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Abstract—The complexity and variety of language included 
in policy and academic documents make the automatic 
classification of research papers based on the United Nations 
Sustainable Development Goals (SDGs) somewhat difficult. 
Using both pre-trained and contextual word embeddings to 
increase semantic understanding, this study presents a 
complete deep learning pipeline combining Bidirectional 
Long Short-Term Memory (BiLSTM) and Convolutional 
Neural Network (CNN) architectures which aims primarily 
to improve the comprehensibility and accuracy of SDG text 
classification, thereby enabling more effective policy 
monitoring and research evaluation. Successful document 
representation via Global Vector (GloVe), Bidirectional 
Encoder Representations from Transformers (BERT), and 
FastText embeddings follows our approach, which comprises 
exhaustive preprocessing operations including stemming, 
stopword deletion, and ways to address class imbalance. 
Training and evaluation of the hybrid BiLSTM-CNN model 
on several benchmark datasets, including SDG-labeled 
corpora and relevant external datasets like GoEmotion and 
Ohsumed, help provide a complete assessment of the model’s 
generalizability. Moreover, this study utilizes zero-shot 
prompt-based categorization using GPT-3.5/4 and Flan-T5, 
thereby providing a comprehensive benchmark against 
current approaches and doing comparative tests using 
leading models such as Robustly Optimized BERT 
Pretraining Approach (RoBERTa) and Decoding-enhanced 
BERT with Disentangled Attention (DeBERTa). 
Experimental results show that the proposed hybrid model 
achieves competitive performance due to contextual 
embeddings, which greatly improve classification accuracy. 
The study explains model decision processes and improves 
openness using interpretability techniques, including 
SHapley Additive exPlanations (SHAP) analysis and 
attention visualization. These results emphasize the need to 
incorporate rapid engineering techniques alongside deep 
learning architectures for effective and interpretable SDG 
text categorization. With possible effects on more general 
uses in policy analysis and scientific literature mining, this 
work offers a scalable and transparent solution for 
automating the evaluation of SDG research. 
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I. INTRODUCTION 

Text categorization involves the automatic allocation of 
predefined categories to unstructured text data. Within the 
context of the Sustainable Development Goals (SDGs) 
established by the United Nations, precise and efficient 
text classification is of highest importance. The SDGs 
consist of 17 associated goals serving as a framework to 
deal with social, economic, and environmental challenges. 
There is a pressing need for effective tools that can 
systematically organize, categorize, and assess large 
volumes of textual data, as the volume of research output 
related to these goals continues to grow rapidly across 
various scientific disciplines [1]. 

Automated text classification systems improve SDG 
activities by facilitating the rapid identification and 
mapping of research papers, policy documents, and reports 
to their relevant SDG categories [2]. This enhances the 
ability to identify and analyze knowledge gaps and 
emerging trends within the global sustainability agenda, 
while also supporting evidence-based decision-making for 
policymakers and stakeholders. The necessity for robust 
methodologies powered by artificial intelligence is 
underscored by the inadequacy of traditional human 
classification methods to manage the scale and intricacy of 
contemporary scientific literature [3]. 

This study aims to develop and evaluate a 
comprehensive deep learning pipeline for the automated 
classification of research articles, utilizing metadata 
obtained from the Scopus database in relation to the 
Sustainable Development Goals [4]. This study aims to 
achieve the following specific objectives: 

An end-to-end data processing and modeling pipeline 
has been developed to align with SDG text categorization, 
encompassing data collection, preprocessing, model 
creation, training, evaluation, and prediction. In 
comparison to established baseline models such as Long 
Short-Term Memory (LSTM), BiLSTM, CNN, and 
BERT, the objective is to develop and benchmark a hybrid 
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deep learning model that integrates Convolutional Neural 
Networks (CNNs) with Bidirectional Long Short-Term 
Memory (BiLSTM) layers, utilizing pre-trained GloVe 
embeddings [5]. The objectives are mentioned in the 
following pointText categorization involves the automatic 
allocation of predefined categories to unstructured text 
data. Within the context of the Sustainable Development 
Goals (SDGs) established by the United Nations, precise 
and efficient text classification is of the highest 
importance. The SDGs consist of 17 associated goals 
serving as a framework to deal with social, economic, and 
environmental challenges.  There is a pressing need for 
effective tools that can systematically organize, categorize, 
and assess large volumes of textual data, as the volume of 
research output related to these goals continues to grow 
rapidly across various scientific disciplines [1]. 

