCOS model is using ResNet50, a 
Convolutional Neural Network (CNN) utilizing residual 
layers for the feature extraction backbone. Resnet is a 
kind of DNN architecture which contains skip 
connections that link back from later layers to earlier 
ones, which enables gradients to flow through them, 
which is helpful, since it prevents vanishing or exploding 
gradients that could cause the network to fail. The output 
of the FPN then becomes the input to a head network. 
The head network has two main branches, one being used 
for classification to predict class confidence and center-
ness of the bounding, and the other for regression to 
predict bounding boxes [4]. The input is encoded as an 
image, as well as associated classes for math equations 
and bounding boxes within those images, while the 
output of training is the losses and the output of inference 
is predicted math equation class types and bounding for 
the images passed through. There are three loss functions 
used for the head: classification loss uses focal loss, 
center-ness loss uses Binary Cross-Entropy Error (BCE) 
loss, and regression loss uses IoU loss. 

 

 
Fig. 1. The network architecture of FCOS, where C3, C4, and C5 denote the feature maps of the backbone network and P3 to P7 are the feature levels 
used for the final prediction. H×W is the height and width of feature maps. “/s” (s = 8, 16, ..., 128) is the downsampling ratio of the feature maps at 
the level to the input image. 
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2) An enhancement of detecting math equations 
To ensure high efficiency of the proposed math 

equation detection model, Fast And Diverse (FAD) with 
Representation Sharing (Rep-Share) is applied to enhance 
the performance of FCOS. FCOS is equipped up a 
backbone network with FPN and two parallel 
subnetworks for object classification and bounding box 
regression [4]. The subnetworks is replaced with a 
search-able module that are searched for by FAD, as 
demonstrated in Fig. 2. The proposed searchable module 
FAD comprises of two groups of cells connected 
sequentially with a shortcut from the input of the module 
to that of the second group. The module outputs both 

object classification and bounding box prediction. The 
architectures and parameters are shared across different 
FPN levels [11]. RepShare is an acceleration method for 
architecture search which works by doing filter 
decomposition and intermediate representation sharing as 
shown in Fig. 3, which reduces the number of 
computations needed. Together, FAD and RepShare 
reduces memory consumption and computation time 
while still allowing for diverse transformations. The 
proposed model enables using the same parameters and 
computations in multiple places which accelerates 
searching and reduces memory consumption. 

 

 
Fig. 2. Search space of FAD for one-stage object detectors. The backbone and FPN in detectors remain the same, while each FPN level is connected 
to a searchable module. It consists of two groups of cells, with same cell architectures within each group. In a cell, the edges connecting nodes consist 
of two standard 1×1 conv layers and a transformation block in between. The cell structures and the transformations are to be searched. Each edge 
might have different Random Fields (RFs), resulting in combinations of RFs at each node which enrich the features for capturing information of 
various scales. 

 
(a)        (b) 

Fig. 3. Transformations and representation sharing. (a) Comparison between the transformations used for image classification and those proposed for 
object detection in the search space. The proposed transformations are listed at the bottom. Conv can be the standard or the depthwise separable 
convolution. (b) RepShare. Each sphere and solid line denotes a representation and a conv layer, respectively. First, large filters are decomposed into 
stacks of 3×3 filters. Second, p1 and p2 are shared across transformations. Note that the 1×1 conv layers are not shown for simplicity. 
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The optimizer, which is used for equation detection, is 
Adam with a set learning rate, since Adam is an effective 
optimizer that is commonly used and works well for a 
wide variety of problems. Precision, recall, and Mean 
Average Precision (mAP) serve as the error metrics. 
Frames Per Second (FPS) is then applied to measure the 
speed of the models. However, defining real time speed in 
a computer vision context is something which varies 
depending on the situation. Typically, having real time 
speed is defined as an algorithm processing input at the 
same rate of the source supplying the images. 

Example 1: Consider the question, “Expressing 
Ramanujan τ function as Cauchy product of divisor 
function”, extracted from Math Stack Exchange, a 
prominent online math forum, as shown in Fig. 4 in 
which all the embedded and isolated math equations are 
boxed and highlighted. Our detection model, which 
accurately detects all of the math equations embedded in 
the textual content, shows that it precisely extracts 
bounding boxes of math equations in a document. 

