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Abstract—Accurately forecasting energy consumption is 

critical in optimizing energy management, reducing costs, 

and enhancing grid stability. This study uses smart meter 

data to evaluate the performance of four transformer-based 

models—Vanilla Transformer, Autoformer, Informer, and 

SpaceTimeFormer—for energy consumption forecasting. 

The models are evaluated against statistical benchmarks, 

with results indicating that Autoformer is the most efficient 

transformer, achieving the best balance between accuracy 

and computational complexity, with a Mean Absolute Error 

(MAE) of 0.540, a Root Mean Square Error (RMSE) of 0.764, 

a Mean Absolute Percentage Error (MAPE) of 0.091, and an 

R² of 0.979. The study focuses on transformer models, 

establishing their utility for time-series forecasting and 

identifying Autoformer as the most suitable for this dataset. 

These findings highlight the transformative potential of 

advanced architectures for handling complex temporal data 

and provide a benchmark for future research in energy 

consumption forecasting.  
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I. INTRODUCTION 

Time series prediction is a vital area of research with 

broad applications across fields such as physical sciences, 

environmental studies, finance, healthcare, and energy 

management [1]. It involves forecasting future variables 

based on past temporal data and plays a critical role in 

industries like power generation. The importance of this 

topic stems from the increasing need for accurate 

forecasting in various sectors to optimize resource 

allocation, enhance operational efficiency, and support 

decision-making processes. In particular, energy 

consumption forecasting is crucial for balancing energy 

demand and supply, reducing overproduction, and 

enhancing grid stability. Accurate short-term predictions 

enable efficient generator scheduling and long-term 

strategic planning to minimize costs. However, energy 

forecasting poses significant challenges due to the 

irregularity of consumption patterns, seasonal variations, 
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and the presence of uncertainties such as missing data, 

outliers, and redundancies in the collected data [2]. 

Traditional forecasting methods struggle to address these 

complexities, necessitating the development of more 

advanced predictive models [3]. Recent advancements in 

technology, such as the widespread deployment of smart 

meters, have revolutionized energy data collection [4] by 

providing granular insights into consumption patterns at 

household levels. This surge in detailed time-series data 

has paved the way for data-driven solutions to optimize 

energy usage and predict future demand [5]. Traditionally, 

deep learning models like Recurrent Neural Networks 

(RNNs), Long Short-Term Memory (LSTM) networks, 

Convolutional Neural Networks (CNNs), and their hybrid 

variants have dominated time series forecasting tasks [6]. 

However, the sequential nature of RNNs hinders their 

scalability due to computational inefficiencies, while 

CNNs require extremely deep architectures to capture 

long-range dependencies. These limitations highlight the 

need for more efficient architectures capable of handling 

long-sequence data effectively. Transformers, initially 

designed for Natural Language Processing (NLP) tasks, 

have emerged as a promising alternative for time series 

forecasting [7]. Unlike RNNs, which process sequences 

element by element, transformers leverage self-attention 

mechanisms to process entire sequences simultaneously. 

This enables transformers to capture long-distance 

dependencies in time series data more naturally while 

preserving the positional information of input features 

through positional encodings [8]. Although originally 

tailored for NLP, transformers have been adapted for time 

series applications through various model variations, such 

as Informer, Autoformer, and SpaceTimeFormer, which 

aim to address challenges like quadratic memory 

complexity and scaling for long input sequences [9–11]. 

These advancements have demonstrated the versatility of 

transformers in producing competitive results across 

domains, including time series forecasting [12]. This 

research paper presents a comprehensive evaluation of 

four transformer models—Vanilla Transformer, 

Autoformer, Informer, and SpaceTimeFormer—for 
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energy consumption forecasting, alongside a benchmark 

comparison with two RNN-based models to offer 

additional insights. Using time-series data gathered from 

smart meters, the study assesses the performance of each 

model across multiple statistical metrics to determine the 

most effective approach. This research presents a complete 

evaluation of transformer models versus proven RNN-

based methodologies within the specific context of energy 

consumption forecasts, and specific research questions 

leading this work include How do transformer models 

compare to standard RNN-based models in terms of 

predicting accuracy for energy consumption; What are the 

strengths and limits of each model when applied to this 

dataset. This study offers valuable insights into which 

architectures are most effective for predicting energy 

demand by assessing multiple statistical metrics across 

different models. The findings offer valuable insights into 

the applicability of transformer models in this domain and 

will assist smart grid operators, utility firms, and energy 

providers in selecting optimal forecasting models tailored 

to their specific operational needs.  

