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Abstract—This article presents the results of a study 

conducted to develop an avalanche predictive model based on 

a set of climatic data. The research area includes the territory 

of East Kazakhstan, where a sharply continental climate 

prevails with hot summers and cold and snowy winters. With 

climate change, despite the low altitudes in this mountainous 

area, the problem of avalanche safety is acute in the region. 

To compile a avalanche predictive model, meteorological 

data from regional weather stations for 23 years (2001–2024) 

and meteorological observations in avalanche-prone areas 

for 19 years (2005–2024) were analyzed. This information 

was compared with the recorded data on spontaneous 

avalanches over the past 11 years (2013–2024). A database 

was created to carry out the research. The meteorological 

data is analyzed using mathematical statistics methods with 

the construction of probable trends of regional climatic 

changes. MATLAB data analysis has shown a significant 

relationship between sudden warming, increased wind speed, 

and precipitation that precedes avalanches. The analysis 

showed the need to take these parameters into account when 

developing a forecast model, as the likelihood of dangerous 

weather events will increase every year. The avalanche 

prediction was performed using regression analysis (logistic 

regression). The Loginom Community statistical software 

package is used for this purpose. The quality of the 

constructed predictive model was assessed. In the future, it 

will be used to predict spontaneous avalanche based on 

observations of meteorological data in avalanche-prone areas 

of the East Kazakhstan region.  
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I. INTRODUCTION 

Global climate change has various regional 

manifestations. At the same time, meteorological factors 

have significant variability in their spatial and temporal 

distribution. Their influence is reflected in the frequency 

and severity of various dangerous natural disasters. This 

includes an increase in avalanche activity in the 

regions [1–3]. Therefore, the possibility of forecasting 

them is an important task of modern science. The 

construction of predictive avalanche hazard models should 

consider many factors to improve the quality of the 

forecast. 

The literature review shows that to identify patterns and 

predict avalanche hazards, special attention is paid to 

statistical methods, among which regression analysis 

occupies an important place. But at the same time, very 

little attention is paid in general to forecasting natural 

hazards using the logistic regression method. Therefore, 

this study will allow us to introduce new information based 

on the study of real data for the development of this area. 

II. LITERATURE REVIEW 

The influence of climate change on the formation and 

characteristics of avalanches is manifested in an increase 

in the number of heavy snowfalls, an increase in air 

temperature and wind speed. These changes lead to an 

increased risk of avalanches [4, 5]. Climate change affects 

the area and timing of snowfall [6, 7]. This is reflected in 

noticeable regional differences [8–10].  

Global warming is changing the nature of snowfall in 

many parts of the world. Periods of snowfall and snowmelt 

are also changing along with rising global temperatures. 

There is a correlation between snowfall and air 

temperature, which is associated with an increased 

moisture content in the atmosphere. This has significantly 

affected the frequency, timing, scale, and types of 

avalanches in various mountainous regions of the 

planet [11–14]. The above-mentioned scientific studies 

note that changes in snow characteristics depend on 

meteorological factors, atmospheric circulation, and soil 

conditions, which, in turn, affect avalanche activity. Many 

years of research experience in predicting and identifying 

the causes of avalanches show that the avalanche 

formation process is influenced not only by the above 

factors, but also by their complex combination. 

Among the various approaches to predicting avalanche 

hazards, special attention is paid to statistical methods that 

allow us to identify patterns between meteorological 

conditions and the probability of avalanches.  
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Statistical methods for predicting avalanche hazards can 

be divided into several categories: 

1)  Qualitative methods: based on empirical 

observations and expert assessments. Forecasters 

analyze current meteorological conditions, 

comparing them with historical avalanche data, 

and based on this, draw conclusions about the 

possible danger. 

2)  Quantitative (analytical) methods: mathematical 

models are used to quantify avalanche hazards. 

These models consider various meteorological 

parameters, such as precipitation intensity, air 

temperature, wind speed, and others. 

3)  Climatic and meteorological methods: based on 

long-term climatic data and statistical relationships 

between meteorological conditions and the 

frequency of avalanches in a particular region. 

In international practice, various statistical methods are 

used to assess avalanche hazards, among which logistic 

regression occupies a significant place.  

