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Abstract—Dengue fever outbreaks (DENGUE FEVER) 
represent a significant public health concern in tropical 
regions, including South Sumatra Province, where rapid 
climate changes and complex environmental factors 
contribute to the unpredictability of outbreaks. This study 
develops a hybrid predictive model utilizing Support Vector 
Machine (SVM) and Support Vector Regression (SVR) to 
identify high-risk areas and forecast the future trends of 
dengue cases. SVM, known for its classification ability, is 
employed to precisely classify endemic and non-endemic 
areas, while SVR, with its capacity to model temporal 
dynamics, is used to predict the number of future cases based 
on climate variables, such as temperature, rainfall, and 
humidity, including time-lagged data to capture delayed 
environmental effects. The model’s performance was 
evaluated using real-world data, revealing that integrating 
SVM and SVR significantly improves both spatial and 
temporal predictions of DENGUE FEVER outbreaks. SVM’s 
classification output helps identify areas prone to outbreaks, 
while SVR provides a detailed forecast of potential case 
numbers. The model demonstrated high accuracy in 
mapping endemic zones and predicting case trends, thus 
addressing both the spatial and temporal aspects of 
DENGUE FEVER epidemiology. The strength of this 
approach lies in its ability to process high-dimensional and 
time-lagged data, providing insights into the delayed effects 
of environmental factors on disease transmission. The 
predictive model is valuable for identifying risk areas and 
assisting health authorities in resource allocation and 
intervention planning. This study contributes to developing 
more reliable early warning systems for DENGUE FEVER 
and lays the groundwork for applying this hybrid machine 
learning method to other infectious diseases. The results offer 
significant implications for enhancing preventive measures 
and public health management in tropical regions. 
 
Keywords—dengue fever, Support Vector Machine (SVM), 
climate variables, time-lagged data, disease prediction 

I. INTRODUCTION 

Dengue fever, caused by the dengue virus transmitted 
by Aedes mosquitoes, is a significant global public health 
issue [1, 2]. The disease presents with symptoms ranging 
from mild fever to severe complications like Dengue 
Hemorrhagic Fever (DHF) and Dengue Shock Syndrome 
(DSS) [3]. Common symptoms include high fever, muscle 
and joint pain, rash, and hemorrhagic episodes. Early and 
accurate diagnosis is crucial for reducing mortality [4]. 
While dengue infections are typically self-limiting, they 
burden tropical and subtropical regions [4]. The lack of 
specific treatment and simple diagnostic methods for 
early-stage illness contributes to the challenge of 
managing dengue [5]. Developing and implementing long-
term control strategies to reduce the global burden of 
dengue remains a priority for public health specialists. 

Dengue fever poses significant health, economic, and 
social challenges globally. Climate factors play a crucial 
role in dengue transmission, with temperature, rainfall, 
and humidity influencing outbreak patterns [6]. Predictive 
models using climate indicators have shown promise in 
forecasting dengue outbreaks, as demonstrated in French 
Guiana [7]. Climate change projections suggest an 
increased risk of dengue in the future, necessitating 
improved surveillance and control strategies [8]. In Saudi 
Arabia, unique factors such as large numbers of migrant 
workers and religious pilgrims contribute to dengue 
transmission, climate, and urbanization. Research on 
climate-dengue relationships is essential for developing 
effective early warning systems and enhancing public 
health preparedness [9]. However, the impact of climate 
on dengue transmission can vary across regions, 
highlighting the need for location-specific studies and 
interventions [8, 9] . 

Recent studies have explored various machine learning 
approaches for predicting dengue outbreaks.  
Mills et al. [10] highlighted the potential of data-driven 
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models using climatic and epidemiological data to forecast 
dengue incidence. Hoyos et al. [11] conducted a 
systematic review, identifying logistic regression as the 
most common technique for dengue diagnosis and linear 
regression for spatial analysis. Siriyasatien et al. [12] 
provided a comprehensive overview of dengue prediction 
methods, emphasizing the importance of data sources, 
preparation techniques, and model evaluation.  
Ismail et al. [13] demonstrated the effectiveness of 
Support Vector Machine (SVM) with linear kernel in 
predicting dengue outbreaks in Selangor, Malaysia, 
achieving 70% accuracy. They found that the week of the 
year was the most crucial predictor. These studies 
collectively underscore the growing significance of 
machine learning in dengue outbreak prediction and the 
need for further research to enhance model performance 
and applicability. 

Furthermore, this study develops a predictive model for 
mapping dengue fever endemic areas by integrating 
Support Vector Machine and Geospatial Artificial 
Intelligence (GeoAI) using various parameters. In this 
model, SVM serves as the primary classification method 
to predict regions at high risk for dengue spread, while 
GeoAI strengthens spatial analysis to provide a deeper 
understanding of the disease’s geographic distribution. 

The novelty of this research lies in the integrative 
approach between SVM and GeoAI in predicting dengue-
endemic areas. According to the literature review and the 
author’s knowledge, no studies have combined these two 
methods simultaneously to map dengue risk. The 
integration of SVM and GeoAI improves prediction 
accuracy and enriches the analysis by considering spatial 
dimensions in more detail. This approach offers a 
significant methodological innovation in the field of 
epidemiology, particularly in predictive modeling of 
infectious diseases based on spatiotemporal data. Hence, 
the aim of this study is to develop a predictive model for 
dengue-endemic areas by integrating Support Vector 
Machine and Geospatial Artificial Intelligence to achieve 
high prediction accuracy. Additionally, the study will 
assess the accuracy of the predictions generated using 
these methods, providing insights into their effectiveness 
for mapping and forecasting dengue outbreaks. 

