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Abstract—In the context of the increasing complexity of 
cyberspace, accurately and efficiently mapping network 
assets has become paramount for effective cybersecurity 
measures. This study presents a novel cyberspace mapping 
system that leverages multi-source data aggregation to 
enhance the discovery of network assets. To resolve 
inconsistencies in query syntax across various tools, the 
system employs a unified query framework utilizing the 
Aho-Corasick algorithm, which significantly enhances 
syntax conversion and matching efficiency. The system 
amalgamates data from multiple cyberspace mapping 
engines and conducts rigorous credibility assessments to 
ensure the reliability and quality of the data. Real-time 
synchronization, achieved through multithreading, ensures 
data remains current and comprehensive, thereby 
facilitating accurate and timely cybersecurity analyses. 
Experimental evaluations conducted on 2000 entries yielded 
a high credibility score of 99.9337% and demonstrated an 
average accuracy improvement of 3.33% compared to 
individual tools. Furthermore, the system incorporates 
advanced visualization tools, such as radar charts and tree 
diagrams, which support effective data interpretation and 
aid in decision-making processes. This comprehensive 
system not only optimizes query standardization, data 
aggregation, and credibility assessment but also enhances 
visualization capabilities, creating a strong foundation for 
future integrations of deep learning technologies and 
enabling real-time responses to evolving cybersecurity 
challenges. 
 
Keywords—cyberspace surveying and mapping, multi-
source data aggregation, credibility assessment, network 
assets1 
 

I. INTRODUCTION 

A. Background and Motivation 
Mapping cyberspace is a crucial step in the process of 

information gathering, offering detailed insights into the 
structure and composition of network assets [1]. Tools 
such as Shodan, ZoomEye, FOFA, Hunter, and Quake are 
instrumental in identifying a diverse range of network 
components, thereby laying a solid foundation for further 
analysis and decision-making [2]. However, each tool 
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exhibits specific limitations when utilized independently. 
For instance, Shodan is adept at detecting Internet of 
Things (IoT) devices but offers limited visibility into 
certain industrial systems, whereas ZoomEye primarily 
targets Industrial Control Systems endpoints and might 
overlook other types of network assets. FOFA, Quake, 
and Hunter, employing unique scanning methodologies 
and focusing on different geographical regions, may 
create blind spots if deployed singularly. To achieve a 
more comprehensive and reliable overview of the 
cyberspace environment, it is imperative to amalgamate 
the strengths of these platforms through a coordinated, 
multi-source strategy. By harnessing their complementary 
capabilities—such as expansive scanning coverage, 
frequent updates, and varied analytical emphases—
organizations can address the limitations inherent in each 
tool and construct a more fortified cyberspace mapping 
framework. 

B. Technical Challenges 
Despite advancements, formidable challenges persist 

in the development of a multi-source cyberspace 
surveying and mapping system. A primary challenge is 
the inconsistency in query syntax across different tools. 
Recent studies have sought to overcome this obstacle by 
developing methods for query conversion and syntax 
mapping. Although some approaches are capable of 
translating queries into a uniform format, they frequently 
necessitate ongoing adjustments to accommodate the 
rapid evolution of these tools. 

Another significant challenge is the aggregation of data 
from multiple sources while maintaining data quality. 
Each mapping tool offers only a partial view of network 
assets, resulting in inconsistencies. These discrepancies 
can lead to conflicts during the process of data 
aggregation. Recent research has introduced algorithms 
that evaluate data reliability based on the credibility of 
the source and real-time conditions to preserve data 
quality. These algorithms proficiently eliminate low-
quality data, thereby enhancing the overall integrity of the 
data [3]. Nevertheless, current integration techniques 
continue to encounter obstacles when dealing with large 
datasets and real-time updates [4]. 
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Furthermore, multi-source visualization remains a 
challenge due to the need to manage data inconsistencies 
and address the heterogeneity across different tools. 
Visualization techniques such as radial tree diagrams, 
heat maps, and radar charts have proven effective in 
representing complex network data, facilitating 
comparisons of features across different cyberspace 
surveying and mapping tools [5]. However, dynamic data 
still present challenges to visualization and real-time 
analysis. Additionally, manual analysis of cyberspace 
mapping is notably limited in efficiency and scalability as 
network assets expand. Moreover, the absence of 
objective evaluation in manual analysis heightens the risk 
of bias in assessments. 

C. Contributions and Novelty 
In response to the identified challenges, this study 

proposes a comprehensive solution that incorporates data 
aggregation, consistency verification, and advanced 
visualization tools. The principal contributions and 
innovations of this research are delineated as follows: 

(1) Unlike traditional single-tool approaches or basic 
aggregation methods, this study introduces a 
standardized query mechanism that ensures 
consistency across multiple platforms. This 
system not only reduces the manual workload and 
minimizes human errors but also promotes 
seamless interoperability among diverse 
platforms such as Shodan, ZoomEye, FOFA, 
Quake, and Hunter. The proposed mechanism 
significantly streamlines query operations, 
addressing a gap often neglected in previous 
research. 

