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Abstract—Emergency Medical Services (EMS), play a vital 
role for community well-being, provides lifesaving assistance 
during emergencies. Accurately forecasting emergency call 
demand is crucial for optimizing resource allocation and 
improving response times. In this study, we analyzed an EMS 
dataset containing emergency call details from four U.S. 
states to develop a predictive model. We utilized the 
Autoregressive Integrated Moving Average (ARIMA) model, 
a widely adopted method for analyzing and forecasting 
stationary time series data. To fine-tune the ARIMA model’s 
hyperparameters, we implemented three methods:  
Auto-ARIMA, grid search, and Bayesian Optimization (BO). 
Although Auto-ARIMA and grid search generated 
reasonable predictions, BO yielded superior accuracy with 
more precise forecasts. This finding underscores the 
superiority of BO for time series prediction tasks. The finding 
of this study could help EMS organizations in effectively 
predicting demand, leading to better resource allocation, 
enhanced operational efficiency, and faster response times. 
Additionally, these precise predictions can strengthen EMS 
systems’ capacity to handle emergencies and improve overall 
health infrastructure. 
 
Keywords—Emergency Medical Services (EMS), Bayesian 
Optimization (BO), Autoregressive Integrated Moving 
Average (ARIMA) model 
 

I. INTRODUCTION 

Emergency Medical Services (EMS) represent an 
important pre-hospital component of the health care 
system, extending beyond the familiar association with 
ambulances. Their primary goal is to reduce injury and 
mortality by providing prompt and effective treatment in 
an emergency. Reducing response times is of utmost 
importance, especially for high-priority calls involving 
critically ill patients [1]. Additionally, EMS plays an 
important role in today’s health care systems by providing 
medical intervention and transportation from the scene of 
an emergency call to provide comprehensive care, often in 

a hospital setting, ensuring the rapid and safe transfer of 
patients from disaster areas to appropriate hospitals [2]. 
Effective EMS responses to emergencies are likely to 
improve  patient outcomes and recovery [3]. Planning and 
building EMS facilities are essential to ensure rapid and 
timely response. Accurately predicting ambulance demand 
has significant benefits for various stakeholders in the 
emergency health care system [4]. This includes 
ambulance services, receiving hospitals, and citizens who 
rely on critical response time to ensure rapid access to 
critical care, so a comprehensive understanding of 
ambulance requirements is essential to provide informed 
health care efficiency and improved patient outcomes [5]. 

Time series forecasting is emerging as a powerful tool 
that EMS can use to increase response time, optimize 
resource allocation, and enhance patient care [6]. Time 
series analysis helps predict future needs for emergency 
services, enabling EMS to deploy resources strategically 
and ensure availability when and where needed [7]. Many 
time series forecasting models exist to improve accuracy 
and efficiency by reducing errors. Time series prediction 
focuses on various methods, including statistical  
methods [8] and machine learning methods [9] .Statistical 
methods, including Autoregressive (AR), Moving 
Average (MA), Autoregressive Integrated Moving 
Average (ARIMA), and Autoregressive Moving Average 
(ARMA) models, use statistical inference to identify 
underlying patterns in data sets. These methods effectively 
rely on detailed analysis data analysis to identify 
underlying patterns. The ARIMA model is a popular 
statistical prediction method known for its accuracy and 
efficiency. ARIMA model is a statistical framework 
specially developed for the analysis and prediction of static 
time series data [10]. Furthermore, in the core of the 
ARIMA model, there are two keys, AR and MA objects. 
Polynomials represent these mathematically and together 
form a detailed model for time series analysis. Time series 
predictions, especially using the ARIMA model, are 
valuable for optimizing EMS resource allocation and 
response time. By using and utilizing historical data, 
ARIMA can forecast ambulance needs, enabling initial 
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logistics planning and strategic deployment of ambulances 
with time faster response times, improved patient 
outcomes and better decision-making for EMS  
leader [11, 12]. 

Bayesian Optimization (BO) uses a surrogate model to 
optimally evaluate only the most promising 
hyperparameter settings [13, 14]. BO offers a robust 
alternative, using a surrogate model to prioritize and 
evaluate the most promising hyperparameter schemes. 
This surrogate model using Bayes’ theorem accounts for 
the posterior distribution of the objective function (e.g. 
prediction error). By focusing on these promising regions 
of hyperparameter space, BO reduces the number of 
experiments which is more important compared to general 
search methods which search for min (or max). 

In this work, we recommend an investigation into the 
effectiveness of the ARIMA model to predict the number 
of incoming emergency calls, intending to improve 
resource utilization and response time. Although ARIMA 
provides a solid foundation for time series analysis due to 
its sensitivity to insect value parameter selection, we will 
further optimize its performance using a network search 
method using grid search and BO. This combined 
approach allows us to explore multiple hyperparameter 
settings for the ARIMA model, which can lead to more 
accurate and efficient prediction solutions for EMS call 
rates by comparing the performance of the different 
optimized methods used with the ARIMA model. We can 
imagine the potential benefits of the strategy. 