II. LITERATURE REVIEW 

A. Deeper Exploration of the Findings’ Implications 
The findings of the study underscore the transformative 

potential of predictive models, such as those combining 
SVM and SVR in shaping proactive public health 
strategies. By accurately forecasting dengue fever 
outbreaks, these models enable policymakers to anticipate 
high-risk periods and geographic locations, ensuring that 
resources such as medical supplies, vector control 
measures, and public awareness campaigns are allocated 
effectively [14]. Climate variables and time-lagged data 
provide essential insights into the patterns driving 
outbreaks, making the hybrid model particularly adept at 
responding to regional environmental factors like rainfall 
and temperature fluctuations. This integration of data-

driven insights into public health planning can mitigate the 
human and economic toll of dengue fever outbreaks, 
particularly in vulnerable areas like South Sumatra 
Province [15]. Beyond resource allocation, the study 
highlights a crucial role for predictive models in guiding 
intervention strategies tailored to local contexts. For 
example, early warnings based on model predictions can 
prompt pre-emptive actions such as targeted pesticide 
applications, community clean-up drives, or the 
deployment of mobile health clinics. Furthermore, these 
models can inform public health education initiatives by 
identifying periods when heightened awareness is most 
critical, fostering community participation in prevention 
efforts [16, 17]. By aligning intervention strategies with 
real-time and forecasted outbreak data, policymakers can 
shift from reactive to preventive health management, more 
broadly establishing a robust framework for combating 
vector-borne diseases. This approach represents a 
significant advancement in leveraging technology and data 
analytics for public health resilience. 

B. Dengue Fever Transmission Dynamics 
 Dengue fever is primarily transmitted by Aedes aegypti 

and Aedes albopictus mosquitoes [18]. The virus spreads 
through biological transmission, where infected 
mosquitoes bite humans after an extrinsic incubation 
period, and mechanical transmission, where mosquitoes 
transfer the virus directly between humans without 
incubation [19]. Mosquito immune systems, including 
antimicrobial peptides and RNA interference, play a 
crucial role in controlling dengue virus replication [20]. 
Temperature significantly affects dengue transmission by 
influencing mosquito survival, virus proliferation, and 
vector competence. Environmental factors like breeding 
sites and temperature are critical for mosquito survival and 
virus persistence [21]. Mathematical models incorporating 
these factors can help predict outbreaks and evaluate 
control measures, such as fumigation. Understanding these 
complex interactions is essential for developing effective 
strategies to combat dengue transmission. 

Complex interactions between climate and socio-
economic factors influence dengue fever transmission. 
Temperature is dominant in long-term dengue 
transmission, while socio-economic factors have greater 
explanatory power during outbreaks [22]. Key socio-
economic determinants include population density, 
socioeconomic stratum, and proximity to tire shops and 
plant nurseries [23]. Unemployment rates and the number 
of people per premise also contribute to spatial 
heterogeneity in dengue cases [24]. While climate factors 
may act as limiting factors globally, local processes can 
dominate at smaller scales [25]. Rainfall’s role in spatial 
distribution during epidemics appears less significant. 
Future climate projections suggest that a 3°C temperature 
increase could double mean incidence rates during 
epidemics by the end of the 21st century [24]. 
Understanding these multifaceted dynamics is crucial for 
developing effective dengue prevention and control 
strategies. 
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C. Predictive Modeling in Epidemiology 
Predictive modeling for dengue outbreaks has evolved 

from traditional methods to advanced machine learning 
techniques. While regression and time series models have 
been used historically, machine learning algorithms have 
shown superior performance in forecasting dengue cases 
and outbreaks [26]. These models integrate various data 
sources, including dengue surveillance, meteorological 
variables, and socio-economic factors, to improve 
prediction accuracy [27]. Studies have identified humidity 
and maximum temperature as significant climate factors 
influencing dengue incidence [28]. Random Forest 
Regression and Facebook Prophet models have effectively 
predicted dengue hotspots. Machine learning models have 
shown advantages in near-term predictions of weekly case 
counts when surveillance data is available and in 
forecasting outbreaks 12 weeks without surveillance 
data [26, 28]. These advancements in predictive modeling 
contribute to the development of early warning systems, 
enabling proactive measures to manage dengue outbreaks 
effectively. 

D. Support Vector Machine in Disease Prediction 
Support Vector Machines are powerful supervised 

learning algorithms used for classification and regression 
tasks [29]. The performance of SVMs is significantly 
influenced by kernel function selection, with the Gaussian 
Radial Basis Function (RBF) often being the default 
choice [30]. Recent advancements include kernel 
parameter optimization using Sliding Mode Control for 
improved accuracy and speed [29], and a novel distance-
based kernel for binary-type features that outperforms 
existing approaches [31]. New SVM models utilizing 
piecewise linear functions and mixed-integer linear 
programming techniques have also been developed, 
offering effective data separation and inbuilt feature 
selection [32]. These innovations demonstrate the ongoing 
evolution of SVMs, enhancing their applicability and 
performance across various domains and dataset types. 

SVM has shown promising results in predicting dengue 
outbreaks. Studies have demonstrated its effectiveness in 
forecasting dengue incidence using climate variables, 
mosquito infection rates, and socioeconomic data [33]. 
SVM with linear and radial basis function kernels has 
achieved high accuracy in predicting dengue morbidity 
rates, outperforming traditional models [34]. Integrating 
Aedes aegypti mosquito infection rates significantly 
improved prediction accuracy compared to climate factors. 
Researchers have also explored using other machine-
learning techniques and generalized additive models for 
dengue prediction, incorporating spatial dependence and 
socioeconomic factors [35]. These studies highlight the 
potential of data-driven approaches in enhancing dengue 
outbreak forecasting, which can aid in timely 
implementation of preventive measures [36]. 

E. Role of Climate Variables in Dengue Prediction 
Climate variables significantly influence dengue fever 

transmission, as demonstrated by several studies. 
Temperature, rainfall, and humidity play crucial roles in 
the mosquito lifecycle and virus development [37, 38]. 