The remainder of this paper is organized as follows: 

Section II provides a review of the existing literature on 

energy consumption forecasting models. Section III 

describes the dataset, outlines the preprocessing steps, and 

explains the methodology, including the models’ 

architecture, configurations and evaluation criteria. 

Section IV presents the experimental results along with 

their analysis. Finally, Section V summarizes the key 

findings and explores potential directions for future 

research. 

II. LITERATURE REVIEW 

Multiple approaches have already been used to predict 

time-series data in energy consumption applications. 

Authors in this study offered a system that uses an LSTM-

based model to predict energy consumption and influence 

citizens’ consumption behavior [13], and in this research, 

Lin et al. [14] have proposed forecasting energy 

consumption by combining LSTM and an attention 

mechanism. They employed the attention method to 

process data in the training phase and assign weights to 

data sequences in the input so that the LSTM network 

could concentrate on the correct sequence segment. 

Applying this model, they learned efficiently the pattern of 

electricity changes and improved the prediction’s accuracy. 

In Oliveira’s study [15], they presented a reshaped multi-

head transformer architecture by focusing on a multi-

variable time-series to efficiently predict the buildings’ 

electricity consumption by learning to weigh the attention 

matrix of features. They offered an interesting 

performance when comparing the modified vanilla 

transformer-based model performance with other RNN 

models. Sparse transformers have also been used in 

forecasting energy consumption data. Chan and Yeo [7] 

proposed a sparse transformer-based method to predict 

electricity load at the household and city levels. Their 

approach achieved similar accuracy to the state-of-the-art 

RNN based method while surpassing it in speed by 5 times. 

In another work, Chan and Yeo [6] also proposed an 

approach for predicting time series data based on sparse 

transformers. They offered a model that achieved an 

accuracy similar to the state of art methods, on the London 

Smart Meter dataset while outperforming it by 10 times in 

inference speed. SpaceTimeFormer has also been used to 

predict house load consumption data in Paris, France [16]. 

They proposed a self-attention-based model to capture 

long term dependencies and predict long term sequences 

of data. Saoud et al. [2] offered a hybrid model to predict 

residential power consumption based on the Stationary 

Wavelet Transform (SWT), the transformer architecture, 

and the Time2vec model. They predicted the local features 

of the energy consumption with SWT and modeled the 

local trends with the transformer to predict the next 

wavelet subband. The vanilla transformer has been used in 

combination with LSTM to accurately predict the time 

series data of climate change from 2015 to 2018 in 

Spain [17]. The Autoformer model was employed to offer 

a robust model that predicts 15 min and 1h load data of the 

Pecan Street dataset in Texas [18]. And to offer a novel 

approach to predict energy consumption that can adjust the 

original sequence according to the actual situation while 

analyzing the impact of working days and seasonal 

changes on the electricity demand in Taixing City and Ne 

South Wales  [19]. Li et al. [20] proposed a model 

combining the Autoformer transformer architecture and 

the Time2Vec model. They tested their model on a 

monthly total electricity consumption dataset of China 

from 2009 to 2020. They utilized the Time2vec model to 

enhance the transformer performance, by effectively 

embedding the month sequences in the encoder-decoder 

architecture of the Autoformer. In different research, the 

Informer model was employed. For example, Xu et al. [21] 

have built an Informer based model to predict power load 

in Nanchang, and found that it has advantages over cyclic 

NNs. The multi-step predicting model used seq2seq 

structure along sparse self-attention mechanism.  