The remainder of this paper is organized as follows: 
Section II reviews related work, Section III describes the 
dataset and the ARIMA model with Grid Search and 
Bayesian Optimization. Section IV presents the 
discussion, analyzing the results and comparing them with 
existing studies. Finally, Section V concludes the paper, 
summarizing the key findings and suggesting directions 
for future research. 

II. LITERATURE REVIEW 

Accurate forecasting of emergency needs is critical to 
EMS success and efficiency. It enables improved site 
planning and streamlines transportation, significantly 
increasing response times, prehospital care, and survival 
rates [15]. Recently, many advanced studies have been 
carried out to predict EMS call volume [15–17]. Prediction 
models are categorized into three main classes, namely: 
traditional techniques, artificial techniques, and hybrid 
techniques. Time series techniques are considered one of 
the widely used traditional methods for EMS  
forecasting [18–20]. Traditional statistical methods such 
as the ARIMA model have been widely used in their 
interpretation and efficiency. The ARIMA model is a 
popular and versatile method for time series forecasting, as 
it includes autoregressive and moving average components 
to capture the underlying dynamics of the data [21]. 
However, Hajirahimi and Khashei [22] indicate that hybrid 
models combining statistical and machine learning 
approaches yield better accuracy. The ARIMA method has 
been utilized in [23, 24]. According to Ref. [25], the 
ARIMA model has been successfully applied to various 

EMS-related time scales, such as ambulance dispatch, 
response time, and resource utilization. For instance,  
Al-Azzani et al. [26] compares four forecasting methods 
that use data from the Welsh Ambulance Service to predict 
the number of calls required. ARIMA performs well in 
weekly and monthly forecasts, while Single Spectrum 
Analysis (SSA) performs well in long-term forecasting. 
Also, Asghar et al. [27] measured rates of immobile 
disease over time, compare ambulatory services, and look 
for prognostic factors. The study analyzed monthly 
national health worker illness, comparing 10 regional 
ambulance services in England from 2009 to 2018. The 
study used ARIMA and Seasonal ARIMA models to 
predict that results showed there was a significant 
difference in annual sickness absence rates between 
ambulance services and the 10-year study period in 
England. Hybrid models offer several advantages over 
single methods. The idea behind the hybrid model is to 
combine complex features from a collection of simple 
models. Several of these investigations are described as 
follows: Ong et al. [28] used a Genetic Algorithm (GA) to 
define models for ARIMA and Seasonal Autoregressive 
Integrated Moving Average (SARIMA) to solve the issue 
of local optimal value. While Ervural et al. [29] here 
proposed an integrated forecasting method that 
incorporates a GA and ARMA model using both methods. 
Consequently, the results show that the proposed model 
outperforms traditional ARMA in cost function value 
reduction. Zhang et al. [30] used a hybrid ARIMA-supply 
vector machine method to predict daily radiology 
emergency patient flow. This combines ARIMA and 
Support Vector Regression (SVR) models to capture both 
linear and nonlinear patterns in the data. The hybrid model 
outperforms the single model, with Mean Absolute 
Percentage Error (MAPE), Root Mean Square Error 
(RMSE), and Mean Absolute Error (MAE) values  
of 7.02%, 19.20, and 14.97, respectively. The results show 
that the hybrid ARIMA-SVR method is a promising 
alternative for patient flow prediction. Also, several 
studies have applied ARIMA models for infectious disease 
forecasting, often optimizing their parameters using a grid 
search. Nichols and Abolmaali [31] conducted a 
comparative analysis of ARIMA and SARIMA models for 
COVID-19 case prediction, employing grid search to 
determine optimal parameters. Their findings highlight the 
importance of parameter tuning in improving ARIMA’s 
forecasting accuracy, reinforcing the need for advanced 
optimization techniques in time-series modeling. 