 

 
Fig. 4. A sample math question posted by a Math Stack Exchange user, 
with (a) embedded (inline with the textual content) in green bounding 
boxes and (b) isolated math equations in red bounding boxes, labeled 
and highlighted. 

B. Our Math Equation Recognition Model 
Our MIR system is capable of recognizing 

mathematical formulas in images and converting them 
into a usable text-based format with high efficiency and 
accuracy. In designing the math equation recognition 
model of our MIR system, we focus on extracting 
equations from images exposed by our detection model. 
To recognize and retrieve equations in the resultant 
bounding boxes as text, an encoder-decoder architecture, 
called Image2Latex, was utilized to convert math images 

into LaTeX markup language, which was designed for 
various applications [5, 12]. Along with the original 
method, a version of the Image2Latex model utilizing 
Bayesian Neural Networks (BNNs) was also 
implemented for comparison, since BNNs have been 
shown to decrease overfitting, better handle uncertainty, 
and more effectively handles smaller dataset sizes, which 
is helpful for the relatively small amount of data present 
for this problem. At present, since none of the existing 
image recognition models has incorporated BNNs into 
them, such a model comparison is a good indicator for 
how well BNNs work for image recognition and other 
computer vision tasks. The resultant model performs 
accurately while accounting for a smaller data set and 
uncertainty within the model. 

Our model for math equation recognition enhances the 
Image2Latex Seq2Seq encoder-decoder model [12]. 
Image2LaTeX has been adapted to detect math equations 
and implements a Recurrence Neural Network (RNN) 
and soft attention mechanism to keep track of spatial 
information and symbol ordering to achieve more precise 
results. The model is capable of translating math formula 
images into LaTeX markup language, since LaTeX, 
which has been utilized to produce scientific papers, is 
fairly compact when it comes to representing math 
formulas, and already has existing open-source methods 
that can convert LaTeX to other markup languages, 
which is good to use for MIR systems. Since encoder-
decoder models in general do a single pass through the 
model, and this particular method uses beam search in the 
decoder to find the optimal output sentence, the base 
Image2Latex model retains good speed and accuracy, 
which is beneficial for the use of MIR systems [12]. 

The encoder uses a CNN network to extract features 
from the images and encodes them with spatial 
information using a row encoder while doing batch 
normalization so that the network runs faster with more 
stability [12]. The decoder is a RNN which is composed 
of stacked Bidirectional Long Short-Term Memory 
(BiLSTM) blocks integrated with a soft attention 
mechanism [5]. Both the encoder and decoder 
architectures are shown in Fig. 5. Along with this model a 
version of the encoder-decoder model was produced 
which incorporates BNNs into the architecture, 
specifically by replacing the BiLSTM blocks in the RNNs 
for the row encoding with Bayesian LSTMs. The 
recognition model operates as a language model so that 
the feature and spatial information in the encoder output 
are translated into a LaTeX sequence. Since all parts of a 
math equation influence the meaning and arrangement of 
the entire equation, and math equations end up being 
rather large, having a mechanism to keep track of and 
compare features to each other, such as attention or 
recurrence, is needed for this particular problem. Most 
modern methods for recognizing math equations rely on 
some form of encoder-decoder architecture, since this 
particular framework is more effective for the purpose of 
converting images to text. Using a full-on transformer 
model can end up producing more accurate results, but 
transformers require more data to train properly and are 
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computationally costly, which is not good to use for Math 
IR. In comparison, generating predictions using the 
encoder-decoder architecture only necessitates passing 
the input through the network once, which is significantly 
faster than a full-on transformer architecture. 

 

 
Fig. 5. The network architecture of Image2Latex, which is composed of 

a convolutional encoder and a RNN decoder. 

 
Fig. 6. The math equation shown was originally located in a PDF 
document (as shown on the left of the image) and then was (a) pasted 
into a Microsoft Word document (as shown at the top of the image), and 
(b) the PDF was converted into a Microsoft Word document (as shown 
at the bottom of the image). In contrast with the original PDF medium, 
in either adaptation information was lost or distorted, with (a) the 
equation on top all being inline without spatial information and (b) the 
equation on the bottom having part of the text as an image, with the rest 
as text without full alignment with the image. 