Li et al [22] proposed a hybrid model, that was tested on 

the BDG2 dataset, where Informer is combined with the 

Ensemble Empirical Modal Decomposition (EEMD), and 

the Particle Swarm Optimization (PSO) Algorithm is used 

to optimize the model’s parameters. Time-series data have 

also been predicted using other techniques. For example, 

in this study, the author proposed using Stochastic 

Configuration Networks (SCNs) to predict traffic 

flow [23], while others offered an adaptive spatio-

temporal graph multi-attention network intended for 

intelligent forecasting of time-series data with intricate 

spatio-temporal features [24]. 

III. MATERIALS AND METHODS 

A. Dataset and Data Preprocessing 

The dataset used in this paper contains smart meter data. 

The energy use data in KW of around 6,000 homes and 

companies in Ireland during 2009 and 2010 was gathered 

once every thirty minutes, each day of the week, by the 

Irish Smart Metering Project [25]. Hourly compilations of 

the time series data were made, and any missing or null 

values were eliminated. After creating input characteristics 
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at comparable ranges using a min-max normalization into 

the [0, 1] interval, the K-Means approach is used to cluster 

data into groups based on typical electrical tendencies. The 

clustering process plays a crucial role in enhancing model 

performance by, for example, guiding model selection, 

reducing noise and improving feature representation. 

Clustering helps to group similar consumption profiles, 

which can reduce noise and variability within each cluster. 

By training models on more homogenous subsets of data, 

we mitigate the effects of outliers and extreme values that 

could skew predictions. Each cluster can be treated as a 

unique subset with its characteristics, enabling models to 

learn specific patterns that are relevant to that group. Also, 

the clustering process allows for a more targeted feature 

representation. Each cluster can be treated as a unique 

subset with its characteristics, enabling models to learn 

specific patterns that are relevant to that group. The 

selected models are then applied to a cluster to forecast 

energy consumption. The models have some similar 

parameters (200 epochs, a batch size of 64, a sequence size 

of 10, and a dropout rate of 0.25). The dataset was divided 

into 80% training and 20% test samples, with 10,272 

observations in the training set and 2,568 in the testing one.  

B. Methodology Workflow 

In this section we examine the workflow of the proposed 

methodology to forecast energy consumption. By 

implementing four transformer models, we evaluate their 

performance and highlight the efficient model. Fig.  1 

illustrates the process we followed.  

 

Fig. 1. The methodology workflow for energy consumption forecasting. 

C.  The Transformer Models 

1) Vanilla transformer 

The transformer receives the input sequence for the 

encoder and decoder layers as well as the decoder layer’s 

output sequence during the training phase. Fig. 2 and 3 

depict the structure of a transformer. The input sequence 

initially passes through a linear layer, with d_model 

serving as the output size and the number of features 

serving as the input size. The transformer can process the 

items of a sequence in parallel, thus increasing the speed 

of training compared to an LSTM and effectively utilizing 

the GPU. However, the transformer uses positional 

encoding to explain the order of each item in the sequence, 

since data are not sequentially processed. The positional 

encoding layer generates a matrix with rows of length n 

and columns of length d_model. The sine and cosine 

functions are used, respectively, to determine the even and 

odd values for each item. The dimension index (i) and the 

current location (k) are represented respectively in Eqs. (1) 

and (2). 
 

Fig. 2. Structure of a transformer [7]. 
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Fig. 3. The structure of a transformer with two encoder-decoder blocks. 

 𝑃(𝑘, 2𝑖) = sin⁡ (
𝑘

𝑛𝑖
2/ d_model 

)  (1) 

 𝑃(𝑘, 2𝑖 + 1) = cos⁡ (
𝑘

𝑛𝑖
2/ d_model 

) (2) 

This new matrix is fed to an attention block where it is 

duplicated three times; each matrix goes to a different 

linear layer which outputs three similarly structured 

vectors of parameters: value (V), key (K) and query (Q). If 

multi-head attention is performed, each vector is split into 

p equal parts, and a dot product between Qp and Kp is 

performed, forming QK.  