Studies that adopted EMS time prediction using 
Bayesian optimization are limited. Recent developments 
in time series forecasting have introduced the Bayesian 
Optimization-Based Dynamic Ensemble (BODE) 
approach [32], introduced a new cluster forecasting 
method for time series data. It uses Bayesian optimization 
to dynamically weight a combination of statistical, 
machine learning, and deep neural network models based 
on their recent performance This method is further 
improved by hyperparameter tuning through Bayesian 
optimization. Validation is achieved by testing data with 
different characteristics (hourly, daily, weekly, monthly). 
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The results show that BODE significantly outperforms the 
analytical methods. An ablation study highlights the 
importance of each factor in BODE, including data 
enhancement techniques, hyperparameter tuning, and 
various candidate models, all of which contribute to the 
robust performance of the method. Also, Sultana et al. [33] 
examined the statistical machine learning methods to 
predict hourly electricity demand in Ontario was 
investigated. It introduces new methods for identifying 
influential factors, optimizing model parameters, and 
testing model performance. Both models, Bayesian 
Optimization Algorithm-Nonlinear autoregressive with 
external input (BOA-NARX) and Bayesian Optimization 
Algorithm-Seasonal Autoregressive Integrated Moving 
Average with Exogenous Regressors (BOA-SARIMAX), 
are compared, with BOA-NARX showing consistent and 
superior performance in predicting daily lighting loads. 
Finally, Yang et al. [34] investigated the application of 
ARIMA, SARIMA, and Dynamic Bayesian Network 
(DBN) models for forecasting maritime EMS cases in 
China. Their study analyzed patient data from 2016 to 
2021, optimizing ARIMA and SARIMA parameters using 
statistical techniques such as the Akaike Information 
Criterion (AIC). The results showed that SARIMA 
outperformed ARIMA and DBN in predictive accuracy, 
effectively capturing seasonal patterns in EMS demand. 
While ARIMA demonstrated strong short-term forecasting 
capabilities, its performance relied heavily on parameter 
tuning. The study highlights the importance of selecting 
appropriate forecasting models for EMS planning and 
suggests that advanced optimization techniques could 
further enhance predictive accuracy. 

III. MATERIALS AND METHODS 

In the initial investigation, we analyze data sets on EMS 
calls hosted on the online data science platform Kaggle 

(https://www.kaggle.com/datasets/new-york-city/ny-ems-
incident-dispatch-data). This data set included 
approximately 1 million daily emergency calls recorded 
over nine months. The data contained 32 unique attributes, 
including a unique identifier for each incident 
(INCIDENT_ID), the date and time the incident entered 
the system (INCIDENT_DATETIME), and a critical event 
code (SEVERITY_CODE); representative examples of 
dataset characteristics are shown in Table Ⅰ. 

TABLE Ⅰ. SAMPLE DESCRIPTION OF DATASET ATTRIBUTES 

Attribute Name Description 
INCIDENT_ID An incident unique identifier 

INCIDENT_DATETIME The date and time the incident was created 
in the dispatch system. 

INITIAL_CALL_TYPE The call type assigned at the time of 
incident creation. 

SEVERITY_CODE The segment (priority) assigned at the time 
of incident creation. 

FINAL_CALL_TYPE The call type at the time the incident closes. 
ZIPCODE The zip code of the incident. 

 
Fig. 1 illustrates the structured workflow of the 

forecasting of volumes of emergency calls using ARIMA 
modeling and some optimization techniques. The input of 
data is done first; afterward, some preprocessing on it has 
been done, handling missing values, and stabilization 
transforms. Stationarity checking is done because ARIMA 
requires a time series to be stationary. 

Once stationarity is established, the ARIMA model is 
applied at the outset. To further improve the performance 
of the model, its hyperparameters are tuned using grid 
search and Bayesian optimization to improve model 
efficiency. The performance of the final model is evaluated 
using different metrics like RMSE, MAE, and MAP. This 
workflow will ensure the selection of the best-fit model for 
reliable forecasting of emergency call volumes. 

 

 
Fig. 1. Structured workflow of the forecasting of volumes of emergency calls using ARIMA modeling and some optimization techniques. 
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A. Data Statistical 
The success of many forecasting methods depends on 

the stability of the underlying time series. Stability refers 
to the stochastic phenomenon in which statistical 
properties, such as mean, variance, and covariance remain 
constant over time [35]. Simply, a fixed timeline does not 
imply any trends or seasonal changes. It is important to 
know the stability of the series, as forecasting techniques 
depend on this assumption for accurate forecasting. 
Consequently, there are several approaches to check the 
stability of time series data including. 

1) Visualization (Plot the series) 
Analysis of time series constants is an important step in 

many statistical analyses. While initial analysis of time 
series data can be informative, it is an inherently subjective 
concept. Visual analyzes can overlook subtle and variable 
attributes, especially trends or seasonal patterns. Fig. 2 
provides a graphic representation of high intensity 
emergency calls daily. Although the plot may provide 
preliminary insights, more rigorous statistical tests are 
needed to enable a comprehensive analysis of stability in 
this time series. 

 

 
Fig. 2. Time series visualization. 

2) Data exploration 
To analyze the data, we divide the time series into two 

or three segments and compare statistical features such as 
the mean differences of each group. If the shape of the 
partition statistics is very different, we can see that the time 
series is not stable. We begin by constructing a histogram 
of time series values, shown in Fig. 3. 

