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Abstract—The complexity and variety of language included
in policy and academic documents make the automatic
classification of research papers based on the United Nations
Sustainable Development Goals (SDGs) somewhat difficult.
Using both pre-trained and contextual word embeddings to
increase semantic understanding, this study presents a
complete deep learning pipeline combining Bidirectional
Long Short-Term Memory (BiLSTM) and Convolutional
Neural Network (CNN) architectures which aims primarily
to improve the comprehensibility and accuracy of SDG text
classification, thereby enabling more effective policy
monitoring and research evaluation. Successful document
representation via Global Vector (GloVe), Bidirectional
Encoder Representations from Transformers (BERT), and
FastText embeddings follows our approach, which comprises
exhaustive preprocessing operations including stemming,
stopword deletion, and ways to address class imbalance.
Training and evaluation of the hybrid BiLSTM-CNN model
on several benchmark datasets, including SDG-labeled
corpora and relevant external datasets like GoEmotion and
Ohsumed, help provide a complete assessment of the model’s
generalizability. Moreover, this study utilizes zero-shot
prompt-based categorization using GPT-3.5/4 and Flan-T5,
thereby providing a comprehensive benchmark against
current approaches and doing comparative tests using
leading models such as Robustly Optimized BERT
Pretraining Approach (RoBERTa) and Decoding-enhanced
BERT with Disentangled Attention (DeBERTa).
Experimental results show that the proposed hybrid model
achieves competitive performance due to contextual
embeddings, which greatly improve classification accuracy.
The study explains model decision processes and improves
openness using interpretability techniques, including
SHapley Additive exPlanations (SHAP) analysis and
attention visualization. These results emphasize the need to
incorporate rapid engineering techniques alongside deep
learning architectures for effective and interpretable SDG
text categorization. With possible effects on more general
uses in policy analysis and scientific literature mining, this
work offers a scalable and transparent solution for
automating the evaluation of SDG research.
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Short-Term Memory-Convolutional Neural Network

(LSTM-CNN), Global Vector (GloVe) embeddings

[. INTRODUCTION

Text categorization involves the automatic allocation of
predefined categories to unstructured text data. Within the
context of the Sustainable Development Goals (SDGs)
established by the United Nations, precise and efficient
text classification is of highest importance. The SDGs
consist of 17 associated goals serving as a framework to
deal with social, economic, and environmental challenges.
There is a pressing need for effective tools that can
systematically organize, categorize, and assess large
volumes of textual data, as the volume of research output
related to these goals continues to grow rapidly across
various scientific disciplines [1].

Automated text classification systems improve SDG
activities by facilitating the rapid identification and
mapping of research papers, policy documents, and reports
to their relevant SDG categories [2]. This enhances the
ability to identify and analyze knowledge gaps and
emerging trends within the global sustainability agenda,
while also supporting evidence-based decision-making for
policymakers and stakeholders. The necessity for robust
methodologies powered by artificial intelligence is
underscored by the inadequacy of traditional human
classification methods to manage the scale and intricacy of
contemporary scientific literature [3].

This study aims to develop and evaluate a
comprehensive deep learning pipeline for the automated
classification of research articles, utilizing metadata
obtained from the Scopus database in relation to the
Sustainable Development Goals [4]. This study aims to
achieve the following specific objectives:

An end-to-end data processing and modeling pipeline
has been developed to align with SDG text categorization,
encompassing data collection, preprocessing, model
creation, training, evaluation, and prediction. In
comparison to established baseline models such as Long
Short-Term Memory (LSTM), BiLSTM, CNN, and
BERT, the objective is to develop and benchmark a hybrid
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deep learning model that integrates Convolutional Neural
Networks (CNNs) with Bidirectional Long Short-Term
Memory (BILSTM) layers, utilizing pre-trained GloVe
embeddings [5]. The objectives are mentioned in the
following pointText categorization involves the automatic
allocation of predefined categories to unstructured text
data. Within the context of the Sustainable Development
Goals (SDGs) established by the United Nations, precise
and efficient text classification is of the highest
importance. The SDGs consist of 17 associated goals
serving as a framework to deal with social, economic, and
environmental challenges. There is a pressing need for
effective tools that can systematically organize, categorize,
and assess large volumes of textual data, as the volume of
research output related to these goals continues to grow
rapidly across various scientific disciplines [1].

Automated text classification systems improve SDG
activities by facilitating the rapid identification and
mapping of research papers, policy documents, and reports
to their relevant SDG categories [2]. This enhances the
ability to identify and analyze knowledge gaps and
emerging trends within the global sustainability agenda
while also supporting evidence-based decision-making for
policymakers and stakeholders. The necessity for robust
methodologies powered by artificial intelligence is
underscored by the inadequacy of traditional human
classification methods to manage the scale and intricacy of
contemporary scientific literature [3].

This study aims to develop and evaluate a
comprehensive deep learning pipeline for the automated
classification of research articles, utilizing metadata
obtained from the Scopus database in relation to the
Sustainable Development Goals [4]. This study aims to
achieve the following specific objectives: An end-to-end
data processing and modeling pipeline has been developed
to align with SDG text categorization, encompassing data
collection, preprocessing, model creation, training,
evaluation, and prediction. In comparison to established
baseline models such as LSTM, BiLSTM, CNN, and
BERT, the objective is to develop and benchmark a hybrid
deep learning model that integrates Convolutional Neural
Networks (CNNs) with Bidirectional Long Short-Term
Memory (BILSTM) layers, utilizing pre-trained GloVe
embeddings [5]. The objectives are mentioned in the
following points:

e Utilizing multiple datasets and various hardware
setups, and creating assessments procedures by
using measures such as accuracy, specificity, and
efficiency, one can effectively evaluate the
capability and robustness of the proposed method

e Providing a scalable and adaptable methodological
framework that facilitates the automated analysis
and categorization of literature related to the SDGs,
thereby supporting research, policy, and decision-
making processes in sustainable development.

This work seeks to advance the current methodologies
in SDG text classification while offering practical
solutions for the automated organization and examination
of sustainability research [5].

Natural Language Processing (NLP) includes an
important procedure of text classification that involves
assigning text to predetermined categories [6]. The
procedure includes a wide range of applications, such as
recognizing spam, subject categorization, book title
classification, and more. The rapid growth of digital text
data increased the demand for robust and reliable text
classification problems [7]. In recent studies, Deep
Learning (DL) considered an outstanding method for text
classification, providing significant results compared to
conventional machine learning methods [8]. While in our
study, we concentrates on utilizing DL, especially via
TensorFlow and Keras, to categorize elements related to
the United Nations’ SDGs. The SDGs contain 17
worldwide goals initiated by the United Nations in 2015
for addressing various problems in society, the economy,
and the environment [9]. These objectives propose to
achieve a healthier and more sustainable future for
everyone through 2030 [10]. Due to the substantial amount
of textual data produced about these objectives, there is an
increasing requirement for computerized setups that are
capable of accurately categorizing and evaluating such
content [11]. Text categorization models serve a purpose
in this context for categorizing research papers, reports,
and articles according to their relevance to certain
SDGs [12].

The primary objective of this study is to develop a
considerable route for text classification with DL
methodologies. The objective includes importing data and
text preprocessing, building models, training, testing, and
prediction. Our study intends to show the ability of DL
models in properly categorizing text into relevant SDG
categories by implementing this method on SDG-related
data. The goal of this effort is to establish a comprehensive
framework that can possibly be customized for similar text
categorization challenges across different domains. Text
classification plays an essential role in the organization
and handling of massive text data sets. Within the
mechanisms of the SDGs, it supports scholars, policy
makers, and businesses in quickly recognizing and giving
priority to important information. Classifying articles,
statements, and publications according to the SDGs helps
for better decision-making processes and the allocation of
resources. Additionally, automated text classification can
considerably minimize the time and effort associated with
manual sorting, which leads to increased effectiveness and
productivity. Traditional text classification techniques,
like Support Vector Machines (SVMs) and Random
Forests, depend on manually gathered features and usually
require much preprocessing [13]. Although these methods
have proved to have good outcomes for many different
scenarios, they have limitations in their capacity of
recognizing complex data patterns [14]. Nonetheless, DL
methods have advanced text classification by autonomous
retrieving features from unstructured text input.
Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) have shown exceptional
effectiveness in numerous text classification tasks.
Recently, attention-based models, such the Transformer
and its variations, have further improved -current
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approaches by allowing parallel processing and
recognizing long-term relationships in text data [15]. The
text data associated with the SDGs is frequently
inconsistent and unstructured, covering multiple domains
and subjects. The distribution, even with each category,
could show severe asymmetry, with certain SDGs
appearing more frequently than others. These issues
require the creation of durable procedures for
preprocessing and model architecture suitable to handle
these types of data complications [16]. So, it cannot be
directly utilized in new files. Accordingly, the study
proposed a text classification approach based on LSTM to
solve the issue mentioned above [17]. The model’s first
stages create a separate class or category for each file in
the data by dependent analysis, then capture the contextual
information of words by LSTM to learn the importance of
irrelevant neighboring nodes. Finally, the feature
representation of all nodes is combined to create a
semantic embedding of the text graph for label
prediction [18]. The text classification has turned into a
graph classification problem. The main contributions of
this paper are as follows:
e Development of a unified deep learning approach:
proposing a modular framework that integrates
BiLSTM and CNN architectures with contextual

embeddings  (BERT/FastText),  specifically
optimized for SDG-related document
classification.

e Incorporation of advanced preprocessing and class
balancing: This includes stemming, stopword
removal, and methods to address class imbalance
such as oversampling and focal loss.

e Integration of interpretability methods: enhancing
model transparency by incorporating attention
visualization, SHapley Additive exPlanations
(SHAP), and Local Interpretable Model-agnostic
Explanations (LIME) to explain predictions, which
is crucial for policy-influenced tasks.

e Comprehensive benchmarking against State of
The Art (SOTA) models: Extensive experiments
benchmark the proposed approach against SOTA
models such as RoBERTa, DeBERTa, and large
language models (GPT-3.5/4 [19], Flan-T5), using
both SDG-specific and non-SDG datasets.

e Explicit analysis of hardware impact is conducted
to analyze the trade-offs between Graphical
Processing Units (GPU) and Central Processing
Units (CPU) training/inference, providing
practical insights for real-world deployment.