Logistic regression is widely used to analyze and predict 

natural risks. For example, Sujatha and Sridhar [15], 

Chowdhury et al. [16] have demonstrated its use for 

mapping the likelihood of landslides based on data on 

terrain, soil properties, and climatic conditions. The results 

obtained confirmed the high accuracy of the model and 

became the basis for developing recommendations to 

reduce the risks of destruction. 

Logistic regression is one of the most effective tools for 

predicting the probability of avalanches. It allows you to 

model the relationship between a binary variable (the 

presence or absence of an avalanche) and a set of 

independent meteorological variables.  

In the of Gauthier et al. [17], weather conditions were 

analyzed using logistic regression to calculate the 

probability of avalanches. The developed linear regression 

model made it possible to classify situations according to 

five levels of avalanche danger. The obtained models 

demonstrated high efficiency in predicting days with 

increased avalanche activity. 

Nosrati et al. [18] analyzed parameters such as height, 

slope, vegetation, and climatic conditions that can affect 

avalanches. Since avalanche-prone zones occupy a much 

smaller area compared to the general territory, logistic 

regression of rare events was used to identify the main 

factors of avalanche formation. The analysis showed that 

the curvature of the relief, height, rock outcrops, slope and 

exposure are key factors of snow accumulation. 

Chourot and Martin [19] compared logistic regression 

and a new method based on thresholds for snowfall 

intensity and duration to analyze weather conditions 

conducive to avalanche formation. The results of the cross-

validation showed that the linear regression model has 

greater accuracy and reliability because it considers more 

meteorological factors. 

Thus, the use of logistic regression to predict avalanches 

based on meteorological data is a reasonable and effective 

approach. Logistic regression allows you to model 

probabilistic events and establish relationships between 

independent variables and binary outcomes. The use of 

such models helps to increase the accuracy of forecasts 

and, consequently, improve precautions and safety 

measures in avalanche-prone regions. 

The key aspects of the research conducted on the 

development of a predictive model are shown in Fig. 1. 

 

 

Fig. 1. Key aspects of the study. 

III. METHODS 

At the first stage of building an avalanche predictive 

model, historical and archival data on meteorological 

parameters and data on snow cover in avalanche-prone 

areas of Eastern Kazakhstan were collected in a single 

database. Statistical data processing has shown that 

regional manifestations of the global climate change 

process are expressed in an increase in avalanche factors. 

There is a gradual increase not only in the average annual 

amount, but also in the amount of precipitation in winter. 

At the same time, the amount of precipitation falling in one 

day increases. A feature of the climate of Eastern 

Kazakhstan was the revealed redistribution of precipitation 

between summer and winter, towards an increase in 

precipitation in winter. 

Data collection in the created database for East 

Kazakhstan was carried out from various sources: 

dictionary data; archival data; data from public sources; 

observation data. Further, the analysis of these data allows 

for operational monitoring of avalanche hazards and serves 

as a source for predicting avalanche hazards in the 

observed avalanche-prone areas. 

The prediction of spontaneous avalanches was 

performed using regression analysis as a tool that allows 

us to determine the relationship between a set of input 

factors and a dependent variable. To compile a predictive 

model, it was necessary to determine the probability of an 

event occurring—an avalanche at an avalanche-prone area 

based on a combination of weather conditions. 

To calculate the logistic regression of predicting 

spontaneous avalanches, as part of the study, we identified 

a set of input variables and used the Loginom Community 

statistical software package.  

Based on the scenario and the developed database, 

logistic regression training was performed. The evaluation 

of the quality of the constructed model was performed by 

calculating the AUC ROC coefficient and the quality of 

data recognition. 

The conducted research will help to create an algorithm 

for an automated avalanche hazard monitoring system for 

the East Kazakhstan region. The resulting regression 

analysis is the basis of this algorithm. 
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IV. RESULT AND DISCUSSION 

In the ongoing research, the authors are developing an 

avalanche hazard monitoring system for Eastern 

Kazakhstan. The area under study is shown in Figs. 2 

and  3. 