Automated text classification systems improve SDG 
activities by facilitating the rapid identification and 
mapping of research papers, policy documents, and reports 
to their relevant SDG categories [2]. This enhances the 
ability to identify and analyze knowledge gaps and 
emerging trends within the global sustainability agenda 
while also supporting evidence-based decision-making for 
policymakers and stakeholders. The necessity for robust 
methodologies powered by artificial intelligence is 
underscored by the inadequacy of traditional human 
classification methods to manage the scale and intricacy of 
contemporary scientific literature [3]. 

This study aims to develop and evaluate a 
comprehensive deep learning pipeline for the automated 
classification of research articles, utilizing metadata 
obtained from the Scopus database in relation to the 
Sustainable Development Goals [4]. This study aims to 
achieve the following specific objectives: An end-to-end 
data processing and modeling pipeline has been developed 
to align with SDG text categorization, encompassing data 
collection, preprocessing, model creation, training, 
evaluation, and prediction. In comparison to established 
baseline models such as LSTM, BiLSTM, CNN, and 
BERT, the objective is to develop and benchmark a hybrid 
deep learning model that integrates Convolutional Neural 
Networks (CNNs) with Bidirectional Long Short-Term 
Memory (BiLSTM) layers, utilizing pre-trained GloVe 
embeddings [5]. The objectives are mentioned in the 
following points: 

• Utilizing multiple datasets and various hardware 
setups, and creating assessments procedures by 
using measures such as accuracy, specificity, and 
efficiency, one can effectively evaluate the 
capability and robustness of the proposed method 

• Providing a scalable and adaptable methodological 
framework that facilitates the automated analysis 
and categorization of literature related to the SDGs, 
thereby supporting research, policy, and decision-
making processes in sustainable development. 

This work seeks to advance the current methodologies 
in SDG text classification while offering practical 
solutions for the automated organization and examination 
of sustainability research [5]. 

Natural Language Processing (NLP) includes an 
important procedure of text classification that involves 
assigning text to predetermined categories [6]. The 
procedure includes a wide range of applications, such as 
recognizing spam, subject categorization, book title 
classification, and more. The rapid growth of digital text 
data increased the demand for robust and reliable text 
classification problems [7]. In recent studies, Deep 
Learning (DL) considered an outstanding method for text 
classification, providing significant results compared to 
conventional machine learning methods [8]. While in our 
study, we concentrates on utilizing DL, especially via 
TensorFlow and Keras, to categorize elements related to 
the United Nations’ SDGs. The SDGs contain 17 
worldwide goals initiated by the United Nations in 2015 
for addressing various problems in society, the economy, 
and the environment [9]. These objectives propose to 
achieve a healthier and more sustainable future for 
everyone through 2030 [10]. Due to the substantial amount 
of textual data produced about these objectives, there is an 
increasing requirement for computerized setups that are 
capable of accurately categorizing and evaluating such 
content [11]. Text categorization models serve a purpose 
in this context for categorizing research papers, reports, 
and articles according to their relevance to certain 
SDGs  [12].  

The primary objective of this study is to develop a 
considerable route for text classification with DL 
methodologies. The objective includes importing data and 
text preprocessing, building models, training, testing, and 
prediction. Our study intends to show the ability of DL 
models in properly categorizing text into relevant SDG 
categories by implementing this method on SDG-related 
data. The goal of this effort is to establish a comprehensive 
framework that can possibly be customized for similar text 
categorization challenges across different domains. Text 
classification plays an essential role in the organization 
and handling of massive text data sets. Within the 
mechanisms of the SDGs, it supports scholars, policy 
makers, and businesses in quickly recognizing and giving 
priority to important information. Classifying articles, 
statements, and publications according to the SDGs helps 
for better decision-making processes and the allocation of 
resources. Additionally, automated text classification can 
considerably minimize the time and effort associated with 
manual sorting, which leads to increased effectiveness and 
productivity. Traditional text classification techniques, 
like Support Vector Machines (SVMs) and Random 
Forests, depend on manually gathered features and usually 
require much preprocessing [13]. Although these methods 
have proved to have good outcomes for many different 
scenarios, they have limitations in their capacity of 
recognizing complex data patterns [14]. Nonetheless, DL 
methods have advanced text classification by autonomous 
retrieving features from unstructured text input. 
Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) have shown exceptional 
effectiveness in numerous text classification tasks. 
Recently, attention-based models, such the Transformer 
and its variations, have further improved current 
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approaches by allowing parallel processing and 
recognizing long-term relationships in text data [15]. The 
text data associated with the SDGs is frequently 
inconsistent and unstructured, covering multiple domains 
and subjects. The distribution, even with each category, 
could show severe asymmetry, with certain SDGs 
appearing more frequently than others. These issues 
require the creation of durable procedures for 
preprocessing and model architecture suitable to handle 
these types of data complications [16]. So, it cannot be 
directly utilized in new files. Accordingly, the study 
proposed a text classification approach based on LSTM to 
solve the issue mentioned above [17]. The model’s first 
stages create a separate class or category for each file in 
the data by dependent analysis, then capture the contextual 
information of words by LSTM to learn the importance of 
irrelevant neighboring nodes. Finally, the feature 
representation of all nodes is combined to create a 
semantic embedding of the text graph for label 
prediction  [18]. The text classification has turned into a 
graph classification problem. The main contributions of 
this paper are as follows:  

