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Abstract—In the field of system identification and modeling 
for dynamic systems, the increasing complexity and 
granularity of models often result in significantly higher 
computational costs and storage requirements, especially in 
real-time applications and optimization processes. To 
address this issue, model order reduction methods have been 
developed to produce reduced-order models with smaller 
dimensions while preserving the key dynamic characteristics 
of the original system. In this paper, two widely used model 
order reduction algorithms, Balanced Truncation (BT) and 
Balanced Stochastic Truncation (BST), are applied to reduce 
the order of high-order Infinite Impulse Response (IIR) 
digital filters. Analysis results reveal that BT outperforms 
BST in preserving the time-domain response and signal 
energy, whereas BST demonstrates superior performance in 
maintaining frequency-domain responses across the entire 
frequency range and preserving minimum-phase 
characteristics. Through comparisons of the reduction errors 
in terms of H₂ and H∞-norms, the paper identifies that 
reducing the order from 30 to 11 and 15 achieves an optimal 
balance between accuracy and system complexity. These 
findings provide a basis for selecting appropriate algorithms 
in practical applications such as filter design, automatic 
control, and signal processing.  
 
Keywords—model order reduction, balanced truncation, 
balanced stochastic truncation, Infinite Impulse Response 
(IIR) digital filters, stability preservation, phase 
minimization 
 

I. INTRODUCTION 

In the fields of system identification, modeling, 
analysis, and simulation, system complexity often arises 
from the increasing size and level of detail in models, 
aimed at achieving more accurate representations of 
system responses. However, this leads to significant 
challenges, such as increased computational costs, storage 

requirements, hardware expenses, and processing times—
particularly in real-time systems or optimization problems 
that demand precise, continuous, and timely processing 
[1–4]. This necessitates model order reduction, a process 
of deriving reduced-order mathematical representations 
with fewer variables that can replace the original model 
while preserving the key dynamic characteristics or 
intrinsic properties of the initial system [5–9]. 

The significance of model order reduction lies in 
simplifying complex systems, enhancing efficiency in 
system design, analysis, and testing, and optimizing 
hardware resources to effectively meet the demands of 
practical applications [10–15]. One of the most widely 
used and effective methods for model order reduction is 
Balanced Truncation (BT). This algorithm is based on 
optimizing the system’s dynamic energy after 
transforming it into a balanced Gramian space [16–25]. In 
this representation, system states are arranged in 
decreasing order of their energy contribution (Hankel 
singular values sorted from largest to smallest), allowing 
the elimination of less significant states (those with small 
Hankel singular values) without compromising system 
quality. The algorithm operates by computing the 
controllability and observability Gramians, followed by a 
transformation to bring the system into a positive definite 
balanced diagonal form. States with low energy are then 
truncated, yielding a reduced-order model that retains the 
essential characteristics of the original system. 

In addition to Balanced Truncation, the Balanced 
Stochastic Truncation (BST) algorithm is also applied to 
systems operating in the frequency domain. BST is a 
model order reduction method designed to preserve critical 
properties of the original system, such as stability and 
minimum-phase characteristics [26–31]. A system is 
considered minimum-phase if all its zeros and poles are 
located on the left half of the complex plane. Minimum-
phase characteristics have mathematical significance and 
reflect physical properties such as rapid and stable 
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responses without inducing unwanted oscillations or 
excessive phase delays. 

Infinite Impulse Response (IIR) filters are a type of 
digital filter commonly used in signal processing. These 
filters are often of high order to meet stringent signal 
filtering performance requirements, but this also increases 
complexity in their design and implementation [32, 33]. In 
this study, BT and BST algorithms are applied to reduce 
the order of a 30th-order IIR filter [34, 35] to lower orders, 
producing reduced models with improved computational 
efficiency while maintaining the response and essential 
characteristics of the original filter. A comparative 
analysis of the algorithms is conducted to ensure that the 
reduced-order models remain stable and reliable. The 
evaluation of the performance of these algorithms provides 
a basis for selecting the most suitable method, opening up 
potential applications in control systems. 