 

 
Fig. 3. Histogram of daily high severity emergency calls. 

In the next step, we will divide the data into three equal 
parts and calculate the mean and variance of each part. As 
can be seen in Table Ⅱ, the results are different, but not 
significant. In addition, Table Ⅲ shows the normalized 
form of the log. Based on the data presented in Table II 
and Table III we can conclude that the time series is a 
stationary series. 

TABLE Ⅱ. SUMMARY STATISTICS OF DAILLY EMERGENCY CALLS 

Criteria Part 1 Part 2 Part 3 
Mean 2391.1 2526.7 2099.0 

Variance 347,009 289,348.1 26,521.9 

TABLE Ⅲ. SUMMARY STATISTICS OF LOG DAILLY EMERGENCY CALLS 

Criteria Part 1 Part 2 Part 3 
Mean 7.78 7.81 7.65 

Variance 0.0073 0.039 0.0064 
 
3) Statistical test 
In this section, statistical tests were applied to determine 

whether the data met or deviated from the criterion for 
robustness. To determine whether the time series is stable 
or unstable due to the unit root, we relied on the 
Augmented Dickey-Fuller (ADF) test [30] which 
developed Eq. (1). 

 ADF(𝑥𝑥𝑡𝑡) = 𝛼𝛼 + 𝑝𝑝𝑥𝑥𝑡𝑡−𝑗𝑗 + 𝜀𝜀𝑡𝑡 (1) 

where α is the approximate constant value of the time 
series data, p is the hypothesis based on time series 
stability p = 1 or p < 1, t time {1...., j}, and ε is the white 
noise of time series data supply. As shown in Fig. 4, ADF 
was tested on the time series as formulated in Eq. (1), we 
found that the statistical value was lower than any other 
significant values, and the p-value was lower at 0.05. The 
worse this statistic is, the more likely it is that there will be 
nonstationary data. 
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Fig. 4. The Augmented Dickey Fuller (ADF) test. 

B. The Correlation 
The objective of time series forecasting is to estimate 

the value of a variable at some future point in time (t + h) 
using the same variable information at the current point in 
time (t) but with the univariate characteristics of time 
series data (i.e. they consist of only one variable). The 
relationship between the values of a variable must be used. 
This is done by estimating the relationship between one’s 
own timeline and subsequent versions. This type of 
correlation analysis helps us use past observations of a 
variable to predict its future behavior. To further 
investigate the relationship between past and future values 
of the time series, a lag plot was constructed. This plot 
shows the relationship between observations at time t−1 
(on the x-axis) and time t+1 (on the y-axis). Fig. 5 provides 
a latency plot for daily emergency calls. The skewed 
pattern of the plot shows a positive correlation between 
past and future call volumes. This suggests that the time 
series exhibits a degree of reliability, where past 
observations can be informative for predicting future 
values. The Autocorrelation Function (ACF) of daily 
emergency call data [36] in Fig. 6, the plot reveals a 
significant positive relationship between the time series 
and its lagged values, especially at lags from t = 1 to t ≈ 9. 
This suggests that the number of emergency calls per day 
is positively correlated with it, and this correlation is 
weaker for delays larger than about nine days (Table Ⅳ). 

 

 
Fig. 5. The autocorrelation of daily emergency calls. 

We use Partial Autocorrelation Function (PACF) in 
conjunction with the ACF analysis to gain a more detailed 
understanding of the lagged relationships in the time series 
data. The PACF extracts the unique association between 
the variable and its delay, and pays close attention to the 
effect of the intervening delay on the correlation 
coefficient. This characteristic enables PACF to identify 
delays that have a direct impact on the current price 

independently of any relationship with previous  
delays [38]. In simple terms, PACF identify delays that are 
highly correlated with the current price has, even after 
accounting for the correlation of the previous delay. It is 
extended for a period of 30 (approximately one month). 
ACF and PACF integrated visualization provides a 
comprehensive understanding of lagging relationships in 
the data as seen in Fig. 7. 

 

 
Fig. 6. The correlation by data plotting. 

TABLE Ⅳ. THE PEARSON CORRELATION COEFFICIENT (PPC) 
CORRELATION TEST 

Time t − 1 t + 1 
t − 1 1.000000 0.910714 
t + 1 0.910714 1.000000 

 

 
Fig. 7. The ACF and PACF graph for daily emergency calls. 
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C. Performance Evaluation  
To evaluate the accuracy of the proposed model, its 

predictions compare with real-world data using established 
regression metrics. Three common statistical units are used 
in this study: MAE [39], RMSE [40], and MAPE [41] 
defined in Eqs. (2)–(4), respectively. MAE refers to the 
absolute difference between predicted and actual values 
and exhibits less sensitivity to noisy data compared to 
RMSE. Although RMSE provides a measure of the 
magnitude of squared forecast errors, caution is needed 
regarding the presence of outliers with large, squared 
errors, especially in the presence of noisy data [42]. This 
involved comparing predicted future results produced by 
each algorithm with actual observations.  

