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Abstract—The advancement of 5G technology and the In-
ternet of Things (IoT) has enabled the development of appli-
cations such as augmented reality and autonomous vehicles, 
which demand low latency and high computational power. 
These applications generate computationally intensive and 
delay-sensitive workloads, necessitating an efficient edge-cloud 
collaborative framework for optimal resource management. 
This study introduces a task offloading and service caching 
framework designed to enhance computational efficiency by 
dynamically distributing tasks between local processing and 
cloud-based execution at the edge, thereby reducing system 
overhead in terms of latency and energy consumption. To 
achieve this, a non-cooperative game theory-based distributed 
task offloading mechanism is employed to optimize offloading 
decisions. Additionally, a dynamic service caching strategy, 
formulated as a 0–1 knapsack optimization problem, is imple-
mented to store frequently requested services at edge servers, 
improving task execution efficiency. As a result, task offload-
ing decisions dynamically adapt to service caching updates, 
ensuring an optimal balance between performance, resource 
utilization, and system efficiency.

Keywords—game theory, service caching, task offloading

I. INTRODUCTION

The rapid development of high-bandwidth, low-latency 
communication technologies such as Fifth Generation (5G) 
networks and the Internet of Things (IoT) has accelerated 
the adoption of computationally intensive applications like 
augmented reality and autonomous driving. These emerging 
applications demand both substantial processing power and 
stringent latency requirements, posing significant challenges 
for traditional centralized cloud computing frameworks. In 
particular, the transfer of large volumes of data to distant 
cloud servers can lead to increased latency and higher 
energy consumption, thereby limiting real-time responsive-
ness.

To address these challenges, edge-cloud collaborative 
computing has gained attention as a viable solution [1]. 
By distributing computing resources closer to end users, 
edge servers can process a portion of tasks locally, thereby 
reducing communication delays. At the same time, more 
complex or resource-intensive tasks can be offloaded to 
cloud servers with greater processing capacity. This hi-
erarchical offloading approach helps balance latency and
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energy consumption—collectively referred to in this work
as system overhead.

In this paper, we propose an integrated architecture
that optimizes computation through a combination of task
offloading and service caching. We begin by introducing
a distributed task offloading method derived from non-
cooperative game theory, enabling tasks to autonomously
decide whether to process data locally or offload it to an
edge server. This decision-making process aims to mini-
mize system overhead by considering the trade-off between
latency and energy consumption.

However, because edge servers have limited storage ca-
pacity, storing frequently accessed services at the edge
becomes crucial for maintaining offloading efficiency. To
address this, we employ a 0–1 knapsack algorithm that
dynamically caches popular services at edge servers, thereby
increasing the likelihood that an offloaded task will find the
required service locally. If a requested service is not cached
at the selected edge server, the task may either revert to
local processing or offload to the cloud, depending on which
option offers lower overhead.

By combining a distributed offloading strategy with a
dynamic caching mechanism, our approach enhances re-
source utilization and reduces overall latency and energy
consumption. In the following sections, we detail the system
model, formulate the problem of task offloading under
edge-cloud collaboration, and present our proposed caching
strategy. We then demonstrate the effectiveness of our
framework through experimental evaluations and conclude
by discussing potential future directions.

II. RELATED WORKS

Several studies have explored strategies for optimizing
task offloading in cloud-assisted edge computing environ-
ments. For instance, Wu et al. [2] proposes an optimal
task offloading framework aimed at minimizing local energy
consumption, while Yi et al. [3] focuses on maximiz-
ing network management profit through refined offloading
strategies. Additionally, Ma et al. [4] addresses the delay-
sensitive requirements of mobile users by designing an of-
floading scheme that maximizes cumulative network utility
and throughput.