 Attention scores = 𝑄 ⋅ 𝐾  (3) 

This newly formed matrix explains the relationship that 

all the items in the sequence have with each other. The 

values in the matrix are called the attention scores. This 

attention score matrix goes through a SoftMax activation 

function, transforming the attention scores into weights 

between 0 and 1. These weights are then divided by the 

square root of d_model and multiplied with V.  

The higher the weight, the more important the item is 

for predicting the output sequence. 

 Attention =  SoftMax (
 Attention⁡scores 

√ d_model 
) 𝑉 (4) 

After multiplying each of the several heads of the QK 

and V values, they may be concatenated once again to 

create a single matrix, which will be given to a linear layer 

after normalization. With the exception of the input 

sequence, the decoder block’s first stages are identical to 

those of the encoder block. Similar to the encoder part, a 

linear layer is applied to the input before the positional 

encoder is performed. The sequence then enters an 

attention block, during which the output is normalized. 

Then comes the encoder-decoder attention block. The 

query, key, and value matrix are expected as input. The 

decoder block provides the value matrix, while the encoder 

block provides the query and key matrices. The output of 

the third attention block is going to be normalized before 

being passed into a linear layer. And a SoftMax activation 

function will be employed depending on whether the task 

is regression or classification. Similar to a typical feed-

forward neural network, the output is compared to the 

correct sequence, and the errors are propagated backward. 

2) Informer 

According to recent research, transformers outperform 

RNN-type models in terms of expressing long-distance 

dependencies. Transformers, on the other hand, have three 

challenges: the quadratic complexity of computation of the 

self-attention mechanism, high memory utilization, and 

poor inference in anticipating long-term outcomes. As a 

result, the developers of Informer [9] improved the 

transformer model to make it better computationally, 

memory, and architecturally proficient while retaining 

stronger predictive capability. As shown in Fig. 4, it is an 

encoder-decoder structure, with the self-attention 

distillation mechanism positioned in the encoder layer. 

Informer produces a sparse attention using the keys and 

crucial queries. The attentiveness scores show long-tailed 

distributions between key and critical queries. In reality, 

the majority of scores are low, with only a handful being 

high. Then, Informer concentrates on modeling those with 

significant attention, while the remainder are neglected. 

This approach generates an organization of sparse 

attentions, which significantly enhances computing 

efficiency. Informer additionally brings in self-attention 

distillation across every two levels of the transformer 

architecture. A convolution technique is performed to cut 

the sequence in half, which greatly lowers the training 

overhead. Informer uses a method at the decoder stage to 

forecast the results of numerous time steps at once, which 

can help to lessen the cumulative error issue. Informer 

developed the notion of sparse bias, using the LogSparse 

mask approach [26], and dramatically lowered the 

computing cost of the classic transformer model from 

O(L2) to O(L log L). 

3) Autoformer 

Autoformer [10] is an improved version of 

transformer  [8] that optimizes it for time series cases, with 

a focus on managing sophisticated temporal patterns and 
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overcoming the bottlenecks of compute efficiency and 

information consumption. Fig. 5 depicts its 

architecture  [10]. Autoformer decomposes trend items 

into seasonal things and extracts seasonal elements using 

the moving average approach.  

The trend items of every window are produced by 

computing the mean value of the windows in the initial 

input time series, and thus having the trend items for the 

whole series. Also, the seasonal term can be calculated 

by using the addition model to subtract the trend from the 

initial input sequence. Using its own internal operators, 

Autoformer can successfully distinguish a variable's 

general trend from the projected hidden variables. Its core 

consists of the series decomposition block module and an 

improved auto-correlation Process for multi-head attention, 

which allows it to attain an O(L log L) complexity. It 

incorporates the decomposition as a built-in block into the 

deep forecasting model and creates the auto-correlation 

process to identify period-based connections and 

aggregate comparable sub-series from underpinning 

periods. 

 

 

Fig. 4. The Informer model’s architecture [8]. 

 

Fig. 5. The Autoformer model’s architecture. 

4) SpaceTimeFormer 

SpaceTimeFormer [11] lacks the iterative structure of 

an RNN, hence it is permutation invariant, and altering the 

order of the input data has no influence on the end result. 