• Development of a unified deep learning approach: 
proposing a modular framework that integrates 
BiLSTM and CNN architectures with contextual 
embeddings (BERT/FastText), specifically 
optimized for SDG-related document 
classification. 

• Incorporation of advanced preprocessing and class 
balancing: This includes stemming, stopword 
removal, and methods to address class imbalance 
such as oversampling and focal loss. 

• Integration of interpretability methods: enhancing 
model transparency by incorporating attention 
visualization, SHapley Additive exPlanations 
(SHAP), and Local Interpretable Model-agnostic 
Explanations (LIME) to explain predictions, which 
is crucial for policy-influenced tasks. 

• Comprehensive benchmarking against State of 
The Art (SOTA) models: Extensive experiments 
benchmark the proposed approach against SOTA 
models such as RoBERTa, DeBERTa, and large 
language models (GPT-3.5/4 [19], Flan-T5), using 
both SDG-specific and non-SDG datasets. 

• Explicit analysis of hardware impact is conducted 
to analyze the trade-offs between Graphical 
Processing Units (GPU) and Central Processing 
Units (CPU) training/inference, providing 
practical insights for real-world deployment. 

These contributions collectively advance the field of 
SDG text classification by presenting a robust, 
interpretable, and scalable solution, with thorough 
empirical validation and real-world applicability. The 
remainder of this paper is organized as follows: Section II 
reviews related work, including recent advances in deep 
learning and sentiment analysis, and situates our approach 
within the current literature. Section III details the 
methodology, encompassing data preprocessing, the 
proposed hybrid architecture, contextual embedding 
strategies, interpretability enhancements, and 

experimental setup. Section IV presents experiment 
configurations. The results including benchmarking 
against state-of-the-art models, analysis of hardware 
impact, and interpretability findings are shown in 
Section  V. Section VI shows the discussion of the results. 
Section VII concludes the paper by summarizing key 
contributions and outlining potential directions for future 
research. 

II. RELATED WORK 

The literature shows many remarkable advancements in 
text classification using various artificial intelligence 
models as numerous studies indicate that deep learning 
models including CNNs and RNNs such as LSTM and 
BiLSTM surpass conventional machine learning 
approaches due to their capacity to separately extract and 
represent complicated features from raw datasets [20]. 
There is continuous argument about the effectiveness of 
various deep learning architectures related to data type and 
distribution. Some studies show that CNNs exceed in 
capturing local patterns, whereas others such as RNN-
based models are more adept at managing long-range 
dependencies in sequential data, especially in language 
tasks that require contextual prior understanding [21]. 
Transformer-based approaches such as BERT have 
established new performance in various NLP applications 
by effectively capturing bidirectional context. However, 
these models typically necessitate significant 
computational processing and huge datasets for training 
certainly constrain their practical applicability [22]. 

A further area of intersection involves the application of 
pre-trained word embeddings, for instance GloVe and 
word2vec to improve model performance. Most recent 
studies incorporate these embeddings; however, outcomes 
differ based on task complexity and the quality of domain-
specific training data [23]. Several studies advocate hybrid 
or ensemble models that integrate CNNs, RNNs, or 
attention mechanisms, asserting enhanced accuracy and 
robustness. However, some researchers notify that more 
architectural complexity may result in extended training 
duration time and a probability of overfitting if sufficient 
regularization or optimization is not applied.  Unreliability 
exists related to data diversity; some studies used multi-
domain datasets whereas others focus on domain-specific 
resulting in incompatible conclusions about model 
generalizability [24]. 