The mountainous regions of East Kazakhstan have 

developed a tourist infrastructure and an extensive network 

of roads. Many people live and work in avalanche risk 

areas. Extreme weather conditions due to climate change 

are becoming more frequent: heavy precipitation, sudden 

warming in winter, and strong winds. This leads to 

spontaneous avalanches. In this regard, the development of 

an avalanche hazard monitoring system is very important 

for the region. It will be a software and hardware complex 

for analyzing the avalanche situation and transmitting 

appropriate warnings. A set of monitoring system sensors 

has already been developed. For its further work, it is 

necessary to develop software algorithms that will process 

various data (historical and current) meteorological 

parameters and information about avalanche-prone areas. 

The research conducted by the authors is devoted to the 

creation of an avalanche predictive model, which is the 

basis of this algorithm. 

The authors studied data on 497 avalanche-prone areas 

in the region, of which 325 threaten objects and people’s 

lives. Information about them is given in Table I. The 

source of this data is digitized information from 

observation logs on snow measuring routes in the East 

Kazakhstan region and emergency information from the 

State Institution Kazselezashchita on avalanches. This data 

is included in the developed database. 

 

 

Fig. 2. Location of the research area on the world map. 

 

Fig. 3. Location of avalanche areas in East Kazakhstan. 

The analysis of climatic data was carried out for 7 

regional weather stations of the National Hydro-

meteorological Service of Kazakhstan Kazhydromet. It is 

located near the avalanche-prone areas under study. 

Information about this data is shown in Table II.  

TABLE I. INFORMATION ABOUT AVALANCHE-PRONE AREAS 

Data type Data subtype Max Min Average Data acquisition period, year 

Snow height (cm) On snow measuring route 148 5 77 2005–2023 

Avalanches 
Number of avalanches 142 17 65 2013–2024 

Volume of snow in avalanches, m3 593.680 67.675 220.500 2013–2024 

TABLE II. DATA FROM METEOROLOGICAL STATIONS 

Data type Data subtype Max Min Average Data acquisition period, year 

Air temperature (°C) 
Average per day per year 4.4 1.3 3.2 2001–2023 

Average per day in winter −5.2 −12.1 −7.8 2001–2023 

The amount of precipitation, 

(mm) 

Average per day per year 1.7 0.9 1.3 2001–2023 

Average per day in winter 1.7 0.7 1.1 2001–2023 

The amount for the year 621 319 485 2001–2023 

The amount for the winter 302 131 204 2001–2023 

Relative humidity of the air 

(%) 

Average per day per year 72 63 68 2001–2023 

Average per day in winter 76 70 73 2001–2023 

Lack of air saturation 
Average per day per year 6.05 3.75 4.71 2001–2023 

Average per day in winter 1.64 1.06 1.43 2001–2023 

Snow height (cm) Average per day per season 37 14 25 2001-2023 

Wind speed (m/s) 
Average per day per year 2.4 1.8 2.2 2001–2023 

Average per day in winter 2.4 1.6 2.1 2001–2023 

 

The greatest attention in the study was paid to 

avalanche-prone areas, where the most vulnerable 

infrastructure facilities are located, and the largest number 

of spontaneous avalanches occurred. An example of such 

a risky situation is shown on Fig. 4. Here, in the Zubovsk 

village, at the foot of the mountain, there are residential 

buildings and a school in an avalanche-prone area. 

Preventive avalanche descent is not possible here due to 

the proximity of buildings. Therefore, the installation of an 

avalanche hazard monitoring system is most important for 

this site. 

Spontaneous avalanches are possible from slopes with a 

steepness of more than 20°, especially if the slope does not 

have vegetation of shrubs and trees. The steepness of the 

slopes of East Kazakhstan is shown in Fig. 5. 
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Fig. 4. Location of infrastructure facilities near an avalanche-prone area. 

Information from all data sources has been collected 

into a single digital database, based on which an algorithm 

for analyzing these parameters will be developed 

specifically for the East Kazakhstan region. 

Meteorological data are not the only important 

components of it. During the study of avalanche-prone 

areas of the East Kazakhstan region, the following 

information objects were identified: area, avalanche-prone 

area, avalanche-trapping collection, meteorological data, 

morphological type, type of slope exposure, type of 

vegetation, avalanche-trapping vegetation, degree of 

avalanche danger, device, observation parameter, 

observation data, preventive descends, spontaneous 

avalanche. 

A database based on the MySQL database management 

system was created to store the collected data. Google 

Earth Pro was used to form the cartographic basis of the 

project. 

 

Fig. 5. Terrain steepness of the East Kazakhstan region. 