(2) To guarantee data freshness and completeness, 
we implement a real-time synchronization 
mechanism that continuously updates the 
aggregated dataset to reflect changes across 
platforms. This approach diverges from 
conventional batch-based methods and is 
essential for rapid threat detection and analysis, 
particularly vital in the dynamic context of 
cyberspace. 

(3) Addressing the shortcomings of simplistic data 
merging, this work develops a framework to 
assess the credibility of data, considering various 
factors including historical performance and 
consistency across tools. This robust framework 
not only filters out low-quality or conflicting data 
but also ensures the accuracy and reliability of the 
integrated dataset. 

(4) This research integrates sophisticated 
visualization tools that facilitate effective analysis 
and comparison of complex network data. Unlike 
traditional approaches that merely display raw 
scan results, our system employs visual analytics 
to elucidate data patterns, overlaps, and 
discrepancies across multiple platforms, thereby 
transforming large-scale network scans into 
actionable cybersecurity insights. 

D. Structure of the Paper 
The organization of this study is as follows: The 

literature review section provides a synthesis of existing 
methodologies in data aggregation, credibility assessment, 
and visualization, laying the groundwork for the system 
proposed. The system design section elaborates on the 
architecture and functionalities of the system, including 
its query syntax conversion mechanism, credibility 
assessment framework, and data visualization capabilities. 
The experiment and results section assesses the system’s 
effectiveness through experimental setups and results, 
concentrating on coverage, credibility, and accuracy. The 
conclusion highlights the main findings, contributions, 
and future research directions, underscoring the 
integration of sophisticated data fusion techniques and 
real-time capabilities to enhance cybersecurity measures. 

II. LITERATURE REVIEW 

This section reviews contemporary developments, 
emphasizing how modern techniques have enhanced the 
efficiency, accuracy, and reliability of cyberspace 
mapping. 

A. Data Aggregation Technology 
Data aggregation forms the cornerstone of cyberspace 

surveying and mapping. Extensive research has explored 
multi-source aggregation methods aimed at constructing a 
comprehensive view of network assets. Typically, these 
methods involve several critical steps [6] such as data 
deduplication, format standardization, and consistency 
checks [7]. Over time, data aggregation techniques have 
evolved from traditional batch processing and Extract, 
Transform, Load (ETL) processes to contemporary real-
time data processing within distributed computing 
frameworks [8]. In recent years, technologies such as 
Hadoop and Spark have revolutionized the processing of 
large-scale network data [9], with ongoing research 
focusing on optimizing data fusion to enhance data 
accuracy and efficiency. 

B. Cyberspace Surveying and Mapping Technology 
Cyberspace surveying and mapping technology, which 

plays a crucial role in the field of cybersecurity, involves 
a range of techniques that span from network probing and 
port scanning to the construction of network 
topologies  [10]. This domain typically utilizes both 
active scanning and passive listening strategies, each 
offering distinct benefits and inherent limitations [10]. 
Active scanning, which includes tools such as Nmap and 
Zmap, enables rapid acquisition of information regarding 
the status of network hosts and open ports but also carries 
an increased risk of detection by the target network [11]. 
Conversely, passive listening minimizes detection risks 
by capturing network traffic data, although its 
effectiveness is contingent upon the traffic activity of the 
target network [12]. 

C. State of the Art 
Prominent tools in the realm of cyberspace mapping 

include Shodan, ZoomEye, and FOFA, which are 
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extensively employed for the detection and 
characterization of internet-exposed devices and services. 
Shodan, for instance, conducts scans of open ports and 
services, yielding comprehensive details about devices, 
including operating systems, protocols, and 
manufacturers. This tool is particularly valuable for 
security assessments involving the Internet of Things 
(IoT) and Industrial Control Systems (ICS) [13]. 
ZoomEye excels in conducting deep scans across various 
protocols and services, identifying a broad spectrum of 
devices. It is especially adept at handling IoT devices and 
ICS, providing detailed asset information through 
protocol analysis and service identification [14]. FOFA 
leverages fingerprint recognition technology to swiftly 
identify exposed devices, with a focus on IoT. It offers 
detailed device fingerprints and protocol analysis, aiding 
security researchers in pinpointing potential 
vulnerabilities [15]. These tools are integral to 
vulnerability detection and asset risk assessment. With 
advancements in deep learning, researchers are exploring 
its application across various domains. For instance, in 
the context of brain tumor classification, Patro et al. [16] 
have utilized deep learning techniques to effectively 
differentiate among tumor types by integrating multiple 
models. This breakthrough serves as a catalyst for 
enhancing the classification and identification capabilities 
of cyberspace mapping technologies through deep 
learning, potentially increasing the automation of these 
processes [17]. Furthermore, in the arena of Cyber-
Physical Systems (CPSs), Yao et al. [18] have developed 
a Prescribed-Time Output Feedback Control (PTOFC) 
algorithm, which tackles the challenges posed by output 
constraints and malicious attacks. This innovative 
approach could be adapted for cyberspace mapping, 
integrating advanced control strategies to optimize data 
aggregation, enhance system response times, and bolster 
the reliability of mapping tools against network threats 
and data irregularities. 

