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Abstract—The rapid spread of diseases and pests has 

significantly impacted global agricultural productivity. 

Farmers often struggle with pest identification, leading to the 

overuse of pesticides, which causes environmental harm and 

incurs high costs. This work presents an early real-time insect 

identification system using deep learning for real-time mobile 

insect image detection. By applying the YOLOv5-S model to 

a 10-species insect dataset, the system achieved a mAP@0.5 

accuracy of 70.5%, and 42.9% on the IP102 dataset, 

optimized for low-end mobile devices. Additionally, it 

provides farmers with vital information on insect biology, 

distribution, and management to reduce production costs 

and promote sustainable farming.  

 

Keywords—deep learning, real-time insect identification 

system, YOLOv5, low-end mobile devices  

 

I. INTRODUCTION 

Climate change has caused an increase in insect 

populations, posing a significant danger to world 

agriculture [1]. According to the Food and Agriculture 

Organization, pests account for up to 40% of yearly crop 

losses, with invasive insects alone costing more than $70 

billion [2]. Farmers rely extensively on pesticides to tackle 

this problem, but a lack of skill in pest identification 

frequently leads to overuse or misuse [3]. This not only 

raises production costs, but it also destroys ecosystems, 

kills beneficial insects, and endangers human and animal 

health [4]. 

Consequently, the requirement for a pest detection 

system that is both effective and easily accessible has 

become crucial. Many farmers find traditional methods 

impracticable, particularly those in developing nations, 

because they sometimes call for costly equipment or 

specialized skills. A mobile-based approach provides a 

useful substitute, especially considering how common 

cellphones are. A system that supports early pest treatment 

should be affordable, easy to use, and able to identify 

insects in real time [5]. 

In this work, a novel real-time insect detection method 

for mobile smart devices is presented. Using the YOLOv5-

S deep learning model, the system effectively recognizes 

pests from smartphone camera photos, offering 

comprehensive biological and management data. 

Accessibility for farmers in various agricultural 

environments is guaranteed by this strategy, which is 

tailored for low-end mobile technology. Real-time pest 

identification and educational materials are integrated into 

the system to improve sustainable agricultural methods 

and lessen need on dangerous chemicals. 

II. RELATED WORKS 

Previous research has been focused on developing real-

time CNN architecture-based image identification systems 

for mobile devices. For instance, Wang et al. [6] created a 

novel technique for extracting and categorizing pictures of 

leaves. Using a mathematical morphological approach to 

segregate items in areas of adhesion, they employed a 

region-labeling technique to determine insect populations 

and disease areas inside segmented pictures. When the 

system was implemented on mobile smart devices, field 

tests revealed that it performed outstandingly in terms of 

efficiency and recognition. 

In a different research, Nasir et al. [7] created a web-

based platform and an Android application as part of an 

early warning system for insect infestations in rice 

farming. The Agriculture Department can identify and 

locate pest infestations with the use of this technology, 

which then notifies farmers. By entering infestation data 

into databases, agronomists are able to assess the danger in 

paddy plots by taking into account factors such as insect 

count, kind, location, and current circumstances. Farmers 

are notified via email on the condition of their paddy plots 

following the agronomists’ evaluation. 

In order to identify and count insects, Zhu et al. [8] 

presented a smartphone application and an image 

processing method. They used a sliding window-based 

binarization technique to solve the problem of non-

uniform brightness in insect pictures taken using mobile 

phones. They used linked domain-based histogram 

statistics to identify and count the insects in the stored 

grain. The approach outperformed earlier techniques, with 

a 95% accuracy rate when tested on an Android 

application. 

As shown in Ref. [9], MAESTRO is a cutting-edge 

framework for identifying grasshoppers that uses deep 

learning to identify insects in RGB photos. This two-stage 

deep learning training approach can be applied on both 
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smartphones and desktop PCs. Similar to this,  

Chen et al. [10] used deep learning-based object 

recognition models including Faster R-CNN, SSD, and 

YOLOv4 to create an AI-based pest detection system 

tailored for scale pests. With 100% accuracy for 

mealybugs, 89% accuracy for Coccidae, and 97% accuracy 

for Diaspididae, the YOLOv4 model outperformed the 

others in this regard. Based on this concept, a smartphone 

application assists farmers in identifying pests and using 

the right pesticides. 

In order to create a pest detection model appropriate for 

mobile information systems, Perera [11] investigated the 

most effective machine learning strategies. Similarly, 

Karar et al. [12] presented a deep learning-based 

smartphone application called Faster R-CNN for cloud-

based insect pest recognition, which is used to classify 

pests. With five distinct pest species, this application has 

99% detection accuracy and is linked to a database that 

provides pesticide recommendations. 