While there is agreement on how DL is useful for text 
classification, the literature indicates continued 
experimentation related to the best model architecture, the 
trade-off between complexity and efficiency, and the 
influence of dataset properties. The identified 
contradictions emphasize the necessity for comprehensive, 
comparative methodologies, as proposed in this study, to 
systematically assess hybrid deep learning models 
utilizing large, diverse, and well-assembled datasets 
relevant to SDG classification [25]. 

Many comparisons have assessed the efficiency of 
many artificial intelligence models for text classification. 
A survey study conducted a quantitative analysis of 
various text classification approaches on familiar metrics, 
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providing facts about their effectiveness. Deep learning 
algorithms could automatically develop significant feature 
presentations from data via incremental learning, 
minimizing the requirement for manual feature extraction 
and achieving exceptional precision in tasks such as 
classification [26]. CNNs may take advantage of the 
translational consistency of data and local relationships, 
leading to their importance in image processing, computer 
vision, and NLP [27]. Kim [28] was the first to utilize CNN 
for text classification, providing a model that mixes static 
and dynamic lines of vocabulary into separate channels 
and utilizes multi convolutional kernels. The model was 
defined to create the ability for convolutional processes to 
continuously gather features at multiple scales, pooling 
operations for efficiently acquiring local text features, with 
its high computational capabilities [29]. RNN appears 
more suitable for NLP than CNN due to its dynamic 
capabilities and competence in dealing with variable-
length inputs while examining dependency over time [30].  

Nonetheless, RNNs encountered semantic bias concern, 
when words positioned towards the end of a sentence carry 
more significance compared to those at the beginning, 
therefore affecting the overall semantic accuracy of the 
paragraph. As a result, the LSTM model, presented by 
Hochreiter et al. [31], carefully ignores prior data in order 
to find a solution for the issues of expanding and gradient 
cost in RNNs. In the recent past, the attention procedure 
has inspired great interest within scientific society. The 
attention procedure emulates human awareness [32], 
enabling concentration on more significant elements and 
applicable across various NLP assignments. Nonetheless, 
models utilizing RNN and CNN mainly focus on word 
localization and lack in acquiring information between 
remote, non-contiguous words. Liu et al. [33] presented 
the attention diffusion procedure in Graph Neural 
Networks that contains contextual information from 
indirect neighbors within a single layer. Furthermore, 
node-level attention technology is applied to achieve a 
more error-free document level description. Jia et al. [34] 
introduced a more sophisticated network model that relied 
on a graph convolutional neural network that showed the 
encoding of a large syntactic dependency grammar trees, 
lead to multiple heads of attention to acquire dependencies 
from the text sequences. Jia et al. [34] determinately 
improved the text classification performance through the 
integration of capsule networks and semantics.  
Wang et al. [35] introduced an intuitive a classification 
model that utilizes a unidirectional Graph Convolutional 
Networks (GCN), operating without pre-trained word 
embeddings in scenarios with a constrained training 
dataset for message sharing. Yang et al. [36] introduced a 
hierarchical attention network by employing word and 
sentence level attention procedures to boost document 
classification performance. This method is highly effective 
at depicting hierarchical structures in textual content.  

Li et al. [37] represented a word-sentence 
heterogeneous graph to improve interpretability by 
creating CoGraphNet. Howard and Ruder [38] created a 
deep learning model for NLP. ULMFiT attains superior 
results by refining already trained language model for a 

particular written classification test, demonstrating the 
effectiveness of this deep learning model in NLP.  
Devlin et al. [39] presented BERT in their research, a 
transformer-based model that succeeds in achieving high 
accuracy across given NLP scenarios. BERT’s 
bidirectional training helps it to understand context from 
both directions, making it particularly effective for text 
classification. Yosinski et al. [40] examine the 
transferability of acquired features across many tasks. 
Yosinski et al. [40] interprets the effectiveness of transfer 
learning, an increasing methodology for modern text 
classification discipline. Liu et al. [41] made an enhanced 
to the BERT by optimizing pre-training methodologies. 
RoBERTa achieves superior performance across several 
NLP metrics, including text classification, by employing 
augmented data and extended learning durations.  