These factors vary across seasons, with the highest dengue 
incidence typically occurring during post-monsoon 
periods [39, 40]. Research in Taiwan, Cambodia, and India 
has shown that incorporating climate data into predictive 
models can improve dengue forecasting accuracy [37, 38]. 
Notably, a time lag of 2 months between climatic factors 
and dengue occurrence was found to provide the best 
correlation in some studies [39]. These climate-based 
models can serve as early warning systems, allowing 
public health authorities to implement timely preventive 
measures. However, the relationship between climate and 
dengue transmission may vary by locality, suggesting that 
localized approaches may be more effective [38]. 

F. Time-Lagged Data in Epidemiological Modeling 
Time-lagged data analysis has proven effective in 

predicting dengue outbreaks by incorporating historical 
meteorological and disease surveillance information. 
Studies have shown that combining past weather data and 
dengue case counts can significantly improve outbreak 
forecasting [41]. Rainfall, temperature, and humidity are 
key predictors, with lag times ranging from weeks to 
months. For instance, the highest relative risk of dengue 
incidence was observed 10 weeks after rainfall events in 
Brazil [42]. In Bangladesh, humidity levels 6–8 months 
prior to outbreaks were strong predictors of case 
numbers  [43]. Similarly, in Malaysia, maximum 
temperature, relative humidity, and rainfall at 4–6-month 
lags were significant predictors [44]. These time-lagged 
models enable early warning systems, allowing health 
authorities to implement preventive measures before 
outbreaks reach critical levels. However, model accuracy 
may vary across geographic locations, emphasizing the 
need for location-specific studies. 

G. Integration of SVM with Climate Variables and 
Time-Lagged Data 

Recent studies have demonstrated the effectiveness of 
integrating machine learning models with climate 
variables and time-lagged data for predicting dengue 
outbreaks. SVM and Bayes Network models have shown 
promising results in forecasting dengue incidence [45]. 
These models incorporate meteorological factors, 
including temperature, rainfall, and humidity, alongside 
historical disease surveillance data to improve prediction 
accuracy [41]. Long-term predictors, such as the number 
of rainy days and average humidity up to six months prior 
to an outbreak, have been identified as significant  
factors [43]. Integrating these variables allows for 
capturing complex, non-linear relationships and delayed 
effects on disease transmission. While data quality and 
alignment challenges exist, these integrated approaches 
have demonstrated superior performance compared to 
traditional statistical methods, offering valuable tools for 
early warning systems and public health interventions. 

H. Descriptions of SVM and SVR   
Support Vector Machine (SVM) and Support Vector 

Regression (SVR) are machine learning algorithms that 
rely on the tuning of key parameters to achieve optimal 
predictive performance. SVM, which is used for 
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classification tasks, requires parameter tuning for C 
(regularization parameter), gamma (degree of influence of 
individual data points), and the kernel type (e.g., linear, 
polynomial, or radial basis function/RBF). The C 
parameter controls the trade-off between minimizing 
training data errors and the model’s ability to generalize to 
new data. A high C value prioritizes reducing errors on 
training data but may lead to overfitting, whereas a lower 
C value results in a simpler model with greater tolerance 
for errors. The gamma parameter determines how far the 
influence of a single data point extends; a high gamma 
focuses on nearby data points, while a low gamma 
considers more distant data. 

Meanwhile, SVR, which is used for regression tasks, 
requires optimization of parameters such as C, epsilon (ε), 
and the kernel. The epsilon parameter defines the tolerance 
margin for prediction errors, allowing the model to ignore 
small deviations from the actual values, which in turn 
helps reduce the risk of overfitting to noise. The kernel 
function enables the transformation of input data into a 
higher-dimensional space to handle non-linear 
relationships. For example, the Radial Basis Function 
(RBF) kernel is highly effective in capturing complex 
patterns by creating flexible decision boundaries. 

In this study, parameter optimization is performed using 
the grid search method combined with cross-validation 
techniques. The grid search method systematically 
explores combinations of parameter values (such as C, 
gamma, and epsilon) to identify the best configuration 
based on relevant performance metrics, such as accuracy 
for SVM and Mean Absolute Error (MAE) for SVR. The 
use of cross-validation ensures that the selected parameters 
generalize well across different data subsets, minimizing 
the risk of overfitting. Through careful parameter tuning, 
the resulting model achieves high prediction accuracy and 
reliable performance, effectively capturing the spatial and 
temporal dynamics of dengue fever outbreaks. 

III. MATERIALS AND METHODS 

The use of predictive models with regression is an 
essential step in this research, particularly for predicting 
the intensity and distribution of dengue fever cases based 
on environmental data. Support Vector Regression, a 
robust regression method, is well-suited for modeling the 
non-linear relationship between environmental variables 
and dengue occurrences. SVR can handle the complexity 
of the data and provide more accurate predictions 
compared to traditional regression methods. In this study, 
SVR can be used to forecast the number of future dengue 
fever cases, considering environmental factors that have 
been shown to have a strong correlation with disease 
spread. 

Data collection is a crucial initial step, as the gathered 
data will be used to build and test a predictive model for 
identifying dengue fever endemic areas, integrating SVM, 
SVR and GeoAI. The data collection focuses on two main 
categories: epidemiological and climate data. These two 

types of data are then integrated to produce a more 
comprehensive and accurate predictive model. 

Epidemiological data is obtained from official sources 
such as reports from the Health Department of South 
Sumatra Province, Indonesia, the Health Departments of 
each city and district, the South Sumatra Provincial 
Statistics Office (BPS), and the BPS offices of each city 
and district, as well as hospital records documenting 
dengue fever case incidences. This data includes detailed 
information on the number of reported cases and the 
geographical distribution of those cases. The data is 
collected for the last seven years (2017–2023) to ensure 
sufficient temporal variation for analysis. 

Environmental and climate data are collected from 
reliable sources, such as the Meteorological, 
Climatological, and Geophysical Agency (BMKG), the 
South Sumatra Provincial Statistics Office (BPS), and the 
BPS offices of each city and district. The variables 
collected include air temperature, rainfall, and relative 
humidity. This data is gathered with monthly and annual 
temporal resolutions to align with the epidemiological data 
period, and spatial resolution allows for analysis at the sub-
district or village level. 