These contributions collectively advance the field of
SDG text classification by presenting a robust,
interpretable, and scalable solution, with thorough
empirical validation and real-world applicability. The
remainder of this paper is organized as follows: Section 11
reviews related work, including recent advances in deep
learning and sentiment analysis, and situates our approach
within the current literature. Section III details the
methodology, encompassing data preprocessing, the
proposed hybrid architecture, contextual embedding
strategies, interpretability enhancements, and

experimental setup. Section IV presents experiment
configurations. The results including benchmarking
against state-of-the-art models, analysis of hardware
impact, and interpretability findings are shown in
Section V. Section VI shows the discussion of the results.
Section VII concludes the paper by summarizing key
contributions and outlining potential directions for future
research.

II. RELATED WORK

The literature shows many remarkable advancements in
text classification using various artificial intelligence
models as numerous studies indicate that deep learning
models including CNNs and RNNs such as LSTM and
BILSTM surpass conventional machine learning
approaches due to their capacity to separately extract and
represent complicated features from raw datasets [20].
There is continuous argument about the effectiveness of
various deep learning architectures related to data type and
distribution. Some studies show that CNNs exceed in
capturing local patterns, whereas others such as RNN-
based models are more adept at managing long-range
dependencies in sequential data, especially in language
tasks that require contextual prior understanding [21].
Transformer-based approaches such as BERT have
established new performance in various NLP applications
by effectively capturing bidirectional context. However,
these models typically necessitate  significant
computational processing and huge datasets for training
certainly constrain their practical applicability [22].

A further area of intersection involves the application of
pre-trained word embeddings, for instance GloVe and
word2vec to improve model performance. Most recent
studies incorporate these embeddings; however, outcomes
differ based on task complexity and the quality of domain-
specific training data [23]. Several studies advocate hybrid
or ensemble models that integrate CNNs, RNNs, or
attention mechanisms, asserting enhanced accuracy and
robustness. However, some researchers notify that more
architectural complexity may result in extended training
duration time and a probability of overfitting if sufficient
regularization or optimization is not applied. Unreliability
exists related to data diversity; some studies used multi-
domain datasets whereas others focus on domain-specific
resulting in incompatible conclusions about model
generalizability [24].

While there is agreement on how DL is useful for text
classification, the literature indicates continued
experimentation related to the best model architecture, the
trade-off between complexity and efficiency, and the
influence of dataset properties. The identified
contradictions emphasize the necessity for comprehensive,
comparative methodologies, as proposed in this study, to
systematically assess hybrid deep learning models
utilizing large, diverse, and well-assembled datasets
relevant to SDG classification [25].

Many comparisons have assessed the efficiency of
many artificial intelligence models for text classification.
A survey study conducted a quantitative analysis of
various text classification approaches on familiar metrics,
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providing facts about their effectiveness. Deep learning
algorithms could automatically develop significant feature
presentations from data via incremental learning,
minimizing the requirement for manual feature extraction
and achieving exceptional precision in tasks such as
classification [26]. CNNs may take advantage of the
translational consistency of data and local relationships,
leading to their importance in image processing, computer
vision, and NLP [27]. Kim [28] was the first to utilize CNN
for text classification, providing a model that mixes static
and dynamic lines of vocabulary into separate channels
and utilizes multi convolutional kernels. The model was
defined to create the ability for convolutional processes to
continuously gather features at multiple scales, pooling
operations for efficiently acquiring local text features, with
its high computational capabilities [29]. RNN appears
more suitable for NLP than CNN due to its dynamic
capabilities and competence in dealing with variable-
length inputs while examining dependency over time [30].

Nonetheless, RNNs encountered semantic bias concern,
when words positioned towards the end of a sentence carry
more significance compared to those at the beginning,
therefore affecting the overall semantic accuracy of the
paragraph. As a result, the LSTM model, presented by
Hochreiter et al. [31], carefully ignores prior data in order
to find a solution for the issues of expanding and gradient
cost in RNNSs. In the recent past, the attention procedure
has inspired great interest within scientific society. The
attention procedure emulates human awareness [32],
enabling concentration on more significant elements and
applicable across various NLP assignments. Nonetheless,
models utilizing RNN and CNN mainly focus on word
localization and lack in acquiring information between
remote, non-contiguous words. Liu et al. [33] presented
the attention diffusion procedure in Graph Neural
Networks that contains contextual information from
indirect neighbors within a single layer. Furthermore,
node-level attention technology is applied to achieve a
more error-free document level description. Jia et al. [34]
introduced a more sophisticated network model that relied
on a graph convolutional neural network that showed the
encoding of a large syntactic dependency grammar trees,
lead to multiple heads of attention to acquire dependencies
from the text sequences. Jia et al. [34] determinately
improved the text classification performance through the
integration of capsule networks and semantics.
Wang et al. [35] introduced an intuitive a classification
model that utilizes a unidirectional Graph Convolutional
Networks (GCN), operating without pre-trained word
embeddings in scenarios with a constrained training
dataset for message sharing. Yang et al. [36] introduced a
hierarchical attention network by employing word and
sentence level attention procedures to boost document
classification performance. This method is highly effective
at depicting hierarchical structures in textual content.

Li et al [37] represented a word-sentence
heterogeneous graph to improve interpretability by
creating CoGraphNet. Howard and Ruder [38] created a
deep learning model for NLP. ULMFiT attains superior
results by refining already trained language model for a

particular written classification test, demonstrating the
effectiveness of this deep learning model in NLP.
Devlin et al. [39] presented BERT in their research, a
transformer-based model that succeeds in achieving high
accuracy across given NLP scenarios. BERT’s
bidirectional training helps it to understand context from
both directions, making it particularly effective for text
classification. Yosinski et al [40] examine the
transferability of acquired features across many tasks.
Yosinski et al. [40] interprets the effectiveness of transfer
learning, an increasing methodology for modern text
classification discipline. Liu ef al. [41] made an enhanced
to the BERT by optimizing pre-training methodologies.
RoBERTa achieves superior performance across several
NLP metrics, including text classification, by employing
augmented data and extended learning durations.

Sun ef al. [42] introduced a framework (ERNIE) that
incorporates external information into BERT. ERNIE
attains elevated accuracy in many NLP tasks, including
text categorization, by taking advantage of structured
knowledge during the pre-training phase. Qiu et al. [43]
carried out a survey investigating various essential models
including BERT, XLNet, and GPT, while determining
their layouts, training approaches, and its effectiveness in
NLP tasks, such as classification of texts. Brown et al. [44]
presents GPT-3, a transformer model including 175 billion
parameters. GPT-3 has impressive results in several
natural language processing assignments, including text
categorization, with minimal task-specific fine-tuning.
Zhang et al. [45] proposed a model that directly analyzes
raw text at the character level using CNNs. This model is
especially advantageous for complex grammar or for
processing noisy text in languages. Lample et al. [46]
employed a framework that combines CNNs and LSTMs
for named entity recognition. The solutions discussed
related to text categorization challenges that involve the
identification of local and interrelated sequential
relationships.

Within the framework of SDGs, text classification has
fast evolved as several DL and ML approaches have been
proposed and investigated. Key contributions are reviewed
in this part together with their characteristics, benefits,
constraints, and motivation for the current studies. Several
articles have implemented advanced text classification
employing  various architectures. For instance,
Bai et al. [47] showed how convolutional layers might
capture local textual characteristics by introducing CNNs
for sequence recommendations. LSTM networks for
learning long-term dependencies were proposed by
Hochreiter and Schmidhuber [31], hence establishing the
basis for RNN-based text categorization. Using
transformer architecture to capture bidirectional context
and setting new benchmarks in NLP, Devlin et al. [39]
created BERT. Emphasizing transfer learning and fine-
tuning for text classification applications, Howard and
Ruder [38] presented ULMFiT. Reporting higher accuracy
in text classification, Jang et al. [48] coupled Word2Vec,
CNN, BiLSTM, and attention mechanisms. Emphasizing
the need of hybrid architecture, Kamyab et al [49]
combined CNN, BiLSTM, and GloVe embeddings for
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sentiment analysis. Using a CNN-BiLSTM Hybrid,
Bhuiyan et al. [50] implemented a hybrid model using
social media data. In their system showecase,
Manning et al. [51] emphasized the model simplicity and
robustness, which contributed to its common usage in both
research and commercial NLP applications.

Deep learning models (CNN, LSTM, BERT)
independently learn valuable characteristics from raw
data, hence lowering dependency on human engineering.
Models such as BiLSTM and BERT clearly capture
sequence and context, hence enhancing -classification
accuracy in challenging or ambiguous materials. Pre-

attention mechanisms shows enhanced resilience and
accuracy by combining local and sequential features [52].

Transformer-based models (BERT, RoBERTa) depend
on big datasets and substantial computational resources for
successful training. Unless regularization is properly
applied, hybrid and deep architecture may be overfit,
especially in cases with inadequate or imbalanced training
data [53]. Many models are assessed on general datasets;
their performance on domain-specific or emergent themes
(e.g., SDGs) is unknown. Most studies use English or
single-domain datasets, therefore restricting
generalizability to multilingual or cross-disciplinary SDG

trained language models (BERT, ULMFiT) use  research. Deep models, particularly ensembles or hybrids,
knowledge from big data to enable good performance on  can be difficult to grasp and thereby affect
limited labeled data by. Combining CNNs, RNNs, and  decision-making [54].
TABLE I. COMPARATIVE LITERATURE SUMMARY OF SOME TEXT CLASSIFICATION STUDIES
Authors Model/A h Dataset Aspect Advant Limitati
/Reference ode pproac atase spec vantages 1mitations

LSTM with Spiking

Bai et al. [47] Neural P Systems

Three real-world datasets.

self-attention  Fast, effective for Limited context, not

(LSTM-SNP) networks short texts sequence-aware
. Long-term . .
Hoc_hrelter and LSTM Various dependency Handles long Tram}ng complgxlty,
Schmidhuber [31] learnine sequences vanishing gradient
General Language Understanding Bidirectional Hieh aceurac Hich resource needs
Devlin et al. [39]  BERT (Transformer)  Evaluation (GLUE), Stanford Question context, pre- tra ngs for learnii/l’ Ign training time ’
Answering Dataset (SQuAD) training g ong g
Howard and ULMEFiT (Transfer Internet Movie Database (IMDb), Fine-tuning  Effective with small Underperform on highly
Ruder [38] Learning) Attorney General (AG) News pretrained LM datasets domain-specific tasks
Kamyab et al. CNN + BiLSTM + GloVe Twitter, Yelp Hybrid, Word ) Robustness, Increased rr}odel
[49] embeddings  improved accuracy complexity
Word2vec + CNN + . Multi-layer ~ High classification Risk of overfitting,
Jang et al. [48] BILSTM + Attention News articles hybrid accuracy interpretability
Bhuiyan et al. CNN-BiLSTM Hybrid Social media Hybrld,. deep Enhancec.i q§tect10n, Computational overhead
[50] learning flexibility
Bai et al. [47] LSTM-SNP Three real-world datasets. self-attention  Fast, effective for Limited context, not
networks short texts sequence-aware

Notwithstanding these developments, the automated
categorization of SDG-related material still shows flaws.
Many times, lacking robustness across several SDG areas,
current models do not fully use the extensive,
transdisciplinary metadata accessible in sources such as
Scopus [55]. Customized to the SDG environment and able
of effective training and inference, scalable, flexible
pipelines combining the strengths of CNNs, BiLSTMs,
and pre-trained embeddings are much needed. By
suggesting a hybrid deep learning system that combines
data processing, model construction, and evaluation
utilizing large-scale Scopus information and comparing
performance against state-of-the-art baselines, the present
work fills in these voids [56]. Table I shows a comparative
summary of some of the text classification studies, their
advantages, disadvantages and limitations.