In order to identify pests in vineyards, a technique for 

hand-held picture capturing of insect traps was given in the 

work of Faria et al. [13], which directly integrated AI into 

mobile devices. This method enhances picture quality and 

relevancy by combining many computer vision 

technologies. In-depth analysis of deep learning 

frameworks for intelligent pest monitoring was done 

in  [14], with a particular emphasis on the identification 

and categorization of insect pests from field photos. The 

review included technical information and methods for 

several phases, such as data pretreatment, modeling 

strategies, and picture acquisition. It also covered 

upcoming difficulties and new developments in the sector, 

as well as suggesting a general framework for smart insect 

monitoring. 

For real-time detection, AlertTrap [15] used SSD 

architecture in conjunction with MobileNetV1 and 

MobileNetV2 backbone feature extractors. The AP@0.5 

rates of 0.957 and 1.0 were attained by the SSD-

MobileNetV1 and SSD-MobileNetV2 models, 

respectively. SSD devices are better suited for real-time 

applications, as seen by the slower throughput of 

YOLOv4-tiny, despite its superior performance in 

AP@0.5. When it came to resistance to environmental 

disturbances, YOLOv4-tiny outperformed SSD devices. 

Furthermore, Doan [16] integrated Power mean SVM  [17] 

with EfficientNet [18], resulting in 71.84% accuracy in 

state-of-the-art insect image classification on the extensive 

IP102 dataset. Table I provides a systematic evaluation and 

detailed comparison of existing insect detection 

approaches. 

TABLE I. COMPARISON OF EXISTING INSECT DETECTION APPROACHES 

Study Methodology Model/Algorithm Used Dataset Key Findings Limitations 

Wang et al. 

(2013) [6] 

Traditional image 

processing 

Region-labeling + 

morphological operations 
Leaf images 

Achieved high accuracy in 

segmenting insect-infested regions 

Limited scalability; 

not real-time 

Nasir et al. 

(2018) [7] 

Web-based early 

warning system 
Pest count and monitoring 

Rice farming 

dataset 
Notifies farmers about pest outbreaks 

Requires internet 

access 

Zhu et al. 
(2018) [8] 

Smartphone image 
processing 

Sliding window binarization 
Stored grain 

dataset 
95% accuracy in insect counting 

Affected by lighting 
variations 

Chudzik et al. 

(2020) [9] 

Deep learning on 

mobile 

Two-stage CNN 

(MAESTRO) 

RGB insect 

images 
High accuracy on smartphones 

Requires GPU 

optimization 

Chen et al. 
(2021) [10] 

Object detection for 
scale pests 

Faster R-CNN, SSD, 
YOLOv4 

Custom 
dataset 

100% accuracy for mealybugs, 89% 
for Coccidae, 97% for Diaspididae 

High hardware 
requirements 

Karar et al. 

(2021) [12] 

Cloud-based deep 

learning 
Faster R-CNN Pest dataset 99% accuracy with cloud support 

Not suitable for 

offline use 

Le et al. 
(2021) [15] 

Edge computing for 
insect traps 

SSD-MobileNetV1 & V2 
Remote trap 

images 
SSD-MobileNetV2 achieved 1.0 

AP@0.5 
Limited detection 

range 

Doan et al. 

(2022) [16] 

Large-scale pest 

classification 

EfficientNet + Power mean 

SVM 

IP102 

dataset 
71.84% classification accuracy 

Requires dataset 

balancing 

 
Despite improvements, existing pest detection systems 

still have a number of drawbacks, including a narrow range 

of pest identifications, poor accuracy, costly equipment 

needs, and difficult deployment scenarios. Furthermore, 

most of these systems are devoid of capabilities like 

powerful distributed mobile information frameworks, 

thorough pest information, and geolocation tracking of 

dangerous pests. For mobile devices, there is currently no 

solution that offers real-time identification. 

To address these issues, this paper proposes an early 

real-time insect recognition system that is low-cost, 

efficient, and designed for mobile devices with limited 

hardware. The study looks at lightweight network models 

and embedded terminal solutions, which are becoming 

more significant and appealing. The primary contributions 

of this paper are: 

 

 

• A real-time insect identification system has been 

designed for mobile devices with limited hardware, 

ensuring easy installation, affordability, and user-

friendliness. 

• YOLOv5-S identification findings for large-scale 

IP102 dataset. 

• A novel method collects photos and utilizes GPS 

to map insect dispersion in the field, leading to the 

creation of a complete database and distribution 

maps. 