To understand the interaction between previously 

identified information objects in the database, Fig. 6 shows 

the logical schema of the database. The information 

objects selected for the study are shown, as well as the 

relationships between them and their attributive 

composition. 

Fig. 6 shows the tables in the database, their attribute 

composition, the primary keys of the tables and the 

relationships between the tables. 

 

Fig. 6. The logical schema of the database. 
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The data in the database created is collected from 

various data sources. For the specified database, data 

sources can be roughly divided into the following 

categories: Dictionary data—reference data of various 

types, avalanche-prone areas records—information on 

avalanche sites observed in the monitoring and forecasting 

system (operational logs of preventive descents and 

spontaneous avalanches of the State Institution 

Kazselezashchita); data from public sources—data from 

public sources (databases of the National 

Hydrometeorological Service of Kazakhstan 

Kazhydromet, etc.) that are required for predicting 

avalanches; observation data—data from various metering 

devices (stationary devices, UAVs, etc.).The distribution 

of information objects of the database being developed by 

data sources is shown in Fig. 7 for clarity. 

 

 

Fig. 7. Distribution of database information objects by data sources. 

The unified database created within the framework of 

this study for collecting data on avalanche-prone areas 

allows for operational monitoring of avalanche hazard and 

also serves as a data source for predicting avalanche 

danger in the observed avalanche-prone areas. 

In general, a software package has been designed and 

developed to collect and process data on snow cover in 

avalanche-prone areas, which includes the following 

components: 

• A mobile application that is used to collect data 

on an avalanche-prone area (temperature, 

weather conditions, snow cover). This 

application was developed for the Android 

operating system, which allows you to install it 

on many mobile devices that run on this operating 

system. 

• A MySQL database in which the information 

collected in the mobile application is entered. 

• API interface for interaction between the 

database and the mobile application. Interaction 

with API data via REST-requests 

(Representational State Transfer). To protect the 

transfer of data and credentials, the specified API 

interface uses the SSL/TLS protocol (Secure 

Sockets Layer / Transport Layer Security). 

The scheme of operation of the developed software 

package is shown in Fig. 8. 

The climate data was processed using Excel software, 

and data trends were compiled using polynomial 

dependencies of the 2nd degree. The data analysis showed 

the changes that have occurred with the regional climate 

over a long period of time. Temperature trends are 

consistent with global changes and indicate a gradual 

increase in air temperature in the area (Fig. 9). 

 

 
Fig. 8. Operation diagram of the mobile application. 

 

Fig. 9. Average statistical air temperature data for the study area and 

forecast for their changes. 

Fig. 10 shows data on the amount of precipitation in this 

area. As can be seen from the graph, there is a gradual 

increase in precipitation, both the annual average and an 

increase in precipitation in winter. Both indicators have 
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consistently exceeded the average values for the study 

period since 2009. This period is shown in the figure with 

a red bracket at the top. 

 

 

Fig. 10. Average annual precipitation and average winter precipitation 

for the study area. 

Snowy winters are common in East Kazakhstan, but 

previously the greatest amount of precipitation fell during 

the warmer months. An analysis of the data showed that 

there is a steady trend of increasing precipitation in winter 

(Fig. 11). This can be explained by the fact that the air 

temperature is rising, and the summer is becoming more 

arid. The air temperature also rises in winter, which 

contributes to greater saturation of the air with water vapor 

and more precipitation. This also entails a change in the 

conditions for the formation and descent of avalanches in 

the direction of increasing avalanche risks. 

 

 

Fig. 11. Winter precipitation as a percentage of average annual 

precipitation for the study area. 

Data research also showed that there is a tendency to 

increase the amount of precipitation per day in winter. 

Fig. 12 shows the average value of this indicator, and the 

trend line constructed according to a polynomial 

dependence of the 2nd degree. This is done only for the 

winter period, as this is what is important in assessing 

avalanche risks, as well as in order not to overload the chart 

with data. Comparing the graphs in Figs. 10 and 12, we can 

see that since 2009, the average amount of precipitation 

per day in winter has increasingly exceeded the average 

value of this indicator. According to the constructed 

model, it is expected that in the future the amount of 

precipitation that fell at the same time in one day in winter 

will also increase. This means that the number of days with 

heavy precipitation increases, which becomes one of the 

decisive factors leading to an inc rease in avalanche 

hazard. 