However, the approaches in [2–4] generally overlook the
critical issue of service caching at fog servers, instead as-
suming that these servers possess unlimited storage capacity

Journal of Advances in Information Technology, Vol. 16, No. 6, 2025

801doi: 10.12720/jait.16.6.801-808



to support an infinite range of computational services. In
contrast, Bi et al. [5] through [6, 7] investigate both task
offloading and service caching at fog servers. Yet, their
analyses are restricted to environments that consist solely
of fog servers. In such scenarios, if a fog server lacks the
required computational service, the task must be processed
locally, often leading to significant delays due to limited
local processing power. In integrated fog-cloud collaborative
systems, tasks that cannot be serviced by fog servers are
instead offloaded to the cloud, which offers greater storage
capacity and a broader range of computational services.

Furthermore, recent work has begun to integrate security
considerations with offloading and caching strategies. For
example, Hanumantharaju et al. [8] presents a fog-driven
approach for a distributed intrusion detection system in
blockchain-cloud environments, leveraging the decentral-
ization of blockchain to enhance real-time data auditing.
Similarly, Gupta et al. [9] introduces a secure virtual ma-
chine live migration technique in cloud computing that em-
ploys Blowfish encryption alongside blockchain technology.
Although both studies contribute valuable security mech-
anisms, they do not address the simultaneous challenges
of service caching and task offloading within a fog-cloud
collaborative framework.

While game-theoretic models provide a powerful frame-
work for decision-making in edge-cloud collaborative sys-
tems, their computational complexity in large-scale imple-
mentations presents a significant challenge. Non-cooperative
game-theoretic approaches, in particular, require solving
equilibrium conditions, which can become intractable as the
number of players and strategy spaces grow. Daskalakis et
al. [10] demonstrated that computing a Nash equilibrium
in even a bimatrix game is PPAD-complete, implying that
exact solutions may be infeasible for large-scale, real-
time systems. This computational burden limits the direct
application of traditional equilibrium-based strategies in
dynamic, resource-constrained environments such as fog-
cloud architectures. To address this challenge, our approach
leverages efficient approximation techniques and learning-
based heuristics to reduce computational overhead while
maintaining decision-making accuracy. By integrating de-
centralized optimization strategies and distributed resource
allocation methods, we ensure scalability and feasibility,
making our proposed model more suitable for practical
implementations.

III. METHODOLOGIES

The rapid advancement of emerging technologies such
as 5G and the Internet of Things (IoT) has significantly
accelerated the development of applications like Augmented
Reality (AR) and autonomous driving. These applications
are characterized by strict low-latency requirements and
high computational demands, making them both energy-
intensive and delay-sensitive. Ensuring optimal performance
for such applications presents a major challenge, particularly
in resource-constrained environments.

To address this, we propose a collaborative edge-cloud
computing architecture that integrates task offloading and
service caching to enhance Quality of Service (QoS). Our
approach employs a distributed task offloading mechanism
based on non-cooperative game theory, enabling AIoT

devices to make autonomous offloading decisions. This
method evaluates whether computational tasks should be
processed locally or offloaded to edge servers, with the
primary goal of reducing system overhead and minimizing
latency. Given the limited storage capacity of edge (fog)
servers, efficient service caching is essential to maintain per-
formance. To optimize resource utilization, we implement a
0–1 knapsack algorithm, which dynamically selects services
for caching based on their popularity and request frequency.
This ensures that frequently requested services are stored
at the edge, improving offloading efficiency and reducing
cloud dependency. Furthermore, offloading decisions are
dynamically adjusted based on real-time service caching
outcomes. For example, if an initial offloading decision
assigns a task to an edge server but the required service is
not cached, the system will adapt by either processing the
task locally or offloading it to the cloud. This adaptive mech-
anism enhances reliability, reduces latency, and optimizes
computational resource distribution across the edge-cloud
infrastructure, making it particularly suitable for latency-
sensitive AIoT applications.

Fig. 1. System model.

A. System Models and Problem Formulation

The Task Offloading and Service Caching for Cloud-
Assisted Fog Computing (TO&SC-CF) model, as illustrated
in Fig. 1, consists of a cloud server, a fog server, and
multiple Augmented Intelligence of Things (AIoT) devices.
Each AIoT device is assigned a specific task, collectively
represented as the job set N = {1, . . . , N}. Within Emer-
gency Management Systems (EMS), AIoT devices typically
offload tasks to the fog server to take advantage of low
transmission latency and reduced computational delays.
During this process, tasks can either be executed locally
or offloaded to the fog server for processing.