The paper is organized as follows: Section III describes 

the materials and techniques utilized to evaluate our 

methodology, which include an overview of our system, 

the YOLOv5 model, and the pest bug picture datasets. 

Section IV explores the experimental findings and their 

consequences. Section V summarizes the findings, 

limitations, and recommendations for further study. 
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III. MATERIALS AND METHODS 

A. Overview of Our System 

The proposed real-time insect detection system is 

designed to assist farmers by providing accurate pest 

identification through mobile smart devices, as depicted in 

Fig. 1. Leveraging the YOLOv5-S model, the system 

analyzes images captured via smartphone cameras or 

downloaded from web resources, such as photographs of 

insects taken by insect traps, delivering real-time analysis 

with minimal hardware requirements. Key functionalities 

include real-time pest identification, which detects and 

classifies insects from images or live camera feeds while 

providing biological details and potential crop impact; 

offline and online modes, enabling cloud-based analysis 

for enhanced accuracy alongside offline access via an 

SQLite database for use in remote areas; GPS-based pest 

mapping, which tracks insect distribution to monitor 

infestations and guide pest management strategies; 

pesticide recommendations, offering appropriate pest 

control measures to minimize excessive pesticide use; and 

a user-friendly mobile interface, ensuring ease of use with 

a straightforward image capture process and instant 

results. 

 

Fig. 1. An overview of our real-time insect image detection technology using mobile devices. 

As illustrated in Fig. 2, the UV-equipped bug traps 

attract insects, which subsequently land on sticky traps 

designed for data collection. The deployment and 

operation of these traps enable the accumulation of a 

substantial volume of insect data, facilitating the gathering 

and identification of various insect species through the 

mobile application. To identify insects quickly, the mobile 

application integrates the YOLOv5-S model, which 

processes photos of insects or real-time camera feeds, as 

shown in Fig. 3. Once the insect has been correctly 

identified, the system gives comprehensive details about it, 

such as its name, biological traits, range, morphology, and 

methods of management. 

Our insect recognition technology functions both online 

and offline. In the online mode, insect identification data 

is sent to a web server, which then analyzes it and returns 

full results in JSON format [19]. Users may compare this 

information to similar pictures in the data warehouse, 

browse a comprehensive list of insects with detailed 

information and images, and upload bug images and 

locations to the database. This option maintains the whole 

database on the server, guaranteeing that information is 

constantly up to date; but, the application’s pace is 

restricted by network connectivity. 

 

 

Fig. 2. Insect trap. 
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Fig. 3. Real-time mobile detection using YOLOv5s. 

In offline mode, the system uses SQLite [20], a 

lightweight, quick, and dependable SQL database engine, 

to store insect data directly on mobile devices. This mode 

is very useful in locations without internet connection, 

such as isolated fields with restricted connectivity. 

However, some application capabilities may be limited in 

offline mode. 

B. YOLOv5 

YOLOv5 [21] is a single-stage object identification 

system that approaches object detection as a regression 

issue. In this method, object detection is done in a single 

step, estimating both the class probabilities and the 

coordinates of the bounding boxes that surround the 

objects in the input picture. The system consists of three 

major parts: the backbone, neck, and head. In YOLO, the 

head layer is in charge of ultimate object detection. 

The model’s core function is to identify distinguishable 

elements in the picture. The CSPNet [22] architecture 

serves as the foundation for YOLOv5. Fig. 4 shows how 

CSPNet divides the feature map in the base layer into two 

pieces. One portion integrates directly with the transition 

layer while the other half travels through the dense block 

to get there. This split contributes to a smaller model and 

faster inference [23]. 

The YOLOv5-S model is selected in this study for the 

development of mobile apps because of its small size, fast 

GFLOPs calculation speed, and excellent accuracy, which 

makes it appropriate for devices with constrained 

hardware. YOLOv5-S has a reduced disk capacity of 

14.2  MB and a smaller network parameter size of 7.3 M 

compared to previous YOLO models like YOLOv4 [24] 

and YOLOX [25], which fits well with the limitations of 

mobile devices. As shown in Table II, the YOLOv5-S 

model is relatively small in size, with a network parameter 

of 7.2 M and a disk size of 14.2 MB, making it suitable for 

mobile devices with limited hardware configuration. With 

a GFLOPs index of 17.1, the model’s processing speed is 

considered sufficient. Furthermore, compared to previous 

YOLO models, YOLOv5-S demonstrates high 

performance on the dataset from Table III, achieving 

outstanding mAPval@0.5 and speed metrics, as shown in 

Tables IV and V. 

 

 

Fig. 4. Object detection in YOLO framework. 