 

 

Fig. 12. Average daily precipitation for the study area. 

As the analysis has shown, the microclimate of the 

territory of East Kazakhstan is changing, and these trends 

will continue in the coming years. The climate will become 

more humid and warmer, which will inevitably affect the 

avalanche situation in the region. All these conditions will 

affect the formation of snow cover. The average snow 

cover height for each year is shown in Fig. 13. There is 

already a tendency to exceed the annual average. 

 

 

Fig. 13. Snow depth and trend for the study area. 

In Kazakhstan, the average annual wind speed and its 

extremes are decreasing, as observed by the National 

Meteorological Service of Kazakhstan Kazhydromet. 

However, there is a tendency for them to increase in the 

study area. This is shown in the graph in Fig. 14. The 

region tends to increase the average wind speed both 

throughout the year and in winter. Such a wind regime of 

the territory will contribute to more active wind transport 

of snow on the slopes. Wind transport of snow along the 

slope is one of the factors contributing to avalanches. The 

wind in the mountains leads to the formation of canopies 

and snow deposits on the slopes. Subsequently, their 

collapse leads to avalanches. An increase in wind speed 

will lead to increased local changes in snow cover on the 

slopes and, consequently, to an increase in avalanche 

hazards in the region. 
 

 

Fig. 14. Wind speed and trends in its changes for the study area. 
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All climatic changes contribute to an increase in 

avalanche activity in the region. This is confirmed by the 

avalanche observation data shown in Figs. 15 and 16. The 

winters of 2020–2021 and 2021–2022 were particularly 

difficult. The forecast for the coming winter, in accordance 

with the trend lines, also shows an increase in the 

avalanche danger level. There is an obvious connection 

between the general trends of increasing air temperature, 

precipitation and wind speed in winter and an increase in 

the number of avalanches and their volumes in recent years 

in Eastern Kazakhstan. 

 

 

Fig. 15. The number of avalanches in East Kazakhstan region for 

various winter seasons. 

 

Fig. 16. Snow volume of avalanches in East Kazakhstan region for 

various winter seasons. 

 

Having considered the change in climatic data for East 

Kazakhstan, we see that the main factors of avalanche risks 

for this territory are changing. The analysis revealed that 

there are obvious links between an increase in air 

temperature, an increase in precipitation and wind speed in 

winter and an increase in the number of avalanches and 

their volumes in recent years in the territory of East 

Kazakhstan: 

• Climate change: the climate is becoming more 

humid and warmer. 

• Increased precipitation: There is a steady increase 

in both average annual and winter precipitation, 

which leads to increased avalanche risks. 

• Snow cover changes: average snow cover heights 

are increasing, which is also associated with an 

increase in avalanche activity. 

• Wind and avalanches: there is an increase in the 

average wind speed in the region, which 

contributes to the active wind transport of snow 

on the slopes. This increases the risk of the 

formation of canopies and snow deposits, which 

can lead to avalanches. 

• Increased avalanche risk: all climatic changes, 

including increased precipitation, temperature, 

and wind speed, contribute to an increase in 

avalanche activity in the region, and forecasts for 

future winters also predict an increase. 

Meteorological parameters (air temperature, wind speed, 

and precipitation) affect spontaneous avalanches. Using 

modeling, we analyzed 5 avalanche-prone areas 

(Pikhtovka, Prohodnaya, Tainty, Sogornoye-Barlyk, 

Bogatyrskaya mine), where spontaneous avalanches 

occurred at different times. For the study, meteorological 

parameters were taken 3 days before the incident, on the 

day of the avalanche, and 3 days after the incident.  

Table III shows data on these avalanche-prone areas. 

The date of the avalanche is shown in bold. Information 

about avalanches is shown in Table IV. Statistical analysis 

methods of the MATLAB program were used to evaluate 

the relationships between these variables. 