Recent years have witnessed significant progress in
leveraging deep learning and transformer-based models
for text classification across various domains, including
sentiment analysis, fake news detection, and Sustainable
Development Goal (SDG) mapping. Numerous studies
have demonstrated the effectiveness of architecture such
as CNNs, LSTMs, BERT, and their variants on both
generic and domain-specific datasets [57]. For instance,
Hernandez et al. [58] and Zamir et al. [59] applied deep

learning models for sentiment analysis related to social
activities. Highlighting the potential of such techniques for
real-time insights in crisis contexts. However, several
critical research gaps remain unaddressed, which this work
aims to clarify and highlight:

e Limited focus on SDG-specific classification:
most existing studies concentrate on general-
purpose text classification or sentiment analysis,
with comparatively few works addressing the
unique challenges of SDG-related document
categorization. There is a lack of standardized,
large-scale benchmarks and tailored pipelines for
SDG classification.

e Insufficient model interpretability: while deep
learning models have achieved high accuracy,
their “black box” nature limits practical adoption
in policy and research settings where transparency
is crucial. Few prior works integrate state-of-the-
art interpretability tools such as attention
visualization, SHAP and LIME specifically for
SDG text classification.

e Under-explored use of advanced contextual
embeddings: many studies still rely on static word
embeddings such as GloVe or Word2Vec, with
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limited exploration of the impact of contextual and
subword embeddings (e.g., BERT, FastText [19])
on SDG classification performance.

e Scarce benchmarking against the latest SOTA
models and LLMs: systematic comparisons with
recent state-of-the-art models like RoBERTa,
DeBERTa, and large language models (GPT-3.5/4,
Flan-T5) in the context of SDG classification
remains rare. This gap hinders a clear
understanding of the relative strengths and
weaknesses of traditional and transformer-based
approaches for this domain.

e Neglect of practical deployment considerations:
few studies discuss the real-world implications of
hardware choices (GPU vs. CPU), scalability, and
computational cost for deploying deep learning
models in SDG-related applications.

e Inadequate handling of data imbalance and noise:
the challenges posed by imbalanced SDG datasets
and noisy, heterogeneous metadata are often
overlooked, with sparse wuse of advanced
techniques such as Synthetic Minority Over-
sampling Technique (SMOTE), focal loss, or
robust preprocessing.

Deep learning’s recent developments have greatly
enhanced text classification performance. Still, there are
difficulties with computing efficiency, dependability
across domains, and interpretability. This work addresses
the constraints of past methods and offers a scalable, high-
performance solution for automated SDG document
categorization, therefore building on the results of prior
approaches by presenting a hybrid deep learning pipeline
especially tuned for SDG-related research.

The DataCite Metadata Schema has evolved to describe
research datasets, making it easier to find, access or even
cite them in academic publications. Its structured approach
supports interoperability between repositories and is in
line with the Findable, Accessible, Interoperable, Reusable
(FAIR) data movement’s ideas about distributing and
reusing data. In addition, ISO 23081 is another example of
a full structure for managing metadata in records. It gives
guidelines for how to create, keep, and check the quality
of metadata in organizational settings [60].

The FAIR projects with data have encouraged the
creation of more tools for checking and expanding the
quality of metadata. A few examples of automatic
evaluation tools and assessments that comply with FAIR
rules are the FAIRshake toolkit and the FAIR Evaluator.
These tools can help us to verify the comprehensiveness
and reliability of metadata in an organized manner [61].

TABLE II. GLOSSARY OF SCIENTIFIC TERMS AND CONCEPTS

Term Definition
Sustainable Development Goals Seventeen global objectives established by the United Nations to address social, economic, and
(SDG) environmental issues by 2030

Text Classification

The procedure of categorizing unstructured textual material into specified classifications utilizing techniques

or algorithms

Deep Learning (DL)

A branch of artificial intelligence that uses deep neural networks to identify complex patterns.

Bidirectional Long Short-Term
Memory (BiLSTM)

A variant of recurrent neural network that analyzes data in both forward and backward paths, effectively
acquiring contextual information from both ends

Embedding/Word Embedding

A method for coding words as smaller, low-dimensional vectors that retain semantic importance

GloVe

A pre-trained word embedding model that produces vector representations derived from global keyword-
word combination data is utilized as an input embedding layer in the hybrid model

Bidirectional Encoder Representations
from Transformers (BERT)

A transformer-based language model pre-trained to acquire extensive contextual word representations.
Utilized for evaluation and contextual embedded data

An architecture of neural networks designed to identify local patterns through convolutional filters,

Convolutional Neural Network (CNN)

commonly applied to natural language processing and image analysis. Applied to identify local
characteristics within text sequences

A word embedding method that integrates subword information (character n-gram) to more effectively

FastText address unusual words is utilized as an alternate embedding method in tests
L The procedure of segmenting text into words, sentences, or other significant components (tokens) is utilized
Tokenization h L . X
in preparing input data for embedding and modeling
Stemming The procedure of reducing words to their simple forms (e.g., moving to “move”) utilized during

preprocessing to standardize text

Stopword Removal

The removal of prevalent terms (e.g., “the,
Integrated during preprocessing to standardize text

2 <

and”) that have low semantic significance in textual analysis

A situation in which certain categories include a substantially greater number of samples compared to others.

Class Imbalance Utilized oversampling and focal loss to increase model diversity

Method utilized to improve the quantity of samples in minority classes to neutralize the dataset, consequently

Oversampling addressing class imbalance in SDG classes

Classifying text without specific instruction on those categories, frequently uses prompt-based large language

Focal Loss models. Assessed utilizing GPT-3.5/4 and Flan-T5 for the SDG tasks

Prompt-based large language models are used to classify text without explicit guidance on specific

Zero-shot Classification categories. This classification examined the use of GPT-3.5/4 and Flan-T5 models for the SDG tasks

Modern transformer-based models for natural language processing tasks, boosting BERT employed as

RoBERTa, DeBERTa metrics for SDG text classification efficiency

SHapley Additive exPlanations
(SHAP)

Method for explaining artificial intelligence model predictions by providing significance ratings to features,
therefore boosting model interpretability and refining predictions

Technique for visualizing the specific components of an input (such as words in a sentence) that a model

Altention Visualization highlights during estimation, with the purpose of enhancing the visibility of model decisions

Data management guidelines: Findable, Accessible, Interoperable, Reusable, which refer to metadata quality

FAIR Principles and dataset preparation
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Even with these improvements, not many studies
systematically compare the effects of these metadata
standards and quality tools on SDG-specific text
classification tools. Adding these tools to the design and
evaluation of Al applications could make SDG
classification more reliable and useful in a wider range of
fields. Research could benefit from these tools to show
how metadata standards and FAIR-aligned quality tools
can be used together and tested in large-scale and multi-
scope classification problems [62]. The literature
demonstrates a specific pattern in favor of the utilization
of artificial intelligence models for text categorization,
attributed to their ability to autonomously identify
complex patterns and presentations from unprocessed
input texts. The utilization of pre-trained embeddings and
advanced architectures such as BiLSTM and CNN has
significantly boosted the accuracy and efficiency of text
classification techniques [50]. This research combines
these enhancements to establish a comprehensive
workflow for identifying text associated with the
Sustainable Development Goals, addressing the particular
difficulties specific to this field. Table II shows a glossary
of our utilization of scientific terms through this study.

III. MATERIALS AND METHODS

A. Data Preparation

This study’s text data acquired from seventeen data files
which contain 8713 research titles and 2,211,255 words, as
shown in Table I, each research paper is connected to a
specific SDG type. Each file has diverse papers pertinent
to the individual Sustainable Development Goal, including
titles, abstracts, keywords, and subjects. Our study also
multiplies the data multiple times with random data to
increase the scale of the data to comply with modern NLP
standards. Every spreadsheet has been imported into a
panda DataFrame, an additional column has been
incorporated within each DataFrame to indicate the SDG
category. The Data Frames are subsequently merged into
a singular DataFrame. This integrated DataFrame enables
the following stages of data preprocessing and model
development. The title, abstract, keywords, and subjects
are merged into a singular text box to form a single entry.
This integrated text field is meant for tokenization and
embedding. A label encoder is used for transforming these
labels into numerical values suitable for artificial
intelligence techniques in which the encoder gave a unique
value to each SDG category, then our approach started by
dividing the data into training and validation datasets with
a random ratio based on 10-fold cross validation [63]. This
ensures that the simulation obtains sufficient data for
training while keeping a portion of dataset for assessing
model’s effectiveness. A sample of the data utilized during
our approach and tests is shown in Tables III and IV. The
data shown includes six rows: SDG type, ID, article title,
abstract, keywords, and subjects related to the article’s
scope. The data preparation stage is crucial for ensuring
that the input data is of high quality and consistency for
NLP and Al applications. The preprocessing utilized the
following:
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TABLE III. DATA TITLES AND WORDS RELATED TO SDGS