Refs. [16–31] have indicated that many model order 
reduction methods exist, each with its own advantages and 
disadvantages, particularly in the context of IIR filters. 
This has created a gap for a direct comparison between the 
BT and BST algorithms. Although the improvements in 
BT and BST have proven effective in many applications, 
there remains a lack of comprehensive evaluation 
regarding their ability to preserve stability, frequency 
response, and the dynamic characteristics of the filter 
circuit after order reduction. Therefore, further in-depth 
research is required to establish a detailed basis for 
comparison, ultimately leading to optimal 
recommendations for selecting and applying the 
appropriate algorithm for each specific case. 

This paper addresses the challenge of reducing the order 
of high-order IIR filters without compromising their 
essential signal characteristics. The main contributions of 
this study include: 
- A detailed comparative analysis between the BT and 

BST algorithms based on H2-norm and H∞-norm, as 
well as time-domain and frequency-domain responses. 

- Identification of optimal reduced orders (e.g., reducing 
from 30 to 11 and 15) that strike a balance between 
model accuracy and computational efficiency. 

- Provision of practical guidelines for selecting the 
appropriate reduction method according to the specific 
requirements of control and signal processing 
applications. 

II. MATERIALS AND METHODS 

Consider a standard Linear Time-Invariant dynamic 
system described by differential equations, state-space 
representation, or transfer functions as in Eq. (1) [22]: 
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where ;; ;n m n m n m n m× × × ×∈ ∈ ∈ ∈A C DBR R R R n is the 
system order, m is the number of inputs, and p is the 
number of outputs; A, B, C, D are the state matrix, input 
matrix, output matrix, and direct transmission matrix, 

respectively; x(t), y(t), u(t) represent the state vector, 
output vector, and input excitation vector, respectively. 

The model order reduction (MOR) problem is defined 
as finding a reduced-order model (r < n) that approximates 
the original system, preserves certain physical properties, 
and improves computational efficiency. 

Both BT and BST algorithms are foundational 
techniques in model reduction, offering robust and 
efficient solutions for simplifying complex systems while 
maintaining critical properties. 

A. Model Order Reduction via Balanced Truncation 
Algorithm 

Balanced Truncation (BT) is a widely used model 
reduction method in control theory and dynamic system 
modeling. This technique is mathematically grounded and 
optimizes the balance between maintaining the accuracy of 
the original system and reducing the model’s size, thereby 
enhancing computational efficiency without significantly 
compromising the reliability of the outputs. BT is 
particularly beneficial for analyzing and controlling large-
scale systems where direct handling is infeasible or 
computationally inefficient. The procedural steps for 
implementing the BT algorithm [16–25] are as follows: 
- Step 1. Input Data Preparation: The original system is 

represented in the standard form Eq. (1). 
- Step 2. Partition into Stable and Unstable Components: 

For unstable systems, the algorithm separates the 
original system into stable and unstable parts. Only the 
stable portion undergoes model reduction, ensuring 
that critical physical properties are preserved in the 
final result. 

- Step 3. Solve Lyapunov Eqs. (2) and (3): Calculate the 
system’s controllability and observability Gramians P 
and Q [22]. 

 T T+ −AP PA = BB  (2) 

 T T−A Q + QA = C C  (3) 

These derivations follow the standard in system 
theory [17] and establish the basis for performing a 
balanced transformation, which allows for truncating the 
states with minimal Hankel singular values. 
- Step 4. State-Space Transformation: Transform the 

state-space to balance the energy among states, 
identifying and ranking the states with minimal 
influence on the system dynamics. 

- Step 5. Truncate Based on Hankel Singular Values: 
Discard the least significant states by retaining those 
corresponding to the largest Hankel singular values. 