D. Credibility Assessment 
Credibility assessment is essential for enhancing the 

reliability of data, particularly in the context of multi-
source data environments. Evaluating the credibility of 
mapping results from various sources presents a 
significant challenge. Existing literature has introduced 
diverse methodologies for this purpose, including 
weighted calculations, probabilistic graphical models, and 
trend analysis through time series data [19]. These 
approaches determine credibility based on the historical 
performance and the reliability of data provided by each 
cyberspace mapping tool [20]. Additionally, the 
integration of deep learning technologies in cyberspace 
mapping has facilitated the adoption of uncertainty 
estimation methods based on neural networks, which aid 
in identifying the most reliable data [21]. The 
incorporation of expert knowledge and prior information 
further enhances both the reliability and applicability of 
these evaluations [22]. 

In summary, notable progress has been achieved in the 
fields of cyberspace surveying and mapping, particularly 
in data aggregation, mapping technology, and credibility 

assessment. The development of data aggregation 
techniques has enhanced the efficiency of integrating 
multi-source data, while advanced technologies have 
increased the precision of cyberspace mappings. 
Credibility assessment, in particular, plays a pivotal role 
in improving data reliability. Building on these 
advancements, future research should focus on unifying 
query syntax, assessing data credibility, and efficiently 
aggregating data to overcome challenges in cyberspace 
surveying and mapping [23]. 

III. SYSTEM DESIGN 

A. Credibility Assessment 
In a multi-source cyberspace mapping system, the 

quality and consistency of data collected from different 
tools can vary significantly due to variations in scanning 
methodologies, data coverage, and update frequencies. 
Such discrepancies often result in conflicting or 
incomplete results, complicating the assurance of data 
reliability. To mitigate these issues, the system 
incorporates a credibility assessment algorithm designed 
to identify and prioritize the most trustworthy data. Fig. 1 
illustrates the credibility calculation model. 

 

 
Fig. 1. Credibility calculation model. 

The algorithm’s foundation lies in two definitions and 
four heuristic rules that collectively guide the selection 
and aggregation of reliable information from diverse data 
sources: 

1) Foundational definitions 
Credibility of a Fact: The credibility level of a fact 

represents the probability of its accuracy, considering the 
current knowledge base. 

Reliability of a Cyberspace Mapping Tool: The 
reliability of a mapping tool w is gauged by the expected 
credibility level of the facts it produces. 

2) Heuristic rules 
(1) An object typically possesses only one verifiable 

fact concerning its attributes. 
(2) Facts that are identical or highly similar across 

different tools are more likely to be accurate. 
(3) False facts rarely appear identical or similar 

across various tools. 
(4) Tools that consistently provide accurate facts 

about numerous objects within a domain are more 
likely to yield reliable information for other 
objects in the same domain. 
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By adhering to these rules, the algorithm methodically 
assesses the credibility of both the tools and the facts they 
provide. This systematic evaluation prioritizes data with 
higher reliability during the aggregation process, 
effectively minimizing inconsistencies and enhancing 
overall data accuracy. 

3) Credibility calculation framework 
To quantify the process effectively, the reliability of a 

tool, denoted as w , is assessed by calculating the 
average of the credibility scores associated with all facts 
it provides. This relationship can be mathematically 
represented as shown in Eq. (1). 

 ( ) ( ) ( )

( )
f F w

s f
t w

F w
∈

=
∑

                       (1) 

Here, ( )F w  signifies the collection of facts yielded by 

the cyberspace surveying and mapping tool w, and ( )s f  
denotes the credibility score assigned to each fact f. 

The reliability of the tools that deliver it and the 
consistency of the associated data are critical in 
determining the credibility of the data. For example, if 1f  
is the only fact available for the object ( )o f  and is 
furnished by tools 1w  and 2w , an error in f implies 
potential inaccuracies in both 1w  and 2w . Assuming  1w  
and 2w  operate independently, the probability that both 
tools concurrently produce errors can be calculated using 
the following equation: 

 ( )( ) ( )( )1 21 1t w t w− ⋅ −   

In general, if a fact f acts as the sole source of 
information for a specific object, its credibility level, 
( )s f , can be determined as illustrated in Eq. (2): 

 ( ) ( ) ( )( )1 1
w W f

s f t w
∈

= − −∏  (2) 

Here, ( )W f  represents the set of cyberspace 
surveying and mapping tools that furnish f. Given that  

( )1 t w−  is typically minimal, its product may lead to 
numerical underflow. To circumvent this issue, a 
logarithmic transformation is applied, as shown in Eq. (3): 

 ( ) ( )ln(1 )w t wτ = − −  (3) 

In this equation, ( )wτ  ranges from 0 to +∞ , with 
higher values indicating a greater reliability of the tool w. 