Our equation recognizer model focuses specifically on 
images of printed documents, a typical storage form. As 
shown in Fig. 6, when math equations stored in PDFs are 
copied and pasted in Microsoft Word documents, the 
math equation ends up being converted to a one-
dimensional line of text comprised of the symbols in the 
equation that is not always in the correct order. Any 
subscripts or superscripts are lost, which changes the 
meaning of the converted equation to be different from 
the original. For converting PDFs into Microsoft Word 
documents directly, the equation can end up being 
converted to an image within the file with some of the 
math symbols left around the edge of the image as text 
(see Fig. 6). Neither of these results is fully 
comprehensible by human or computer standards. As 

such, in the case of math equations that are stored in a 
textual document format that has difficulty being 
converted to different mediums, e.g., PDFs, it can be 
more efficient to render them as an image, such as 
snipping tool, screenshot, photo, etc., and then convert 
those images to a math markup language such as LaTeX 
using our MER model. 

IV. EXPERIMENTAL RESULTS 

We analyze the performance of the proposed detection 
and recognition models. The codes of the models and 
datasets used for evaluation of the proposed model, can 
be found in https://github.com/Zenos5/PMEDR/tree/main 
/image2latex 

A. The Datasets 
Math equation recognition models normally require 

having images of equations with associated text passed in 
as the input. To verify the performance of our detection 
and recognition models, we used the im2latex series of 
datasets, which contain numerous math equation images 
with equivalent markup language transcripts. (See a 
sample equation image and its transcript as shown in 
Fig. 7.) This series of datasets contains over 100,000 
math equation images and LaTeX transcripts per dataset, 
extracted from open-source documents in the 2003 KDD 
cup. As these datasets have specifically been created with 
image to LaTeX models in mind and are commonly used 
for math equation detection and recognition, they were 
used for training our FCOS and encoder-decoder models 
for equation detection and recognition, specifically for the 
im2latex-100K and im2latex-230K datasets. The former 
contains approximately 100K, whereas the latter includes 
close to 230K images and LaTeX transcripts respectively. 
These datasets are arranged so that there is a single image 
repository, a JSON file which contains the vocabulary 
used for the LaTeX formulas and separates CSV files for 
partitions to use for training, testing, and validation. The 
two datasets were chosen, since the base Image2Latex 
model has already been setup to use the 100K dataset and 
is widely used for math equation recognition training, and 
the 230K dataset is the most recent and largest dataset in 
the im2latex series, which provides more data for our 
equation recognition model to learn from. 

 

 
Fig. 7. A sample from the im2latex-100k dataset with a math equation 
image extracted with a bounding box and its corresponding LaTeX 
transcript. 

While these are decent sized corpuses of data to work 
with for printed math equations, they are still a relatively 
small dataset in general. There is also a lack of variation 
in the data transcribed, since all of the images included 
are taken from scientific documents, which have 
standardized formats, sizes, spacing, and coloration. 
Without the inclusion of more varied data, model 
knowledge would not be sufficient for the kind of input 
distribution found in real world tasks. These datasets are 
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also specifically for printed and digitized documents, and 
do not include handwritten examples. The model is not 
trained for handwritten math equation detection and 
recognition and would need to be trained further on 
handwritten data for that particular task. 

B. Evaluation on Our Detection Model 
To verify the novelty of the proposed math equation 

detection model, we conducted a performance evaluation 
on our detection approach based on different quantitative 
measures and its processing speed. 

 
 

1) Precision, recall, mAP, and training scores 
For the detection model, training for 50 epochs was 

sufficient to obtain viable results and observe trends with 
the data. As depicted in Fig. 8, while the training loss 
continuously decreased, with greater change in loss at the 
start, the mAP values started out low, then spiked up and 
plateaued almost immediately with a slight downward 
trend, with a similar outcome with the mean interpolated 
precision and mean interpolated recall. The main spike 
occurs at epoch 10, with the training loss, mAP and mean 
interpolated precision quickly leveling out, whereas the 
mean interpolated recall starting to decrease. 

 

 
(a)    (b)   (c)   (d) 

Fig. 8. The (a) training loss, (b) mAP, (c) mean interpolated precision, and (d) mean interpolated recall scores over the course of 50 epochs. A lower 
training loss indicates a better result, while a higher mAP, mean interpolated precision, and mean interpolated recall indicates a better score. 