TABLE II. NETWORK PARAMETERS OF YOLO MODELS 

Models Params [M] Size on disk [MB] GFLOPs 

YOLOv4 27.6 245.0 59.6 

YOLOv4-tiny 5.88 23.1 6.8 

YOLOv5-S 7.2 14.2 17.1 

YOLOv5-M 21.2 40.8 51.4 

YOLOv5-L 46.5 89.3 115.6 

YOLOv5-X 86.7 167.1 219.0 

YOLOX-S 9.0 68.5 26.8 

YOLOX-M 25.3 193.0 73.8 

YOLOX-L 54.2 413.0 155.6 

YOLOX-X 99.1 757.0 281.9 

 

C. Proposed Methods 

The proposed approach involves five consecutive steps: 

Image Collection: The process starts with insect pest 

images being gathered for both training and evaluating the 

models. 

Data Preprocessing: The dataset is preprocessed 

through annotation and augmentation. Image data 

augmentation artificially increases the size of the training 

dataset by making slight modifications to existing images 

based on specific parameters. 

Model Training: YOLO object detection models are 

then trained using the IP102 dataset, as depicted in Fig. 5. 

The dataset is split for validation purposes, allowing us to 

assess the detection performance of the fine-tuned models. 

Performance Evaluation: The detection performance 

of the trained models is validated using the validation 

dataset, and the results are evaluated. 

Model Selection: Finally, the most suitable model for 

practical application in a farming context is selected. 
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Fig. 5. Schematic flowchart of the research approach. 

D. Datasets 

In order to prioritize frequent and agriculturally relevant 

pests and retain a dataset appropriate for real-time 

detection on mobile devices, only 10 insect species were 

purposefully chosen. These species were picked because 

they are common in agricultural settings, have an effect on 

crop yields, and are pertinent to pest control plans. 

Restricting the dataset ensures smooth operation on low-

end mobile hardware by preventing overfitting, 

maintaining a balanced data distribution, and improving 

model performance. Although adding more beneficial 

insects and pests might increase the system’s applicability, 

doing so would need more computing power and larger 

datasets, which would not be suitable for mobile 

deployment. In order to enhance detection skills and offer 

a more thorough pest identification system, subsequent 

research stages will endeavor to broaden the dataset 

beyond the original 10 insect species. In order to give a 

more comprehensive context for insect identification 

difficulties, this study also makes reference to previous 

studies on large-scale pest detection, such as the IP102 

dataset. Furthermore, the inclusion of beneficial insects 

such as Mantodea (praying mantises), who are natural pest 

predators, and Dermaptera (earwigs), which contribute to 

ecosystem balance, broadens our understanding of insect 

interactions in agriculture. This technique assists farmers 

in not only identifying and controlling destructive pests, 

but also recognizing and protecting beneficial species, 

therefore fostering sustainable pest management practices. 

By teaching farmers on the roles of both pests and 

beneficial insects, the system promotes better decision-

making, decreases dependency on chemical pesticides, and 

promotes ecologically acceptable farming methods.  

As shown in Fig. 6, 2,335 images of 10 distinct pest 

species were gathered from online data sources to create 

the insect pest database for the machine learning models. 

Table III displays the 1,634 pictures for training, 467 for 

validation, and 234 for testing that were obtained from the 

dataset, which was split into three categories: 70% for 

training, 20% for evaluation, and 10% for testing. The 

insect objects were manually labeled using the Label 

Image application [26], which produced.xml files with 

object location data. These files were subsequently 

transformed into.txt files that were compatible with 

YOLOv5. It was difficult to achieve high identification 

efficiency because of limitations in the IP102 dataset, such 

as the presence of numerous phases of the same insect type 

(e.g., larvae, caterpillars, and moths). Thus, the YOLOv5-

S model was tested with the 10 insect classes collected by 

agriculture expert volunteers. 

 

 

Fig. 6. Some images of insect samples in the Insect10 dataset. 