Once the epidemiological, environmental, and climate 
data have been collected, the next step is to integrate these 
two types of data into a single database that can be used 
for model training. This integration process involves 
temporal alignment between the epidemiological and 
environmental data, so that each point of epidemiological 
data can be linked with the relevant environmental 
conditions at the time of the incident. Additionally, spatial 
data is processed to ensure compatibility between the 
geographical resolution of the epidemiological and 
environmental data, allowing for accurate spatial analysis. 

The integrated data is then normalized to eliminate scale 
differences between the various variables and further 
processed to identify outliers or inconsistent data. This is 
important to ensure that the predictive model developed is 
not biased by unrepresentative data. With the integrated 
epidemiological and environmental data, the next step is 
model development, where this data will be used to train 
predictive models based on SVM and SVR with the 
support of GeoAI. The model development in this study 
involves the application of Support Vector Machine and 
Support Vector Regression integrated with Geospatial 
Artificial Intelligence. The primary goal of this model 
development is to predict dengue fever endemic areas and 
estimate numerical variables related to disease spread, 
such as case numbers or severity levels. 

SVM is used in this study to classify areas as endemic 
or non-endemic. The SVM model is trained using a dataset 
with relevant features such as epidemiological, 
environmental, and geospatial data. The SVM model will 
learn from patterns in historical data to differentiate 
between areas with high dengue fever risk (endemic) and 
those with low or no risk (non-endemic). Thus, SVM helps 
identify regions that require special attention in dengue 
fever prevention and control efforts. 
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IV. RESULTS AND DISCUSSION 

A. Dengue Fever Visualization 
The visualization of dengue fever case trends in South 

Sumatra Province from 2017 to 2023 is presented in Fig. 1. 
This graph shows the fluctuation in dengue fever cases in 
each district/city, aiming to identify temporal patterns and 
variations in case rates across different regions. This 
visualization provides an initial overview of the areas with 
the highest case rates. 

 

 
Fig. 1. Dengue fever cases in South Sumatra Province (2017–2023). 

A graph showing the dengue fever cases in South 
Sumatra Province from 2017 to 2023 is presented in Fig. 1. 
There was an increase in cases from 1452 in 2017 to 2814 
in 2019. A significant decrease occurred in 2020, with 
cases dropping to 2359. The lowest point in this range was 

reached in 2021, with 1135 cases However, the cases 
began to rise again, increasing from 2854 in 2022 to 2754 
in 2023. The chart in Fig. 2 illustrates the distribution of 
total dengue fever cases across the districts of South 
Sumatra Province from 2017 to 2023. It shows that 
Palembang had the highest number of cases, with 4691 
cases, far surpassing other districts. Lahat, with 2607 
cases, ranks second, indicating a significant potential risk 
for disease spread in the area. Oku Timur recorded the 
lowest number of cases, with 251 cases. Banyuasin and 
Musi Banyuasin also reported relatively high case 
numbers, each with 2085 and 2607 cases, respectively. 

The comparison between the number of dengue fever 
cases and dengue fever-related deaths from 2017 to 2023 
is presented in Fig. 3. It can be seen that the number of 
dengue fever cases fluctuated significantly year to year. 
2017 there were 3028 cases, which steadily increased, 
peaking at 3900 cases in 2019. In 2020, the number of 
cases decreased to 3259, reaching its lowest point in 2021 
with 2407 cases. Cases began to rise again in the next two 
years, reaching 4271 cases in 2023, the highest peak within 
the observed period. The number of deaths related to 
dengue fever showed a more stable and relatively low 
trend. In 2017, there were 72 deaths, which increased to 
128 deaths in 2018, but then decreased in the following 
years. In 2020, the death toll sharply dropped to 34, and in 
2021, only 21 deaths were recorded, the lowest throughout 
the period. Subsequently, the number of deaths increased 
to 116 in 2022 and slightly decreased to 70 deaths in 2023. 

 

 
Fig. 2. Total dengue fever cases per district (2017–2023). 

 
Fig. 3. The highest dengue fever cases by district. 
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B. Support Vector Machine Modeling 
This study uses SVM to predict the endemic status of 

Dengue Hemorrhagic Fever (DHF) based on several 
climate variables and population density. The dataset is 
structured considering several key features, including 
humidity, rainfall, temperature, population density, DHF 
cases, and DHF deaths, with the target or label variable 
being “endemic”. In the model training phase, the data is 
split into 80% for training and 20% for testing. The 
training data is then normalized using Min-Max Scaler to 
ensure that all data is within the same range, allowing the 
model to function more optimally. Parameter optimization 
is carried out using Grid Search to find the best 
combination of parameters. The parameters tested are as 
follows: 

1. C: [0.1, 1, 10, 100], which represents the 
regularization strength of the model. 

2. Gamma: [‘scale’, ‘auto’, 0.1, 0.01, 0.001], which 
controls the model complexity, especially for non-
linear kernels. 

3. Kernel: [‘rbf’, ‘linear’, ‘poly’, ‘sigmoid’], which 
determines the type of kernel to separate the data. 

The optimization results in the best combination of 
parameters with C = 100, gamma = ‘scale’, and kernel = 
linear. This optimal model is selected based on the highest 
accuracy on the training data and is saved in a pickle 
format as svm_endemi_model.pkl. The best model is then 
applied to the testing data to evaluate its performance in 
classifying endemic status. Fig. 4 below shows the 
confusion matrix generated from the model’s predictions 
on the test data. In the confusion matrix shown in Fig. 4, 
the interpretation is as follows: 

1. True Negative (TN): 58 data points from the non-
endemic class were correctly classified as non-
endemic. 

2. False Positive (FP): 2 data points from the non-
endemic class were incorrectly classified as 
endemic. 

3. False Negative (FN): 1 data point from the 
endemic class was incorrectly classified as non-
endemic. 

4. True Positive (TP): 281 data points from the 
endemic class were correctly classified as endemic. 

 

 
Fig. 4. Confusion matrix. 

