
Degradation of Lidar-Based 3D Object Detection 

under the Influence of Artificial Rain 
 

Christoph Rohmann *, Bashar Hoary, Silas Scholz, and Harald Konrad Bachem 

Teaching and Research Area Vehicle Safety, Faculty of Automotive Engineering,  

Ostfalia University of Applied Sciences, Wolfsburg, Germany 

Email: ch.rohmann@ostfalia.de (C.R.); ba.hoary@ostfalia.de (B.H.); sila.scholz@ostfalia.de (S.S.); 

h.bachem@ostfalia.de (H.K.B.) 

*Corresponding author 

 

 

 
Abstract—Ensuring robust and safe 3D object detection in 

outdoor environments requires addressing the challenges 

posed by adverse conditions such as rain, fog, snow, and 

varying lighting. However, the scarcity of diverse, labeled 

training, and test data reflecting these conditions hinders 

progress in this area. Synthetic data augmentation offers a 

promising solution to bridge this gap. In this paper, we 

evaluate the effectiveness of an existing physical rain model 

for augmenting lidar-based datasets. First, we validate the 

model by comparing its results to those generated by state-of-

the-art simulation software, AURELION. Next, we apply the 

rain model to augment the KITTI 3D object detection dataset 

with varying rain intensities and assess the impact on a lidar-

based object detection framework. Our results demonstrate 

that the physical rain model produces outputs nearly 

identical to AURELION. Furthermore, the augmented data 

reveal a significant degradation in detection performance 

across all evaluated object classes under increasing rain 

intensities. Retraining the detection model with the 

augmented data set substantially improves its robustness, 

even under heavy rainfall. These findings highlight the 

potential of synthetic data augmentation for enhancing the 

resilience of lidar-based 3D object detection systems in 

adverse weather conditions. 
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I. INTRODUCTION 

Object detection and classification are among the 

fundamental tasks in the perception pipeline of mobile 

autonomous machines. Common sensor technologies used 

for this purpose are optical sensors such as camera and 

lidar [1]. While these methods are well-studied, their 

application in outdoor environments still poses a great 

challenge, as the sensors are exposed to adverse 

environmental effects such as rain, snow, fog and different 

lighting conditions. For lidar, these effects can have a 

substantial negative effect on the resulting data  

quality [2–4]. The emitted rays in the near-infrared 

spectrum (usually 905 nm or 1550 nm) are subject to 

atmospheric scattering and attenuation when interfering 

with particles in the atmosphere. Rain, which is the focus 

of this paper, consists of droplets with sizes ranging from 

0.1 mm to 6 mm in diameter [5], making them 

substantially larger than the wavelength of rays emitted by 

lidar sensors. This is characterized through the size 

parameter x as shown in Eq. (1), where r is the radius of 

the particle (here the droplet) and λ the wavelength of the 

lidar. In this case of 𝑥 ≫ 1, the scattering behaviour falls 

into the domain of geometrical optics (e.g., through ray 

tracing). However, there have also been adaptations of the 

original Mie-Theory [6], which is traditionally applied for 

cases in which 𝑥 ≈ 1 , to predict the intensity and 

distribution of scattered lidar rays in rain [7].  

 𝑥 =
2𝜋𝑟

𝜆
 (1) 

II. LITERATURE REVIEW 

As extensive data sets are required to test lidar 

performance and train the underlaying model under the 

influence of rain, various efforts have been made to model 

said rain behavior to artificially augment pre-existing data 

sets for validation purposes. A variety of approaches in this 

field are based on physical models that primarily rely on 

simplifications of the general lidar equation and 

experimental studies [8–11]. Other methods use 

derivations of the Mie-Theory [12–14] to model the 

scattering behavior of rays traversing through rain. 

Additionally, there are approaches that utilize 

complementary simulation methods e.g. for the dynamic 

splash simulation [15] and photon motion simulation [16]. 

Teufel et al. [17] implemented their own rain model to 

augment pre-existing data sets and investigated the 

degradation in object detection at different intensities 

using the PointPillars detection model [18]. While these 

investigations give insight into the general applicability of 

such models, there is a research gap in how they fare 

against contemporary simulation tools for autonomous 

mobile machines and how they affect the object detection 

task when being used for the training process of detection 

models.  