Sun et al. [42] introduced a framework (ERNIE) that 
incorporates external information into BERT. ERNIE 
attains elevated accuracy in many NLP tasks, including 
text categorization, by taking advantage of structured 
knowledge during the pre-training phase. Qiu et al. [43] 
carried out a survey investigating various essential models 
including BERT, XLNet, and GPT, while determining 
their layouts, training approaches, and its effectiveness in 
NLP tasks, such as classification of texts. Brown et al. [44] 
presents GPT-3, a transformer model including 175 billion 
parameters. GPT-3 has impressive results in several 
natural language processing assignments, including text 
categorization, with minimal task-specific fine-tuning. 
Zhang et al. [45] proposed a model that directly analyzes 
raw text at the character level using CNNs. This model is 
especially advantageous for complex grammar or for 
processing noisy text in languages. Lample et al. [46] 
employed a framework that combines CNNs and LSTMs 
for named entity recognition. The solutions discussed 
related to text categorization challenges that involve the 
identification of local and interrelated sequential 
relationships. 

Within the framework of SDGs, text classification has 
fast evolved as several DL and ML approaches have been 
proposed and investigated. Key contributions are reviewed 
in this part together with their characteristics, benefits, 
constraints, and motivation for the current studies. Several 
articles have implemented advanced text classification 
employing various architectures. For instance,  
Bai et al. [47] showed how convolutional layers might 
capture local textual characteristics by introducing CNNs 
for sequence recommendations. LSTM networks for 
learning long-term dependencies were proposed by 
Hochreiter and Schmidhuber [31], hence establishing the 
basis for RNN-based text categorization. Using 
transformer architecture to capture bidirectional context 
and setting new benchmarks in NLP, Devlin et al. [39] 
created BERT. Emphasizing transfer learning and fine-
tuning for text classification applications, Howard and 
Ruder [38] presented ULMFiT. Reporting higher accuracy 
in text classification, Jang et al. [48] coupled Word2Vec, 
CNN, BiLSTM, and attention mechanisms. Emphasizing 
the need of hybrid architecture, Kamyab et al. [49] 
combined CNN, BiLSTM, and GloVe embeddings for 
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sentiment analysis. Using a CNN-BiLSTM Hybrid, 
Bhuiyan et al. [50] implemented a hybrid model using 
social media data. In their system showcase,  
Manning et al. [51] emphasized the model simplicity and 
robustness, which contributed to its common usage in both 
research and commercial NLP applications. 

Deep learning models (CNN, LSTM, BERT) 
independently learn valuable characteristics from raw 
data, hence lowering dependency on human engineering. 
Models such as BiLSTM and BERT clearly capture 
sequence and context, hence enhancing classification 
accuracy in challenging or ambiguous materials. Pre-
trained language models (BERT, ULMFiT) use 
knowledge from big data to enable good performance on 
limited labeled data by. Combining CNNs, RNNs, and 

attention mechanisms shows enhanced resilience and 
accuracy by combining local and sequential features [52]. 

Transformer-based models (BERT, RoBERTa) depend 
on big datasets and substantial computational resources for 
successful training. Unless regularization is properly 
applied, hybrid and deep architecture may be overfit, 
especially in cases with inadequate or imbalanced training 
data [53]. Many models are assessed on general datasets; 
their performance on domain-specific or emergent themes 
(e.g., SDGs) is unknown. Most studies use English or 
single-domain datasets, therefore restricting 
generalizability to multilingual or cross-disciplinary SDG 
research. Deep models, particularly ensembles or hybrids, 
can be difficult to grasp and thereby affect  
decision-making [54]. 

TABLE I. COMPARATIVE LITERATURE SUMMARY OF SOME TEXT CLASSIFICATION STUDIES 

Authors 
/Reference Model/Approach Dataset Aspect Advantages Limitations 

Bai et al. [47] 
LSTM with Spiking 
Neural P Systems 

(LSTM-SNP) 
Three real-world datasets. self-attention 

networks 
Fast, effective for 

short texts 
Limited context, not 

sequence-aware 

Hochreiter and 
Schmidhuber [31] LSTM Various 

Long-term 
dependency 

learning 

Handles long 
sequences 

Training complexity, 
vanishing gradient 

Devlin et al. [39] BERT (Transformer) 
General Language Understanding 

Evaluation (GLUE), Stanford Question 
Answering Dataset (SQuAD) 

Bidirectional 
context, pre-

training 

High accuracy, 
transfer learning 

High resource needs, 
long training time 

Howard and 
Ruder [38] 

ULMFiT (Transfer 
Learning) 

Internet Movie Database (IMDb), 
Attorney General (AG) News 

Fine-tuning 
pretrained LM 

Effective with small 
datasets 

Underperform on highly 
domain-specific tasks 

Kamyab et al. 
[49] CNN + BiLSTM + GloVe Twitter, Yelp Hybrid, word 

embeddings 
Robustness, 

improved accuracy 
Increased model 

complexity 

Jang et al. [48] Word2vec + CNN + 
BiLSTM + Attention News articles Multi-layer 

hybrid 
High classification 

accuracy 
Risk of overfitting, 

interpretability 
Bhuiyan et al. 