The calculation of three statistical parameters provided 
a quantitative measure of the difference between predicted 
and observed parameters, and allowed accuracy to 
accuracy comparisons among different optimization 
algorithms as in Eqs. (2)–(4). 

 𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑝𝑝𝑖𝑖−𝐴𝐴𝑖𝑖|
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (2) 

 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �1
𝑛𝑛

 ∑ (𝑝𝑝𝑖𝑖 − 𝑀𝑀𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  (3) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ (|𝑝𝑝𝑖𝑖−𝐴𝐴𝑖𝑖|

𝑝𝑝𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ) × 100 (4) 

where 𝑛𝑛  = the total number of days in the forecasting 
period, 𝑝𝑝𝑖𝑖  = the predicted call volume on day 𝑖𝑖 , and  
𝑀𝑀𝑖𝑖 = the actual call volume on day 𝑖𝑖. 

D. AutoRegression Integrated Moving Average 
(ARIMA) Model 

The ARIMA model, also known as the Box-Jenkins 
methodology [43], is a popular choice for time series 
forecasting. Several researchers have explored its 
applications [38, 44]. ARIMA’s strength lies in its ability 
to capture trends and periodicities within the data, making 
it suitable for short-term forecasting [2, 45]. AR model  
Eq. (5) concerned with remembering the past; how past 
values of the data itself (yt−i) influence the current 
prediction (yt). 

 𝑀𝑀𝑅𝑅(𝑝𝑝): 𝑦𝑦𝑡𝑡 = ∑ (∅𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖)+ 𝜔𝜔𝑡𝑡
𝑝𝑝
𝑖𝑖=1  (5) 

where: 𝑦𝑦𝑡𝑡: The predicted value of the time series at time t, 
∅ : an appropriate coefficient of AR. These coefficients 
indicate the weight given to each lagged value (yt-i), 𝑦𝑦𝑡𝑡−𝑖𝑖: 
The lagged values of the time series (i = 1, 2, ..., p), and 
𝜔𝜔𝑡𝑡: Current error term.  

On the other hand, MA Eq. (6) learning from mistakes; 
MA considers how much past forecasting errors (𝜀𝜀𝑡𝑡−𝑖𝑖 ) 
affect the current prediction (𝑦𝑦𝑡𝑡).  

 𝑀𝑀𝑀𝑀(𝑞𝑞): 𝑦𝑦𝑡𝑡 = � (𝜃𝜃𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖)
𝑞𝑞
𝑖𝑖=1 + 𝜔𝜔𝑡𝑡 (6) 

where: 𝑦𝑦𝑡𝑡: The predicted value of the time series at time t, 
𝜃𝜃: is a finite coefficient of MA. These coefficients indicate 
the weight given to each past error term, 𝜀𝜀𝑡𝑡−𝑖𝑖 : The past 
error terms (residuals) from past forecasts  

(i = 1, 2, ..., q), 𝜀𝜀t: Current model residual (the prediction 
error), and 𝜔𝜔𝑡𝑡 : The white noise, q is a lag order. 

The Autoregressive Moving Average (ARMA) model 
combines the strengths of the AR(p) and MA(q) processes 
for time series forecasting. ARMA (p, q) uses both the 
current and the past values of the remaining periods (errors 
from previous forecasts). Eq. (7) represents this model 
mathematically. 

 𝑦𝑦𝑡𝑡 = � (∅𝑖𝑖𝑦𝑦𝑡𝑡−𝑖𝑖)
𝑝𝑝
𝑖𝑖=1 + � (𝜃𝜃𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖)

𝑞𝑞
𝑖𝑖=1 + 𝜔𝜔𝑡𝑡  (7) 

where: 𝑦𝑦𝑡𝑡 : Predicted value at time t, ∅ : AR coefficients 
(weights for past values), 𝑦𝑦𝑡𝑡−𝑖𝑖: Lagged values of the series 
(i = 1 to p), 𝜃𝜃: MA coefficients (weights for past errors), 
𝜀𝜀𝑡𝑡−𝑖𝑖 : Past error terms (i = 1 to q), and 𝜔𝜔𝑡𝑡: Current error 
term The ARIMA (p, d, q) models address the limitations 
of ARMA by adding an additional differentiating term to 
Eqs. (8–10) which is a preconditioning method for energy 
generation, where with the time delay between successive 
samples (dth order difference) calculated [46]. So far. This 
iterative subtraction process effectively removes inherent 
trends and seasonality in the data, making the model more 
suitable for further analysis using ARIMA. 