In this paper, we apply the rain model proposed by 

Goodin et al. [9] to augment the KITTI 3D Object 
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Detection data set [19] with artificial rain of varying 

intensities. The goal is to investigate its applicability to 

create synthetic training and test data for 3D object 

detection models and how the performance of these 

models holds up when being exposed to artificial rain 

effects. We specifically chose this rain model, as it is not 

computationally demanding, thus making it suitable for 

both augmentation of pre-existing data as well as real-time 

usage. Furthermore, unlike other of the models mentioned, 

it only requires the desired rain intensity as an input, which 

makes it also applicable to recreate rain conditions based 

on actual historic data, which is usually represented in 

intensities of mm/h.  

For this purpose, we first compare the rain noise with 

that generated from a simulation software called 

AURELION to analyze the rain model’s general behavior. 

We then investigate the degradation behavior of an object 

detection model when subjected to inputs with the 

augmented KITTI data sets of varying rain intensities. 

Following the results from the analysis, we retrain the 

underlaying model with a mixture of original and noise-

applied data to compare the resulting performance with 

that of the original model.  

III. RAIN MODEL IMPLEMENTATION AND ANALYSIS 

A. Physics-Based Rain Model Integration 

Goodin et al. [9] utilize a simplified variant of the 

general lidar equation to calculate the return signal power 

of each ray (represented as a point in the point cloud) as a 

function of the distance R, the reflectivity ρ and the rain 

intensity I as in Eq. (2). 

 𝑃(𝑅) =
𝜌

𝑅2
∙ 𝑒−0.02𝐼

0.6𝑅 (2) 

The factors used in this equation are based on real 

outdoor experiments conducted with a Velodyne VLP-16 

sensor under rain intensities of up to 8 mm/h by  

Filgueira et al. [20]. As shown in Fig. 1, the return signal 

power of each point is compared to the minimum power 

threshold Pmin of the lidar sensor, which is characterized by 

its maximum range, usually stated in combination with the 

minimum required Lambertian reflection (e.g., 

120 m@0.80% for Velodyne HDL-64E). The points are 

then subjected to normally distributed noise as shown in 

Eq. (3). 

 𝑅′ = 𝑅 + 𝑁(0,0.02𝑅(1 − 𝑒−𝐼)2) (3) 

If the return signal of a given point is below the 

threshold Pmin given by the sensor, it is removed from the 

point cloud. All the remaining points are added to the new 

rain-applied output cloud. Our implementation allows both 

for real-time operation using the Robot Operating System 

(ROS) with input clouds in the PointCloud2 format and 

augmentation of common lidar formats such as pcd-files. 

Additionally, there is a plugin to request historic or 

forecasted rain intensities through the Open-Meteo 

API [21] by inputting a desired location and time. This 

feature is especially useful for obtaining realistic rain 

intensity values for a given location. 

 

 

Fig. 1. The principle of the data augmentation with artificial rain. 

There is no mutual international classification of rain 

and their corresponding intensities. In this work, we use 

the classifications as given by the World Meteorological 

Organization (WMO) [22] and the UK Meteorological 

Office [23]. They differentiate between rain and showers. 

Showers are characterized by a short duration and rapid 

fluctuations of intensity. Rain on the other hand has a more 

constant characteristic and usually lasts for hours. The 

corresponding intensities of slight, moderate, heavy and 

violent rain and showers respectively are listed in Table I. 

To define the maximum hourly rainfall intensity for this 

study, we analyzed historic meteorological precipitation 

data from 2016 to 2024 [21] from the city of Toyohashi in 

Japan, where most of this research was conducted. The 

highest recorded hourly intensity of rain in this period was 

38.8 mm/h in 2020, while the average annual maximum 
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was 31.38 mm/h. In 2023, the maximum daily rainfall 

reached 200 mm/day with a peak hourly intensity of 

37.1 mm/h. As this event resulted in major flooding [24] 

and taking into account previous maximum intensities, we 

set the upper limit for our investigations at a realistic 

maximum rainfall intensity of 50 mm/h. 

TABLE I. RAIN CLASSIFICATIONS ACCORDING TO WMO 

Class Rain intensity (mm/h) Shower intensity (mm/h) 

Slight <0.5 <2 

Moderate 0.5, …, 4 2, …, 10 

Heavy >4 10, …, 50 
Violent -/- >50 

B. Simulated Rain Noise 

As the suggested rain model is based on experimental 

data collected with a Velodyne VLP-16 sensor under 

intensities of up to 8 mm/h, we validate its noise behavior 

at intensities beyond that level through simulations done in 

the simulation software AURELION. AURELION is 

software based on Unreal Engine developed by the 

company dSPACE that allows sensor-realistic simulation 

of lidar sensors. It is mainly used for the development of 

automated driving systems and has a built-in rain 

simulation that affects the lidar data output. 