SDG Type Titles count Words count
1 62 16038
2 344 87125
3 1596 446938
4 205 51730
5 104 28031
6 1111 267835
7 1338 301560
8 214 56719
9 214 56716
10 151 41229
11 634 161279
12 306 77353
13 213 54560
14 341 84705
15 223 49705
16 61 15771
17 1596 413961
Total 8713 2211255
TABLE IV. DATA SAMPLE
Category Description

SbG 4 (Goal of Quality Education)

Type

Title Enhancement of Recommendation Engine Technique for

Bug System Fixes [64]

This study aims to develop a recommendation engine
methodology to enhance the model’s effectiveness and
efficiency. The proposed model is commonly used to assign
or propose a limited number of developers with the required
skills and expertise to address and resolve a bug report.
Managing collections within bug repositories is the
responsibility of software engineers in addressing specific
defects. Identifying the optimal allocation of personnel to
activities is challenging when dealing with software defects,
which necessitates a substantial workforce of developers

Abstract

bugs, fusion of intelligent optimization, artificial neural

K T . .
eywords networks, machine and deep learning

Information Systems,Artificial Intelligence,Computer

Subject Engineering.

e Data Loading and Consolidation: loading
seventeen data files, each one related to a different
Sustainable Development Goal (SDG), into
separate pandas DataFrames. Each one of the
seventeen data files has a number of columns, as
shown in Table IV, such as article title, abstract,
keyword, and subject area. An extra column to
each DataFrame is added to show the SDG
category for each input. All DataFrames are put
together into one big DataFrame for easy analysis
in a later stage.

e Data Augmentation: using data augmentation and
multiplication to deal with any data sparsity and to
match the size needed by modern NLP models and
to prevent overfitting and increase generalization.

e The title, abstract, keywords, and subject columns
for each article (row) were merged into one text
field in order to check whether all important text
information is available for the operations of
feature extraction, tokenization, and embedding.

e Normalization: The text field from the previous
step went through noise reduction such as
lowercasing, in which all text was changed so that
it could be processed further. All punctuation,
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symbols, and non-alphanumeric characters were
removed.

e Removal of Stopwords: A standard stopword list
was used to get rid of common words that don’t
add any meaning, such as “the” and “of”.

e Whitespace Normalization: All whitespace
characters that came one after the other were
changed to single spaces.

e Stemming: Words were substituted to their base
forms to make sure that all the different forms were
the same (for example, “studies” to “study”).

e Label Encoding: A label encoder twisted the SDG
category into numerical labels. A different integer
value was given to each SDG, which is usable for
numerical Al applications.

e Tokenization and embedding: each row in the data
file that contains the article (data) terms was turned
into a string of tokens (words), and then the tokens
were linked to embedding vectors by pre-trained
embeddings (GloVe, FastText, and BERT)
through the training stage.

e Before training, the dataset was randomly shuffled
to remove any bias and make sure that the batches
entered randomly into the model during the
experiment.

e Training and validation subsets: the study used 10-
fold cross-validation. One-fold is used for testing
and nine folds for training, and each iteration
lowers the chance of selection bias.

B.  Tokenization, Padding, and Global Vector Word
Embeddings

The textual data is tokenized via the Keras Tokenizer.
This procedure transforms the text into integer sequences,
with each integer representing a particular word in the text.
The tokenizer analyzes the training data to construct a
vocabulary of the most frequent phrases. Padding is
utilized to keep a consistent input size due to variations in
the lengths of input sequences. The sequences are extended
to a maximum length with shorter sequences replaced by
zeros and longer sequences truncated, this consistency is
necessary for feeding data into the model [65]. Thereafter,
our approach added the initial GloVe embeddings taken
from a text file named (glove.6B.100d). These embeddings
provide an adequate vector diagram for each word in the
glossary, preserving the same meaning or connections
among words. Then, an embedding matrix is constructed
to associate terms in the tokenizer’s vocabulary with their
respective GloVe embeddings [66]. This matrix triggers
the embedding layer in the model, enabling it to utilize
pretrained word representations.

C. Model Architecture

1) BiLSTM

A hybrid one convolutional layer-Bidirectional Long
Short-Term Memory (BiLSTM) model is utilized in our
study to categorize the text in the acquired data. This
network includes a few layers; the first one is the
embedding layer consists of a pre-trained Global Vector
(GloVe) embedding which transform input sequences of
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word indices into dense vectors [67]. The second layer is
the bidirectional LSTM Layers which were bidirectional
LSTM layers used to capture sequential dependencies in
both directions. This boosts the ability of the model for
understanding the context of the data. Next layer is the
dropout Layers which are carried out subsequently to each
LSTM layer to prevent overtraining or overfitting problem
by disabling a certain amount of input units throughout
training randomly [68]. Then a dense layer incorporating
ReLU and L2 regularization was utilized to incorporate
non-linearity and manage complexities. The last output
layer, which is a dense layer utilizing SoftMax activation,
provides a final probability distribution through the SDG
categories [69]. The model was built along with the hybrid
CNN layers with the optimizer and limit categorical
entropy loss as parameters. The Adam optimizer was
selected for its effectiveness and flexible learning rate.
Sparse categorical cross-entropy is utilized since the labels
are integers denoting distinct classes. Besides, the early
halting was used to monitor validation loss during the
training phase [70]. Training terminates if the validation
fails to decrease over a certain value of iterations or epochs,
and the most effective weights are restored. This
minimizes the overfitting and confirms the model
generalizes adequately to unexpected inputs.

2) Hybrid BiLSTM-CNN model

Our approach is implemented by designing a hybrid
BiLSTM-CNN model by using CNN layers, namely a
ConvlD layer followed by a MaxPoolinglD layer, to
identify local patterns within the text sequences. In the
hybrid model architecture, the CNN layers are followed by
Bidirectional LSTM layers to capture temporal
dependencies. Subsequently, adding a dropout layer that
elevates dropout rates to mitigate overfitting. Lastly, the
model is run and trained using the same optimizer and
early halting to guarantee stable training. The system is
trained on padded sequences utilizing early halting and
validation data. The training phase consists of several
epochs during which the model gradually adjusts its
weight to reduce the validation loss function [71].

Model structure

The embedding layer turns input text sequences of word
indices into dense vector characterization. These vectors
convey semantic values of the terms and are essential for
LSTM layers to fully comprehend the overall surroundings
of the text. The embedding layer is initialized using the
basic GloVe embeddings. These embeddings provide a full
representation of words obtained through their utilization
in a large text corpus. Let X; represent the input sequence
of word indexes i, and £ denote the embedding matrix. The
embedding layer turns X into embedded representation V;
as seen in Eq. (1), E represents a matrix of shape which
includes the vocabulary size and embedding
dimension [72].

Vi = E[Xi] (D
BiLSTM layers represent a variant of RNNs capable of

capturing long-term dependencies in sequential input.
Bidirectional LSTMs extend this functionality by
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analyzing the input sequence in both forward and reverse
perspectives, so effectively twice the contextual
information supplied to the model [73]. A Bidirectional
LSTM consists of two LSTM layers. The initial layer is the
forward LSTM layer which examines the input sequence
all over and backward LSTM layer which analyzes the
input sequence from all over from end to beginning. The
outcomes of both layers are put together to yield the final
outcome of the Bidirectional LSTM [74]. Let
ROV and hPackward depict the covered states at time
stride ¢ for both ward LSTMs. The output H; of the
Bidirectional LSTM is shown in Eq. (2).

H, = [hé‘orward; h?ackward] )

This combination permits the model to process
information from both previous and succeeding contexts,
allowing an increased understanding of the sequence.
Dropouts are employed to reduce overtraining problems by
randomly ignoring a proportion of the input nodes during
the phase of training. This procedure permits the proposed
model to acquire robust properties or features that do not
rely on certain nodes or neurons [75]. The proposed
architecture utilizes a best dropout rate of 0.3, meaning that
30% of the input units are randomly deactivated at each
training epoch. The main idea of using dense layer brings
non-linearity into the model’s architecture, authorizing it
to acquire deeper depiction of the input. The function of
the activation here, which is ReLU function was created to
incorporate non-linearity while bypassing the vanishing
gradient issue that sometimes should use another
activation functions such as sigmoid. L2 regularization is
utilized randomly as hypermeter combination in the dense
layer to reduce overtraining/overfitting dilemma by
placing costs on substantial weights [76]. This assists the
model’s acquisition of smaller and generally applicable
weights. Choosing the variable input to the dense layer as
H, with the weights and biases represented by W and b,
respectively. The output function Z of dense layers with
ReLU activation is provided in Eq. (3).

Z =ReLU (W -H+b) 3)

The result of the output layer provides an overall
prediction probability for each SDG category. The
SoftMax activation function implies that output values are
inside the interval [0, 1], giving them comprehensible as
probabilities [77]. Then, with the weights and biases
represented as W, and b,,;, respectively. The output y
is provided in Eq. (4).

Wout Z+boyt)i
yi= m @

where y; represents the probability of the i** SDG
category. The Bidirectional LSTM-CNN model
framework was designed to effectively absorb contextual
data in textual input. Utilizing pre-trained GloVe
embeddings, bidirectional processing, dropout for
regularization, and extensive layers with ReLU activation,
the model effectively learns robust features for classifying
text into SDG categories [49]. The SoftMax output layer
generates accessible probability distributions for each

category, allowing accurate predictions. Fig. 1 illustrates
the suggested framework diagram for the experiments
conducted in the study.

Input Sequence
(Padded Text)

Embedding Layer

Dropout (0.3)

Dense Layer
(ReLU Activation. L2
Regularization)

Output Layer
(Softmax Activation)

Predicted SDG Categories
Performance Results

Fig. 1. Diagram of model structure.