The data for the multivariate time series forecasting job is 

encoded and decoded using a combination of local and 

global attention. To better discriminate between input from 

distinct variables in distinct time steps, the model separates 

the transformer’s embedding layer into time embedding 

and variable embedding. The encoder can choose any 

segment from the training set as its data. The model uses 

time2vec to encode information in the time dimension and 

the anticipated data’s relative position, as well as to learn 

seasonal properties. The relative position information is 

the location of the current data point over the whole coding 

sequence, whereas the time information primarily consists 

of certain calendar characteristics like the year, month, 

hour or day. For further operations, the output of the time 

embedding appears in the transformer model’s input 

dimension. The model can discriminate between distinct 

time steps because of time embedding; however, it still 

cannot distinguish between different variables. The model 

must also differentiate between various features within the 

same sequence as all of the features are in an identical 

sequence.  
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Fig. 6. The SpaceTimeFormer model’s architecture. 

To identify which time-series data are derived from 

which initial variables in this situation, an embedding must 

be included for each variable. In DL, this calculation is 

processed simply as a standard embedding layer. The 

SpaceTimeFormer architecture is shown in Fig.  6 [11]. 

D. Complexity Comparison 

The computational complexity of different models is a 

critical factor when applying transformer-based 

architectures to TSF. In particular, the self-attention 

mechanism in transformers, which allows models to 

capture long-range dependencies, can be computationally 

expensive, especially for long sequences.  

To address this, recent advancements such as Informer 

and Autoformer have introduced sparsity and series 

decomposition mechanisms to improve efficiency. With N 

as the input sequence length and d as the hidden dimension, 

Table I compares the algorithmic complexity of several 

transformer-based models (Vanilla Transformer, Informer, 

Autoformer, and SpaceTimeFormer) as well as recurrent 

models (LSTM and RNN), providing a detailed 

breakdown of their self-attention and overall layer 

complexities. These complexities highlight the trade-offs 

between model expressiveness and computational 

efficiency, which are essential considerations when 

scaling models to large time-series datasets. 

TABLE I. THE COMPLEXITY OF POPULAR MODELS APPLIED TO TSF 

Model 
Self-Attention 

Complexity 

Overall Training Complexity (Per Layer) 
Notes 

Time Memory 

Vanilla 

Transformer 
O(N2 ⋅ d) O(N2 ⋅ d) O(N2 ⋅ d) Has quadratic complexity due to self-attention. 

Informer O(N ⋅ log N ⋅ d) O(N ⋅ log N ⋅ d) O(N ⋅ log N ⋅ d) 
Sparse attention in Informer reduces complexity to 

logarithmic time, making it efficient for long time-series. 

Autoformer O(N ⋅ d) O(N ⋅ d) O(N ⋅ d) 
Autoformer uses series decomposition and has linear 

complexity, making it highly efficient for time-series. 

SpaceTimeFormer O(N2 ⋅ d) O(N2 ⋅ d) O(N2 ⋅ d) 
Similar to the Vanilla Transformer but handles 

spatiotemporal data. Complexity remains quadratic. 

LSTM No attention O(N ⋅ d²) O(N ⋅ d²) 
The LSTM processes sequences step by step. Its complexity 

depends on the sequence length and hidden units, with 
quadratic complexity in the hidden dimension. 

RNN No attention O(N ⋅ d²) O(N ⋅ d²) 

Similar to LSTM in complexity but lacks the gating 

mechanisms, which makes it generally less effective for long 

sequences. 
 

IV. RESULT 

In this section, we predict the cluster’s hourly energy 

consumption. We conducted an evaluation through 

different lenses to assess the transformer model with the 

highest performance in forecasting energy consumption. 

The results are presented in Table II, highlighting the 

values for the performance metrics discussed earlier (R², 

MAPE, RMSE, MAE). We added the performance results 

of two RNN-based models tested on the same dataset to 

enhance and enrich the comparison analysis. A vanilla 

LSTM model performance [5] and a Lag-Augmented 

LSTM (LA-LSTM) model results [13]. Figs. 7–10 

illustrate each model’s performance by plotting the 

training and testing loss across epochs and the time-series 

graph to visualize the difference between the predicted and 

the actual values and analyze the differences in 

performance between the studied transformer models. This 

combination of metrics is used to emphasize the 

importance of a multifaceted evaluation approach in 

assessing the predictive capabilities of the models 

accurately. 