TABLE III. THE NUMBER OF IMAGES IN THE INSECT10 DATASETS WITH 

10 INSECT SPECIES 

No Insect name Train Validation Test 

1 Acalymma_vittatum 116 33 17 

2 Achatina_fulica 258 74 37 
3 Alticini 193 55 28 

4 Asparagus_beetles 89 25 13 

5 Aulacophora_similis 113 32 16 
6 Cerotoma_trifurcata 86 25 12 

7 Dermaptera 111 32 16 

8 Leptinotarsa_decemlineata 234 67 33 

9 Mantodea 185 53 26 

10 Squash_bug 249 71 36 

Total 1634 467 234 

 

In this study, the proposed technique was tested using 

large-scale insect image datasets. Because of the numerous 

lifecycle phases of various insect species, it is difficult to 

compile a comprehensive insect pest image collection. As 

a consequence, the publicly available IP102 dataset [27] 

was utilized for system evaluation. This collection 

comprises more than 75,000 photos covering 102 

agricultural insect issue categories. The IP102 collection 

comprises 75,222 images and 102 insect pest categories, 

with the lowest category including just 71 samples. The 

dataset consists of 18,983 annotated images intended for 

object identification tasks. Following the methodology 

outlined in [27], the images with bounding box annotations 

were divided into training and testing sets, containing 

15,178 and 3,798 images, respectively. It is worth noting 

that some images were not utilized in this process. Fig. 7 

showcases a variety of sample photographs from the IP102 

dataset. 

Models generally perform better with bigger datasets, 

but gathering a significant amount of data for training can 

be difficult. As a result, problems with insufficient data 

frequently develop in data analysis. Increasing the number 

of training samples aids in reducing overfitting and 

enhancing model generalizability. 

To solve the issue of limited data and probable 

overfitting, data augmentation techniques are used. 

Geometric transformation is a useful strategy for 

increasing the model’s resilience. In this study, online 

augmentation is utilized, employing a variety of geometric 
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modifications such as rotation, horizontal flipping, color 

correction, blurring, and saturation adjustments. As a 

result, each original image is transformed into 12 

augmented images. Fig. 8 illustrates the application of 

these diverse data augmentation techniques to insect pest 

photographs. 

 

 

Fig. 7. Some images of insect samples in the IP102 dataset. 

 

Fig. 8. The augmentation is accomplished by adding horizontal and 

vertical shifts, rotation, horizontal flipping, color, blur, and saturation. 
(a)  Original picture, (b) Augmented picture. 

IV. RESULT AND DISCUSSION 

A. Experimental Setup and Training 

All YOLO model training tests were carried out on 

Google Colab, utilizing a Tesla K80 24 GB GPU. The 

algorithms were written in Python and Keras. The 

experimental setup for training the models contained the 

following parameters: a learning rate of 0.01, an image size 

of 640 pixels, a batch size of 16, and 150 epochs for 

YOLOv5 and YOLOX, whereas YOLOv4 was trained for 

2,000 epochs. The training epochs for YOLOv4 and 

YOLOv5 differed because of differences in the models’ 

architectures and optimization efficiency levels. Being a 

more recent and lightweight model than YOLOv4, 

YOLOv5 converges faster and requires fewer epochs to 

achieve optimal performance. Additionally, the training 

process for YOLOv5 was conducted with hardware 

constraints, necessitating a trade-off between computer 

efficiency and model correctness. The choice of training 

epochs was made pragmatically to ensure a trade-off 

between detection performance and training length. The 

optimization approach was based on stochastic gradient 

descent [28]. Mobile device testing was carried out 

utilizing low-configuration devices, as shown in Table  IV. 

TABLE IV. CONFIGURATION OF SMARTPHONE DEVICES AND THE 

ENVIRONMENT FOR DEVELOPING APPLICATIONS 

Item Description 

Smartphone 
hardware 

configuration 

The Samsung Galaxy A30 is equipped with a 

Samsung Exynos 7 Octa 7904 processor, featuring 
8 cores and a clock speed of MHz. This powerful 

processor, combined with 3,000 MB of RAM, 

ensures smooth performance even with complex 
applications or games. The phone supports 

microSDXC memory cards for additional storage. 

It features a 15.93-megapixel rear camera and a 

15.93-megapixel front camera, providing high-

quality photos and videos with an excellent camera 

interface. The device boasts a 6.4-inch SUPER 
AMOLED display, offering good display quality 

with a balanced gradation of warm and cool colors. 

The operating system is Android 10. 

Programinng 

language to build 

applications 

Programing language: Java, Development 
Environment: Android Studio 

The light Normal luster intensity 

 

B. Evaluation Metrics 

Object detection models are evaluated using several key 

metrics that measure their accuracy, efficiency, and 

robustness. These metrics help assess how well the model 

detects and localizes objects within images. 

1) Confusion matrix components 

In object detection, predictions are classified based on 

how they match the ground truth: 

True Positives (TP): The model correctly detects an 

object, and its predicted bounding box has sufficient 

overlap with the ground truth. 

False Positives (FP): The model incorrectly detects an 

object where none exist, or the predicted bounding box 

does not sufficiently overlap with the ground truth. 

False Negatives (FN): The model fails to detect an 

object that is present in the ground truth. 