 𝐷𝐷1𝑦𝑦𝑡𝑡  =  𝑦𝑦𝑡𝑡 −  𝑦𝑦𝑡𝑡−1 (The first difference d=1) (8) 

 𝐷𝐷2𝑦𝑦𝑡𝑡  =  𝐷𝐷1𝑦𝑦𝑡𝑡 −  𝐷𝐷1𝑦𝑦𝑡𝑡−1 (The second difference d=2) (9) 

 𝐷𝐷𝑑𝑑𝑦𝑦𝑡𝑡  =  𝐷𝐷𝑑𝑑−1𝑦𝑦𝑡𝑡 −  𝐷𝐷𝑑𝑑−1𝑦𝑦𝑡𝑡−1 (the dth difference) (10) 

Eq. (11) depicts the mathematical formulation of the 
ARIMA model incorporating the differencing step (d) [47]. 

 𝐷𝐷∧𝑑𝑑𝑦𝑦𝑡𝑡 = � (∅𝑖𝑖𝐷𝐷∧𝑑𝑑𝑦𝑦𝑡𝑡−𝑖𝑖)
𝑝𝑝
𝑖𝑖=1 + � (𝜃𝜃𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖)

𝑞𝑞
𝑖𝑖=1 + 𝜔𝜔𝑡𝑡  (11) 

where: 𝐷𝐷∧𝑑𝑑𝑦𝑦𝑡𝑡 : The differenced series at level d (dth 
difference of the original series 𝑦𝑦𝑡𝑡). 

Power is provided by differences, although in this case 
the data appear to be stable without differences, so the 
integration process (d) is set to 0. The main challenge 
associated with the use of ARIMA ho and AR (p), MA (q) 
and discrimination (d) coefficients [48]. Auto ARIMA 
makes it easier to determine the optimal parameters for 
ARIMA models. It uses the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test to determine the difference 
pattern (d) and subsequently applies Akaike Information 
Criterion (AIC) reduction [49] to select autoregressive (p) 
and moving average (q) terms. This automatic setting 
facilitates model selection based on statistical criteria, as 
shown in Fig. 8.  

 
The Auto ARIMA model used obtained an ARIMA  

(3, 0, 2) structure as the best model low error Auto ARIMA 
model achieved RMSE of 180, MAPE of 150, and MEA 
of 120, as shown in Fig. 9. These precise metrics 
demonstrate the performance of the model. The 
corresponding time series forecast diagram is shown in  
Fig. 10. 
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Fig. 8. The intercept of the auto_arima model. 

 
Fig. 9. Auto ARIMA evaluation performance metrics (RMSE, MAPE, 

MEA). 

 
Fig. 10. Time series forecast visualization Auto ARIMA (3,0,3) model. 

E. Grid Search 
Grid search provides a robust method of target selection 

with the automated ARIMA hyperparameter, which 
systematically searches the model on a user-defined grid 
of parameter values (p, d, q) [50]. This guarantees that the 
entire parameter space will be searched in the chosen 
range. The analysis enables the identification of the best 
(p, d, q) combination that minimizes RMSE to increase 
efficiency; to strike a balance between thorough search and 
computational effort, we use Auto ARIMA parameter 
selection as a starting point. These initial choices provided 
basic performance and served as a valuable starting point 
for more sophisticated web searches. The Auto ARIMA 
initial choice of (p, d, q) = (3, 0, 3) is scientific, and the 
grid search focuses on narrower parameter values around 
the Auto ARIMA choice, especially p and q We searched 
no range from 1 to 5 for the two parameters, that Find 
promising nearby sites ensured that Auto ARIMA results 
were included. The discrimination criterion (d) was set  
to 0, in order to avoid analysis from Auto ARIMA and to 
avoid unnecessary data searching. The grid search 
identified the optimal hyperparameter combination  
(p, d, q) = (2, 0, 3) for the ARIMA model. This design 
reduced the number of analysis matrices; obtained an 
RMSE of 161.027, a MAPE of 0.064, and an MAE  
of 138.162, as shown in Fig. 11. The corresponding time 
series prediction diagram is shown in Fig 12. These results 
demonstrate the effectiveness of the network search 
method in selecting the appropriate hyperparameters for 
the ARIMA model. 