TABLE II. STATISTICAL METRICS’ VALUES OF THE COMPARED 

MODELS 

Model MAE RMSE MAPE R² 

Vanilla Transformer 0.574 0.946 0.098 0.964 

Informer 0.658 1.147 0.100 0.952 
Autoformer 0.540 0.764 0.091 0.979 

SpaceTimeFormer 1.149 1.478 9.733 0.921 

LSTM 1.599 2.106 0.195 0.841 
LA-LSTM 0.359 0.492 0.06 0.986 

 

 
(a) 
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(b) 

Fig. 7. Visualizing the Autoformer performance: (a) Train and test loss 

across epochs; (b) The time-series plot of the predicted and actual data 
values. 

 
(a) 

 
(b) 

Fig. 8. Visualizing the Vanilla transformer performance: (a) Train and 

test loss across epochs; (b) The time-series plot of the predicted and actual 
data values. 

 
(a) 

 
(b) 

Fig. 7. Visualizing the SpaceTimeFormer performance: (a) Train and test 
loss across epochs; (b) The time-series plot of the predicted and actual 
data values. 

 
(a) 

 
(b) 

Fig. 8. Visualizing the Informer performance: (a) Train and test loss 

across epochs; (b) The time-series plot of the predicted and actual data 
values. 

V. DISCUSSION 

The evaluation metrics in Table II highlight remarkable 

differences in the performance of the tested models on the 

energy consumption forecasting task. Among the 

transformer models trained and tested in this study, the 

Autoformer demonstrated superior efficiency, achieving 

the lowest MAE (0.540), RMSE (0.764), and MAPE 

(0.091) while yielding the highest R² value (0.979). This 

suggests that Autoformer is particularly well-suited for 

capturing both short-term and long-term temporal 

dependencies in this dataset, outperforming other 

transformer-based approaches. The Vanilla Transformer, 

with an R² of 0.964, also performed well, showcasing its 

robustness in time-series forecasting. Its metrics (MAE: 

0.574, RMSE: 0.946, MAPE: 0.098) indicate a strong 

balance between accuracy and computational simplicity. 

However, its performance was slightly behind Autoformer, 

which is likely due to the latter’s specialized mechanisms 

for multi-scale temporal pattern extraction, and suggests 

that it slightly struggles with decomposing complex 

temporal structures in the data. The Informer, while 

exhibiting decent performance (MAE: 0.658, RMSE: 

1.147, MAPE: 0.100, R²: 0.952), lagged behind both the 

Vanilla Transformer and Autoformer. Its suboptimal 

performance might stem from challenges in handling this 

dataset’s characteristics, such as seasonality or non-

stationarity. SpaceTimeFormer, with the lowest R² among 

transformers (0.921), struggled in this context. Its 

relatively higher MAE (1.149), RMSE (1.478), and MAPE 

(9.733) suggest it was less effective at capturing the 

dataset’s temporal patterns, potentially due to the added 

complexity in integrating spatial and temporal 

dependencies. Comparing the transformer models to the 

LSTM-based approaches, the LA-LSTM achieved 

remarkable results (MAE: 0.359, RMSE: 0.570, MAPE: 
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0.045, R²: 0.986), outperforming all other models, 

including the Autoformer. These results emphasize the 

impact of augmenting the LSTM architecture with lagged 

windows of past observations, allowing it to excel in 

identifying temporal dependencies specific to this dataset, 

and revealed that while transformer-based models 

generally outperform LSTM in direct implementations, 

augmenting LSTM with lagged inputs can result in 

substantial improvements, outperforming even the best 

transformer models on this dataset. The LA-LSTM’s 

enhancement with lagged inputs further amplifies LSTM 

networks’ capability, allowing it to maintain relevant 

information across longer sequences than traditional 

LSTMs. While transformer architectures like Autoformer 

are designed for broader applications and can handle 

various types of data effectively, the specific 

enhancements made in LA-LSTM for time series data 

allow it to outperform these models in scenarios where 

historical context plays a crucial role. If the dataset 

exhibits strong autocorrelation or seasonal patterns, LSTM 

enhancements can provide superior predictive power. 