- Step 6. Formulate the Reduced-Order System: Derive 
the reduced-order model using the balanced and 
truncated matrices. The new system retains essential 
dynamic properties, including stability, with the error 
between the original and reduced systems bounded by 
the sum of the discarded singular values.  

B. Model Order Reduction via Balanced Stochastic 
Truncation Algorithm 

Balanced Stochastic Truncation (BST) is a model 
reduction technique that ensures the preservation of critical 
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features such as frequency response, minimum-phase 
property, and stability. BST aims to derive a lower-order 
model from a high-order system while optimally retaining 
the statistical and energetic characteristics of the original 
system. The steps for implementing the BST algorithm 
[26–30] are as follows: 
- Step 1. Declare the Initial System: Represent the 

original system in the standard form Eq. (1). 
- Step 2. Compute Controllability and Observability 

Gramians: Solve the Lyapunov Eq. (4) and Riccati Eq. 
(5) to determine the Gramians X and Y [29]. 

 T T+ −AX XA = BB  (4) 

𝑨𝑨𝑇𝑇𝒀𝒀 + 𝒀𝒀𝑨𝑨 = −(𝑪𝑪 −  𝑩𝑩𝑣𝑣
𝑇𝑇 × 𝒀𝒀)𝑇𝑇(𝑫𝑫𝑫𝑫𝑇𝑇)−1(𝑪𝑪 −  𝑩𝑩𝑣𝑣

𝑇𝑇  × 𝒀𝒀)(5) 

where: 𝑩𝑩𝑣𝑣  =  𝑩𝑩 × 𝑫𝑫𝑇𝑇  +  𝑿𝑿𝑪𝑪𝑇𝑇 
- Step 3. Energy Balancing Transformation: Use a 

nonsingular transformation to balance the system’s 
energy, converting it to a balanced form. 

- Step 4. Order Reduction: Eliminate states with low 
energy contributions, typically identified via their 
corresponding singular values. 

- Step 5. Performance Evaluation: Assess the new 
model’s performance using criteria such as impulse 
response, step response, frequency spectrum 
comparison (e.g., Bode plots), or reduction errors 
based on dynamic norms. 

III. RESULT AND DISCUSSION 

Consider the IIR filter with the structure of Nth-order 
Lattice-Ladder shown in Fig. 1, and the transfer function 
G(s) of the IIR filter system of order n = 30 [29, 30] is as 
follows: 
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The BT and BST algorithms are implemented in 
MATLAB software version 2023b to reduce the model 
order incrementally from the original order to order 1. For 
each reduced-order model, the model reduction errors are 
calculated using the H2-norm and H∞-norm, resulting in 
the plots shown in Figs. 2 and 3. These plots reveal that as 
the system order decreases from the original order (30th) 
to lower orders, both BT and BST methods exhibit an 
increase in error. This observation aligns with theoretical 
expectations since model order reduction eliminates 
certain dynamic components of the system, thereby 
introducing greater error in the reduced models. Notably, 
the errors between the original system and the reduced 
models for both H2-norm and H∞-norm are smaller for BT 
than for BST across all orders. 

 

 
Fig. 1. Structure of Nth-order Lattice-Ladder IIR filter system [30]. 

Fig. 2 illustrates the H2-norm error between the original 
system and the reduced-order models generated using BT 
and BST. This metric serves as a measure of the 
approximation accuracy between the reduced-order 
models and the original system in terms of signal energy. 
Smaller H2-norm errors indicate higher accuracy of the 
reduced-order models, ensuring that critical signal energy 
characteristics are preserved in applications such as signal 
processing, automatic control, and communication 
systems. 

From Fig. 2, the following observations are made: 
- For H2-norm errors with BT: The error decreases from 

0.0429 at the lowest order (1) to a negligible value of 
4.499×10−6 as the reduced order approaches the 
original order. The error decreases consistently with 
increasing r, without significant oscillations, 
demonstrating the stability of BT in model reduction. 