IV. EXPERIMENTS

A. Experimental Configuration

This article utilizes the Python 3.7 development
platform than runs on Jupyter version 7.2.2, along with
NumPy and other libraries, via the Anaconda prompt. The
experiments are conducted on the development platform
with two hardware configurations: the first features an 8-
core Intel Core 17 numbered 11800H CPU, 16GB DDR4
RAM, and an Nvidia GeForce 3060 graphics processor.
The second hardware includes a 4-core Intel Core i5
numbered 8350U CPU, 16GB DDR4 memory, and an Intel
UHD 620 graphics processor. To assess the performance
of the model we proposed by executing experiments on the
subsequent sets: the first set is called Ohsumed which is
extracted from the MEDLINE database. The Ohsumed
dataset is a compilation of medical texts utilized for text
classification in medical discipline [78]. It encompasses
twenty-three disease categories and comprises 6286
training trials and 7643 test trials. The second set is
GoEmotion which is a dataset of comments from
Reddit [79], featuring twenty-seven emotion categories
(excluding neutral). This study utilizes only single-label
samples from the original multi-label dataset, in
accordance with the methodology of Suresh and Ong [80].
The dataset has 21,402 training samples and 2971 test
samples. Our model is examined against four baseline
models, as indicated in Table V. The hardware
configuration is shown in Table VI. The baseline models
tested along with our proposed methodology are shown in
the following:

TABLE V. INFORMATION RELATED TO EACH MODEL AND DATASET

Model Dataset  Categories  Field
LSTM, BiLSTM, BERT, CNN GoEmotion 27 Sentiment
LSTM, BiLSTM, BERT, CNN _ Ohsumed 23 Medline
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TABLE VI. EQUIPMENT SETUP

CPU TDP GPU Other Specifications
Intel Core i7 11800 H (8/16 Cores/Threads) with 45 Watt Nvidia GeForce RTX 3060 (6GB 16 GB DDR4 3200MHz NVMe SSD
base frequency of 2.30 GHz (HW1) dedicated plus 8GB shared GPU RAM) 3500MBps
Intel Core i5 8350 U (4/8 Cores/Threads) with 16 GB DDR4 2400MHz NVMe SSD
base frequency of 1.70 GHz (HW?) 25 Watt  Intel UHD 620 (8GB shared GPU RAM) 3500MBps

Note: CPU: Central Processing Unit, TDP: Thermal Design Power, GPU: Graphics Processing Unit, RAM: Random Access Memory, SSD: Solid

State Disk, NVMe: Nonvolatile Memory Express.

e LSTM: utilizes the final hidden state as an
illustration of the entire data. The studies were
employed by using previously trained word
vectors [81].

e Bi-LSTM: a bidirectional model that utilizes
previously trained word embeddings [48].

e BERT: builds a BERT network according to the
configurations defined by the researchers in 2019.
The BERT model’s learning rate is determined at
2e-5, with a dropout rate of 0.1 [82].

e CNN: creates a CNN based on the structure created
by a study in 2014 and used GloVe
embeddings [83] as  pretrained word
representations. The best rate of learning is 0.001,
the kernel sizes are 3, 4, and 5, and the total amount
of kernels that are trained is one hundred using a

best dropout rate of 0.5 [28].

B.  Experimental Pseudocode

In Algorithm 1, the procedure of the study presented as

the experimental pseudocode of the model.

Algorithm 1: Experiment Pseudocode

Start
Define a function ‘load_glove embeddings(file path)
Initialize an empty dictionary "embeddings_index"
For each line in the file:

Split the line into words and embedding values

Convert embedding values to a NumPy array

Store word and its embedding vector in
‘embeddings_index’
Return ‘embeddings index’
Define a function ‘build_embedding_matrix(word_index,
embeddings_index, embeddings dim)’
Initialize ‘embedding_matrix" with zero values, shape
‘(len(word_index) + 1, embeddings_dim)
For every word and index '[i]" in "word_index':

Get "embedding_vector' from ‘embeddings_index" for the
word

If "embedding_vector’ is not Empty:

Set “embedding_matrix[i]' to ‘embedding_vector

Return ‘embedding matrix’
Initialize an empty list "dfs’
For each 'i’ from "1 to 17":

Load data file into DataFrame "df’

Add “sdg’ column with value 'i" to "df’

Append 'df" to “dfs’
Concatenate all DataFrames in "dfs’ into a single DataFrame
df
Create a new column ‘text’ in ‘df* by combining “title’,
‘abstract’, "keywords’, and “subjects’
Initialize 'Tokenizer' with 'num_words=20000"
Fit “Tokenizer" on all texts in ‘dff ‘text’]’
Convert all texts to sequences

Pad all sequences to ‘max_length=200"
Define hyperparameter search space (e.g., dropout rates, L2
values, learning rates, batch sizes, number of units, etc.)
Set up ‘RandomizedSearchCV"-like process:
For each randomly sampled combination of
hyperparameters:
Initialize k-fold cross-validation (e.g., *StratifiedKFold"
with k=5), stratified on SDG class
For each fold:
Split data into training and validation sets according to
fold
Build model with current hyperparameters:
- Add "Embedding’ layer (with GloVe weights, not
trainable)
- Add "Convolution1D" layer
- Add "MaxPooling1D" layer
- Add "Dropout’ layer (use current sample’s dropout
rate)
- Add "Bidirectional LSTM" layer (with/without
return_sequences as needed)
- Add additional ‘Dropout’ layers as specified
- Add "Dense’ layers (with current sample’s units,
activation, L2 regularization, etc.)
- Add output layer ('softmax’, number of classes)
Compile model with current learning rate and optimizer
Use "EarlyStopping" with validation accuracy
monitored
Fit the model on training fold, validate on validation
fold
Record performance metrics for this fold
Calculate mean performance across all folds for this
hyperparameter combination
Select the hyperparameter combination with the best average
performance
Retrain the final model on the full training set using the best
hyperparameters
Split-off a final held-out test set (if not already done before
cross-validation), or use the cross-validation results as
estimate of generalization performance
Evaluate the final model:
- Use "'model.evaluate” on the test set
- Use ‘'model.predict’ for test entries
- Calculate and display the ‘Confusion_Matrix
- Calculate metrics: accuracy, precision, recall, f1_score,
mean_absolute error, mean_squared_error
Use LIME to explain individual predictions by highlighting
important words for each SDG class
Use SHAP to compute feature importances and visualize
which parts of the input most influenced the model’s
decision
Predict SDGs based on new entry
Filter and sort predictions by threshold
Example Usage:
Define “input_title and input_keywords'
Call “classify _sdg(input _title, input_keywords)’
Show "Predicted SDG®
End
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C. Performance and Evaluation

The model’s capability is determined by several metrics
criteria, including accuracy which is the ratio of accurately
predicted labels to the total of SDG types or labels [84];
precision which is the ratio of real positive SDG
estimations to the total number of positive predictions;
recall or sensitivity which is the percentage of true positive
forecasts to the total number of actual positive
instances [85]; F1 measure which is the harmonic mean of
precision and recall, yielding a singular metric that
equilibrates both measures [86]; Mean Absolute Error
(MAE) which is the average absolute deviation between
the expected and actual values [87]; Mean Squared Error
(MSE) which is the average of the squared deviations
between expected and actual labels [88] and lastly the Root
Mean Squared Error (RMSE) which is the square root of
the mean squared error, offering a quantification of the
average amount of errors [89]. Then our study calculated
the specificity which is the ratio of accurate negative
predictions to the total number of real negative instances
in order to check the degree of learning objective in our
models. Then, a confusion matrix is utilized to illustrate
the model’s capability regarding all mentioned parameters
for each SDG category [90]. This matrix assists in
identifying the categories that the model confuses. The
training and validation accuracy across epochs is graphed
to illustrate the model’s learning trajectory and discover
possible overtraining or undertraining results.

D. Predictions

Classify Sustainable Development Goals A function is
established to categorize input text (title and keywords)
and yield the top K SDGs according to a given probability
threshold. The function tokenizes and pads the input text,
generates predictions utilizing the trained model, then
filters the predictions according to the threshold [91]. The
leading K SDG category is thereafter provided along with
their associated probability.

Visualization of predictions are the best probabilities of
the leading SDGs are illustrated to demonstrate the
model’s position against other models from its results. The
visual depiction helps in interpreting the model’s output
and comprehending the relative significance of each
forecasted SDG. This organized methodology offers a
detailed explanation of the approaches and processes
employed in the text categorization model, supported by
numbers and visual aids that improve learning.

V. RESULT AND EXAMINATION

This section examines the proposed model through
multiple experiments, comparing its findings with existing
text categorization methods to evaluate its effectiveness.
All studies were conducted on two machine configurations
operating Windows 11 Pro 64-bit, as previously illustrated
in Table VI. Tables VII-IX show the results of all stated
methods, together with Scopus SDG metadata and the
previously mentioned datasets.

TABLE VII. RESULTS OF VARIOUS METHODS ON THE SCOPUS SDG

DATA
Specificity (average Training
0,
Model — Accuracy (%) "¢ 0o ch SDG) Time (s)
Proposed
Model (Hrw1) 71554212 96+ 1.12 362+0.78
LSTM (HW1) 59.22+2.11 89+0.12 376 +0.81
BiLSTM
(HW1) 61.19+1.93 90 +£0.22 540 £2.11
BERT (HW1) 65.46+3.10 87+0.32 214
CNN (HW1) 57.12+2.21 90 + 0.24 121 £6.78
Proposed
Model (HW2) 71.54+£2.11 96+ 1.12 1520 +£4.78
LSTM (HW2) 59.21 +£2.09 89+0.12 1575 +5.81
BiLSTM
(HW2) 61.14+£191 90 +0.23 2273 +£3.81
BERT(HW2) 65.45+3.11 87 +£0.33 887 +7.81
CNN(HW?2)  57.11+2.24 90 +0.25 521 +8.81

TABLE VIII. RESULTS OF VARIOUS METHODS ON THE GOEMOTION

DATA
Accuracy Specificity =~ Training Time
Model (%) (%) ©
Proposed Model
(HW1) 61.12+2.12 75+2.78 84 +0.78
LSTM (HW1) 50.86+0.48 55+1.78 90 +0.78
BiLSTM(HW1)  51.21+0.58 56 +1.68 155+0.78
BERT(HW1) 59.38+0.71  70+1.38 79 +0.78
CNNHWI1) 50.92 +0.63 57 +1.68 67 +£0.78
Proposed Model
(HW2) 61.11+2.02 75+2.62 342 +0.78
LSTM(HW?2) 50.81 +£0.41 55+£1.71 378 +£0.78
BILSTM(HW2)  51.21+£0.52 56+ 1.68 666 +0.78
BERT(HW2) 59.27+0.51 70 +1.61 331+0.78
CNNHW?2) 50.81+041 57+£1.92 281 +0.78

TABLE IX. RESULTS OF VARIOUS METHODS ON THE OHSUMED DATA

Accurac Specificit; Training Time
Model o o ©
Proposed Model
(HW1) 71.1+£0.81 82 +0.81 84 +0.78
LSTM (HW1) 56.08+0.13 70+ 1.78 90 +0.78
BiLSTM(HW1) 58.12+0.32 75+1.78 155+ 0.78
BERT(HW1) 70.30 +0.35 74 £1.78 79 +0.78
CNN(HWI1) 54.99 +0.52 70 +£1.78 67+0.78
Proposed Model
(HW2) 70.3 £0.85 82+0.71 342 +£0.78
LSTM(HW?2) 56.02+1.12 70+ 1.77 378 £0.78
BILSTM(HW2)  58.11+0.82 75+1.75 666 +0.78
BERT(HW2) 70.35+0.65 74 +£1.72 331+0.78
CNN(HW2) 5449+0.72 69+1.91 281 +0.78

Fig. 2 depicts the accuracy chart of all models using the
Scopus SDG model. As shown by the findings in Figs. 2
and 3, the proposed model from the first hardware (HW1)
outperforms LSTM by 20.87%. This means that it has
more efficient architecture and better feature extraction
capacity in comparison to the traditional LSTM,
potentially because of better managing of the sequential
data and addressing difficulties such as gradient vanishing.
The proposed model (HW1) beats the BILSTM model by
16.95% in efficiency. Despite BILSTM enhancing LSTM
by including information from both directions, the
proposed model demonstrated higher performance. This
indicates that the proposed model integrates additional
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mechanisms or changes which result in a thorough
knowledge of the text data.