C. Correlation Data Correlation in Banyuasin III 
Subdistrict 

A correlation analysis of the variables studied in 
Banyuasin III District, Palembang City is presented in  
Fig. 5. This analysis highlights the strength of the linear 
relationship between key variables, such as humidity, 
rainfall, temperature, population density, and the number 
of dengue fever cases. The correlation coefficients are 
represented as positive values, where higher values 
indicate a stronger relationship between two variables. For 
instance, a high correlation suggests that changes in one 
variable are significantly associated with parallel changes 
in another. This visualization aims to identify the most 
influential environmental and demographic factors 
affecting the dynamics of dengue fever transmission in the 
region. 

1) The correlation of variables in Banyuasin III 
district 

Fig. 5 illustrates the relationships between 
environmental, social, and epidemiological variables 
influencing the spread of dengue fever in the area. 
Correlation is measured using correlation coefficients, 
which indicate the strength and direction of the linear 
relationship between each pair of variables. The analysis 
results reveal that temperature has a very strong correlation 
(0.92) with the number of dengue cases, indicating that 
rising temperatures significantly impact Aedes mosquito 
activity, including faster virus replication. Additionally, 
rainfall shows a moderate positive correlation (0.65), 
reflecting its role in creating ideal breeding habitats for 
mosquitoes, particularly through stagnant water 
accumulation. Population density also exhibits a moderate 
positive correlation (0.51), suggesting that densely 
populated areas tend to have a higher risk of transmission 
due to increased human-vector interactions. On the other 
hand, humidity demonstrates a weak positive correlation 
(0.23), indicating that while humidity supports mosquito 
longevity, its impact on case transmission is less 
significant compared to other variables. 

 

 
Fig. 5. Correlation matrix of Banyuasin III district. 

Based on these findings, temperature, rainfall, and 
population density are identified as the primary factors that 
should be considered in dengue fever mitigation and 
control strategies in Banyuasin III District. 
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2) Correlation in Tebing Tinggi subdistrict 
The relationship between variables affecting the spread 

of Dengue Hemorrhagic Fever (DHF) cases in Tebing 
Tinggi, Empat Lawang Regency, was analyzed using a 
Pearson correlation matrix. The results of this correlation 
analysis are presented in Fig. 6 to show the strength of the 
linear relationship between environmental variables 
(humidity, rainfall, and temperature), social factors 
(population density), the number of DHF cases, and the 
mortality rate due to DHF. The analysis reveals significant 
correlations between several variables. The analysis 
results show that humidity has the strongest correlation 
(0.93), indicating that high humidity conditions 
significantly support the activity of Aedes mosquitoes, the 
primary vector of dengue fever. Population density also 
has a high correlation (0.77), suggesting that densely 
populated areas increase the risk of disease transmission 
due to more frequent interactions between humans and 
mosquitoes. Temperature exhibits a moderate correlation 
(0.70), highlighting its influence on the mosquito life cycle 
and virus replication capacity. Rainfall has a lower 
correlation (0.50), which may be related to its role in 
providing breeding habitats for mosquitoes. 
 

 
Fig. 6. Correlation in Tebing Tinggi subdistrict. 

These findings emphasize that humidity, population 
density, and temperature are the key factors that need to be 
considered in efforts to mitigate the risk of dengue fever in 
Tebing Tinggi District. 

3) Correlation in Merapi Timur subdistrict 
The linear relationships between variables affecting the 

spread of dengue fever cases in the Merapi Timur area, 
Lahat Regency, was analyzed using the Pearson 
correlation matrix. This matrix illustrates the strength of 
correlations between environmental variables (humidity, 
rainfall, and temperature), social factors (population 
density), the number of dengue fever cases, and the 
mortality rate due to dengue fever. Based on the 
correlation matrix presented in Fig. 7, humidity has a 
significant positive correlation (0.76), indicating that high 
humidity conditions support increased mosquito activity as 
the primary vector for dengue fever transmission. Rainfall 
also shows a moderate positive correlation (0.67), 

reflecting its role in creating stagnant water, which serves 
as a breeding ground for mosquitoes. Population density 
exhibits a moderate positive correlation (0.47), suggesting 
that increased human-mosquito interactions in densely 
populated areas contribute to the risk of transmission. In 
contrast, temperature has a significant negative correlation 
(−0.76), indicating that higher temperatures in this region 
may lead to a decline in mosquito populations or affect 
their life cycle. These findings highlight that humidity, 
rainfall, and temperature play crucial roles in the dynamics 
of dengue fever transmission in Merapi Timur District. 

 

 
Fig. 7. Correlation in Merapi Timur subdistrict. 

D. Annual Data Correlation 
Fig. 8 presents the normalized annual trend data for each 

analyzed variable, including humidity, rainfall, 
temperature, population density, number of dengue cases, 
and dengue mortality rates during the period from 2017 to 
2023. This graph provides a comparative overview of the 
relative changes in the values of each variable over time. 
The visualization aims to understand the temporal 
dynamics of these variables and the potential relationship 
between environmental and demographic factors with the 
occurrence and impact of dengue fever. The graph from 
Fig. 9 shows normalized data for the variables of humidity, 
rainfall, temperature, population density, dengue cases, 
and dengue-related deaths from 2017 to 2023. These 
variables exhibit fluctuating patterns from year to year that 
influence the spread of dengue. In certain years, such as 
2020 and 2022, temperature, humidity, and rainfall were at 
high levels, coinciding with an increase in dengue cases, 
suggesting a potential positive correlation between these 
environmental factors and dengue incidence.  