Accordingly, the credibility score of a fact f is 
calculated as follows: 

 ( ) ( )ln(1 )w s wσ = − −  (4) 

This key principle asserts that the credibility score of a 
fact f is determined by aggregating the reliability scores 

of all cyberspace surveying and mapping tools that 
contribute data for f, as mathematically depicted in 
Eq. (5). 

 ( ) ( ) ( )w W f
f wσ τ

∈
=∑  (5) 

When different tools provide conflicting descriptions 
of the same fact, an influence function ( )'imp f f→  is 
introduced. This function, which ranges from −1 to +1, 
indicates the impact of one fact on the credibility of 
another. If 'f  is accurate, f may also be accurate; 
conversely, if 'f is accurate, f might be inaccurate. To 
adjust the credibility of a fact based on the influence of a 
related fact, the adjusted credibility score of fact f is 
defined as: 

 ( ) ( ) ( ) ( ) ( ) ( )*
'

' '
o f o f

f f f imp f fσ σ ρ σ
=

= + ⋅ ⋅ →∑  (6) 

Here, ρ  is a parameter between 0 and 1, utilized to 

modulate the influence of related facts. Thus, *σ  

represents the aggregated credibility score of fact f, 
wherein the credibility score of each related fact 'f  is 
weighted by its influence on f. When conflicting 
information exists for f, this influence is considered to 
adjust its credibility level accordingly. 

 ( )' 0imp f f→ <  
 

The credibility of f can be computed using  ( )* fσ  in 

the same manner that ( )fσ  is used to compute the 
credibility of f. This adjusted credibility is denoted as 
( )*s f . 

 ( ) ( )** 1 fs f e σ−= −  (7) 

We propose a methodological approach for evaluating 
the credibility of facts by utilizing the reliability of 
cyberspace surveying and mapping tools. This method 
considers the interconnections among related facts. Our 
system evaluates both the credibility of informational 
sources on the network and the veracity of the facts they 
provide. These evaluations are then mathematically 
formulated through basic matrix operations, capitalizing 
on the efficiency and parallelism offered by such 
computations. To demonstrate the computational process, 
we employ vector notation to represent the reliability of 
both the cyberspace tools and the facts in question. The 
vectors are defined as follows: 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )

1

1

1

* * *
1

( ,..., )

( ,..., )

( ,..., )

( ,...

 

, )

T
M

T
M

T
N

T
N

t t w t w

w w

s s f s f

f f

τ τ τ

σ σ σ

=

=

=

=









 (8) 
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Subsequently, we introduce an M×N matrix A, which 
is employed to deduce the reliability of cyberspace 
surveying tools based on the credibility of facts. In a 
reciprocal manner, an N×M matrix B is constructed to 
infer fact credibility from tool reliability. The definitions 
of these matrices are as follows: 

 
*

 t As

Bσ τ

=

=

 

   (9) 

Vectors t


 and τ  can be converted using Eq. (3), 
while vectors s  and σ  undergo transformations as per 
Eq. (9). From Eq. (1), matrix A is described: 

 ( )
( )1 ,  if  

0,       otherwise.

j i
iij

f F w
F wA

 ∈= 



 (10) 

Matrix B, in comparison to matrix A, incorporates 
additional complexities due to the interdependencies 
among multiple facts pertaining to the same entity. As 
outlined in Eq. (6) and Lemma 1, the element ijB  of 
matrix B is determined as follows: 

Case 1: If tool iw  provides fact jf , then ijB  is 
assigned to a value of 1. 

Case 2: If tool iw  provides fact kf , the object 

associated with f  is the same as the that associated with 

. ) (jf i e  , ( ) ( )k jo f o f= ), then ijB  is set to 

( )k jimp f fρ ⋅ → . 

Case 3: In all other scenarios, the value of ijB is set     
to 0. 

Building upon these definitions and formulas, we 
propose an optimization framework as shown in Eq. (11). 
The framework encompasses: 

 

( ){ } ( ){ }

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
(B) Positive Synergy

Conflict Penal

( )

izat

,

io

,

( n

,

)

max

f F w W f

A

f f Pt w s f

f f N

C

s f t w

s f s f imp f f

s f s f imp f f

α

β

∈ ∈

∈

∈

′

′

 
 × + 
 
 

⋅ ⋅ → − 
 
 
 ⋅ ⋅ →
 
 

′ ′

′ ′



∑ ∑

∑

∑









 



 









 (11) 

Here,  
(A) Tool–Fact Consistency, which rewards facts 

corroborated by reliable tools,  
(B) Positive Synergy, which grants additional 

credibility when pairs of facts mutually reinforce 
each other, and  

(C) Conflict Penalization, which imposes penalties 
when conflicting facts are both deemed highly 
credible. 