The fog server, equipped with computing capabilities,
facilitates task execution but operates with limited storage
capacity, restricting the number of computing services it can
cache. In contrast, cloud computing provides a vast range
of computational resources. To optimize resource allocation,
dynamic service caching is implemented in the fog server,
prioritizing frequently requested services to enhance task
processing efficiency. However, despite these caching op-
timizations, certain high-demand computing services may
still be unavailable at the fog layer. In such cases, AIoT
devices must reevaluate their offloading strategies, deciding
whether to execute tasks locally or offload them to the cloud
server to ensure efficient processing. To enhance clarity, the
key notations used in this model are summarized in Table
I.
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TABLE I
SUMMARY OF KEY NOTATIONS

Notation Definition

N Collection of computational tasks in the system
K Set of available computational services
xn Decision variable indicating whether task nth is processed locally or offloaded
T l
n Time required for local execution of task nth

cn Computational complexity of task n, measured in required CPU cycles
fn Available computational power for local execution of task n
El

n Time delay incurred during task n’s transmission for fog-based processing
T f,n
trans Transmission delay for fog processing

bn Amount of data associated with task n

rfn Transmission rate between task n and the fog computing server
Ef,n

trans Energy consumed during the transmission of task n to the fog server
pfn Power consumption of task n during data transmission
ff
n Computational resources allocated to task n in the fog server

rcn Transmission rate between task n and the cloud server
αf
n Binary variable indicating whether the fog server caches the required service for task n

B. Task Offloading Models
The decision to offload job n is represented by the vector

Xn = {xl
n, x

f
n, x

c
n} where each component is a binary

variable indicating the offloading decision.
1) Local Processing: Task n is processed locally when

xl
n = 1 and xf

n = xc
n = 0 The local computation delay is

given by:
T l
n =

cn
fn

(1)

wherefn represents the local CPU cycle frequency, and
denotes the number of CPU cycles required for job n. Local
processing also consumes energy, calculated as:

El
n = ϖcnf

2
n (2)

where ϖ is the energy coefficient associated with the AIoT
device’s chip design.

2) Fog Processing: Task n is offloaded to the fog server
for processing if xf

n = 1 and xl
n = xc

n = 0 [11]. The job
offloading process involves three stages: 1) data transfer, 2)
task completion, and 3) outcome feedback. The transmission
delay, when task n is sent to the fog server, is:

T f,n
trans =

bn

rfn
(3)

where rfn is the transmission rate from the AIoT device to
the fog server for task n and bn represents the data bits of
task n [12]. The transmission energy usage is determined
using the AIoT’s transmission power pfn [13, 14]:

Ef,n
trans = pfnT

f,n
trans (4)

Upon receiving the offloaded tasks, the fog server processes
them using the assigned fog computing resources ff

n , and
the computation latency for fog processing is computed as:

T f,n
comp =

cn

ff
n

(5)

It is important to highlight that this study primarily exam-
ines local energy consumption rather than the energy usage
of the fog server [15]. Furthermore, once tasks are processed
at the fog layer, the results must be transmitted back to
the AIoT devices to finalize the offloading process. Since
the feedback transmission involves a significantly smaller
data volume compared to the initial offloaded tasks, the
associated latency and energy consumption are considered
negligible [16].