- For H2-norm errors with BST: The error also decreases 
from 0.0429 at the lowest order, but exhibits larger 
oscillations compared to BT. For instance, at order 3, 
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the error increases to 0.0526, significantly higher than 
BT’s error of 0.0235. 

- At higher orders, BST errors also reduce to values 
similar to those of BT but remain larger overall. 

- BST generally produces larger errors than BT across 
most orders. Its reduced stability and accuracy at lower 
orders may complicate maintaining precision during 
model reduction. 

 

 
Fig. 2. H2-norm model reduction error for BT and BST. 

Fig. 3 illustrates the H∞-norm error between the original 
system and the reduced-order models for BT and BST. The 
H∞-norm quantifies the maximum deviation between the 
original and reduced systems in the frequency domain. It 
provides an essential criterion for assessing system 
performance, particularly in applications where frequency 
response dictates system functionality, such as signal 
processing, robust control, and filter design. The H∞-norm 
error is pivotal in evaluating the quality, reliability, and 
optimization of model reduction algorithms, ensuring that 
the reduced-order models retain critical dynamic 
characteristics of the original system. 

From Fig. 3, the following observations are made: 
- For BT: The H∞-norm error decreases steadily as the 

order increases, starting from a maximum value of 
0.2158 at order 1 and reducing to 6.146×10−6 near the 

original order. The error approaches zero, indicating 
that BT maintains better accuracy with minimal 
reduction in order. 

- For BST: The H∞-norm error also decreases with 
increasing order, but remains larger than BT at most 
orders. For example, at order 1, the BST error is 
0.2158, identical to BT, but at order 2, it increases to 
0.2486, significantly exceeding BT’s error of 0.1629. 

- At higher orders close to the original, BST errors also 
converge to zero but remain consistently larger than 
those of BT. 

- BT demonstrates superior effectiveness compared to 
BST in H∞-norm accuracy, particularly at medium and 
high orders. At lower orders (e.g., 1 to 5), BST exhibits 
more significant oscillations, suggesting that it may be 
less stable than BT under substantial order reductions. 

 

 
Fig. 3. H∞-norm model reduction error for BT and BST. 

Journal of Advances in Information Technology, Vol. 16, No. 6, 2025

887



Combining the two errors metrics and considering that 
lower order reductions should ideally yield minimal errors, 
it is observed that reductions to orders 11 and 15 yield 
substantially lower errors than other orders. At the same 
time, during the reduction process, it is necessary to 
consider the responses of both the reduced-order system 
and the original system in the time and frequency domains. 
After conducting numerous experiments on each reduced 
order, the authors analyzed, compared, and evaluated the 
results. Hence, the authors applied BT and BST to reduce 
the original 30th-order system to orders 11 and 15. The 
resulting H2-norm and H∞-norm errors for BT and BST are 
summarized in Table I, with impulse response and Bode 
diagrams for these reduced-order systems presented in 
Figs. 4 to 7. 

TABLE I. ORDER REDUCTION ERROR ACCORDING TO H∞-NORM AND 
H2-NORM WHEN USING BT AND BST 

Reduced Order (r) Algorithm H∞-norm error H2-norm error 

11 BT 0.005209 0.004064 
BST 0.035783 0.007988 

15 BT 0.001209 0.000547 
BST 0.003493 0.000845 

 
From Table I, it is evident that: 

- The H∞-norm error of G_BT(s), is significantly smaller 
than that of G_BST(s), indicating that BT offers better 
model approximation than BST. 

- Similarly, the H2-norm error of G_BT(s), is smaller 
than BST, demonstrating BT’s superior capability in 
preserving the system’s overall energy. 

 

 
Fig. 4. Impulse response plots of the original system and the reduced 11th-order systems using BT and BST. 

 
Fig. 5. Bode plots of the original system and the reduced 11th-order systems using BT and BST. 

Figs. 4 and 5 further illustrate the impulse response and 
frequency response comparisons between the original and 
reduced-order systems for r = 11, showcasing the 
advantages of BT in time-domain and frequency-domain 
applications. 