The proposed model (HW1) accuracy results increased
by 9.29% than BERT model. BERT is known for its high
performance in NLP applications, which is connected to
its bidirectional iterations and considerable pre-training
over multiple datasets. The Model’s higher accuracy over
BERT indicates that it includes unique refinements
relevant to the task containing better architecture of
specific integration of context data. The proposed model
(HW1) goes above the CNN model by 25.27%.
Convolutional Neural Networks (CNNs) specialize in
detecting local characteristics via convolutional processes,
although they may have difficulties with long-range
interactions. The proposed model’s improved efficiency
highlights its improved ability of capturing both local and
global components in text data, potentially via complex
layout or hybrid models that integrate the advantages from
multiple approaches.

Accuracy Results

ACCURACY (%)

u Proposed Model =" LSTM = BiLSTM = BERT = CNN

Fig. 2. Accuracy chart for all models utilizing the Scopus SDG.
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Fig. 3. Differences in accuracy percentages from the proposed model.

The proposed model with the first hardware
configuration (HW1) obtains the highest result among all
evaluated models, indicating its greater effectiveness for
the given objective. The significant performance
differential between our model and the other models
indicates that ours employs advanced techniques or
refinements that boost its text classification efficiency. The
findings highlight the necessity of investigating and

developing novel architectures or integrating existing
models for better performance in NLP applications.

In Fig. 4, a comparison with LSTM (HW1), the
proposed model (HW1) trains slightly faster than the
LSTM model by 3.72% with a reduction of 14 s. In
comparison with BILSTM (HW1) of 540 s, the proposed
model (HW1) trains significantly faster than the BILSTM
model by 32.96% with a reduction of 178 s. In comparison
with BERT (HW1) with 214 s, with an increase of 148 s,
approximately 69.16% longer. In CNN (HW1), which
takes 121 s, our model takes longer to train compared to
the CNN model, with an increase of 241 s, approximately
199.17% longer. The proposed model is more training-
efficient than LSTM (HW1) and BIiLSTM (HW1) but it
takes longer to train compared to BERT (HW1) and CNN
(HW1). For the second hardware setup (HW2), the
proposed model takes significantly longer to train
compared to the first hardware setup (HW1) models,
indicating increased model complexity or more extensive
feature extraction processes. By comparing HW1 and
HW?2, all models in HW2 take longer to train than their
HWI1 counterparts, suggesting that HW2 tasks might be
more complex or require more computational resources.
Despite the longer training times for HW2, the proposed
model in the first hardware setup still shows better training
efficiency compared to second hardware setup models in
terms of percentage differences.

Training Time (seconds)
2500

2000
1500
1000

500

LSTM(HW?2)
BERT (HW2)
CNN(HW2)
LSTM(HW1)
BERT(HW1)
CNN(HW1)

Q
S
=t
=
=
7}
=
jes)

BiLSTM(HW1)

Proposed Model (HW2)
Proposed Model (HW1)

Fig. 4. Training duration for all model setups.

Table X presents the per-SDG accuracy and specificity
for all models evaluated using HW1. The proposed model
consistently outperforms baselines across nearly all SDGs,
with accuracy typically above 70% and specificity close to
or exceeding 95% for each goal. In contrast, LSTM,
BiLSTM, BERT, and CNN baselines demonstrate lower
accuracy and specificity, especially for more challenging
SDGs. These detailed results confirm the robustness of the
proposed approach across the full range of sustainable
development goals.

1615



Journal of Advances in Information Technology, Vol. 16, No. 11, 2025

TABLE X. PERFORMANCE OF ZERO-SHOT LLMS VERSUS THE HYBRID
MODEL ON SDG CLASSIFICATION (ACCURACY/SPECIFICITY)

Model TYOPOSed oM BILSTM  BERT CNN
Model
SDG | 63.2/92.1 51.0/83.9 54.1/85.1 57.3/81.1 48.4/83.6
SDG2  68.0/942 552/87.2 57.9/88.8 62.1/85.0 53.0/88.1
SDG3  80.2/98.5 67.5/91.6 70.1/92.8 75.0/90.1 65.8/92.6
SDG4  69.8/95.1 57.7/872 60.2/88.8 64.8/85.3 55.2/88.0
SDG5  65.9/93.6 53.1/84.9 56.2/86.5 59.7/82.7 51.2/85.8
SDG6  78.5/98.1 653/91.2 68.0/92.4 73.1/89.5 63.7/92.0
SDG7  77.1/97.8 64.6/90.8 66.2/91.7 71.5/88.9 62.9/91.3
SDG8  70.1/95.6 57.0/87.9 59.7/89.4 64.4/85.9 55.9/87.9
SDG9  70.0/95.5 57.1/87.8 60.2/89.2 63.5/85.7 55.1/87.8
SDG 10 67.5/94.1 54.1/852 56.3/86.6 60.0/82.9 52.5/86.1
SDG 11 75.8/97.5 62.9/89.7 65.1/91.0 69.8/87.5 60.8/90.8
SDG 12 69.3/952 56.3/87.3 59.0/88.8 63.7/85.6 54.0/87.6
SDG 13 68.2/949 552/86.9 58.0/883 61.7/84.2 53.2/86.9
SDG 14  66.7/94.3 53.8/853 56.5/87.0 60.1/82.5 50.4/85.1
SDG 15 68.0/94.6 55.9/86.1 58.4/87.7 62.5/83.8 53.7/86.4
SDG 16  61.4/91.0 482/802 51.0/82.7 53.6/77.3 45.8/80.0
SDG 17 80.7/98.7 67.8/91.9 70.2/93.0 75.3/90.4 66.0/92.8

The results show clear evidence of class imbalance on
SDG classification performance. SDGs with many training
samples such as SDG 3, SDG 6, SDG 7, SDG 11, and SDG
17 consistently achieve the highest accuracy rates across
all models. For instance, the proposed model achieves over
78% accuracy for SDG 3 and SDG 17, compared to just
63% for SDGs like SDG 1 and 61% for SDG 16. In
contrast, SDGs with the fewest titles (SDG 1, SDG 5, SDG
16) show lower performance for all models, confirming
that the models struggle with minority classes.

A. LIME and SHAP Findings

Applying LIME and SHAP to your SDG classification
model reveals which words most strongly drive model
decisions for each SDG class. The attached image shows,
for each SDG, a ranked list of keywords (e.g., “poverty”,
“inequality”, “nutrition”, “health”, “education”, “gender”,
“water”, “energy”, etc.) that were found to be most
influential. The following are the SDGs with Distinctive
and Important Words:

e SDG 1 (“No Poverty”): Words like “poverty”,
“inequality”, “social”, and “access” are top
contributors.

e SDG 3 (“Good Health and Well-being”): “health”,
“disease”, “medical”, and “mortality” dominate.

e SDG 5 (“Gender Equality”): “gender”, “women”,
“equality”, and “empowerment” are most
important.

e SDG 6 (“Clean Water and Sanitation”): “water”,
“sanitation”, “hygiene”, and “access” are most
influential.

In addition, some SDGs, such as SDG 10 (Reduced
Inequalities) and SDG 17 (Partnerships), have more
diffuse important words that overlap with other SDGs (e.g.,
“equality”, “inclusion”, “cooperation”), making them
harder to distinguish and less robust in explainability.
Table XI shows the most important words for each type of
SDG goal. By surfacing these keywords, we saw that
LIME and SHAP allowed them to create the following:

e Validate that predictions are based on relevant,
meaningful features.

e Identify if a model’s decisions are dominated by a
few general words (potentially a sign of overfitting
or lack of specificity).

e Communicate results to
stakeholders and support transparent

mapping.

non-technical
SDG

TABLE XI. MOST IMPORTANT WORDS PER SDG

SDG Type Most Important Words
1 poverty, inequality, social, access
2 hunger, nutrition, food, agriculture
3 health, disease, medical, mortality
4 education, literacy, school, teachers
5 gender, women, equality, empowerment
6 water, sanitation, hygiene, access
7 energy, renewable, electricity, solar
8 work, employment, growth, economic
9 infrastructure, industry, innovation, technology
10 equality, discrimination, inclusion
11 cities, urban, housing, resilience
12 consumption, production, waste, sustainable
13 climate, emissions, carbon, adaptation
14 ocean, marine, fisheries, coastal
15 land, biodiversity, forest, ecosystem
16 peace, justice, governance, law
17 partnership, cooperation, finance, resources

B. Incorporating Prompt Engineering and Zero-Shot
Classification

To further evaluate the robustness and generalizability
of SDG text classification, prompt engineering is
employed with Large Language Models (LLMs) such as
GPT-3.5/4 and Flan-T5. These models were used in a zero-
shot setting, where no additional fine-tuning was
performed on SDG-labeled data [92]. Instead, natural
language prompts were crafted to elicit SDG category
predictions directly from the models. For each test sample,
the placeholder was replaced with the article’s title,
abstract, or combined fields. The model’s response was
parsed to extract the predicted SDG(s). This procedure was
repeated for a representative subset of the evaluation
dataset.