The parameters α and β (α, β ≥ 0) modulate the relative 
weight of synergy versus conflict, with a higher α 
emphasizing the promotion of cooperative, corroborative 
facts, while a higher β focuses on minimizing 
contradictions. 

By maximizing this objective, our system 
simultaneously evaluates tool reliability and fact 
credibility, thereby ensuring a coherent and consistent 
alignment between trustworthy tools and accurate facts, 
while also mitigating factual contradictions. 

B. Computational Complexity 
This section delineates the analysis of computational 

complexity, focusing on four integral components: the 
query statement parsing module, the data acquisition 
module, the data credibility assessment algorithm, and 
matrix operations. 

The query statement parsing module exhibits a time 
complexity of ( )O n m k+ + , where n  denotes the length 
of the query, m  represents the total length of all patterns, 
and k  corresponds to the number of patterns matched. 

The data acquisition module expedites the process by 
concurrently dispatching queries to multiple cyberspace 
mapping tools, yielding a time complexity of ( )·O t Ttool , 

where t is the number of tools engaged, and Ttool  is the 
response time per tool. 

The data credibility assessment algorithm is designed 
to calculate the reliability of the tools and assess the 
credibility of facts, resulting in a time complexity of 

( )2·O n m , with n as the number of facts and m the 

number of tools involved. 
Furthermore, the matrix operations, pivotal for 

calculating the relationships between tools and facts, also 
manifest a time complexity of ( )2·O n m . This complexity 

significantly contributes to the overall computational 
burden. Given these complexities, it is imperative that the 
system workflow is meticulously engineered to optimize 
both efficiency and scalability. These considerations are 
elaborated upon in the subsequent section. 

C. System Workflow 
The workflow of the system is designed to integrate 

multiple processes, thereby enabling users to query 
network assets and obtain reliable, visually represented 
outcomes. Fig. 2 illustrates an overview of this workflow, 
which progresses through the following stages: 

(1) User Query Submission: Users input query 
parameters using a unified query syntax, which 
are subsequently transmitted to the backend. 

(2) Query Syntax Conversion: The backend 
deconstructs the query into ‘key fields’ and ‘field 
values’, rectifying naming discrepancies across 
different tools through identifier matching. 

(3) Field Mapping and Query Dispatch: The system 
aligns the key fields with the formats required by 
various cyberspace surveying and mapping tools 
and dispatches the queries via their respective 
Application Programming Interface (API). 
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(4) Data Standardization: Data returned from these 
tools is standardized to ensure consistency, 
thereby facilitating subsequent processing. 

(5) Credibility Calculation: The system evaluates the 
credibility of the data based on historical 
performance and consistency metrics, filtering 
out results of lower quality. 

(6) Data Aggregation: Following credibility 
assessment, the system amalgamates data from 
multiple sources, resolves discrepancies, and 
standardizes the outcomes. The aggregated data 
is then conveyed to the frontend for visualization, 
aiding in user analysis and decision-making. 

 

 
Fig. 2. System workflow overview. 

D. Illustration of the Data Aggregation Process 
Based on the preceding discussion, it is apparent that 

data aggregation plays a pivotal role in the system’s 
functionality. To elucidate this, consider a hypothetical 
scenario involving a query for open ports on network 
assets located in Taipei, China. The system harvests 
information from multiple sources, such as FOFA, 
ZoomEye, and Shodan, which yield varied results for the 
IP address 114.32.164.140: 

(1) FOFA identifies port 80 (HTTP) as open. 
(2) ZoomEye detects ports 80 (HTTP) and 443 

(HTTPS) as open. 
(3) Shodan confirms that port 443 (HTTPS) is open. 
Initially, the system standardizes the data into a 

consistent format to ensure a uniform representation 
across different tools. For example, while FOFA reports 
port = “80” and ZoomEye denotes protocol = “HTTP”, 
both entries are normalized to port = 80 (HTTP). 

Subsequently, the system assesses the credibility of the 
data based on historical reliability scores of the respective 
tools: FOFA is assigned a reliability score of 
( ) 0.90t FOFA = , ZoomEye receives ( ) 0.85t ZoomEye = , 

and Shodan has ( ) 0.80t shodan = . The credibility of 
each piece of information is computed, resulting in 
( ) ( ) ( )80 1 1 0.9 1 0.85 0.985s f = − − × − =  for the data 

point “Port 80 open” and 
( ) ( ) ( )443 1 1 0.80 1 0.87 0.97s f = − − × − =  for “Port 443 

open.” 
Following this, the system aggregates the results, 

resolving discrepancies by prioritizing data with higher 

credibility scores. For the IP address 114.32.164.140, 
both ports 80 (HTTP) and 443 (HTTPS) are retained due 
to their substantial credibility, while data of lower 
credibility is excluded. 