Various accuracy measures determine how often a 
model predicts the outcome correctly relative to the total 
number of predictions. Precision is the fraction of 
relevant instances among the retrieved instances, whereas 
recall is the portion of relevant instances that were 
retrieved. Since precision and recall are linked, raising 
one usually lowers the other. mAP is the mean of the 
average precision that measures the area under the 
precision recall curve and is influenced by both precision 
and recall.  

As shown in Fig. 8 with the validation metrics when 
training, the precision values is higher over time while 
the recall values shrink, and is reflected in the mAP 
graph. The model is training to reduce error and increase 
accuracy, so it makes sense that the precision values get 
higher over time, since the model would have learned 
during training to return more accurate results. The fact 
that the recall value decreases once it reaches a certain 
point is due to the fact that the longer the model trains the 
more it tends to select more specific predictions, which 
would result in more precise predictions but miss viable 
predictions which the model is not as confident in.  

As shown in Table I, the interpolated precision and 
recall at 1, 5, and 10 the precision is over 0.85, which 
indicates a precision of over 85% with the highest 
precision being 99% with 10 predictions, while recall is 
around 60% to 70% for the first 10 predictions. The 
reason why the recall is not higher is because there is a 
large number of correct math equations in the corpus that 
can be retrieved. The high precision and mAP indicate 
that our detection model performs very well for math 
equation detection, as it reliably returns accurate 
predictions over multiple images. 

 

TABLE I. INTERPOLATED PRECISION AND RECALL FOR OUR DETECTION 
MODEL FOR THE FIRST RETRIEVED EQUATION PREDICTION, THE FIRST 
FIVE PREDICTIONS, AND THE FIRST 10 PREDICTIONS 

Measures @1 @5 @10 
Precision 0.8562 0.9739 0.9932 

Recall 0.5871 0.6372 0.6688 
 
2) Processing speed 
In terms of processing speed, our math equation 

detection model runs at approximately 16.930 FPS, 
although applying the model for extracting the bounding 
boxes to be used for the equation recognition model 
alongside error metric calculations runs at approximately 
6.883 FPS during the prediction phase. As mentioned 
earlier, defining real time speed in a computer vision 
context is something which varies depending on the 
situation, and for doing text detection, when training on 
the ICDAR 2015 dataset an FPS rate of 8.9 was 
considered better than most state-of-the-art results, with 
13.2 being the highest FPS a model achieved [10]. The 
images in the ICDAR 2015 dataset are 720 pixels wide 
and 1280 pixels high; however, in comparison, images in 
the IBEM dataset are 1447 pixels wide and 2048 pixels 
high, 3.22 times the size of images in the ICDAR 2015 
dataset [13]. While natural language text detection is not 
the same as math equation detection, the tasks are similar 
enough to be used as a feasible target and benchmark in 
terms of speed, as most math equation detection methods 
do not list what speed the models ran at. Realistically, 
math equation detection is more complicated than natural 
language text, so the state-of-the-art speeds are likely 
significantly slower than general text detection in any 
event. Assuming that the speed of processing images is 
proportional to the image size, an equivalent real-world 
speed using math equation detection on the IBEM dataset 
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would be approximately 2.76 FPS, with an FPS of 4.10 
being considered state-of-the-art. FCOS with 
Image2LaTeX runs significantly faster than these speeds, 
at least 2.0 FPS faster of the state-of-the-art speed even in 
the slowest case. As such, our MEDR model meets and 
exceeds the goal of operating at real-time speeds in 
detecting math equations in visual images, at least in 
comparison to general text detection. 

C. Evaluation on Our Recognition Model 
To verify the merit of the proposed math equation 

recognition model, we conducted a performance 
evaluation on the model. After completing training on the 
im2latex-100K dataset using 43 epochs, the proposed 
model performed as well as anticipated. Interestingly, 
there was little to no difference in terms of precision and 
accuracy in regards to training with and without using 
BNNs based on the im2latex-100K dataset. When using 
BNNs, training on the im2latex-230K dataset yields a 
slight decrease in accuracy and precision, though only 
around a 0.02 difference at most for the different metrics. 
For both datasets, using BNNs improved the speed of the 
model by approximately 6–10%, which is a significant 
speedup. More importantly, the semantic meaning of the 
formulas was very close or matched exactly. As shown in 
Fig. 9, all of the generated formulas were near identical 
except one missing/mismatched symbol and accenting 
(due to symbol similarity or lack of exposure during 
training). In a few cases, extra repeating patterns were 
added to the end of a math equation, which is a common 
problem with math equation recognition, text recognition, 
and LLMs in general, as text generators have a tendency 
to repeat sequences of words/symbols, especially if the 
pattern already showed up multiple times or if the model 
loses track of its place in the sequence. We have 
prevented excess repetition using the repetition dropout 
and with synthetic data technique to prevent formulas 
with repeating patterns to improve the overall 
effectiveness. 