Meanwhile, population density shows a more stable 
trend with gradual increases, although in certain years, 
such as 2021, density decreased, and both cases and deaths 
from dengue were at low points. A drastic decline in some 
variables, such as rainfall and temperature, in 2019 and 
2021 coincided with lower dengue mortality rates. Overall, 
the graph highlights how environmental factors like 
temperature, humidity, and rainfall play a crucial role in 
determining the patterns of dengue cases and fatalities 
each year. 
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Fig. 8. Dengue fever cases in South Sumatra Province 2017–2023. (a) Banyusasin; (b) Empat Lawang; (c) Lahat; (d) Lubuk Linggau;  
(e) Muara Enim; (f) Musi Banyuasin; (g) Musi Rawas; (h) Musi Rawas Utara; (i) Ogan Ilir; (j) Oki; (k) Oku; (l) Oku Timur; (m) Oku Selatan;  
(n) Pagar Alam; (o) Palembang; (p) Pali; (q) Prabumulih 

 
Fig. 9. Normalized data for the variables of humidity, rainfall, temperature, population density, dengue cases, and dengue-related deaths. 
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E. Support Vector Regression (SVR) Modeling 
This section explains the application of the SVR method 

in predicting the endemic areas of Dengue fever based on 
climate and population density variables in South Sumatra. 
This modeling aims to generate accurate predictions 
regarding the potential spread of dengue fever by utilizing 
SVR’s ability to handle non-linear data and complex 
variables. 

F. SVR Model for Banyuasin III District 
Fig. 10 shows a comparison between the actual values 

and the predicted cases of Dengue fever in the Banyuasin 
III area using the SVR method with four types of kernels: 
linear, sigmoid, polynomial, and Radial Basis Function 
(RBF). With the linear kernel, the prediction results are 
close to the actual values, with the predicted line 
consistently following the actual line pattern. This 

indicates that the linear kernel performs well, especially 
for data with linear relationships. In contrast, the sigmoid 
kernel shows greater deviations between the actual and 
predicted values. The prediction pattern of this kernel does 
not closely reflect the actual relationship, suggesting that 
the sigmoid kernel is less suitable. 

The polynomial kernel produces reasonably good 
predictions, following the actual data pattern, particularly 
in capturing potential non-linear relationships. However, 
some deviations indicate slightly lower performance 
compared to the linear kernel. The RBF kernel 
demonstrates the ability to capture more complex data 
patterns, with predictions close to the actual values. 
However, there are some discrepancies at certain points, 
indicating that the parameters of this kernel can still be 
further optimized. Overall, the linear kernel provides the 
most accurate predictions compared to the other kernels. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 10. Prediction results for Banyuasin III district. (a) Linear; (b) Sigmoid; (c) Polynomial; (d) RBF. 

G. SVR in Tebing Tinggi District 
Fig. 11 shows a comparison between the actual values 

and the predicted cases of Dengue fever in Tebing Tinggi 
District using the SVR method with four types of kernels: 
linear, sigmoid, polynomial, and Radial Basis Function 
(RBF). For the linear kernel (a), the prediction results 
show a pattern that closely follows the actual values, but 
there are significant deviations at some data points, 
particularly at the initial index. This suggests that the linear 
kernel is less optimal, even though the overall prediction 
trend aligns with the actual values. With the sigmoid 
kernel (b), the prediction line appears relatively flat 

compared to the actual values, with consistent deviations 
at nearly all points. This pattern indicates that the sigmoid 
kernel struggles to capture the variation in the actual data, 
leading to inaccurate predictions. The polynomial kernel 
(c) yields slightly better results than the sigmoid, with a 
prediction pattern closer to the actual values. The RBF 
kernel (d) performs reasonably well, with more stable 
prediction results compared to the sigmoid and polynomial 
kernels. However, the prediction line still shows 
deviations from the actual values at some points. Based on 
the graphical analysis, it can be concluded that the linear 
and RBF kernels perform better than the sigmoid and 
polynomial kernels. 
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Fig. 11. Prediction results for Tebing Tinggi district. (a) Linear; (b) Sigmoid; (c) Polynomial; (d) RBF. 

H. SVR in Merapi Timur District 
Fig. 12 illustrates a comparison between the actual 

values and the predicted cases of Dengue fever in Merapi 
Timur District using the SVR method with four types of 
kernels: linear, sigmoid, polynomial, and Radial Basis 
Function (RBF). For the linear kernel (a), the pattern is 
relatively close to the actual values, but there are 
significant deviations at some points, particularly at the 
initial and final indices. The sigmoid kernel (b) shows 
larger deviations compared to the linear kernel. The 
prediction pattern tends to flatten at some indices, making 

it less capable of representing the fluctuations of the actual 
values. This indicates that the sigmoid kernel is unsuitable 
because it fails to capture the non-linear relationships. The 
polynomial kernel (c) shows a better prediction pattern 
than the sigmoid kernel, with the predicted line being 
closer to the actual values at most indices. However, there 
are still some discrepancies at certain points. The RBF 
kernel (d) produces more stable predictions and closely 
matches the actual values at most indices. This kernel 
performs better in capturing non-linear relationships in the 
data, with smaller deviations compared to the other kernels. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 12. Prediction results for Merapi Timur district. (a) Linear; (b) Sigmoid; (c) Polynomial; (d) RBF. 
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I. Further Discussion  
This study highlights the significant role of climate 

variables—temperature, rainfall, and humidity—in 
influencing dengue fever outbreaks in South Sumatra 
Province. Temperature has a very strong positive 
correlation (0.92) with dengue cases, as rising 
temperatures accelerate Aedes mosquito activity and the 
virus replication cycle. However, extreme temperatures 
(>35°C) are known to reduce mosquito survival rates. 
Rainfall exhibits a moderate positive correlation (0.65) 
since it creates optimal breeding habitats for mosquitoes, 
particularly within a rainfall range of 50–150 mm per 
month. Conversely, excessive rainfall can reduce mosquito 
habitats by washing away stagnant water. Humidity also 
contributes to dengue transmission by extending mosquito 
lifespan, although its correlation (0.23) is weaker 
compared to temperature and rainfall. The interaction 
between these climatic variables amplifies their individual 
effects, particularly in areas with high temperatures 
combined with high humidity or during wet months when 
temperatures exceed 27°C, significantly increasing the 
incidence of dengue fever cases. 