Ultimately, the aggregated data is transmitted to the 
frontend interface, where it is depicted through various 
visual aids. These include heatmaps that display 
geographic concentrations of IP addresses, radar charts 
that compare the reliability of different tools, and detailed 
tables that list IP information, open ports, protocols, and 
credibility scores. This comprehensive presentation 
enables users to make well-informed decisions based on 
robust data aggregation processes. 

E. System Architecture 
To ensure seamless integration and efficient execution 

of workflow steps, the system architecture has been 
meticulously designed with a three-tier structure. This 
layered approach effectively addresses the challenges 
associated with processing complex, multi-source data, 
thereby enhancing modularity, scalability, and 
maintainability. The architecture, as illustrated in Fig. 3, 
assigns specific functions to each layer to support the 
overarching system workflow. 

The system begins by acquiring raw network asset data 
from various cyberspace mapping tools through the Data 
Source Layer, which includes the Query Statement 
Parsing Module and the Data Acquisition Module. The 
use of multiple cyberspace mapping tools, each requiring 
distinct query syntax, introduces a level of complexity 
that can render the process cumbersome and error-prone 
for users. To mitigate this, the system is equipped to 
standardize query fields. 
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Fig. 3. System architecture overview. 

The Query Statement Parsing Module is pivotal in 
transforming user queries. It scrutinizes user inputs, 
extracting essential fields and values while discerning the 
intent of the query. This ensures compliance with each 
tool’s specific syntax requirements and defines the scope 
of data retrieval. 

To enhance efficiency, the system utilizes automata 
technology, specifically the Aho-Corasick (AC) 
automaton—A renowned multi-pattern string matching 
algorithm that is highly effective in text processing and 
adept at managing multiple patterns simultaneously. The 
choice of the AC automaton over alternatives such as 
Deterministic Finite Automata (DFA) and Pushdown 
Automata (PDA) is justified by its superior performance 
in multi-pattern matching. It processes user queries by 
aligning key fields with the specific syntax of each tool, 
thus facilitating efficient syntax conversion across 
various tools and enabling precise data retrieval. 

Upon parsing a query, the system deconstructs user-
submitted queries (e.g., “os = Windows”) into three 
components: field name, operator, and value. It then 
employs a mapping table to translate field names (e.g., 
“os”) into the formats required by each specific tool (e.g., 
FOFA as ‘os’ and Hunter as ‘ip.os’). The AC automaton 
processes inputs character by character, efficiently 
matching and converting fields through optimized state 
transitions. 

The Data Acquisition Module retrieves data from 
diverse cyberspace mapping tools via API. It leverages 
multithreading to dispatch queries concurrently, thereby 
minimizing response times. 

The subsequent section elaborates on the design and 
implementation of the system’s user interface. The front 
end of the system is developed using Vue3, which, 
compared to its predecessors, enhances both functionality 
and performance, significantly improving user experience. 
Network requests are managed by axios, which facilitates 
asynchronous operations. 

F. User Interface 
The user interface functions as the system’s primary 

interface, seamlessly integrating backend data processing 
with user-friendly visualization tools to provide 
actionable insights. It is composed of several essential 

elements, including the search interface, data overview, 
and detailed data views. These elements are developed 
using a modular design, enhancing both maintainability 
and reusability. The search interface enables users to 
enter queries, offers query syntax assistance, and features 
a search history component. For instance, a user wishing 
to locate network assets in Taipei, China might enter the 
query city = “Taipei”, as illustrated in Fig. 4 The 
interface provides guidance on search syntax to facilitate 
ease of use and maintains a log of previous searches for 
user reference. 

 

 
Fig. 4. Search interface overview. 

The data overview interface displays the outcomes of 
user queries, as depicted in Fig. 5 Using the query for 
Taipei, China as an example, the left and top portions of 
the interface deliver visualized data insights, allowing 
users to effectively discern the distribution of network 
assets. The key visual elements include: 

 

 
Fig. 5. Mapping results visualization. 

(1) IP Distribution: A global heatmap accentuates the 
concentration of IP addresses in Taipei, China, 
providing a macroscopic perspective of network 
activities in the region. 

(2) Country Rankings: A bar chart distinctly 
categorizes Taiwan, highlighting the relative 
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density of network assets in Taipei, China, in 
comparison to other areas. 

(3) Tool Credibility: A radar chart evaluates the 
reliability of various tools such as FOFA, 
ZoomEye, Shodan, Hunter, and Quake for the 
specific query related to Taipei, China. For 
instance, FOFA and Quake are shown to offer 
superior dependability for this search. 