True negatives (TN) are typically not used in object 

detection because the number of background pixels vastly 

outweighs object pixels. 

2) Intersection over Union 

Intersection over Union (IoU) measures the overlap 

between the predicted bounding box and the ground truth 

bounding box. It is calculated as: 
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𝐼𝑂𝑈 =
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
=        

 

A prediction is considered correct if IoU exceeds a 

predefined threshold (e.g., 0.5). Fig. 9 shows automated 

detection of Leptinotarsa decemlineata with bounding 

boxes and confidence score. 

 

 

Fig. 9. Automated detection of Leptinotarsa decemlineata with 
confidence score. 

3) Precision and Recall 

These metrics evaluate how well the model detects 

objects: 

Precision: Measures the proportion of predicted 

bounding boxes that are correct: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall: Measures how many actual objects were 

correctly detected: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4) Mean Average Precision (mAP)  

Mean Average Precision (mAP) is the primary metric 

used to evaluate YOLO models. It calculates the Average 

Precision for each class and averages them. 

Average Precision (AP): Computed as the area under 

the Precision-Recall (PR) curve: 

𝐴𝑃 = ∑ [𝑅𝑒𝑐𝑎𝑙𝑙(𝑘) − 𝑅𝑒𝑐𝑎𝑙𝑙(𝑘 + 1)]𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘)

𝑘=𝑛−1

𝑘=0

 

Mean Average Precision (mAP): The mean of AP 

across all object classes: 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛

𝑘=1

 

𝐴𝑃𝑘 = 𝑡ℎ𝑒 𝐴𝑃 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑘, 𝑎𝑛𝑑 𝑛
= 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 

Common mAP Variants: 

mAP@0.5: The AP is calculated using an IoU threshold 

of 0.5 (i.e., the prediction is correct if IoU > 0.5). 

mAP@0.5:0.95: The AP is averaged over multiple IoU 

thresholds from 0.5 to 0.95 in increments of 0.05, 

providing a more comprehensive evaluation. 

C. Experimental Results and Discussion  

The experiment was designed to compare the 

performance of several model variations depending on 

their backbone topologies, input picture sizes, and 

measures such as mAP@IoU:0.5 and mAP@IoU:0.5:0.95. 

Table V summarizes the results for the Insect10 dataset, 

which are represented in Fig. 10. 

TABLE V. SIMULATION RESULTS FOR THE YOLOV4, YOLOV5, AND 

YOLOX MODELS USING THE INSECT10 DATASET 

Models Backbone 
mAPval

@0.5 

mAPval

@0.5:0.95 
Time (s) 

YOLOv4 CSPDarknet53 84.9 63.2 2.8 

YOLOv4-tiny CSPDarknet53 64.4 48.3 0.3 

YOLOv5-S Darknet-53 70.5 35.9 0.6 
YOLOv5-M Modified CSP v5 76.6 42.7 1.6 

YOLOv5-L Modified CSP v5 78.9 46.8 2.3 

YOLOv5-X Modified CSP v5 73.0 40.9 3.8 
YOLOX-S Darknet-53 84.8 58.5 0.3 

YOLOX-M Modified CSP v5 82.3 61.9 1.3 

YOLOX-L Modified CSP v5 84.0 65.0 2.3 
YOLOX-X Modified CSP v5 83.0 64.0 3.2 

 

According to the results in Fig. 10, the new mobile 

application has a relatively good success rate in terms of 

accuracy, recall, and mAP for pest object detection. For 

example, the Alcalymma insect has the lowest detection 

accuracy (mAP@IoU:0.5 of 0.45), but the Leptinotarsa 

insect has the highest detection capability (mAP@IoU:0.5 

of 0.979). 

 

 

Fig. 10. Precision and recall of insect recognition findings on the 
Insect10 dataset using the YOLOv5-S model. 

The YOLOv5-S model, utilized in our application and 

trained on the Insect10 dataset containing ten insect 

species, demonstrates superior performance compared to 

other object detection algorithms. It was trained with a 

batch size of 16 and an input image size of 640 pixels, 

consuming approximately 3.9 GB of GPU memory, 

making it an optimal choice for deployment on devices 

with limited computational resources. It enables quicker 

recognition speeds and near-real-time item identification. 
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Fig. 11 shows several effective examples of insect 

recognition on mobile devices using the Insect 10 dataset. 

 

 

Fig. 11. Some photos were successfully recognized on mobile devices 
using the Insect10 dataset. 