While training the math equation recognition model, 
Genthial et al. [12] and Loshchilov et al. [14] adopt 
Adam with Weight decay (AdamW) as the optimizer. For 
training, our recognition model adopted the same idea 
and was configured to stop training once the validation 
loss stopped decreasing. For evaluation, Bilingual 
Evaluation Understudy (BLEU), edit distance, loss, and 
exact match for math equations were used to measure the 
effectiveness of the encoder-decoder model. As for 
efficiency, having real-time speed is desirable. For 
camera and video processing, this is usually around 30 
FPS. For math equation recognition, Anand et al. [15] 
claim that on the ICDAR 2013 dataset1 [16] achieving a 
speed of 20 FPS is considered state-of-the-art 
achievement, with the next best state-of-the-art result 
topping out at 5.66 FPS. As such, an FPS of 5.66 can be 
used as a benchmark for a real time speed with a math 

 
1The ICDAR 2013 dataset consists of 229 training images and 233 
testing images, with word-level annotations provided. It is the standard 
benchmark dataset for evaluating near-horizontal text detection. 

equation recognition model. Specifically, the 12 FPS 
prediction speed of our recognition model is fast enough 
to run on real-world systems rather than the training 
speed, as training can be done offline, but prediction is 
done in sync with user input. 

 

 
Fig. 9. Predicted math and LaTeX equations/images for im2latex-
100K/230k with(out) BNNs, including (i) an exact match, (ii) mostly 
the same, with some missing or miswritten symbols, and (iii) mostly the 
same except for repeated symbols. 

In terms of accuracy of the equation prediction, 
Table II shows the results on the 100K and 230K 
im2latex datasets with both the original model and with 
BNNs incorporated into the model. While not perfect, the 
results are a lot better than what might be suggested at 
face value. BLEU is intended to convey how close a 
computer-generated text is to the human-translated 
reference text, and the closer BLEU is to 1.0, the better 
the translation is [17]. However, it is near impossible to 
achieve a score of 1.0 in reality, and in general a value 
greater than 0.3 is considered a good score [17]. All of 
the experiments ran on the recognition model result in 
BLEU scores of over 0.63, which is exceptional in 
comparison. 

TABLE II. RESULTS OF OUR RECOGNITION MODEL USING THE 
IM2LATEX-100K AND IM2LATEX-230K DATASETS WITH BOTH THE 
ORIG(INAL) MODEL AND WITH BNNS INCORPORATED INTO THE MODEL 

Dataset  BLEU Edit Distance Loss Exact Match FPS 
100K Orig 0.642 0.291 0.121 0.651 11.002 
100K BNN 0.642 0.291 0.121 0.651 12.148 
230K Orig 0.646 0.333 0.053 0.441 10.677 
230K BNN 0.629 0.328 0.037 0.453 11.365 
 
The edit distance conveys how many edits need to be 

made on average in order to convert from the predicted 
results to the actual math equations. The fact that only 
0.333 edits need to be made at most, with 0.291 edits 
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being the lowest average edit distance score, indicates 
that very few corrections to the predictions were needed, 
which demonstrates that the predictions of math 
equations are usually quite accurate, or at least 
semantically and syntactically similar. As for the loss, our 
recognition model uses standard cross entropy loss which 
was calculated with predicted and true math equations, 
with lower loss indicating better results. The loss on the 
test sets ranged from 0.037 to 0.121, which is 
exceptionally good for a recognition problem and 
indicates that the model did not end up overfitting to the 
training data. Overall, our predictions were accurate and 
comparable with true math equation markups. 