(4) Top Ports and Protocols: A funnel chart 
enumerates frequently detected ports (e.g., port 
443 and port 80) and the corresponding protocols 
(e.g., HTTPS and HTTP), underscoring their 
significance in the assets located in Taipei, China. 

In the bottom-right section, the interface furnishes a 
detailed list of queried assets in Chinese Taipei, which 
includes: 

(1) IP: Addresses such as 114.32.164.140 and 
103.11.41.9, among others relevant to the query. 

(2) Port: Common ports like 80, 443, and 3389, 
typically associated with HTTP, HTTPS, and 
RDP services respectively. 

(3) City and Country: All results pertain to Taipei, 
China. 

(4) Protocol: Protocols such as HTTP and HTTPS are 
documented. 

(5) Banner: Metadata offering detailed service 
information, exemplified by entries like Microsoft 
Remote Desktop or Nginx. 

The query results pertaining to Taipei, China, facilitate 
the rapid acquisition of actionable insights by users. For 
example, users can identify high-risk open ports or 
evaluate the reliability of the sources providing data 
about the region in question. 

To enhance the comprehension of the data, Fig. 6 
presents an in-depth visualization of individual network 
assets associated with Taipei, China. This figure 
delineates several critical features: 

 

 
Fig. 6. Comprehensive data visualization and insights for Taipei, China query results. 

Detailed Asset Information: Each IP address is 
accompanied by extensive attributes, such as the country, 
city, associated ports, protocols, and banner details. This 
detailed enumeration aids users in precisely assessing 
specific network elements. 

Confidence Level Visualization: A pie chart delineates 
the confidence levels assigned to each tool contributing 
data on the queried assets. For instance, the data linked to 
IP address 114.32.164.140 indicates a confidence level of 
98.446%, reflecting high reliability. 

Attribute Mapping: A radial tree diagram portrays the 
relationships among various attributes of the queried 
assets. This diagram includes data points such as domain, 
host, protocol, longitude, and latitude, providing a 
comprehensive view of the asset’s configuration and its 
environmental context. 

IV. EXPERIMENT RESULT AND DISCUSSION 

A. Experiment Objective 
The experiment is designed to verify the accuracy and 

stability of the core functionalities of the system, identify 
potential defects, and test critical features such as query 

syntax mapping, data retrieval, and data aggregation. As 
outlined in Table I, these tests assess the system’s 
capability to process user inputs, retrieve network assets, 
and aggregate data effectively. Comprehensive testing 
further seeks to identify issues across diverse use cases, 
thus laying the groundwork for system optimization and 
enhanced performance. For practical relevance, the 
experiment employed asset data from a specified region 
in Taiwan, China, providing insights into the system’s 
real-world applicability. 

TABLE I. SYSTEM FUNCTIONAL REQUIREMENTS TABLE 

Function Details 
Functional Description Input Output 

Query 
Syntax 

Conversion 

Converts user query 
fields to each tool’s 

fields 

User’s 
query fields 

Corresponding 
query fields for 

each tool 

Data 
Retrieval 

Retrieves data from each 
tool using API 

Query 
statements 
for each 

tool 

tool-specific 
query statements 

Data 
Aggregation 

Aggregates results and 
selects the most credible 

data 

Data to be 
aggregated 

Field info with 
highest 

credibility 
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B. Experimental Environment and Setup 
To enhance the reproducibility of the experiment, it is 

crucial to clearly define the project’s dependencies, as 
detailed in Table II. This table enumerates the essential 
packages and configurations necessary for the 
experimental setup.  

TABLE II. SYSTEM DEPENDENCY ENVIRONMENT 

Package Name Version 
Python v3.9.7 

Baidu-aipl v4.16.11 
Pip v23.1.2 

Censys v2.2.2 
FOFA v1.0.2 

Requests v2.30.0 
ZoomEye v2.2.0 

ZoomEye-sdk v1.0.6 
Shodan v1.28.0 

Json v2.0.9 
 

C. Experimental Metrics and Formulas 
1) Data coverage 
Coverage is defined as: 

 %100over ×=
total

retrieved

N
N

ageC  (12) 

where: 
Nretrieved: Number of successfully retrieved entries. 
Ntotal: Total number of entries mapped by this system. 
This metric evaluates the data collection capabilities of 

the system by quantifying the extent to which it captures 
relevant data from various tools. 

2) Data credibility 
The computation of credibility, as detailed in Section 3, 

is employed in the experiment to compare the 
performance of different cyberspace surveying and 
mapping tools. It serves as a foundation for evaluating 
tool reliability, resolving discrepancies in data, and 
assessing overall data quality, thereby ensuring a 
thorough analysis of tool effectiveness. 