[50] CNN-BiLSTM Hybrid Social media Hybrid, deep 
learning 

Enhanced detection, 
flexibility Computational overhead 

Bai et al. [47] LSTM-SNP Three real-world datasets. self-attention 
networks 

Fast, effective for 
short texts 

Limited context, not 
sequence-aware 

 
Notwithstanding these developments, the automated 

categorization of SDG-related material still shows flaws.  
Many times, lacking robustness across several SDG areas, 
current models do not fully use the extensive, 
transdisciplinary metadata accessible in sources such as 
Scopus [55]. Customized to the SDG environment and able 
of effective training and inference, scalable, flexible 
pipelines combining the strengths of CNNs, BiLSTMs, 
and pre-trained embeddings are much needed. By 
suggesting a hybrid deep learning system that combines 
data processing, model construction, and evaluation 
utilizing large-scale Scopus information and comparing 
performance against state-of-the-art baselines, the present 
work fills in these voids [56]. Table I shows a comparative 
summary of some of the text classification studies, their 
advantages, disadvantages and limitations. 

Recent years have witnessed significant progress in 
leveraging deep learning and transformer-based models 
for text classification across various domains, including 
sentiment analysis, fake news detection, and Sustainable 
Development Goal (SDG) mapping. Numerous studies 
have demonstrated the effectiveness of architecture such 
as CNNs, LSTMs, BERT, and their variants on both 
generic and domain-specific datasets [57]. For instance, 
Hernández et al. [58] and Zamir et al. [59] applied deep 

learning models for sentiment analysis related to social 
activities. Highlighting the potential of such techniques for 
real-time insights in crisis contexts. However, several 
critical research gaps remain unaddressed, which this work 
aims to clarify and highlight: 

• Limited focus on SDG-specific classification: 
most existing studies concentrate on general-
purpose text classification or sentiment analysis, 
with comparatively few works addressing the 
unique challenges of SDG-related document 
categorization. There is a lack of standardized, 
large-scale benchmarks and tailored pipelines for 
SDG classification. 

• Insufficient model interpretability: while deep 
learning models have achieved high accuracy, 
their “black box” nature limits practical adoption 
in policy and research settings where transparency 
is crucial. Few prior works integrate state-of-the-
art interpretability tools such as attention 
visualization, SHAP and LIME specifically for 
SDG text classification. 

• Under-explored use of advanced contextual 
embeddings: many studies still rely on static word 
embeddings such as GloVe or Word2Vec, with 
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limited exploration of the impact of contextual and 
subword embeddings (e.g., BERT, FastText [19]) 
on SDG classification performance. 

• Scarce benchmarking against the latest SOTA 
models and LLMs: systematic comparisons with 
recent state-of-the-art models like RoBERTa, 
DeBERTa, and large language models (GPT-3.5/4, 
Flan-T5) in the context of SDG classification 
remains rare. This gap hinders a clear 
understanding of the relative strengths and 
weaknesses of traditional and transformer-based 
approaches for this domain. 

• Neglect of practical deployment considerations: 
few studies discuss the real-world implications of 
hardware choices (GPU vs. CPU), scalability, and 
computational cost for deploying deep learning 
models in SDG-related applications. 

• Inadequate handling of data imbalance and noise: 
the challenges posed by imbalanced SDG datasets 
and noisy, heterogeneous metadata are often 
overlooked, with sparse use of advanced 
techniques such as Synthetic Minority Over-
sampling Technique (SMOTE), focal loss, or 
robust preprocessing. 

Deep learning’s recent developments have greatly 
enhanced text classification performance. Still, there are 
difficulties with computing efficiency, dependability 
across domains, and interpretability.  This work addresses 
the constraints of past methods and offers a scalable, high-
performance solution for automated SDG document 
categorization, therefore building on the results of prior 
approaches by presenting a hybrid deep learning pipeline 
especially tuned for SDG-related research. 