Therefore, for datasets where historical values 

significantly influence future outcomes, such as financial 

or environmental data, LA-LSTM is likely a better choice, 

and for tasks that benefit from parallel processing and 

extensive contextual understanding across longer 

sequences (e.g., multi-step forecasts), transformers may be 

more advantageous. Thus, LA-LSTM can outperform 

transformer models under specific conditions related to 

dataset characteristics and forecasting requirements. The 

Vanilla LSTM, however, was significantly outperformed 

by all transformer models and LA-LSTM, suggesting that 

while LSTMs are effective for many sequence-to-

sequence tasks, their reliance on gated recurrent units and 

sequential processing makes them less efficient in 

capturing the global temporal dependencies that 

transformer-based models handle more effectively. This 

reinforces the importance of either advanced architectural 

enhancements or leveraging the latest transformer-based 

innovations for handling complex temporal data. This 

study underscores the efficacy of transformer models, 

particularly the Autoformer, for time-series forecasting in 

energy consumption datasets, and the results emphasize 

the critical role of architectural innovation in improving 

time-series forecasting accuracy. While LA-LSTM offered 

the best overall performance and demonstrated the value 

of combining recurrent architectures with lagged features 

to enhance forecasting accuracy, its results serve as a 

benchmark from existing literature rather than a primary 

focus of this research. The findings establish transformer 

models as state-of-the-art solutions for time-series 

forecasting, with Autoformer emerging as the most 

efficient transformer for this dataset, due to its 

decomposition-based design, which aligns well with the 

periodic and trend-based structure of energy consumption 

data.  

VI. CONCLUSION 

This study presents a complete evaluation of 

transformer models versus proven RNN-based 

methodologies within the specific context of energy 

consumption forecasts. It conducted a comprehensive 

evaluation of transformer-based models, focusing on their 

ability to handle complex temporal dependencies in time-

series data. The outcomes of this research are particularly 

significant for smart grid operators, utility firms, and 

energy providers who aim to improve the precision of their 

energy demand predictions. Among the transformer 

models tested, Autoformer emerged as the most effective, 

achieving the best performance across all metrics (an MAE 

of 0.540, an RMSE of 0.764, a MAPE of 0.091, and an R² 

equal to 0.979). Its decomposition-based design proved 

adept at capturing both short-term fluctuations and long-

term trends, making it particularly suitable for the energy 

consumption dataset used. The Vanilla Transformer also 

demonstrated strong performance, reflecting its versatility 

and computational efficiency, though it fell slightly behind 

Autoformer in handling intricate temporal patterns. The 

Informer and SpaceTimeFormer models showed varying 

levels of success, with SpaceTimeFormer struggling the 

most, possibly due to the additional complexity of 

integrating spatial and temporal dependencies, which may 

not have been as critical in this dataset. These findings 

underscore the transformative potential of transformer 

models for time-series forecasting in energy-related 

applications, and establish transformer models, especially 

Autoformer, as state-of-the-art solutions for time-series 

forecasting. The results highlight the critical role of 

architectural advancements, such as decomposition and 

attention mechanisms, in enhancing forecasting 

performance for complex datasets like energy 

consumption. This work paves the way for further 

exploration into transformer-based architectures, 

encouraging their adoption in real-world forecasting 

scenarios. The contributions of this study can further be 

enhanced in future research. Future work could focus on 

strengthening predictive performance by developing 

advanced hybrid models, such as integrating LA-LSTM 

with Autoformer to boost accuracy and robustness. Also, 

we can explore methods to enhance the model’s 

interpretability by applying Explainable AI (XAI) 

techniques and addressing the models’ generalizability 

across different datasets. 
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