The findings of this study have strategic implications for 
public health management. By integrating predictive 
models with real-time climate data, an early warning 
system can be developed to identify high-risk periods, 
allowing for targeted vector control measures and public 
awareness campaigns. The use of spatial classification 
through the SVM approach enables a more efficient 
allocation of resources, ensuring that high-risk areas 
receive priority for interventions such as fogging and 
larvicide distribution. Additionally, community education 
programs can focus on raising awareness about the impact 
of climate conditions, encouraging local efforts to 
eliminate mosquito breeding sites during the rainy season. 
This study also emphasizes the importance of 
implementing locally tailored strategies that align with 
specific climate patterns at the district/city level, ensuring 
timely and effective interventions to reduce dengue fever 
outbreaks. 

J. Parameter Optimization and the Impact on Model 
Performance 

The parameter optimization process for SVM and SVR 
models plays a critical role in balancing bias and variance, 
directly impacting predictive performance. For SVM, key 
parameters include the regularization parameter, C, which 
controls the trade-off between achieving a low training 
error and avoiding overfitting, and γ\gamma, which 
determines the influence range of a single training point in 
the model. The choice of kernel function—whether linear, 
RBF, or another type—is crucial in defining the decision 
boundary in the feature space. For SVR, parameter 
optimization revolves around ϵ\epsilon, which defines the 
margin of tolerance for prediction errors, C, and the kernel 
to capture non-linear patterns. The interplay between these 
parameters allows the models to generalize well across 
datasets, ensuring high reliability in prediction. 

Advanced optimization techniques such as grid search 
and cross-validation are utilized to identify optimal 

parameter values. Grid Search systematically explores a 
predefined range of parameter combinations, while cross-
validation ensures the selected parameters perform 
consistently across different data splits. For instance, the 
regularization parameter C might be adjusted in a range of 
0.1–100 to balance underfitting and overfitting. Similarly, 
the ϵ\epsilon value is fine-tuned for SVR to ensure the 
model tolerates small errors without compromising overall 
accuracy. The results of these optimization processes are 
evaluated using performance metrics such as accuracy for 
SVM and Mean Absolute Error (MAE) or Root Mean 
Square Error (RMSE) for SVR. These metrics clearly 
indicate the model’s predictive capability and ability to 
adapt to real-world complexities. 

The effectiveness of parameter optimization is 
demonstrated in the enhanced accuracy and reliability of 
the models, particularly in applications like predicting 
endemic regions or forecasting disease cases. By selecting 
appropriate parameters (e.g., C = 100 and a linear kernel 
for SVM), the models can effectively capture patterns in 
complex datasets while avoiding pitfalls like overfitting or 
underfitting. The ability to accurately map endemic 
regions or predict health trends is crucial for public health 
interventions, as it enables better resource allocation and 
strategic planning. Ultimately, the thorough optimization 
of these parameters ensures that the models deliver high 
predictive accuracy and adapt to diverse and evolving data 
conditions, making them indispensable tools in data-
driven decision-making for public health. 

K. Data Collection, Potential Biases and Accuracy of 
the Model. 

In this study, data processing and preprocessing played 
a pivotal role in ensuring the reliability and accuracy of the 
predictive models. A crucial first step was data 
normalization, which adjusted the scales of different 
variables to a common range. Variables such as 
epidemiological data (e.g., case counts) and environmental 
data (e.g., rainfall, temperature, and humidity) often exist 
on vastly different scales. Without normalization, 
variables with larger numerical ranges could 
disproportionately influence the training process, 
potentially skewing the model’s outcomes. By aligning the 
scales, normalization ensured that all variables were 
treated with equal importance, enhancing the model’s 
ability to identify patterns and relationships between 
predictors and outcomes effectively. 

Outlier detection and removal were another critical 
aspect of pre-processing [16, 17]. Outliers representing 
extreme or unrepresentative data points can severely 
distort statistical analyses and model training. For 
example, an unusually high or low dengue case count 
caused by data entry errors or exceptional circumstances 
might not align with typical trends in the dataset. By 
identifying and excluding such outliers, the study reduced 
the risk of models overfitting to aberrant data points, 
improving their generalizability. Advanced statistical and 
machine learning techniques, such as the Interquartile 
Range (IQR) method or clustering-based approaches, may 
have been employed to identify these anomalies. 
Removing these inconsistencies allowed the models to 
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focus on the core patterns and trends that are more 
representative of real-world conditions [15]. 

Cross-validation was implemented as an essential 
strategy to evaluate the robustness and reliability of the 
models. By dividing the dataset into multiple training and 
testing subsets, this technique ensured that the models 
were not overly tailored to a single dataset 
configuration [46]. For example, k-fold cross-validation 
systematically split the dataset into k partitions, training 
the model on k−1 subsets and testing it on the remaining 
one. This process was repeated k times, providing a 
comprehensive measure of the model’s performance 
across different data splits. Such an approach minimizes 
the risk of bias and overfitting, as it [47, 48]. This step was 
particularly important in this study, as it helped confirm 
the model’s capability to generalize its predictions to real-
world scenarios, such as mapping dengue endemic regions 
and forecasting case numbers. 

Together, these data processing and preprocessing steps 
ensured that the predictive models developed in this study 
were both accurate and reliable. Normalization provided a 
balanced foundation for training by harmonizing variable 
scales, while outlier detection safeguarded against 
misleading patterns from extreme data points. Cross-
validation further bolstered the study’s methodological 
rigor by providing a consistent and unbiased framework 
for performance evaluation. These measures collectively 
enhanced the study’s ability to map dengue endemic 
regions and predict future cases, offering practical insights 
into combating the spread of dengue in resource-limited 
settings. The thoroughness of these preprocessing steps 
underscores their importance in creating robust predictive 
models capable of addressing real-world public health 
challenges [48, 49]. 