TABLE III. METEOROLOGICAL DATA ON SPONTANEOUS AVALANCHES 

Avalanche-prone areas Date Wind speed (x) (m/s) Precipitation (y) (mm) Air temperature (z) (℃) 

Pikhtovka 

22.12.2015 2.4 0.2 −14.2 

23.12.2015 5.0 1.4 −8.5 

24.12.2015 3.3 2.2 −2.3 

25.12.2015 2.6 4.4 −0.2 

26.12.2015 3.0 0.3 1.3 

27.12.2015 4.5 0 0.9 

28.12.2015 4.3 0 −0.1 

Prohodnaya 

06.01.2019 0 - −25.7 

07.01.2019 6.3 - −8.7 

08.01.2019 4.5 - −8.0 

09.01.2019 5.8 1.1 −0.4 

10.01.2019 1.8 8.4 −3.2 

11.01.2019 0 1.8 −13.4 

12.01.2019 0 1.5 −13.1 

Tainty 

20.01.2020 1.1 1.7 −8.7 

21.01.2020 2.1 5.9 −8.2 

22.01.2020 3.4 6.7 −6.6 

23.01.2020 3.0 4.9 −6.2 

24.01.2020 1.6 - −7.5 

25.01.2020 2.5 7.4 −4.0 

26.01.2020 3.0 6.7 −4.6 
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Sogornoye-Barlyk 

22.11.2021 8.4 - 0.5 

23.11.2021 2.5 3.4 −4.4 

24.11.2021 1.4 10.9 −1.9 

25.11.2021 4.5 - 1.9 

26.11.2021 3.5 3.8 −4.0 

27.11.2021 3.3 - −17.8 

28.11.2021 6.1 - −11.4 

Bogatyrevskaya mine 

04.01.2023 3.0 0.4 −4.9 

05.01.2023 2.0 19.7 −3.9 

06.01.2023 0.3 16.6 −3.2 

07.01.2023 0.5 4.6 −1.6 

08.01.2023 1.6 3.0 −5.0 

09.01.2023 1.0 2.3 −1.1 

10.01.2023 0.8 14.1 −6.9 

TABLE IV. INFORMATION ABOUT AVALANCHES 

№ Avalanche-prone area Specifications Consequence 

1 Pikhtovka 
The reason: heavy snowfall, increased wind and poor visibility. The 

avalanche point was above the road. Avalanche volume 500 m3. 
There are no casualties or damage. 

2 Prohodnaya 

The reason is an increase in air temperature, heavy precipitation and 

increased wind. The avalanche point was above the road. The 

avalanche volume is 4300 m3. 

The snow completely blocked the 

road. There are no casualties or 

damage. 

3 Tainty 
The reason: heavy snowfall, increased wind and poor visibility. The 

avalanche point was above the road. The avalanche volume is 1100 m3. 
There are no casualties or damage. 

4 Sogornoye-Barlyk 
The reason: increased air temperatures and precipitation. The avalanche 

point was above the road. The avalanche volume is 250 m3. 

The snow completely blocked the 

road. There are no casualties or 

damage. 

5 Bogatyrevskaya mine 
The reason: increased air temperatures and precipitation. The avalanche 

point was above the road. The avalanche volume is 3500 m3. 
There are no casualties or damage. 

 

The results are shown in Figs. 17–21, and the 

dependency models are presented in Eqs. (1)–(5). Variable 

1 (x)—wind speed, variable 2 (y)—precipitation, variable 

3 (z)—air temperature (Table V). 

 

 

Fig. 17. Graph of dependence of variables for Pikhtovka. 

 

Fig. 18. Graph of dependence of variables for Prokhodnaya. 

 

Fig. 19. Graph of dependence of variables for Tainty. 

 

Fig. 20. Graph of dependence of variables for Sogornoye-Barlyk. 

Thus, meteorological conditions—a sharp warming, an 

increase in wind speed and heavy precipitation, 

contributing to snow melting and its transfer, are the main 

factors influencing the spontaneous avalanche, regardless 

of the year and month. These three factors are interrelated, 

as warming in winter is usually accompanied by increased 

wind and brings precipitation to the region. 
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Fig. 21. Graph of dependence of variables for Bogatyrevskaya mine. 