Our technique was also tested on the large-scale IP102 

dataset [27] to determine its scalability. Table VI shows 

that the system obtained a promising mAPval@0.5 

accuracy of 42.9% with the YOLOv5-S model. This 

outperforms numerous earlier approaches published 

in  [27]. However, finding insect items on the IP102 

dataset is still difficult due to concerns such as similar 

color appearances of pests and backgrounds, as well as 

variations in insect shape and picture blurriness, as seen in 

Fig. 12.  

TABLE VI. SIMULATION RESULTS FOR YOLOV4, YOLOV5, AND 

YOLOX MODELS ON THE IP102 DATASETS 

Models Backbone 
mAP 

@0.5 

mAP 

@0.5:0.95 
Time (s) 

YOLOv4 CSPDarknet53 39.2 20.1 29.6 
YOLOv4-tiny CSPDarknet53 36.1 19.0 5.6 

YOLOv5-S Darknet-53 42.9 24.0 10.2 

YOLOv5-M Modified CSP v5 47.4 27.9 18.3 
YOLOv5-L Modified CSP v5 50.1 29.9 27.8 

YOLOv5-X Modified CSP v5 54.0 32.5 40.2 

YOLOX-S Darknet-53 52.3 34.1 9.8 
YOLOX-M Modified CSP v5 54.2 35.1 19.4 

YOLOX-L Modified CSP v5 53.9 34.7 28.5 

YOLOX-X Modified CSP v5 54.1 34.9 41.0 

 

 

Fig. 12. Common difficulties with our object detecting system. 

Our findings indicate that a number of variables 

contribute to the reduced accuracy, including comparable 

insect looks, varied life phases (e.g., larvae vs. adults), 

complicated backdrops, and picture quality difficulties. 

The IP102 dataset, in particular, poses issues due to class 

imbalance and overlapping characteristics amongst insect 

species, resulting in greater misclassification rates. Data 

augmentation strategies to improve model resilience, fine-

tuning the model with extra training samples, and using 

post-processing methods like ensemble learning or 

attention mechanisms to refine classification accuracy are 

all possible enhancements. In addition, higher-resolution 

picture inputs are wanted to be used, and bounding box 

annotations are to be modified to increase detection 

performance in real-world agricultural contexts. 

Fig. 13 illustrates effective insect recognition on a 

mobile device using the IP102 dataset. Despite YOLOX-S 

having greater accuracy (mAPval@0.5 of 52.3%) and a 

faster execution time (9.8 ms) than YOLOv5-S, we picked 

YOLOv5-S for our implementation. YOLOv5-S provides 

a fair trade-off between performance and computational 

economy, making it ideal for use on mobile devices with 

limited hardware. While YOLOX-S provides higher 

accuracy and quicker execution, YOLOv5-S offers more 

seamless integration and operation on low-cost mobile 

systems. 

 

 

Fig. 13. Some photos were successfully recognized on mobile devices 
using the IP102 dataset. 

Furthermore, as shown in Fig. 14, our approach 

combines pest classification and pesticide 

recommendations to give experts and farmers with 

practical assistance. Future implementations will 

incorporate additional devices like as the NVIDIA Jetson 

Nano Developer Kit [29], which provide more hardware 

combinations, cheaper prices, smaller footprints, and more 

durability, hence improving the system’s efficacy and 

accessibility. 
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Fig. 14. The user interface panel displays successful insect detection and 
extensive insect information on a mobile device. 

Table VII compares the proposed YOLOv5-S-based 

insect detection system to other detection systems, 

highlighting key advantages such as low hardware 

requirements, real-time capabilities, and offline capability. 

Unlike cloud-based solutions that require internet 

connectivity, this technology ensures accessibility in 

remote agricultural areas, making it more valuable to 

farmers. Furthermore, the table demonstrates that, while 

traditional image processing techniques have limited 

accuracy and scalability, and deep learning models like 

YOLOv4 and YOLOX require more computational 

resources, the proposed system strikes a balance between 

efficiency and feasibility for mobile deployment. 

However, despite these advantages, the table does not 

address the model’s lower accuracy on large-scale datasets 

like IP102, nor does it include direct performance 

comparisons with other YOLO-based systems on the same 

dataset. Its relative performance should be more accurately 

assessed in future research by doing more thorough testing 

versus state-of-the-art models using the same datasets. 