The DataCite Metadata Schema has evolved to describe 
research datasets, making it easier to find, access or even 
cite them in academic publications. Its structured approach 
supports interoperability between repositories and is in 
line with the Findable, Accessible, Interoperable, Reusable 
(FAIR) data movement’s ideas about distributing and 
reusing data. In addition, ISO 23081 is another example of 
a full structure for managing metadata in records. It gives 
guidelines for how to create, keep, and check the quality 
of metadata in organizational settings [60]. 

The FAIR projects with data have encouraged the 
creation of more tools for checking and expanding the 
quality of metadata. A few examples of automatic 
evaluation tools and assessments that comply with FAIR 
rules are the FAIRshake toolkit and the FAIR Evaluator. 
These tools can help us to verify the comprehensiveness 
and reliability of metadata in an organized manner [61]. 

TABLE II. GLOSSARY OF SCIENTIFIC TERMS AND CONCEPTS 

Term Definition 
Sustainable Development Goals 

(SDG) 
Seventeen global objectives established by the United Nations to address social, economic, and 

environmental issues by 2030 

Text Classification The procedure of categorizing unstructured textual material into specified classifications utilizing techniques 
or algorithms 

Deep Learning (DL) A branch of artificial intelligence that uses deep neural networks to identify complex patterns. 
Bidirectional Long Short-Term 

Memory (BiLSTM) 
A variant of recurrent neural network that analyzes data in both forward and backward paths, effectively 

acquiring contextual information from both ends 
Embedding/Word Embedding A method for coding words as smaller, low-dimensional vectors that retain semantic importance 

GloVe A pre-trained word embedding model that produces vector representations derived from global keyword-
word combination data is utilized as an input embedding layer in the hybrid model 

Bidirectional Encoder Representations 
from Transformers (BERT) 

A transformer-based language model pre-trained to acquire extensive contextual word representations. 
Utilized for evaluation and contextual embedded data 

Convolutional Neural Network (CNN) 
An architecture of neural networks designed to identify local patterns through convolutional filters, 

commonly applied to natural language processing and image analysis. Applied to identify local 
characteristics within text sequences 

FastText A word embedding method that integrates subword information (character n-gram) to more effectively 
address unusual words is utilized as an alternate embedding method in tests 

Tokenization The procedure of segmenting text into words, sentences, or other significant components (tokens) is utilized 
in preparing input data for embedding and modeling 

Stemming The procedure of reducing words to their simple forms (e.g., moving to “move”) utilized during 
preprocessing to standardize text 

Stopword Removal The removal of prevalent terms (e.g., “the,” “and”) that have low semantic significance in textual analysis 
Integrated during preprocessing to standardize text 

Class Imbalance A situation in which certain categories include a substantially greater number of samples compared to others. 
Utilized oversampling and focal loss to increase model diversity 

Oversampling Method utilized to improve the quantity of samples in minority classes to neutralize the dataset, consequently 
addressing class imbalance in SDG classes 

Focal Loss Classifying text without specific instruction on those categories, frequently uses prompt-based large language 
models. Assessed utilizing GPT-3.5/4 and Flan-T5 for the SDG tasks 

Zero-shot Classification Prompt-based large language models are used to classify text without explicit guidance on specific 
categories. This classification examined the use of GPT-3.5/4 and Flan-T5 models for the SDG tasks 

RoBERTa, DeBERTa Modern transformer-based models for natural language processing tasks, boosting BERT employed as 
metrics for SDG text classification efficiency 

SHapley Additive exPlanations 
(SHAP) 

Method for explaining artificial intelligence model predictions by providing significance ratings to features, 
therefore boosting model interpretability and refining predictions 

Attention Visualization Technique for visualizing the specific components of an input (such as words in a sentence) that a model 
highlights during estimation, with the purpose of enhancing the visibility of model decisions 

FAIR Principles Data management guidelines: Findable, Accessible, Interoperable, Reusable, which refer to metadata quality 
and dataset preparation 
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Even with these improvements, not many studies 
systematically compare the effects of these metadata 
standards and quality tools on SDG-specific text 
classification tools. Adding these tools to the design and 
evaluation of AI applications could make SDG 
classification more reliable and useful in a wider range of 
fields. Research could benefit from these tools to show 
how metadata standards and FAIR-aligned quality tools 
can be used together and tested in large-scale and multi-
scope classification problems [62]. The literature 
demonstrates a specific pattern in favor of the utilization 
of artificial intelligence models for text categorization, 
attributed to their ability to autonomously identify 
complex patterns and presentations from unprocessed 
input texts. The utilization of pre-trained embeddings and 
advanced architectures such as BiLSTM and CNN has 
significantly boosted the accuracy and efficiency of text 
classification techniques [50]. This research combines 
these enhancements to establish a comprehensive 
workflow for identifying text associated with the 
Sustainable Development Goals, addressing the particular 
difficulties specific to this field. Table II shows a glossary 
of our utilization of scientific terms through this study. 