From the impulse response plots in Fig. 4, the following 
conclusions can be drawn: 
- The impulse response of the original system, shown by 

the blue line (G(s), 30th order), exhibits damped 

oscillations over time with amplitudes gradually 
reducing to zero. 

- The impulse response of the reduced system using BT 
(red line, G_BT(s), 11th order) and BST (green line, 
G_BST(s), 11th order): During the phase of large 
oscillations, both BT and BST align well with G(s). In 
the damping phase, G_BT(s) follows G(s) more closely 
than G_BST(s). This indicates that BT performs better 
in preserving the impulse response during the damping 
phase. 
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- Thus, BT provides better reduction quality in the time 
domain. Therefore, it is recommended to use the BT 
algorithm to reduce the original system to 11th order 
for time-domain applications. Alternatively, the BST 
algorithm can be used to reduce the system to 11th 
order for applications requiring accuracy during the 
phase of large oscillations. 

From the frequency response plots in Fig. 5, the 
following observations can be made: 
- The reduced system using BT (red line, G_BT(s), 11th 

order) aligns closely with the original system (blue 
line, G(s), 30th order) across most frequency ranges, 
with a slight deviation at low frequencies 
(approximately 10−5 rad/s to 10−3 rad/s). 

- The reduced system using BST (green line, G_BST(s), 
11th order) almost perfectly matches the original 
system across the entire frequency range. 

- Thus, BST provides better reduction quality in the 
frequency domain. Therefore, it is recommended to use 
the BST algorithm to reduce the original system to 11th 
order for frequency-domain applications. 
Alternatively, the reduced system using BT can be 
utilized for applications in the medium to high-
frequency ranges. 

When reducing the original 30th-order system to a 15th-
order system, the impulse and frequency responses of the 
systems are illustrated in Figs. 6 and 7. 

From the time-domain response between the original 
system and the 15th-order system in Fig. 6, it can be 
observed that: 
- Over the entire time domain, both datasets G_BT(s) 

and G_BST closely match G(s). 
- It is feasible to replace the original 30th-order system 

with the 15th-order system using either the BT or BST 
algorithm in time-domain applications. 

From the Bode plot comparison between the original 
system and the 15th-order system in Fig. 6, the following 
can be observed: 
- In the medium- and high-frequency ranges, both BT 

and BST methods yield data that align with the original 
system G(s). 

- In the low-frequency range, below 10−6 rad/s, the BT 
method shows greater deviations from the original 
system, whereas BST maintains data consistency with 
G(s). 

- Consequently, the reduction quality of BST is superior 
to that of BT in the frequency domain. Therefore, the 
BST algorithm is recommended for reducing the 
original system to the 15th order and replacing the 
original system in frequency-domain applications 
across the entire frequency range. Alternatively, the 
15th-order system obtained using BT can be utilized 
for applications involving frequencies above 
10−3 rad/s. 

 

 
Fig. 6. Impulse response comparison between the original system and the reduced-order system (15th order) using BT and BST. 

 
Fig. 7. Bode plot comparison between the original system and the reduced-order system (15th order) using BT and BST. 
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A. Overall Assessment 
BT proves to be a more effective reduction method than 

BST when evaluated in the time domain, with superior 
stability and accuracy in terms of H2-norm and  
H∞-norm. Thus, BT is the preferred choice for applications 
requiring preservation of time-domain responses and 
signal energy. 

On the other hand, BST demonstrates better 
performance than BT in the frequency domain. In addition 
to preserving stability in the reduced-order model, similar 
to BT, BST maintains minimum phase characteristics 
during reduction. Therefore, BST is a suitable choice for 
applications requiring frequency-domain response 
preservation across the entire frequency range, such as in 
filter design or robust control systems. 