TABLE V. DEPENDENCY MODELS 

№ Avalanche-prone area Model 

1 Pikhtovka z = −8.687 + 0.9804x + 1.027y          (1) 

2 Prohodnaya z = −14.6872 + 2.2983x + 0.8736y    (2) 

3 Tainty z = −10.3211 + 0.2617x + 0.5909y    (3) 

4 Sogornoye-Barlyk z = −6.2887 + 0.2519x + 0.370y        (4) 

5 Bogatyrevskaya mine z = −1.6846 − 0.9627x − 0.098y        (5) 

 

As mentioned earlier, as part of our research, we 

collected historical meteorological data at avalanche 

collections in the East Kazakhstan region. Based on the 

collected data, it is possible to predict spontaneous 

avalanches using regression analysis. 

Regression analysis is one of the main statistical tools 

that allow you to determine the relationship between a set 

of input factors and a dependent variable. When 

constructing a regression, coefficients are determined for 

each input variable, which determines the degree of 

influence of each input factor on the value of the output 

variable. 

When predicting spontaneous avalanches, we need to 

determine the probability of an avalanche event at an 

avalanche collection based on weather conditions, which 

in this case will act as input variables. Logistic regression 

is the most suitable tool for solving this problem. 

Logistic regression is used when there is an output 

variable obeying the binomial distribution law. Since the 

output value is binary, the specified regression type 

calculates the probability of assigning the regression value 

to one of the two possible values of the regression output 

variable. 

To calculate the logistic regression of predicting 

spontaneous avalanches in the framework of the study, we 

determined the following set of input variables, shown in 

Table VI. 

The data listed in Table VI for calculating logistic 

regression was obtained from a database on avalanche 

weather conditions developed as part of this study. In our 

case, the recorded spontaneous avalanches on a certain 

date on a given avalanche collection will be the output 

variable. To extract data from the database, we created 

views (Supplementary). 

TABLE VI. INPUT VARIABLES FOR CALCULATING LOGISTIC REGRESSION 

№ Variable Explanation 

1 avg_temperatures_day_1 average daytime temperature on the day of the avalanche 

2 avg_temperatures_day_2 average daytime temperature the day before the avalanche 

3 avg_temperatures_day_3 average daytime temperature 2 days before the avalanche 

4 avg_temperatures_decade_1 average daytime temperature on the day of the avalanche 

5 avg_temperatures_decade_2 average daytime temperature the day before the avalanche 

6 avg_temperatures_decade_3 average daytime temperature 2 days before the avalanche; 

7 rainfalls_value_1 the amount of precipitation on the day of the avalanche 

8 rainfalls_value_2 the amount of precipitation the day before the avalanche 

9 rainfalls_value_3 the amount of precipitation 2 days before the avalanche 

10 snows7_average_1 average snow cover at 7:00 a.m. on the day of the avalanche 

11 snows7_average_2 average snow cover at 7:00 a.m. the day before the avalanche 

12 snows7_average_3 average snow cover at 7:00 a.m. 2 days before the avalanche 

13 snows7_maximum_1 the maximum snow cover is at 7:00 a.m. on the day of the avalanche 

14 snows7_maximum_2 the maximum snow cover is at 7:00 a.m. the day before the avalanche 

15 snows7_maximum_3 the maximum snow cover is at 7:00 a.m. 2 days before the avalanche 

16 snows19_average_1 average snow cover at 19:00 on the day of the avalanche 

17 snows19_average_2 average snow cover at 19:00 the day before the avalanche 

18 snows19_average_3 average snow cover at 19:00 2 days before the avalanche 

19 snows19_maximum_1 the maximum amount of snow cover is at 19:00 on the day of the avalanche 

20 snows19_maximum_2 the maximum amount of snow cover is at 19:00 the day before the avalanche 

21 snows19_maximum_3 the maximum snow cover is at 19:00 2 days before the avalanche 

22 temperatures7_value_1 temperature at 7:00 on the day of the avalanche 

23 temperatures7_value_2 temperature at 7:00 the day before the avalanche 

24 temperatures7_value_3 temperature at 7:00 2 days before the avalanche 

25 temperatures19_value_1 temperature at 19:00 on the day of the avalanche 

26 temperatures19_value_2 temperature at 19:00 the day before the avalanche 

27 temperatures19_value_3 temperature at 19:00 2 days before the avalanche 

 

We used the Loginom Community statistical software 

package to perform logistic regression calculations. In this 

software package, a scenario was created for calculating 

logistic regression. 

The created package connects to the developed 

database, extracts data, and uses it to train logistic 

regression. 