D. Experimental Results and Conclusions 
The system utilizes an automaton-based optimization 

for transforming query syntax, which accelerates the 
conversion speed compared to the conventional loop 
method. As illustrated in Fig. 7, this optimization 
enhances the data processing capabilities, particularly in 
large-scale data retrieval operations. 

 

 
Fig. 7. Speed comparison between automaton and loop method. 

From Fig. 7, it is evident that the advantages of using 
an automaton for field conversion increase as the data 
volume grows. With 1000 entries, the performance 
difference between the automaton and the loop method is 
negligible; however, with 10,000 entries, the automaton 
significantly outperforms the loop method. 
To evaluate the data collection capacity, experiments 
were conducted with 2000 entries from a specific region, 
utilizing five different tools, as demonstrated in Fig. 8. 
 

 
Fig. 8. Comparison of data collection capabilities across five mapping 

tools. 

As depicted in Fig. 8, Fofa achieved the highest 
retrieval rate, detecting 1999 out of 2000 entries, which 
corresponds to a coverage rate of 99.95%. The tools were 
ranked in terms of coverage as follows: Fofa, ZoomEye, 
Quake, Hunter, and Shodan. Fofa’s high detection rate 
highlights its robustness in data collection volume, while 
Shodan recorded the fewest entries, likely due to policy 
restrictions that limit its scanning scope. 

To assess the system’s ability to evaluate the 
credibility of cyberspace mapping tools and achieve 
optimal data aggregation, an analysis was conducted 
using 2000 entries from the aforementioned region across 
the five tools. The results underwent a credibility analysis, 
followed by optimal data aggregation based on calculated 
credibility scores. As shown in Fig. 9, this process was 
applied to the 2000 data entries, resulting in credibility 
scores for both the system and each individual tool. The 
integrated system achieved the highest credibility score of 
99.9337%, surpassing all five individual tools. The 
rankings among the tools were Hunter, ZoomEye, Shodan, 
Quake, and FOFA, with FOFA scoring the lowest at 
92.5473%. 

Notably, although the Hunter system attained an 
impressive credibility score of 99.33%, its coverage rate 
was only 84.5%, which did not meet the performance 
metrics of our system. Furthermore, the aggregation 
process significantly enhances the overall credibility 
across all tools, with an average increase of 3.33%. By 
synthesizing data from multiple sources, our system not 
only achieves high credibility but also broadens its 
coverage. 
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Fig. 9. Comparison of credibility across different mapping tools. 

The experimental outcomes corroborate the system’s 
capability to amalgamate data from diverse tools, thereby 
augmenting both data coverage and credibility. By 
harnessing the complementary strengths and resolving 
discrepancies among data sources, the integrated system 
surpasses individual tools in terms of both accuracy and 
reliability. 

However, these experiments also exposed certain 
limitations. The process of credibility analysis during 
large-scale data aggregation demands substantial 
computational resources, potentially compromising 
performance in scenarios involving continuous data 
streams. The scope of evaluation was confined to a 
specific region and dataset size, which leaves the 
performance of the system on a larger scale and in varied 
global contexts uncertain. Moreover, the dependence on 
third-party API introduces an element of instability, as 
variations in data retrieval may occur due to tool-specific 
policies and network conditions. 

These challenges underscore the necessity for 
optimizing computational efficiency and broadening the 
scope of testing to include diverse datasets. Future 
experiments aim to extend evaluations on a global scale 
and to enhance the system’s adaptability and robustness 
to ensure consistent performance under varied conditions. 

V. CONCLUSION AND FUTURE WORK 

The proposed system effectively addresses several 
challenges in cyberspace surveying and mapping, 
utilizing an integrated multi-source approach to 
significantly improve query syntax consistency, data 
credibility assessment, and energy efficiency. By 
employing data fusion techniques, the system mitigates 
the limitations associated with using individual tools and 
combines broader scanning coverage with more frequent 
updates, culminating in a more reliable cyberspace 
mapping framework. 

Nevertheless, certain limitations persist. The real-time 
data credibility assessment mechanism can be 
computationally demanding, which might affect 
performance, especially when processing extensive 
datasets or managing continuous data inflows. 

Future research will focus on the incorporation of deep 
learning models for dynamic data credibility assessment 
to enable real-time adaptability to fluctuations in data 
quality. Further optimization for handling large datasets 
will explore the use of distributed computing and 
advanced indexing techniques to alleviate computational 

burdens and enhance system responsiveness. Additionally, 
real-time data integration will be a key area of 
development, aiming to minimize delays and ensure 
seamless data flow. 

Concurrently, we are seeking partnerships with 
industry professionals and annotators to validate our 
findings and evaluate their applicability in real-world 
settings. This validation process will provide critical 
insights into the practical challenges of deploying our 
system across various industry contexts, thereby refining 
its functionality. We are also considering partnerships for 
pilot studies and exploring industry-specific case studies 
to bolster the external validity of our results. 
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