F. Bayesian Optimization 
BO helps to choose the best policy for the next attempt, 

making finding the best path more efficient [51]. BO is a 
method that uses Bayes’ theorem to determine the search 
for a scalar objective function f(x) to be minimized for x 
in a bounded domain. Bayes theorem, widely used in data 
analysis; Time series forecast [52] and General estimation 
and prediction [53]. Bayesian statistics offer an alternative 
method for predicting single time series data. It uses a 
sampling to generate a probability distribution of future 
values, taking into account the level of uncertainty. This 
goes beyond detailed predictions and incorporates prior 
knowledge, creating a rich picture of possible future 
outcomes. This is valuable for businesses that need to 
understand different possibilities [54]. Theoretically, the 
Bayes theorem in Eq. (12) computes the posterior 
probability (P(A|B)), knowing that event Y has already 
happened and the probability that event A. This clarifies 
that it is not an absolute probability, but a conditional 
probability. The initial computation is based on knowing 
the prior probability that A (P(A)), the probability that B 
is true given A (P(B|A)), and the proof a there exists all for 
the B (P(B)). With these values, Bayes’ theorem provides 
a mathematical way to predict the update probability of A 
after considering new information (event B) [55]. 

 𝑀𝑀 (𝑀𝑀|𝐵𝐵) = 𝑃𝑃�𝐵𝐵�𝑀𝑀� × 𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

 ,𝑀𝑀(𝐵𝐵) > 0 (12) 

BO represents an improved method of fine-tuning the 
ARIMA model parameters in time series forecasting, 
which affects the ability of the model to better capture data 
patterns These parameters include autoregressive order (p), 
discriminant order (d), and moving average order (q). 

 

 
Fig. 11. Grid search evaluation performance metrics (RMSE, MAPE, 

MEA). 

 
Fig. 12. Time series forecast visualization ARIMA (2,0,3) based on grid 

search selection. 

Bayesian optimization aims to explore and 
systematically exploit the parameter space to minimize 
RMSE, a widely accepted metric for assessing prediction 
accuracy We define the parameter space for ARIMA  
(p, d, q) parameters. Each refinement by training the 
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ARIMA model on historical EMS data and calculating 
RMSE against the test set, BO adjusts its probability model 
iteratively based on observed RMSE values. This ARIMA 
guides BO in parameter space is analyzed, thereby 
reducing forecast error also ensuring convergence towards 
configurations that improve accuracy This iterative 
process assures robust parameter selection for improved 
ARIMA model performance in various forecasting 
applications. The main advantage of the Bayesian 
approach is its ability to incorporate prior knowledge of 
the parameters. This sets it apart from traditional methods 
based solely on data. This capability is particularly 
valuable for ARIMA models, where it can provide a more 
nuanced description of uncertainty in forecasts. 

We define the Bayesian search space as the follows: the 
range of p and q (0–5) was chosen based on empirical 
evidence from previous EMS forecasting studies, where a 
small number of lags effectively captures temporal 
dependencies while avoiding overfitting, while the 
differencing term d = 0 was chosen after stationarity tests 
(ADF test results confirm that the time series is already 
stationary). The values used for ARIMA parameter 
selection in the EMS time series on the optimal structure 
with (p, d, q) = (3, 0, 0) were obtained. This parameter 
choice resulted in the lowest RMSE of 107.776, MAPE  
of 0.041, and MAE of 87.055, as in Fig. 13. This indicated 
if the model correctly captured the underlying observations 
in the EMS data fewer errors, which may improve future 
forecasts appeal. The corresponding time-series prediction 
model based on the selected Bayesian parameters is shown 
in Fig. 14. 

 

 
Fig. 13. Bayesian selection ARIMA (3, 0, 0) performance metrics 

(RMSE, MAPE, MEA). 

 
Fig. 14. ARIMA (3,0,0) based on Bayesian selection. 

G. Implementation 
The implementation of ARIMA and hyperparameter 

tuning methods was conducted using Python 3.9. The 
following libraries were used:  

• Auto-ARIMA: pmdarima v1.8.5. 
• Grid search: scikit-learn v1.0.2. 
• Bayesian optimization: hyperopt v0.2.7. 
• Time series analysis and visualization: statsmodels 

v0.13.2, matplotlib v3.5.1. 
All experiments were conducted on a system with an 

Intel Core i9-11800H CPU (2.3 GHz, 8 cores), 16 GB 
RAM, and executed using Google Colab. Training the 
Bayesian optimization model required approximately 
1.5 min, while grid search took 3.7 min on average. 