3) Cloud Processing: Task n is offloaded to the cloud
server for processing if xc

n = 1 and xl
n = xf

n = 0
[17]. Given the superior computational capabilities of cloud
servers, cloud processing latency is typically negligible. The
transmission latency to the cloud is:

T c,n
trans =

bn
rcn

(6)

whererfn is the transmission rate between the AIoT device
and the cloud server. The energy usage for this transmission
is:

Ec,n
trans = pcnT

c,n
trans (7)

C. Service Caching Model

To facilitate task processing in Emergency Management
Systems (EMS), a specialized collection of computing ser-
vices, along with associated databases and libraries, is stored
on the fog server. Due to its limited storage capacity, the fog
server can cache only a restricted set of computing services.
However, as AIoT devices undertake diverse activities,
the demand for specific computational services fluctuates.
Employing a fixed caching strategy ensures that certain
services are always available, but this approach may limit
fog offloading options for particular tasks, especially if
the necessary computing services are not initially cached.
This limitation results in decreased offloading efficiency,
particularly when AIoT devices frequently request services
that are not available. To address this issue, our study
develops a dynamic service caching technique, inspired by
[18], that allows the fog server to dynamically request
computational services from the cloud based on varying task
requirements, thereby enhancing task offloading efficiency.
As showed in Fig. 2, it illustrates the dynamic service
caching principle via a flowchart.

(a) Requested Service Information: AIoT devices first
communicate their required service details to the fog server
before initiating task transmission. This enables the fog
server to anticipate potential offloading needs.

(b) Determining Service Popularity: Upon receiving ser-
vice requests, the fog server evaluates the popularity of each
service by analyzing request frequency. Services that are
frequently requested gain higher priority for caching.

(c) Service Caching: Due to limited storage, the fog server
selectively caches essential services by retrieving them from
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the cloud. A binary indicator (αf
n = 0/1)determines whether

a requested service for a given task is available in the fog
server cache. Cached services enable direct task execution
at the fog server.

(d) Offloading Adjustments: If a required service is not
available in the fog cache, AIoT devices must reconsider
their offloading strategy—either executing tasks locally or
offloading them to the cloud. Meanwhile, service downloads
from the cloud to the fog server occur concurrently with
task transmissions from AIoT devices. Given the high-speed
connection between fog and cloud servers, the download
delay is mainly attributed to transmission time, ensuring
that the dynamic caching mechanism does not introduce
additional latency.

Fig. 2. Flowchart of execution dynamic service caching.

D. Problem Formulation

Given the energy and time sensitivity of tasks requiring
offloading, our objective is to minimize the system cost,
defined as the weighted sum of local energy consumption
and task delay. Each AIoT device evaluates offloading
decisions based on available power, data transfer rates, and
assigned CPU cycles, determining whether to complete its
task locally or offload it to a fog server. The limited storage
capacity of the fog server restricts its ability to cache all
required computing services. Consequently, tasks whose
services are not cached must reassess their offloading deci-
sions, choosing either local completion or cloud offloading
to minimize system costs. When integrating service caching
with offloading decisions, we derive the delay for task n,
expressed as:

Tn = xl
nT

l
n + αf

nx
f
n(T

f,n
trans + T f,n

comp) + xc
nT

c,n
trans (8)

The local energy consumption is represented by:

En = xl
nE

l
n + αf

nx
f
nE

f,n
trans + xc

nE
c,n
trans (9)

Mathematically, the problem is stated as:

minxn

∑
n∈N

βTn + (1− β)En (10)

With constraints:
αf
n ∈ {0, 1} (11a)

sfn ≤ smax (11b)

xc
n, x

l
n, x

f
n ∈ {0, 1} (11c)

fn ≤ fmax
n , ff

n ≤ fmax (11d)

Constraint 11(a) indicates that a service is either cached or
not stored in the fog server. Constraints 11(b), 11(c), and
11(d) ensure that the maximum computing resources of the
AIoT device and fog server, as well as the storage space
for cached services, are not exceeded, and that each task is
offloaded to only one processor. Finding the optimal solu-
tion to this problem is challenging. Firstly, the offloading
and service caching decisions form a nonconvex problem
due to their discrete nature. Furthermore, the integration
of service caching with task offloading complicates the
direct resolution of the issue. Secondly, the typical absence
of centralized controllers in real-world scenarios makes it
difficult for AIoT devices to access global information.