As for the exact matching, having a score of 1.0 would 
indicate that all of the predictions were identical to the 
ground truth math equations, and a score of 0 would 
indicate that none of the predictions matched the ground 
truth equations. Our trained math recognition model 
achieved 65.1% matched at the highest, with the lowest 
exact match percentage being 44.1%. This is a good score 
for a recognition model, since it is difficult to generate 
predictions which exactly match a math equation, as there 
are multiple ways to write the same equation and symbols 
which look really similar but are actually different. Only 
around 10% at most of the generated math equations 
completely matched the target math equations [17]. 

Our math equation recognition encoder-decoder model 
meets the design goal for converting equation images to 
LaTeX, having high processing speed and accuracy. It 
turns out that incorporating BNNs into the Image2latex 
model has not shown significant improvement in 
accuracy, which is not a surprise, since our recognizer 
stops with validation checking before it reaches the point 
where it overfits to the dataset. However, the processing 
speed of our recognition model based on FPS is improved 
using BNNs. 

V. CONCLUSION 

Being able to reliably extract math equations from 
images would allow more specification to be given in 
searches for math source and provide greater access to 
relevant math information to be used by both math 
learners and experts alike. Since numerous sources of 
math information are either in electronic files, physical 
documents, or are contained in photos or digital images, 
if we are unable to convert these sources into a text-based 
format, conventional Math IR systems would fail to 
utilize the embedded information. The side effect is that 
many viable sources of math information would be left 
out from the users. In addition, the process of transcribing 
math equations in images to text manually is a tedious 
and time-consuming. As such, being able to solve these 
two major problems with an automated tool would give 
users access to more information to learn from and 

provide more information for Math IR systems to utilize 
quickly with less effort to help users search relevant 
information. 

We have proposed a math equation detection and 
recognition model, denoted MEDR. MEDR composes of 
a one-shot object detector enhanced with the use of 
architecture search and representation sharing and a 
Seq2Seq BNN encoder-decoder method [18] with 
repetition mitigation and soft attention in order to detect 
and recognize math equations contained in digital images. 
MEDR adopts FCOS, FAD, and BNNs for the given 
tasks on math equation detection and recognition. An 
empirical study on MEDR using the document image 
im2latex datasets has demonstrated that the proposed 
model has viably achieved promising results in terms of 
processing speed and accuracy. The significant 
contribution of MEDR is its ability to work with a variety 
of images and reliably and swiftly return the associated 
LaTeX markup transcripts which existing Math IR 
systems are keen to include in their systems. 

For future work, we consider adding data 
augmentation during training to enable MEDR to 
generalize to a wider range of data, which would be 
beneficial for the different kinds of images appeared in 
Math IR models, especially Question-Answer (QA) 
systems. Specifically, rotations, resolution, scale, text 
fonts, and color tones are good transformations to be 
included in training to account for variation in the input 
images. Compiling a larger dataset with both printed and 
handwritten mathematical texts would improve coverage 
of varied input data and increase the utility and accuracy 
of the MEDR model. Doing computational complexity 
analysis, training and comparison with other MIR models 
on equivalent data and running a case study would give 
additional insights into the performance of MEDR from a 
complexity, equivalency and user perspective. To further 
improve the efficiency of the detector of MEDR, we 
would like to incorporate various approaches with the 
base FCOS model to accelerate searching and reduce 
memory consumption [19]. As for the recognition model, 
incorporating changes to prevent excessive repetition 
using repetition dropout or creating synthetic data to use 
to penalize repetitions in the model should help prevent 
formula predictions with continuously repeating 
patterns [20]. These modifications allow for reaching 
faster speeds, using less computations, having better 
generalization, and attaining better precision and 
accuracy. 

APPENDIX A: HARDWARE SPECIFICATION 

Fig. A1 depicts the hardware specifications that 
include the GPU model and CUDA version, which is 
produced using the “nvidia-smi” command. 
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Fig. A1. The hardware specifications that include the GPU model and CUDA version. 

APPENDIX B: DATASET LOCATION AND LICENSE 

A. im2latex-100k 
The im2latex-100K dataset is located at 

https://doi.org/10.5281/zenodo.56198 
License: CC0 1.0 Universal 

B. im2latex-230k 
The im2latex-230K dataset is located at 

https://doi.org/10.5281/zenodo.7738969 
License: Creative Commons Attribution 4.0 

International 

C. IBEM 
The IBEM dataset is located at 

https://doi.org/10.5281/zenodo.4757865 
License: Creative Commons Attribution 4.0 

International 
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