AURELION comes with a library of Velodyne sensors, 

including the HDL-64 lidar used in the KITTI data set. We 

chose a common urban 3D scene (Fig. 2) as testing ground 

with diverse objects of varying intensity (e.g., traffic signs 

and number plates) and captured a single frame of the 

simulated point cloud, once without any rain and 

additionally with the integrated rain simulation toggled on. 

We compare intensities of 1 mm/h to 20 mm/h, since 

20 mm/h is the maximum supported rain intensity in 

AURELION. The frame captured without any rain 

simulation is subjected to the rain model. 

We compare the resulting point clouds with respect to 

effective range, point count, and spatial distribution. While 

AURELION simulates rainfall up to 20 mm/h, the model 

extends to 50 mm/h to reflect historical precipitation 

extremes. To validate the model, we focused on the 

overlapping intensity range (0–20 mm/h), where our 

method demonstrated strong agreement with AURELION 

in terms of point cloud degradation patterns. This confirms 

that the model’s core mechanisms—signal-dependent 

point removal and Gaussian noise—align with an 

established simulation framework under equivalent 

conditions. Although higher intensities cannot be directly 

validated due to software limitations, the model’s behavior 

remains plausible due to its physical grounding and 

consistent trends observed at lower intensities. As shown 

in Fig. 3, both the number of points and the maximum 

range degrade equally with both methods.  

 

 

Fig. 2. (Left) Comparison of the point distribution between the rain model and the simulated rain in AURELION. (Right) Simulated scene and lidar 

data in AURELION. 

 

Fig. 3. Comparison of the number of points and the maximum range 
between therain model and AURELION. 

In addition to assessing the maximum effective range 

and point count, we evaluated the global similarity of both 

point clouds using the Chamfer Distance (CD) and Earth 

Mover’s Distance (EMD) metrics. For both metrics, we 

used the implementations given in [25].  

The Chamfer Distance (CD) quantifies similarity by 

computing the Nearest Neighbor (NN) in point cloud B for 

each point in cloud A, and vice versa. The sum of these 

distances provides a measure of similarity as shown in 

Eq. (4). 

𝐶𝐷(𝐴, 𝐵) =
1

2𝑛
∑|𝑥𝑖 − 𝑁𝑁(𝑥𝑖 , 𝐵)|

𝑛

𝑖=1

+
1

2𝑚
∑|𝑥𝑗 − 𝑁𝑁(𝑥𝑗 , 𝐴)|

𝑛

𝑗=1

 

(4) 
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As rain intensity increases, the point cloud density rises, 

leading to shorter distances between corresponding points 

and thus a lower CD value. For an intensity I = 1 mm/h, 

the CD is 0.111 m, decreasing to 0.105 m at I = 20 mm/h, 

with an average CD of 0.114 m across all intensities. Since 

CD does not explicitly account for spatial density 

variations, we also employed EMD to capture these 

effects. 

The Earth Mover’s Distance (EMD) considers the 

spatial distribution of points by measuring the minimum 

cost required to transform one point cloud into the other as 

described in Eq. (5). 

 

𝐸𝑀𝐷(𝐴, 𝐵) = min
π∊Π(𝐴,𝐵)

∑∑𝜋𝑖,𝑗|𝑎𝑖 − 𝑏𝑗|

𝑚

𝑗=1

𝑛

𝑖=1

 (5) 

Similar to CD, EMD decreases with increasing rain 

intensity, ranging from 0.195 m at I = 1 mm/h to 0.125 m 

at I = 20 mm/h, with an average of 0.160 m. Considering 

both absolute distances and point cloud size, these metrics 

indicate a high degree of similarity between the two point 

clouds. 

IV. OBJECT DETECTION SETUP 

A. 3D Object Detection Framework 

We use the OpenPCDet [26] framework for the object 

detection task, as it offers a variety of built-in testing and 

training tools as well pre-trained detection models. We 

opted for the Part-A2 net model [27], as it provides the best 

classification results on the KITTI test split for Vulnerable 

Road Users (VRU), consisting of pedestrians and cyclists. 

We put special emphasis on these targets, as their detection 

and classification are generally more challenging for the 

underlying models and interactions with VRU pose a 

particularly high level of safety criticality. We also tested 

the more recent voxel-based model VoxelNeXt [28], 

which in comparison provided worse results as shown in 

Table II. The Average Precision (AP) is calculated over 40 

recall positions at the medium difficulty KITTI benchmark 

for the test split. 