For a general understanding, Fig. 22 shows a diagram of 

the interaction of the system components. 
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Fig. 22. Component interaction diagram. 

The avalanche hazard analysis and forecasting system 

based on logistic regression using the Loginom software 

platform is included in the created information system and 

operates using the MySQL database and the mobile 

application described above. 

Also in this statistical package, we evaluated the quality 

of the constructed logistic regression model. Fig. 23 shows 

a graph and data on the estimation of the constructed 

logistic regression. As can be seen from the data shown in 

Fig. 23, the constructed regression model for predicting 

avalanches is of a high quality. This is evidenced by the 

following indicators: 

• A high value of the AUC ROC coefficient, which 

has a value of 0.9622 for the training set and a 

value of 0.9505 for the test set, since for this 

indicator a value of 0.9 or more indicates a high 

quality of forecasting. 

• High quality of value recognition—over 98% for 

the training set (9082 out of 9229) and the test set 

(6059 out of 6152). 

 

Fig. 23. Quality assessment of the regression model. 

After training the model, we obtained a regression 

coefficient, the value of which is given in Table VII. 

TABLE VII. THE VALUE OF LOGISTIC REGRESSION COEFFICIENTS 

№ Names of input fields Regression coefficient 

1 The constant −2.6596 

2 avg_temperatures_day_1 0.0397 

3 avg_temperatures_day_2 0.3580 

4 avg_temperatures_day_3 0.0271 

5 avg_temperatures_decade_1 0.1441 

6 avg_temperatures_decade_2 0.0778 

7 avg_temperatures_decade_3 0.0879 

8 rainfalls_value_1 −0.7986 

9 rainfalls_value_2 −0.9923 

10 rainfalls_value_3 −0.8184 

11 snows7_average_1 −0.0794 

12 snows7_average_2 −0.0289 

13 snows7_average_3 0.0144 

14 snows7_maximum_1 0.0256 

15 snows7_maximum_2 0.0852 

16 snows7_maximum_3 0.0041 

17 snows19_average_1 0.0254 

18 snows19_average_2 0.0247 

19 snows19_average_3 0.0240 

20 snows19_maximum_1 0.0169 

21 snows19_maximum_2 −0.0595 

22 snows19_maximum_3 −0.0789 

23 temperatures7_value_1 0.1553 

24 temperatures7_value_2 0.0886 

25 temperatures7_value_3 0.1139 

26 temperatures19_value_1 −0.0106 

27 temperatures19_value_2 −0.1273 

28 temperatures19_value_3 −0.0346 
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The logistic regression we constructed in this part of the 

study can later be used to predict spontaneous avalanches 

based on observations of meteorological data in avalanche-

prone areas of the East Kazakhstan region. 

V. CONCLUSION 

The study analyzed weather data on 497 avalanche-

prone areas of the East Kazakhstan region. An analysis of 

climate change has shown that: the average annual 

temperature and precipitation in the region are increasing, 

especially in winter, which increases the risk of 

avalanches; wind speed is also increasing, which 

contributes to the formation of snow deposition; there is a 

relationship between climate change and an increase of 

number of avalanches. 

In addition to the weather factors presented in the study, 

an avalanche can be triggered by humans and other 

conditions. Avalanches have already claimed many lives 

around the world this winter [20]. And all the cases were 

provoked by the victims themselves. But at the same time, 

the avalanche risk in these cases has already been 

estimated above 3 (according to the North American 

avalanche danger scale) due to weather conditions. 

Meteorological factors are the primary factors that increase 

avalanche risk. 

The main factors of avalanches are a sharp increase in 

temperature, increased wind and heavy precipitation. Real 

cases of spontaneous avalanches have been analyzed for 

several sites and probabilistic models have been 

constructed. 

As part of the study, historical weather data was used to 

predict spontaneous avalanches using regression analysis. 

Logistic regression, suitable for binary outcomes, allows 

you to predict the probability of an avalanche based on 

weather conditions.  

A set of input variables is used to build the model. The 

recorded spontaneous avalanches act as the output 

variable. Forecasting was carried out using the Loginom 

Community statistical package. 

The evaluation of the model showed a high quality of 

forecasting. Recognition accuracy has exceeded 98%. The 

obtained regression coefficients can be used to predict 

avalanches based on meteorological data in the East 

Kazakhstan region. 
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