L. Comparison with Other Machine Learning Models 
Kernel functions in SVM and SVR play a crucial role in 

determining the effectiveness of these models in capturing 
data relationships. The linear kernel is computationally 
efficient and works well for datasets with clear linear 
separations. However, its simplicity limits its application 
to more complex datasets [50]. In contrast, the polynomial 
kernel introduces a higher level of flexibility through its 
ability to capture non-linear relationships using adjustable 
polynomial degrees. While powerful, the polynomial 
kernel requires careful tuning to avoid overfitting, 
especially with noisy or large datasets [51, 52]. 

The RBF kernel, or Radial Basis Function kernel, is 
widely recognized for its ability to model complex, non-
linear relationships. Its strength lies in its capacity to 
handle datasets influenced by numerous features or 
environmental variables, such as rainfall and humidity, 
which are often critical in epidemiological studies. This 
kernel’s versatility and robust performance make it a 
preferred choice in domains requiring precise pattern 
recognition. Although the sigmoid kernel can also model 
non-linear relationships, it is less commonly used due to 
stability concerns and suboptimal performance in complex 
tasks [52, 53]. 

SVMs with kernel functions offer a unique blend of 
capabilities that distinguish them from other machine 

learning models, such as Decision Trees, Random Forests, 
and Neural Networks. Decision Trees and their ensemble 
counterpart, Random Forests, excel at modeling non-linear 
relationships and provide highly interpretable results [54]. 
Their ability to seamlessly manage categorical and 
continuous variables makes them versatile for many 
practical applications. However, these models may 
struggle with high-dimensional datasets due to overfitting 
or computational inefficiencies, particularly when the 
number of features significantly exceeds the number of 
observations. SVMs, on the other hand, shine in such high-
dimensional settings, especially when paired with kernel 
functions like the RBF kernel [55, 56]. These functions 
enable SVMs to transform data into higher-dimensional 
spaces, allowing them to construct optimal separating 
hyperplanes that effectively classify complex patterns. 
Neural Networks, particularly deep learning architectures, 
surpass SVMs in performance for very large and 
unstructured datasets, such as image and text data, but at 
the cost of higher computational demands and greater 
complexity in tuning. This makes SVMs preferred or 
smaller, structured datasets where precision is  
paramount [50]. 

Kernel-based SVMs, particularly those utilizing the 
RBF kernel, achieve a balance between computational 
efficiency and predictive accuracy that is challenging for 
other models to replicate. The RBF kernel excels in 
modelling non-linear relationships in data by creating 
flexible decision boundaries, making it highly effective for 
tasks involving complex patterns or interactions among 
features [54, 55]. In epidemiological studies, for example, 
SVMs with RBF kernels have demonstrated significant 
success in predicting disease outbreaks, such as dengue 
fever, by leveraging environmental variables like rainfall 
and humidity. This adaptability also extends to other 
domains, such as biomedical applications, where precise 
pattern recognition in structured datasets is critical. 
Financial prediction tasks, such as stock price movements 
or credit risk assessments, similarly benefit from the 
precision and robustness of kernel-based SVMs [56]. 
While Neural Networks may offer superior performance in 
these domains under ideal conditions, their reliance on 
large-scale data and high computational costs often make 
SVMs a more pragmatic option in resource-constrained 
environments or when data availability is limited [50]. 

Overall, SVMs with RBF kernels provide a compelling 
alternative for applications requiring a combination of 
precision, interpretability, and manageable computational 
requirements. Their ability to handle high-dimensional 
data while avoiding overfitting—thanks to robust 
regularization techniques—makes them well-suited for 
small-scale or medium-scale datasets where other models 
may falter. These models efficiently identify decision 
boundaries by focusing on support vectors, even in 
scenarios with overlapping classes or complex 
distributions. Furthermore, kernel-based SVMs provide 
high customizability through kernel selection and 
hyperparameter tuning, allowing them to adapt to a wide 
range of tasks. This versatility ensures their continued 
relevance in fields as diverse as epidemiology, finance, 
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and biomedical research. In an era increasingly dominated 
by deep learning, SVMs with kernel functions remain a 
reliable and powerful choice for structured datasets, 
bridging the gap between traditional statistical models and 
advanced machine learning architectures. 

V. CONCLUSION 

This study develops a predictive model to identify areas 
at risk of dengue fever outbreaks in South Sumatra 
Province by utilizing SVM and SVR. This approach 
combines the classification ability of SVM to map 
endemic areas with high precision and the capability of 
SVR to predict the quantitative trends of case numbers 
based on climate variables such as temperature, rainfall, 
and humidity, as well as time-lagged data. The analysis 
results show that this integrative approach significantly 
improves the accuracy and effectiveness of predictions. 
SVM successfully classifies areas as endemic or non-
endemic by considering non-linear patterns between 
variables, while SVR captures the temporal dynamics of 
case spread, providing more detailed numerical 
predictions of potential future cases. The combination of 
both creates a more comprehensive model, allowing for 
simultaneous spatial and temporal analysis. 

The strength of this model lies in its ability to 
accommodate the complexity of high-dimensional data 
and utilize time-lagged data to understand the delayed 
effects of environmental variables on dengue fever 
outbreaks. With this model, health authorities can use the 
predictive results to identify high-risk areas, determine the 
required resources, and design more timely and effective 
interventions. This research contributes academically by 
offering a hybrid machine learning-based approach that 
can be adapted for studies on other infectious disease 
epidemiology. Practically, this model also serves as a 
foundation for developing more accurate early warning 
systems, strengthening preventive efforts, and supporting 
sustainable public health in tropical regions. 
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