E. Task Offloading and Service Caching for Cloud-Assisted
Fog Computing

In this section, we introduce the Task Offloading and Ser-
vice Caching for Cloud-Assisted Fog Computing (TO&SC-
CF) framework to effectively address the identified chal-
lenges. The framework is structured around two key com-
ponents: task offloading and service caching. To minimize
system costs, we first employ a non-cooperative game-
theoretic approach to determine optimal task offloading
decisions. Next, we leverage the 0–1 knapsack algorithm
to maximize the popularity of cached services, ensuring
efficient service caching. Finally, the task offloading strategy
is further refined by incorporating the caching decisions,
leading to an adaptive and optimized offloading mechanism
that enhances overall system performance.

Fig. 3. Workflow of TO&SC-CF algorithm.

1) Noncooperative Game for Task Offloading: In Emer-
gency Management Systems (EMS), AIoT devices often 
offload tasks to fog servers to take advantage of low trans-
mission latency and reduced computational delay. During 
the offloading process, these devices can either execute tasks 
locally or transfer them to the fog server for processing. 
Given the distributed nature of AIoT devices, we design 
a non-cooperative game model to optimize task offloading 
decisions. Each device independently selects its offloading 
strategy without relying on a centralized controller, ensuring 
individual flexibility while enhancing overall system effi-
ciency [19, 20]. The game is formally defined as follows:

G = (N ,A,N (A)) (12)

where A represents the complete set of feasible task
offloading choices, N denotes the finite set of tasks, and
U (A) measures the utility derived from the offloading
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decisions in setA. The utility function for any allocation
method Ai is defined by:

U(Ai) = F − f(Ai), i ∈ A (13)

where F is a sufficiently large number to ensure positive
utility values, and asf(Ai) focuses on the optimized out-
comes, stated as:

f(Ai) = βT (Ai) + (1− β)E(Ai) (14)

Here,T (Ai)and E(Ai) represent the overall task delay
and local energy consumption, respectively, executed by
policyAi. We aim to maximize the utilityU(A∗) to deter-
mine the optimal offloading strategy A∗, thereby minimiz-
ing system costs, utilizing the ”regret-matching” approach
within the noncooperative game framework. The regret for
preferring strategyAj overAi is computed as:

R(Ai,Aj) = max{U(Ai,A−i)− U(Aj ,A−j), 0} (15)

It defines the regret function used in the noncooperative
game framework to evaluate task offloading strategies. The
regret function, R(Ai,Aj), measures the difference between
the utility of an alternative strategy Ai and the currently
chosen strategy Aj It is computed as the maximum between
this utility difference and zero, ensuring that regret values
remain non-negative. If the utility of Ai is higher than
Aj , the regret value quantifies the missed improvement
in system performance had the alternative strategy been
chosen. This formulation allows the system to continuously
evaluate offloading decisions and provides the basis for
adjusting strategies dynamically to optimize overall task
execution in fog-cloud environments.

P (Ai) =
1

τ
R(Ai,Aj), i ̸= j (16)

Building on the regret function in Eq. (15), Eq. (16)
determines the probability of selecting a different strategy
based on its computed regret. The probability of choosing
strategy Ai denoted as P (Ai), is directly proportional to its
regret value R(Ai,Aj) and is scaled by a factor τ , which
controls the adaptation rate of the system. A higher regret
value indicates that the alternative strategy Ai would have
resulted in better performance, thereby increasing the like-
lihood of selecting it in future iterations. This probabilistic
update mechanism ensures that task offloading decisions are
adjusted adaptively, allowing the system to gradually shift
toward optimal strategies while still maintaining flexibility
to explore other potential solutions. Over time, strategies
with consistently lower regret values become dominant,
leading to an efficient and stable task offloading process.

Algorithm 1 summarizes the proposed task offloading
method. After I iterations, the time complexity of Algorithm
1 is O(AI), where A = |A| signifies the total number of
viable offloading strategies. For fog computing resources
ρξ(•), denotes the empirical distribution of all potential
allocation strategiesA. The frequency of strategy Ai up to
ξ iterations is represented by Sξ(Ai). Thus, we assess how
frequently strategy Ai was employed over time:

ρξ(Ai) =
Sξ(Ai)

ξ
(17)

We postulate that a ξ approaches infinity,ρξ(Ai) converges
to a correlated equilibrium, as evidenced by the analyses in
[19, 21].