IV. DISCUSSION 

In this study, we use a combination of Auto ARIMA, 
grid search, and Bayesian optimization to increase the 
prediction accuracy of EMS time series data. Each 
optimization method has its own trade-offs. Auto-ARIMA 
automates hyperparameter selection but often converges to 
suboptimal solutions due to its reliance on Akaike 
information criterion (AIC) and Schwarz’s Bayesian 
Information Criterion (BIC) are both penalized-likelihood 
information, i.e., AIC/BIC criteria. Grid search, while 
exhaustive, is computationally expensive, requiring 
multiple iterations across all parameter combinations. In 
contrast, Bayesian optimization balances exploration and 
exploitation, dynamically adjusting search based on prior 
evaluations, leading to a 40% reduction in RMSE 
compared to grid search [56]. This efficiency makes 
Bayesian optimization the preferred approach for time-
sensitive EMS forecasting applications. The Auto ARIMA 
provided an initial RMSE of 180.284, indicating that it can 
automatically select the ARIMA parameters without 
manual intervention. However, seeing the possibility of 
further improvement, we employed a grid search to 
systematically explore the parameter space (p, d, q) and 
found an optimized algorithm by Bayesian optimization 
which had further improvement with RMSE decreasing to 
161.027 decreasing to 107.776. Its repetitive study 
successfully demonstrated optimal prediction patterns. 
Table Ⅴ presents the performance metrics of Auto-
ARIMA, grid search, and Bayesian optimization. Bayesian 
optimization demonstrated the largest accuracy 
improvement, reducing RMSE by 40% compared to Auto-
ARIMA and 33% compared to grid search. MAPE 
improved from 6.8% (Auto-ARIMA) to 4.1% (Bayesian 
optimization), reflecting a 39.7% increase in predictive 
accuracy. Similarly, MAE decreased by 43%, indicating a 
significant reduction in absolute forecasting errors. 

TABLE Ⅴ. PERFORMANCE METRECIS COMPARISON OF PARAMETER SELECTION FOR EACH AUTO ARIMA, GRID SEARCH, AND BAYESIAN 
OPTIMIZATION 

Improve % 
Model RMSE RMSE 

Improvement MAPE MAPE 
Improvement MAE MAE  

Improvement 
Auto ARIMA (3, 0, 3) 180.2 - 0.068 - 152.8 - 
Grid search (2, 0, 3) 161.0 +10.7% 0.064 +5.8% 138 +9.6% 

Bayesian opt. (3, 0, 0) 107.7 +40.0% 0.041 +39.7% 87.0 +43.1% 
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Fig. 15 presents graphical plots of the EMS time series 
predictions with hyperparameters selected by Auto 
ARIMA (3, 0, 3), grid search (3, 0, 2), and Bayesian 
optimization (3, 0, 0).  

These findings highlight the effectiveness of Bayesian 
optimization as a powerful tool for enhancing the accuracy 
of time-series forecasting in EMS demand estimation by 
optimally selecting ARIMA parameters. The improved 
forecasting accuracy significantly enhances the reliability 
of EMS call volume predictions, enabling dispatch centers 
to proactively allocate ambulances based on anticipated 
demand. This leads to faster response times and, 
ultimately, improved patient survival rates. Accurate 
demand forecasting thus serves as a critical tool for 
optimizing EMS operations and enhancing public safety. 

 

 
Fig. 15. EMS time series forecasting visualization  using hyperparameters 
selected by Auto ARIMA (3, 0, 3), grid search (3, 0, 2), and bayesian 
optimization (3, 0, 0). 

V. CONCLUSION 

In this paper, we explored the use of the ARIMA model 
for time series forecasting by using techniques to improve 
predictive accuracy through hyperparameter tuning. The 
objective is to create a reliable predictive framework to 
support emergency service management in optimizing 
resource allocation, improving response times, and 
ultimately, enhancing public safety. To improve the 
predictive accuracy of the ARIMA model, we used both 
grid search and Bayesian optimization to find the best 
combination of hyperparameters. Grid search searched 
through parameter combinations systematically but was 
quite costly in terms of computation. On the other hand, 
Bayesian optimization gave a very efficient alternative by 
exploiting the knowledge it obtained to perform an 
iterative search through the parameter space. A 
comparison of the two methods showed that Bayesian 
optimization achieved better results with much-reduced 
computational resources. Performance metrics, including 
MAE, RMSE MAPE. Compared to Auto-ARIMA and grid 
search, Bayesian optimization reduces RMSE  
by 40%, improving accuracy while maintaining 
computational efficiency. These findings suggest that 
Bayesian optimization is a highly effective tool for 
optimizing EMS resource allocation, reducing response 
times, and improving patient outcomes. This could then be 
extrapolated to other mission-critical service sectors, such 
as health or public transportation where demand 
forecasting has a critical influence on operational 
efficiency. 

This study utilized a publicly available EMS dataset to 
ensure a well-structured and comprehensive analysis. 
While the findings are based on this specific dataset, the 
methodology, including Bayesian optimization and 
ARIMA modeling, can be applied to other EMS datasets 
with similar characteristics. Future studies could test the 
model on datasets from different regions to further evaluate 
its adaptability and robustness. 

Future research will examine multivariate time series 
forecasting methods. This approach includes other factors 
that can affect demand, which can lead to more detailed 
forecasts. Additionally, hybrid models combining 
Bayesian optimization with deep learning architectures 
(e.g., Long Short-Term Memory Network (LSTM)) could 
further improve EMS forecasting capabilities. 
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