TABLE II. OBJECT DETECTION PERFORMANCE ON KITTI 3D PART-A2
 

VS. VOXELNEXT 

Model APPed (%) APCycle (%) APCar (%) 

Part A2-net 66.40 75.33 80.31 

VoxelNeXt 54.36 64.88 80.25 

B. Model and Data Preparation 

We input the KITTI 3D Object Detection test split, 

consisting of 3769 point cloud samples, into the rain model 

with rain intensities of 𝐼  = {1, 5, 10, 20, 50} mm/h 

resulting in a total of five noise-applied test datasets.  

As shown in Fig. 4, we run these noise-applied data sets 

on a pre-trained version of the Part-A2 model and two 

retrained versions. The pre-trained model is trained on the 

unmodified (raw) training split of the KITTI 3D Object 

Detection set. For the first retrained model, we input the 

training split into our rain model with the rain intensity set 

to I = 5 mm/h. The resulting noise-applied data set is used 

to train the model (retrainednoise). For the second version 

(retrainedmixed), we use a mixture of both raw KITTI data 

as well as the noise-applied modification with I = 5 mm/h. 

We opted for a ratio of 25% raw and 75% noise-applied 

data, as it provided the best results. Higher percentages of 

raw data result in reduced performance under rain. 

Each noise-applied test data set is used as an input for 

the OpenPCDet built-in evaluation tool, giving both a 

visual output of the interference (qualitative) and the 

average precision for the detection performance 

(quantitative).  

 

 

Fig. 4. Data and detection model preparation based on raw and noise-applied training and test data. 

V. DETECTION RESULTS 

A. Qualitative Evaluation 

For the qualitative comparison, we plot the interference 

results of the detection models in a Birds-Eye View (BEV) 

perspective. We chose a point cloud frame from the test 

split (000017.bin) in which a lot of pedestrians are present, 

as this object class is the focus of this evaluation.  

Fig. 5 shows the results from the pre-trained model (top) 

and the model that was trained on the noise-only data set 

(bottom). Looking at the point clouds resulting from 

applying artificial rain of increasing intensity, it becomes 

clear that heavy rain starting from rain intensities of I = 
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5 mm/h onwards, the noise behavior is visually identical. 

However, there is still a noticeable degradation in the 

effective range from I = 5 mm/h up to I = 50 mm/h. With 

the pre-trained model, object detection provides good 

results when no noise is introduced to the input cloud, but 

quickly falls apart when exposed to rain intensities of I = 

5 mm/h and higher. This is due to the heavy amount of 

noise introduced to the input cloud, which makes the 

usually clearly defined layers of the cloud 

indistinguishable from one another. As the pre-trained 

model was trained solely on noiseless data, it has no 

reference on how to work with inputs that have such a 

fundamental difference in structure. 

The model that was trained exclusively on noise-applied 

data (retrainednoise) shows a significant increase in 

performance. Looking at the inputs ranging from  

I = 1 mm/h (moderate rain) to I = 50 mm/h (heavy shower), 

the model still detects pedestrians consistently, especially 

when compared to the pretrained model. The main 

influencing aspect of the number of detected pedestrians in 

the frame is the effective range of the point cloud that is 

significantly shorter at I = 50 mm/h than with the raw data 

as input. However, since the model was trained on noise-

applied data exclusively, the performance at I = 0 mm/h 

(noise-free data) is worse compared to that of the 

pretrained model. There are several false positive 

detections of objects that are not present in the original 

frame. Fig. 6 shows a close-up of this scene as a 

comparison between the retrained models retrainednoise 

(left) and retrainedmixed (right). While the former shows 

said behavior of false positive detections, the model 

trained with a mixed set of raw and noise-applied data 

behaves visually identically to the pre-trained model. For 

inputs with rain intensities of I = 1 mm/h and higher, the 

mixed model also performs better, which becomes evident 

in the quantitative evaluation.  

 

 

Fig. 5. Qualitative comparison of the PartA2 detection model on test data with increasing rain intensities. Teal: pedestrians; yellow: cyclists; green: 
cars. 

 

Fig. 6. (Left) False positive detections of the model exclusively trained on noise-applied data. (Right) Improved detection performance by using the 
model with mixed training data. 
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In summary, these qualitative results indicate that 

incorporating both augmented and non-augmented data 

during training is an effective strategy to prevent false-

positive detections in noise-free input data while 

preserving high accuracy when applied on noise-

augmented data. 

B. Quantitative Evaluation 

For the quantitative evaluation, we separately input the 

raw and the noise-applied test splits into each of the three 

detection models and compare their Average Precision 

(AP). The AP is based on 40 recall positions at medium 

difficulty in compliance with the KITTI detection 

benchmark. Cars require a bounding box overlap of 70% 

and pedestrians and cyclists of 50% to be recognized as 

detected objects.  