Algorithm 1 Noncooperative game based offloading algo-
rithm

Input: bn, cn, fn, rcn, pfn, pcn
Output: The optimal task offloading strategy A∗

1: Evaluate the utility value of each available offloading
strategy, based on Equation (14)

2: Iterate through the previous step until the utility values
for all possible strategies are obtained

3: Randomly select an initial offloading strategy Ai

4: while Ai ∈ A do
5: Compute the regret degree associated with strategy

Ai following Equation (15)
6: if P (Ai) > 0 then
7: Include Ai in the set of candidate strategies
8: end if
9: Update the current strategy by selecting a new

strategy from the set of candidate strategies
10: Retrain the optimal strategy A∗ by maximizing

its utility function U (A∗) based on the accumulated
knowledge.

11: end while

2) 0–1 Knapsack-based Service Caching: To avoid infea-
sible task offloading decisions, service caching plays a cru-
cial role [17, 22]. Given the limited storage capacity of fog
servers in Emergency Management Systems (EMS), they
can only accommodate a restricted number of specialized
services. The absence of frequently requested services at the
fog layer can significantly degrade processing efficiency. To
mitigate this issue, we introduce a dynamic service caching
strategy that optimally selects which services should be
cached to enhance task offloading efficiency.

Our approach enables the fog server to flexibly request
computing services from the cloud, denoted as k ∈ K,
based on varying workload demands. We define a binary
indicator λk

n ∈ {0, 1} to represent whether taskn requires
servicek, where λk

n = 1 indicates a request, andλk
n = 0

means the service is unavailable at the fog server. The
popularity of a servicek is determined based on its request
frequency and is used as a criterion for caching decisions.

Lk =
∑
n∈N

λk
n (18)

Each service requires sk units of storage space, and the
total allocated cache storage must not exceed the maximum
storage capacity of the fog server, smax

fog .The primary goal
of the dynamic service caching mechanism is to prioritize
the caching of frequently requested services while staying
within storage constraints. This problem is formulated as
a 0–1 knapsack optimization, where services that demand
excessive storage will not be cached, whereas highly popular
services that fit within the available storage will be retained.
To implement this efficiently, we introduce a 0–1 knapsack-
based dynamic caching strategy, detailed in Algorithm 2.
The computational complexity of this algorithm is expressed
as:

O((S + 1)(K + 1)) (19)

where S =
∣∣∣smax

fog

∣∣∣ represents the maximum available
storage in the fog server. and K = |K| denotes total number
of services that need to be evaluated for caching. This
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complexity suggests that the algorithm scales linearly with
both storage capacity and the number of service requests,
making it computationally efficient for real-time workload
adaptation. By dynamically adjusting caching decisions
based on service popularity and storage constraints, this
approach ensures optimal resource utilization and reduces
latency in fog computing environments.

Algorithm 2 0–1 Knapsack-based service caching algorithm
Input: sk, Lk, s

max
fog

Output: The optimal fog service caching policies,
bkn, k ∈ K, n ∈ K

1: Determine the available storage space sr in the fog
server

2: for kth service do
3: if the storage requirement sk exceeds the available

space sr then
4: kth service will be cached.
5: else if service k prodeces a larger popularity then
6: kth service will not be cached
7: else
8: kth service will be cached
9: Update the remaining fog storage capacity ac-

cordingly.
10: end if
11: end for

IV. PERFORMANCE EVALUATION

A. Setup

In our experimental setup, we evaluate cloud-assisted
fog computing using five AIoT devices, where each device
generates a computational task that requires processing.
Table II outlines the parameter settings used in our trials. We
compare the performance of our proposed algorithm against
several benchmark algorithms as follows:

TABLE II
PARAMETER SETTINGS

Paramater Description Value

Cloud server quantity 1
Fog server quantity 1
AIoT devices quantity 5
Services quantity 3
Data bit for each task [0.1,2] MB
Required CPU cycles for each task [0.2,4] GHZ
Fog server computational capabilities [5,15] GHZ
One AIoT device computational capabilities [1,2] GHZ
Data transmission rate to the fog server [2,3] Mb/s
Transmission power 0.1 Watt
Energy coefficient ϖ 10−26

B. Experiments

(a) Task Offloading with Adaptive Service Caching
(TO&SC) [18]: This approach enables task offloading
within a fog computing environment, where service caching
is dynamically adjusted based on demand. Unlike cloud-
assisted strategies, it operates exclusively within the fog
layer without relying on cloud resources for caching de-
cisions.

(b) Cloud-Integrated Fog Computing Task Offloading
(TO&CF) [23]: This method follows a predefined service

caching policy, meaning that the set of cached services re-
mains unchanged. When the required service is unavailable
at the fog layer, tasks are redirected to the cloud server,
leveraging its resources to reduce processing latency and
energy consumption.

(c) Fog-Based Task Offloading (TO) [24]: This strategy
utilizes a static caching framework where services are fixed
within the fog server. If a requested service is not locally
available, tasks must be executed directly on the AIoT
devices, as there is no option to offload them to the cloud.

(d) Standalone Local Processing (LP): In this method,
all tasks are handled entirely on local devices, without any
offloading capabilities, making it dependent on the device’s
own computational resources.

C. Comparison Analysis on Varied Required CPU Cycles
Fig. 4 presents a comparison of system costs across

different task CPU cycle requirements for various offloading
algorithms. As CPU cycles increase, system costs generally
rise due to higher computational energy consumption and
longer task execution times. The cost trends for LP, TO,
and TO&SC exhibit a similar growth pattern, which can be
attributed to the fact that in this experimental setup, tasks
requiring higher CPU cycles do not necessitate caching in
the fog server. Instead, both TO and TO&SC handle these
computationally demanding tasks locally, leading to a steady
increase in system costs.

In contrast, the proposed algorithm and TO&CF enable
offloading of resource-intensive tasks to the cloud server,
utilizing cloud-assisted processing capabilities. This ap-
proach maintains a more stable system cost across varying
CPU cycles, as the primary factor influencing cost becomes
cloud transmission energy rather than local computational
complexity. Furthermore, in scenarios where fog storage
capacity is constrained, the proposed method consistently
achieves the lowest system cost, as further illustrated in Fig.
5.

Fig. 4. Performance of different algorithms under various CPU 
requirements.

D. Comparison Analysis on varied Device Numbers

As illustrated in Fig. 6, the system cost increases as
the number of devices grows, primarily due to higher task
execution delays and greater energy consumption. The LP
approach, which does not support fog-based processing,
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Fig. 5. Performance of different algorithms under different fog storage 
units.

experiences the steepest rise in system cost, as tasks must 
be handled entirely on local devices, leading to increased 
computational overhead. The TO strategy also incurs rela-
tively high system costs since it relies on a fixed caching 
scheme and lacks cloud offloading capabilities, resulting 
in inefficient task execution when required services are 
unavailable.

In contrast, TO&SC achieves better performance by 
utilizing dynamic caching, which improves resource allo-
cation and reduces processing delays. However, the pro-
posed algorithm consistently outperforms all other methods, 
as it leverages both dynamic service caching and cloud-
assisted computing, ensuring optimal task distribution while 
minimizing overall system cost. The results demonstrate 
that integrating intelligent caching mechanisms and cloud 
resources significantly e nhances e fficiency, pa rticularly as 
the number of AIoT devices increases.

Fig. 6. Performance of different algorithms under different device numbers.

E. Discussion and Future Works

1) Impact of fog storage capacity: The dynamic service
caching algorithm, selects frequently requested services to
be stored at the fog using a knapsack-based method. Our
results indicate that when the fog storage unit is limited,
the caching mechanism is constrained, leading to more tasks
being rerouted either to local processing or to the cloud. This

rerouting incurs higher latency and energy costs, which is
reflected in an increased system cost.