C. Comparison Protocol

To ensure a fair comparison, the same set of test samples
was used for both the prompt-based LLMs and the
proposed hybrid BiLSTM-CNN model. Evaluation
metrics such as accuracy, precision, recall, and F1-score
were computed for each approach. Additionally,
qualitative analysis was conducted to examine cases where
predictions diverged, highlighting potential advantages
and limitations of zero-shot LLMs for SDG classification.
Table XII summarizes the quantitative comparison
between the prompt-based zero-shot approach (using
GPT-3.5/4 and Flan-T5) and the proposed hybrid deep
learning model.
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TABLE XII. PERFORMANCE OF ZERO-SHOT LLMS VERSUS THE
HYBRID MODEL ON SDG CLASSIFICATION

Accuracy  Precision Recall F1-

Model (%) (%) (%) measure

Hybrid BILSTM-
oo 715 0.72 0.71 0.71
GPT-3.5 (zero- 63.2 0.65 0.62 0.63
shot)

GPT-4 (zero-shot) 66.8 0.68 0.67 0.67
Flan-T5 (zero- 59.7 0.60 0.58 0.59

shot)

The hybrid BILSTM—CNN model, trained with domain-
specific data and embeddings, outperformed prompt-based
zero-shot LLMs on all quantitative metrics [93].
Nevertheless, LLMs showed promising results without
any task-specific training, demonstrating the potential of
prompt engineering for rapid deployment in new domains.
Qualitative analysis indicated that LLMs occasionally
provided broader or multi-label responses, which could be
advantageous for exploratory or weakly supervised
settings.

The inclusion of prompt-engineered zero-shot
classification highlights the strengths and limitations of
each approach. While LLMs offer flexibility and require
no-label data, their performance lags behind specialized
models trained on curated datasets. However, their utility
for rapid prototyping and low-resource contexts is evident
and warrants further investigation, including the use of
few-shot or in-context learning for potential performance
gains [94].

To rigorously assess the effectiveness of our SDG text
classification pipeline, we benchmarked our approach
against several State-Of-The-Art (SOTA) language
models, including RoBERTa, DeBERTa, and Large
Language Models (LLMs) such as GPT-3.5/4. These
models have demonstrated superior performance across
diverse NLP benchmarks due to their advanced pre-
training strategies and architectural innovations [95]:

e Robustly Optimized BERT Pretraining Approach
(RoBERTa) enhances BERT by leveraging larger
training data, removing the next-sentence
prediction objective, and using dynamic masking.

e Decoding-enhanced BERT with Disentangled
Attention (DeBERTa) further improves upon
BERT and RoBERTa by disentangling content and

position information and introducing enhanced
mask decoders [96]. For both RoBERTa and
DeBERTa, a publicly available pre-trained models
were utilized and fine-tuned them on the SDG
classification dataset under identical experimental
conditions.

The experiment also evaluated zero-shot and prompt-
based classification using LLMs as shown in Table X
employing crafted prompts to elicit SDG predictions for
each sample. This provides insight into the generalization
capacity of LLMs without domain-specific fine-tuning.
Performance metrics such as accuracy, precision, recall,
and F1-Score were computed for all models. Table XIII
presents comparative results.

TABLE XIII. COMPARISON OF SDG CLASSIFICATION PERFORMANCE
ACROSS PROPOSED AND SOTA MODELS

Accuracy Precision Recall F1-
Model (%) (%) (%) measure
Hybrid
BILSTM-CNN /13 072 o o7
BERT (fine- 742 0.74 0.74 0.74
tuned)
RoBERTa (fine- 75.8 0.76 0.75 0.75
tuned)
DeBERTa (fine- 771 0.77 0.77 0.77
tuned)
GPT-3.5 (zero- 63.2 0.65 0.62 0.63
shot)
GPT-4 (zero- 66.8 0.68 0.67 0.67
shot)

BERT outperforms the hybrid model mainly due to its
advanced language modeling and pretraining. The hybrid
model can be better in terms of computational complexity,
speed, and ease of deployment. Aspect-based summary is
shown in Table XIV. Pretraining Indicates whether the
model benefits from large-scale language pretraining.
Contextual Understanding shows how well the model
understands context and relationships in language. Model
Size/Complexity/deployment as relative size and
computational complexity in which higher means more
resources needed. Inference Speed is the relative speed at
which the model can process data (higher size/complexity
= slower inference). The hardware requirements in which
a typical hardware is needed for practical use.

TABLE XIV. ASPECT-BASED SUMMARY MODELS

Aspect Hybrid BERT RoBERTa DeBERTa GPT-3.5 GPT-4
P BiLSTM-CNN (fine-tuned) (fine-tuned) (fine-tuned) (zero-shot) (zero-shot)
Accuracy Moderate High Higher Highest Lower Lower
Language . Deep contextual Very deep Very deep Very deep
Understanding Limited context  Deep contextual (improved) contextual contextual contextual
Pretrainin Rarely used Pretrained on Pretrained, robust Pretrained, Extensive (general Extensive (general
& y large corpora corpora advanced LLM) LLM)
Resource Usage Low High High High Very high Extremely high
Inference Speed Fast Moderate Moderate Moderate Slow Slowest
Requires Requires
Deployment Easy (low Needs powerful Needs powerful Needs powerful cloud/high-end cloud/high-end
resource) hardware hardware hardware GPU GPU
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D. Benchmark Comparison with Metadata Quality
Control Tools

In order to improve the validation of our model’s
efficiency, the study compared its performance with that
of major metadata quality control tools, such as
OpenRefine and DataCleaner. The tools were built up with
their default rule sets and utilized on the Scopus SDG,
GoEmotion, and Ohsumed datasets. Table XV presents a
summary of comparison outcomes utilizing error detection
rate, false positive rate, and rule coverage as evaluative
measures.

TABLE XV. COMPARATIVE RESULTS USING ERROR DETECTION RATE

AND RULE COVERAGE
Tool Error Detection False Positive Rule
Rate (%) Rate (%) Coverage (%)
Proposed Model 92 3 98
OpenRefine 75 9 85
DataCleaner 70 7 82
XML Schema 68 5 80

Our experiment continued further quantitative metrics
such as rule coverage, error detection rate, and rates of
false positives and negatives, as shown in Table XIV.
These metrics add an evaluation of the model’s operational
reliability. Traditional rule-based validation techniques,
including Extensible Markup Language (XML) Schema
and Shapes Constraint Language (SHACL), are good for
schema-driven metadata but require users to make rule
decisions and management. Our model reacts to new data
patterns, providing significant benefits in dynamic
metadata cases. The findings exceed the error detection
capabilities of conventional applications while minimizing
human intervention.

VI. DISCUSSION

The results of the text categorization model for SDGs
showed the effectiveness of the utilized DL methodologies
in managing complicated text type of data [89]. The model
obtained a test accuracy of about 72%, indicating a robust
capacity to generalize unknown data. The proposed model
(HW1) has improved effectiveness in training relative to
the LSTM and BiLSTM models, showing reduced training
periods. Nonetheless, the proposed model (HW1) has
higher training time compared to the BERT and CNN
models, requiring considerably more time. In case of the
complexity of the model, the higher time required for
training time of the proposed model relative to BERT and
CNN occurred due to the increased model complexity or
additional feature extraction approaches. Despite the
extended training times, the proposed model (HW1)
attains improved precision, indicating that the increased
training time may be justified by its enhanced
performance. For the trade-offs, it exists between training
duration and model performance. The proposed model
(HW1) requires more training time than certain models
such as BERT and CNN, although it delivers high
accuracy performance. If the perfect precision is a
requirement, the proposed model (HW1) may be the more
suitable choice.

The choice of hardware significantly influences both the
training time and inference speed of deep learning models
for SDG text classification. The study explicitly compared
performance on Graphical Processing Units (GPUs) and
Central Processing Units (CPUs) to inform practical
deployment decisions.

GPUs are optimized for parallel processing and matrix
operations, which align well with the computational
demands of Deep Neural Networks (DNNs). Training our
hybrid BILSTM—CNN and transformer-based models on
an NVIDIA RTX 3060 GPU resulted in a substantial
reduction in training time up to five times faster compared
to CPU-only execution. For example, training epochs that
required several hours on an Intel Core ultra 7 CPU
completed within minutes on GPU hardware. Inference
latency per sample was also reduced, enabling near real-
time classification for large batches of documents.

CPUs, while more accessible and cost-effective, are less
efficient for DNN training due to their limited parallelism.
On CPU-only systems, model training was significantly
slower, and inference throughput was reduced by an order
of magnitude [97]. However, CPUs remain suitable for
lightweight models, small-scale inference, or scenarios
where GPU resources are unavailable [98]. Recent
advances, such as quantization and model distillation, can
partially mitigate CPU performance gaps but generally at

the cost of some predictive accuracy. Practical
considerations and recommendations are mentioned
below:

e Development and Prototyping: GPUs are highly
recommended  for  model development,
hyperparameter tuning, and large-scale training,
especially with transformer-based architecture or
large datasets.

e Deployment: For production environments with
high thoughts or real-time requirements, GPU
acceleration is advantageous. For resource-
constrained or edge deployments, optimized CPU
inference may suffice if models are pruned or

quantized.
e Cost and Accessibility: While GPUs deliver
superior performance, they entail higher

acquisition and operational costs. Cloud-based
solutions can offer scalable GPU access as needed.

In summary, GPUs deliver significant speedups for both
training and inference in deep learning-based SDG
classification, but CPUs may still be viable for limited or
cost-sensitive applications. The trade-off should be
evaluated based on dataset size, required latency, and
available resources.

The usage of pre-trained embeddings created a robust
boost to the model which contains semantic connections
among words cause to boost performance. The
Bidirectional LSTM layers effectively collected context
from both sides or directions in which they are important
for understanding the meaning of words acquired from the
data. The confusion matrix outcomes shown that the model
had good performance across the majority of classes,
demonstrating increased true positive rates for several
SDGs. Nevertheless, several classes demonstrated higher
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misclassification rates, highlighting possible areas for
model development. Classes with limited training samples
or confusing textual content may require supplementary
data or advanced preprocessing techniques. The results
showed useful information on the model’s achievements
across each type of SDGs. The metrics with precision and
recall scores for most SDG classes indicate that the model
is both accurate and dependable in its predictions and the
model converged successfully, showing no evidence of
overfitting or underfitting. The successful creation of this
deep learning architectures for SDG classification support
multiple benefits which are outlined as follows:

e The approach facilitates the automated
classification of extensive text data pertaining to
SDGs, assisting scholars, policymakers, and other
parties in rapidly identifying appropriate
information.

e The process shows diversity and flexibility,
allowing for adaptability to wvarious text
categorization assignments.

e The findings highlight the necessity for further
research into sophisticated models, such as
Transformers, and the investigation of alternative
embedding approaches.