Fig. 7 and Table III show the AP of the pre-trained 

model pretrainedraw and the retrained models retrainednoise 

and retrainedmixed under varying rain intensities.  

 

 

Fig. 7. (Left) Performance of the pre-trained detection model. (Right) Performance of the two retrained models. 

TABLE III. COMPARISON OF THE AP BETWEEN THE PRE-TRAINED AND THE TWO RETRAINED DETECTION MODELS ON INPUT DATA WITH INCREASING 

RAIN INTENSITIES. VALUES REFLECT AP@R40 MEDIUM DIFFICULTY FROM THE KITTI BENCHMARK METRIC 

I (mm/h) 
pretrainedraw (%) retrainednoise (%) retrainedmixed (%) 

APPed APCar APCycle APPed APCar APCycle APPed APCar APCycle 

0 66.40 80.31 75.33 54.86 77.65 66.60 65.80 79.73 74.84 

1 30.92 28.13 37.84 56.18 50.66 50.66 61.99 51.42 52.09 
5 0.0097 5.62 8.02 48.70 43.45 36.03 50.60 43.57 36.73 

10 0.0092 5.25 5.27 46.33 41.95 33.34 48.94 41.91 37.79 

20 0.0086 5.48 6.53 47.44 37.94 32.23 49.52 38.28 32.19 
50 0.43 5.37 5.79 42.71 28.61 23.51 46.04 28.93 26.26 

 

As seen in the qualitative evaluation, the performance 

of the pre-trained model degrades significantly when 

exposed to rain, resulting in an AP of 30.9% at I = 1 mm/h 

and 0.01% at I = 5 mm/h for the pedestrian detection task. 

Looking at the AP of the retrainednoise model, it reflects the 

behavior seen in the qualitative evaluation. At no rain 

present in the input clouds, the AP is 11.5% lower in the 

retrained model. When rain is introduced to the input 

clouds however, the retrained model shows a significant 

performance increase, reaching a maximum of Δ𝐴𝑃 =
48.7% at I = 5 mm/h. In comparison, the retrainedmixed 

model performs even better with Δ𝐴𝑃 = 50.6%  at  

I = 5 mm/h. Additionally, its performance at I = 0 mm/h 

almost reaches that of the pre-trained model, resulting in a 

deviation of Δ𝐴𝑃 = −0.6% for the pedestrian detection 

task.  

When subjected to rain noise, the pedestrian detection 

with the retrained models holds up better at every 

investigated intensity compared to that of the cars and 

cyclists, maintaining an AP of around 50%. Pedestrians 

have a more uniform and predictable shape compared to 

cars and cyclists, which can have varying shapes, sizes and 

orientations. As the applied noise algorithm distorts these 

usually distinct characteristics, the detection of cars and 

cyclists becomes more challenging. 

VI. RESULT AND DISCUSSION 

Initial comparisons between state-of-the-art simulation 

tools and the applied principle for the creation of artificial 

rain effects on lidar showed that the underlaying physical 

model is generally feasible for creating synthetic test and 

training data. When such artificial rain effects are 

introduced to the input data of 3D object detection models, 

rain intensities of 5mm/h and higher (heavy rain) cause a 

significant degradation in detection performance, making 

the model virtually unusable under these conditions. By 

retraining the model with a data set augmented with noise 

representing rain intensities of 5 mm/h exclusively, the 

detection results became significantly better, maintaining 

an AP of 48.6% and 42.7% for pedestrian detection under 

5 mm/h and 50 mm/h rain intensities, respectively. False-

positive detections occurred when using the retrained 
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model on the raw data set with no noise applied, which was 

corrected by performing a second training iteration, this 

time using a combination of both raw and noise-introduced 

data as input for the training process. 

VII. CONCLUSION 

This study investigated the impact of artificial rain on 

lidar-based 3D object detection and evaluated the 

effectiveness of a physical rain model for data 

augmentation. By comparing the model's output with state-

of-the-art simulation software, we confirmed its validity in 

generating realistic rain-induced noise. Our findings 

demonstrate that increasing rain intensity leads to a 

significant degradation in object detection performance. 

However, retraining the detection model with a 

combination of raw and augmented data substantially 

improved its robustness, mitigating the negative effects of 

rain. These results highlight the importance of 

incorporating diverse environmental conditions in training 

datasets to enhance the reliability of lidar-based perception 

systems. Future research should focus on further validating 

synthetic augmentation methods through real-world 

experiments and extending the approach to other adverse 

weather conditions.  
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