When reducing the original system to the 15th order, 
both BT and BST yield excellent results that align closely 
with the original system. This indicates that reducing the 
system from the 30th to the 15th order is optimal, striking 
a balance between system complexity and accuracy. 

Both the BT and BST algorithms have a computational 
complexity of O(n³) for a system with a state matrix of size 
n×n. However, in terms of actual constant factors, BST 
may be slightly more expensive due to solving a Riccati 
equation instead of two Lyapunov equations as in BT. 
Thus, both methods incur cubic computational costs, and 
the choice of algorithm may depend on the specific 
requirements of the problem and the characteristics of the 
system being reduced. In summary, the choice between BT 
and BST depends on the specific application requirements 
and the criteria for preserving the physical properties of the 
original system during reduction. 

B. Discussion on Research and Development Directions 
In the future, research can be advanced by conducting 

in-depth analyses of the statistical significance of error 
reduction through paired t-tests or Wilcoxon signed-rank 
tests to determine whether the BT algorithm outperforms 
BST in preserving the time-domain response, or vice 
versa. At the same time, comparisons with other model 
order reduction techniques—such as the Krylov Subspace 
method, Proper Orthogonal Decomposition (POD), and 
Balanced Singular Perturbation Approximation (BSPA)—
should be carried out to evaluate the comprehensiveness 
and optimization potential of each method in the context 
of high-order systems. Moreover, analyzing the impact of 
BT and BST on hardware implementation on DSP or 
FPGA platforms should be emphasized to assess their 
ability to meet the requirements of real-time signal 
processing systems. 

For specific IIR filter circuit models and high-order 
systems in general, the reduction process aimed at 
optimizing factors such as achieving the lowest possible 
order, minimizing reduction errors, ensuring an adequate 
time-domain response, and maintaining the desired 
frequency response requires testing and selecting among 
various approaches. Depending on the specific 
requirements and applications, simultaneously combining 
both BT and BST algorithms may yield better results than 
using each method individually; additionally, integrating 

supplementary optimization algorithms with a dedicated 
objective function is also a viable approach to achieving 
the desired reduction quality. 

Furthermore, to enhance the visualization and 
interpretability of the reduction process, future studies 
should employ heatmaps or spectral plots to visualize the 
preserved frequency components in the model, while also 
comparing the phase responses between BT and BST to 
assess the extent of phase distortion. Error propagation 
analysis through error histograms and Nyquist plots should 
also be implemented to evaluate the robustness of the 
reduced-order models across different frequency bands. 
Finally, research directions should be expanded to include 
the integration of these algorithms into modern digital 
signal processing architectures, as well as exploring the 
feasibility of applying federated learning strategies for 
distributed model order reduction in large-scale adaptive 
filtering applications. In addition, investigating adaptive 
reduction techniques for real-time signal processing and 
multi-objective optimization strategies that balance model 
accuracy with computational cost will further open up 
extensive and effective application potentials in complex 
control and signal processing systems. 

IV. CONCLUSION 

This paper has studied and compared two popular model 
order reduction algorithms: Balanced Truncation (BT) and 
Balanced Stochastic Truncation (BST) in reducing the 
order of high-order IIR digital filters. The analysis results 
indicate that BT is more effective in preserving time-
domain responses, stability, and signal energy, particularly 
in the time domain. In contrast, BST excels in maintaining 
frequency-domain responses across the entire frequency 
range and preserving minimum-phase characteristics, 
which is especially crucial in robust control applications 
and filter design. Both methods yield excellent results 
when reducing the order from 30th to 15th, with the order 
reduction error approaching zero, demonstrating that this 
reduction is optimal in balancing accuracy and system 
complexity. Depending on the specific requirements of the 
application, BT is the preferred choice for systems that 
require preservation of signal energy and stability, while 
BST is better suited for systems emphasizing frequency 
response and minimum-phase properties. These results not 
only confirm the effectiveness of the order reduction 
algorithms but also open up broad potential applications in 
signal processing, automatic control, and system 
optimization. 
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