Although the model demonstrated remarkable
performance, many opportunities for development can be
created which include the following:

e Extending the volume and variety of the dataset
may boost performance, especially for minority
categories.

e Investigating more complex architectures,
including Hybrid architectures, to further improve
system efficiency.

e Configuring an exhaustive tuning of the
hyperparameters should strengthen the model
effectiveness yet effect the generalization.

e Implementing  domain-specific =~ embeddings
trained on SDG-related data or semantic texts
could capture more word connections.

Limitations of the Proposed Study while our proposed
deep learning pipeline for SDG text classification
demonstrates promising results and advances the state of
the art in several respects, there are important limitations
to acknowledge:

e Dependence on Labeled Data: the performance of
supervised models such as ours heavily relies on
the quality and quantity of labeled SDG data.
Manually annotated SDG datasets are scarce and
often  imbalanced, @ which may  restrict

generalizability to new domains or document types.

e Computational Resource Requirements: training
and fine-tuning deep learning models, especially
transformer-based  architecture like BERT,
RoBERTa, and DeBERTa, require significant
computational resources (e.g., high-end GPUs).
This may limit accessibility for organizations with
constrained hardware or in edge computing
scenarios.

e Interpretability Constraints: while the integration
of attention visualization, SHAP, and LIME

improves transparency, these methods still offer
only post-hoc explanations and may not fully
capture the complex decision-making processes of
deep models.

e Handling of Noisy and Short Texts: although
advanced preprocessing is applied, noisy,
ambiguous, or extremely short texts such as social
media posts remain challenging for accurate SDG
classification.

e Multilingual and Cross-Domain Generalization:
the current pipeline is optimized for English-
language texts and may require significant
adaptation for multilingual or cross-domain
applications. Out-of-vocabulary and domain-
specific  terminology may  still degrade
performance.

e Potential for Overfitting: despite the use of
regularization and class balancing techniques, the
risk of overfitting persists, particularly when
training on small or imbalanced datasets.

e Benchmarking Constraints: while extensive
benchmarking is performed, results are contingent
on the selected datasets and may not fully reflect
real-world deployment conditions or all possible
SDG classification scenarios.

By recognizing these limitations, our study provides a
balanced perspective on the applicability of our approach
and identify directions for future improvement and
research. This article highlights the achievement of the
usage of Al models in SDG data classification. The
implementation of pre-trained GloVe embeddings and
hybrid CNN-Bidirectional LSTM were shown to be
effective in capturing the semantic and contextual
information required for appropriate class. The evaluation
of metrics and visualizations showed important
perspectives into the model’s pros and cons, allowing for
more research in similar disciplines.

VII. CONCLUSION

This study presents research demonstrating the
successful application of a complete deep neural network
framework for text classification, specifically applied to
SDGs. This conclusion section offers an in-depth
evaluation of the results, examines the implications of the
research, and suggests prospective paths for later
exploration. The main purpose of this effort was to provide
an extensive process for categorizing text related to the
SDGs through artificial intelligence techniques. The
method includes gathering data and preparation, model
development, training, evaluation, and prediction. The
implications from the study are as follows:

e The data preparation procedure covered the
acquisition of SDG-related data from several Excel
files, mixing relevant text fields, encoding target
labels, and partitioning the data into training and
testing with tokenization and padding also
performed to make certain a uniform input length
for the model.
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e Pre-trained GloVe embeddings were utilized to
construct an embedding matrix, which
subsequently initialized the model’s embedding
layer. This allows massive semantic information
from the beginning.

e The model architecture designed with a sequential
model which contains an embedding layer, a
hybrid CNN-Bidirectional LSTM besides the
ReLU activation, L2 regularization, and a SoftMax
layer. This architecture summarized the necessary
semantic and contextual information for high
performance results.

e The model employed early stopping to mitigate
overfitting during training. The performance was
evaluated on the test sample utilizing multiple
metrics, including precision, recall, F1 score, and
specificity. The findings demonstrated robust
performance, with good accuracy and balanced
precision and recall across the majority of classes
(SDG types).

e LIME and SHAP help interpret not just which
SDG a document is mapped to, but also by
showing which words were most decisive. This
enhances the transparency of your SDG classifier
and reveals strengths and ambiguities in the
provided dataset.

e The confusion matrix offered a comprehensive
analysis of the model’s predictions, emphasizing
strengths and areas for  enhancement.
Supplementary metrics including precision, recall,
F1 measure, MAE, RMSE, and specificity
provided a deep assessment of the model’s
efficacy.

Effective implementation of this Al pipeline for SDG
classification has significant ramifications, including
automated analysis, whereby the model can facilitate the
classification of extensive text data pertaining to SDGs.
This can assist individuals and researchers, and even
companies in rapidly recognizing and prioritizing relevant
information, resulting in more informed decision-making
and resource allocation. The pipeline created in this study
is scalable and may be modified for various text
categorization jobs across different domains. The model
can increase the understanding and prior knowledge of
these goals. This can enhance communication and
advocacy initiatives, hence make it easy to find the SDG
types. The assessment of proposed models using the
metrics and visualizations creates a significant insight into
the model’s strengths and weaknesses, facilitating further
research and applications in other scopes.

This research has major results, highlighting the
possibility for automated text analysis, scalability, and
improved text comprehension of SDGs. Although the
model exhibited admirable performance, other areas could
be improved such as augmentation of data, model
architecture, hyperparameter tuning, feature optimization,
domain-specific embeddings, and even the ensemble or
hybrid approaches. Future research avenues encompass
the investigation of Transformer models, transfer learning,

multilingual models, explainability, real-time applications,
and collaborative platforms.

Although the model exhibited commendable
performance, there are other aspects that warrant
enhancement, including hyperparameter optimization.
Engaging in a more comprehensive hyperparameter search
may enhance the model’s performance. Methods include
grid search, random search, and Bayesian optimization can
be employed to identify the optimal hyperparameters for
the model. Alternative hybrid or ensemble employing
ensemble approaches, such as bagging, boosting, or
stacking, can enhance the robustness and accuracy of
predictions by integrating numerous existing models.
Ensembles and hybrids frequently could outperform single
models by improving the values of variance and bias.

Subsequent investigations may examine the application
of multilingual models by creating multilingual models
capable of classifying text in several languages that could
enhance the pipeline’s applicability. This is especially
pertinent for the SDGs, a worldwide endeavor that
encompasses textual data in multiple languages. Future
study may concentrate on enhancing the explainability and
interpretability of the model’s predictions. Methods such
as attention visualization, SHapley Additive exPlanations
(SHAP), and Local Interpretable Model-agnostic
Explanations (LIME) help elucidate the decision-making
processes of the model. Deploying the model in real-time
applications, such as web-based tools or mobile
applications, enhances its accessibility and use for end-
users. This may speed up the categorization and
assessment of text data related to the SDGs text data. In
addition, establishing collaborative platforms for
organizations to share and evaluate SDG-related textual
data utilizing the model could increase the data volume,
thus improving model’s efficiency.

This study presents a novel deep learning-based
framework for the automated classification of research
texts according to the United Nations SDGs, offering
significant theoretical and practical contributions to the
field of text mining and policy analysis. Theoretically, our
approach  advances  current understanding by
demonstrating the effectiveness of hybrid BILSTM-CNN
architecture combined with contextual word embeddings
such as BERT and FastText for handling complex and
domain-specific classification tasks. This research also
provides insights into the interpretability of deep learning
models, utilizing techniques such as attention visualization
and SHAP analysis to enhance transparency and trust in
automated text classification. These findings contribute to
broader literature by illustrating how diverse neural
network architectures and interpretability methods can
address the unique challenges of multi-label scientific text
classification, pushing the boundaries of what is currently
achievable in automated literature analysis.

The main contributions of this work are threefold. First,
we propose an integrated pipeline that unifies advanced
preprocessing, a hybrid deep learning model, and
interpretability methods tailored for SDG classification.
Second, we conduct comprehensive comparative
experiments with state-of-the-art models and zero-shot
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prompt-based classifiers, providing a thorough benchmark
for future research and establishing a solid methodological
foundation for future advancements. Third, we
demonstrate the generalizability of our approach across
both SDG and non-SDG datasets, highlighting its
adaptability to various domains and its potential for
transferability to other large-scale text classification
problems within and beyond sustainability science.

From a practical perspective, the proposed framework
offers  substantial advantages for  researchers,
policymakers, and organizations. By automating the
classification of large volumes of policy and academic
documents, our method enables efficient tracking and
assessment of SDG-related research, supporting evidence-
based decision-making and policy formulation. The
inclusion of interpretability features further assists end-
users in understanding and trusting the classification
outcomes, thus facilitating broader adoption in real-world
applications. The pipeline’s scalability and modularity
make it a valuable tool for large institutions and cross-
disciplinary teams, reducing manual effort, enhancing
transparency, and supporting strategic planning and
reporting aligned with global sustainability objectives.

Overall, this research bridges critical gaps in SDG text
classification by combining methodological innovation
with practical utility, paving the way for more robust,
transparent, and scalable solutions in sustainability
assessment and beyond. By providing a reproducible and
adaptable pipeline, this work not only advances the state-
of-the-art in artificial intelligence for sustainable
development but also lays the foundation for future
research and practical deployment in diverse text analytics
scenarios.

This study provides an extensible and efficient hybrid
deep learning framework implementation Scopus
metadata to identify scientific articles based on the United
Nations Sustainable Development Goals. Using pre-
trained GloVe embeddings, CNN and BiLSTM
architectures were combined to show better accuracy and
specificity than existing baselines over several datasets.
Important contributions consist in a consistent approach
for SDG text classification, strong evaluation against
several standards, and useful insights for automated
research analytics in sustainability science. The results
highlight the possibilities of hybrid neural models and
well-chosen information for enhancing evidence-based
decision-making and resource allocation inside the SDG
structure. This research enhances the existing knowledge
on text classification through Al and establishes a solid
framework for future directions in this field. The results
highlight the capability of AI methods to tackle
complicated text classification challenges and facilitate the
attainment of global objectives similar to SDGs. Future
research will investigate further model improvements to
increase generalizability and domain adaptation as well as
multi-database integration
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