As the fog storage capacity increases, a larger number of
popular services can be cached. This improvement reduces
the probability that a task, originally offloaded to the fog,
finds its required service unavailable. Consequently, more
tasks are processed efficiently at the fog level, and the
overall system cost decreases. However, our experiments
also show that beyond a certain storage threshold, further
increases yield diminishing returns, suggesting the existence
of an optimal fog storage capacity for cost minimization.

2) Algorithmic adjustments and convergence: In paral-
lel, our task offloading scheme employs a regret learn-
ing mechanism to iteratively adjust offloading decisions.
This mechanism evaluates the utility of different offloading
strategies—whether to process tasks locally, at the fog, or in
the cloud—based on current system parameters and cached
service availability. The iterative adjustment gradually con-
verges to a near-optimal strategy that minimizes system
cost. Notably, as the number of iterations increases, the
regret values decrease, and the offloading decision stabilizes,
reinforcing the robustness of our approach.

3) Comparative performance: When comparing the
baseline offloading approach with our integrated dynamic
caching and offloading adjustment, our simulation results
demonstrate a clear performance improvement. Specifically,
the integrated method consistently achieves a lower system
cost across various fog storage unit settings. This improve-
ment is attributed to two key factors:

Dynamic Service Caching:By proactively caching high-
demand services, the system reduces the need for expensive
offloading to the cloud, thus lowering delay and energy
consumption.

Adaptive Offloading Decisions: The regret-based learning
mechanism allows the system to adapt to changing con-
ditions, ensuring that tasks are routed to the processing
node with the minimal cost, even when service availability
fluctuates.

4) Future works: One promising future direction is the
integration of Deep Reinforcement Learning (DRL) to en-
hance the adaptability of task offloading and service caching
in fog-cloud collaborative systems. Traditional methods rely
on static policies or heuristic-based approaches, which may
not effectively respond to dynamic network conditions,
fluctuating workloads, and energy constraints. By leverag-
ing DRL algorithms such as Deep Q-Networks (DQN) or
Proximal Policy Optimization (PPO), the system can learn
optimal offloading and caching strategies by continuously
interacting with the environment and adapting to real-
time changes. This approach enables autonomous decision-
making, allowing AIoT devices to intelligently distribute
computational tasks between fog and cloud layers while
optimizing latency, energy consumption, and resource uti-
lization. For instance, Wang et al. [25] proposed a DRL-
based framework for dynamic task offloading in mobile
edge computing, demonstrating its effectiveness in reduc-
ing offloading delays and system costs. By extending this
concept to fog-cloud systems with service caching, future
research can further improve scalability, responsiveness, and
overall system performance, making it highly suitable for
smart city applications, emergency response, and industrial
automation.

Journal of Advances in Information Technology, Vol. 16, No. 6, 2025

807



V. CONCLUSION

In this paper, we explored an Emergency Management
Systems (EMS) scenario to enhance cloud-assisted fog com-
puting capabilities. Given the constraints of AIoT devices,
which are both delay-sensitive and energy-intensive, our
primary objective was to devise a solution that optimally
balances these parameters and determines the most suitable
execution locale for tasks—either locally or transferred to
the cloud—to minimize system costs. In scenarios where the
fog server is either overwhelmed or unavailable, we consid-
ered the use of cloud computing as an alternative. Our initial
strategy involved developing a distributed offloading method
based on non-cooperative game theory, focusing on local
processing at AIoT devices or offloading to the fog server,
addressing challenges related to task offloading and dynamic
service caching. Subsequently, we applied the 0-1 knapsack
problem-solving approach to implement adaptive service
caching based on job popularity. This method ensures that
tasks are either processed within the fog server, offloaded to
the cloud, or managed locally as required. Extensive testing
of the proposed algorithm demonstrated its effectiveness
compared to existing methodologies, validating its potential
for practical deployment in similar scenarios.
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