TABLE VII. DETAILED COMPARISONS WITH OTHER DETECTION SYSTEMS TO HIGHLIGHT UNIQUE ADVANTAGES 

Feature 
Proposed System (YOLOv5-S on 

Mobile) 

Traditional Image 

Processing [8] 

Cloud-based 

Detection [12] 

Other DL-based Systems (YOLOv4, 

YOLOX) [15, 25] 

Hardware 

Requirement 
Low (runs on mobile devices) Low to moderate 

High (cloud-based 

processing) 

Moderate to high (requires GPUs 

for inference) 

Real-time 

Capability 
Yes 

Limited (due to 

processing constraints) 

No (dependent on 
internet and cloud 

processing) 

Partially (varies with model and 

hardware) 

Accuracy 

(mAP@0.5) 
70.5% (Insect10), 42.9% (IP102) 50–60% 

99% (limited to 5 

species) 

YOLOv4: 84.9%, YOLOX-S: 

52.3% 

Processing Speed Fast (~10.2 ms/image) 
Slow (due to complex 

image processing steps) 
Depends on cloud 

latency 

Faster for YOLOX-S 

(9.8  ms/image), but higher latency 

in other models 

Model Complexity 
Lightweight YOLOv5-S (7.2M 

params) 

Simple image processing 

techniques 

Requires complex 

cloud-based inference 

Larger YOLO models require more 

computing power 

Deployment 

Feasibility 
Highly feasible for mobile devices 

Feasible for basic 

applications 

Requires network 

connectivity 

Suitable for high-end embedded 

systems 

Cost of 

Implementation 
Low Low to medium 

High (requires cloud 

subscription) 

Medium to high (requires dedicated 

hardware) 

Offline 

Functionality 

Yes (SQLite database for local 

insect info) 
Yes 

No (requires cloud 

access) 

Limited (depends on model size 

and hardware) 

Scalability 
High (adaptable to various 

datasets) 
Low 

High (if cloud 

resources are available) 
Moderate to high 

Additional 

Features 

GPS-based insect distribution 

tracking, pesticide 
recommendations 

Basic counting and 

segmentation 

Cloud storage & 

processing 

Some models integrate geolocation 

but lack real-time adaptation 

 

The incorporation of insect GPS position and density 

information into the system will be beneficial to Integrated 

Pest Management (IPM) systems. Real-time distribution 

density maps, as illustrated in Fig. 15, allow users to 

efficiently monitor and anticipate insect infestation trends 

across wide areas. This skill will assist in assessing the 

effect of insect pests on agriculture and ecosystems, 

allowing for more informed decision-making and control 

tactics. 

Although our study findings show tremendous promise 

for real-world applications, the system’s accuracy requires 

additional work to improve its precision. Several variables 

contribute to the suggested model’s low performance on 

the IP102 dataset: 

Lifecycle Variability: Insects go through various 

lifecycle stages (egg, larva, pupa, adult), causing 

significant changes in their appearance, which makes 

consistent detection and classification challenging. 

Diverse Backgrounds: The images in the IP102 dataset 

contain diverse backgrounds, often causing confusion for 

the model as insects blend into their natural surroundings. 

Image Quality: Some photographs are of poor quality 

or grainy, limiting the model’s capacity to recognize and 

categorize insects, underlining the need of clear, high-

resolution images.  

Morphological Similarities: Different insect species 

might have similar forms and sizes, which complicates the 

model’s ability to discern between them.  
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Fig. 15. The user interface panel displays successful insect detection and 

extensive insect information on a mobile device. 

Dataset Imbalance: Despite the IP102 dataset’s vast 

size, the number of photos per bug category may still be 

inadequate for training a robust model, particularly in 

categories with few observations, resulting in overfitting 

and poor generalization. As a result, our future research 

will focus on building more efficient identification 

algorithms in order to enhance accuracy and increase the 

number of recognized insects. Furthermore, improved 

mobile devices with increased CPUs, GPUs, and cameras 

will be investigated, allowing the installation of larger 

convolutional neural models. 

V. CONCLUSION LIMITATION AND FURTURE RESEARCH 

This paper describes an effective real-time insect 

identification system that leverages mobile smart devices. 

It is based on the YOLOv5-S model, which has a compact 

design and is suited for devices with limited hardware 

resources. The system detects and classifies insect pests, 

and its benefits include real-time identification, cheap cost, 

ease of development, and practical implementation. 

Numerical experiments demonstrate that the system 

achieved a classification accuracy of 70.5% with 

mAP@0.5 on the Insect10 dataset and 42.9% on the large-

scale IP102 dataset, the best reported accuracy for 

YOLOv5-S on that dataset. Despite these advances, mAP 

accuracy remains lower than the ideal threshold required 

for effective insect identification in agricultural settings. 

Future study will aim to improve the model’s accuracy, 

particularly on large-scale datasets such as IP102. 

Furthermore, difficulties such as lifetime unpredictability, 

various backgrounds, and image quality will be addressed. 
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