III. MATERIALS AND METHODS 

A. Data Preparation  
This study’s text data acquired from seventeen data files 

which contain 8713 research titles and 2,211,255 words, as 
shown in Table I, each research paper is connected to a 
specific SDG type. Each file has diverse papers pertinent 
to the individual Sustainable Development Goal, including 
titles, abstracts, keywords, and subjects. Our study also 
multiplies the data multiple times with random data to 
increase the scale of the data to comply with modern NLP 
standards. Every spreadsheet has been imported into a 
panda DataFrame, an additional column has been 
incorporated within each DataFrame to indicate the SDG 
category. The Data Frames are subsequently merged into 
a singular DataFrame. This integrated DataFrame enables 
the following stages of data preprocessing and model 
development. The title, abstract, keywords, and subjects 
are merged into a singular text box to form a single entry. 
This integrated text field is meant for tokenization and 
embedding. A label encoder is used for transforming these 
labels into numerical values suitable for artificial 
intelligence techniques in which the encoder gave a unique 
value to each SDG category, then our approach started by 
dividing the data into training and validation datasets with 
a random ratio based on 10-fold cross validation [63]. This 
ensures that the simulation obtains sufficient data for 
training while keeping a portion of dataset for assessing 
model’s effectiveness. A sample of the data utilized during 
our approach and tests is shown in Tables III and IV. The 
data shown includes six rows: SDG type, ID, article title, 
abstract, keywords, and subjects related to the article’s 
scope. The data preparation stage is crucial for ensuring 
that the input data is of high quality and consistency for 
NLP and AI applications. The preprocessing utilized the 
following: 

TABLE III. DATA TITLES AND WORDS RELATED TO SDGS 

SDG Type Titles count Words count 
1 62 16038 
2 344 87125 
3 1596 446938 
4 205 51730 
5 104 28031 
6 1111 267835 
7 1338 301560 
8 214 56719 
9 214 56716 
10 151 41229 
11 634 161279 
12 306 77353 
13 213 54560 
14 341 84705 
15 223 49705 
16 61 15771 
17 1596 413961 

Total 8713 2211255 

TABLE IV. DATA SAMPLE 

Category Description 
SDG 
Type 4 (Goal of Quality Education) 

Title Enhancement of Recommendation Engine Technique for 
Bug System Fixes [64] 

Abstract 

This study aims to develop a recommendation engine 
methodology to enhance the model’s effectiveness and 
efficiency. The proposed model is commonly used to assign 
or propose a limited number of developers with the required 
skills and expertise to address and resolve a bug report. 
Managing collections within bug repositories is the 
responsibility of software engineers in addressing specific 
defects. Identifying the optimal allocation of personnel to 
activities is challenging when dealing with software defects, 
which necessitates a substantial workforce of developers 

Keywords bugs, fusion of intelligent optimization, artificial neural 
networks, machine and deep learning 

Subject Information Systems,Artificial Intelligence,Computer 
Engineering. 

 
• Data Loading and Consolidation: loading 

seventeen data files, each one related to a different 
Sustainable Development Goal (SDG), into 
separate pandas DataFrames. Each one of the 
seventeen data files has a number of columns, as 
shown in Table IV, such as article title, abstract, 
keyword, and subject area. An extra column to 
each DataFrame is added to show the SDG 
category for each input. All DataFrames are put 
together into one big DataFrame for easy analysis 
in a later stage. 

• Data Augmentation: using data augmentation and 
multiplication to deal with any data sparsity and to 
match the size needed by modern NLP models and 
to prevent overfitting and increase generalization. 

• The title, abstract, keywords, and subject columns 
for each article (row) were merged into one text 
field in order to check whether all important text 
information is available for the operations of 
feature extraction, tokenization, and embedding.   

• Normalization: The text field from the previous 
step went through noise reduction such as 
lowercasing, in which all text was changed so that 
it could be processed further. All punctuation, 
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symbols, and non-alphanumeric characters were 
removed. 

• Removal of Stopwords: A standard stopword list 
was used to get rid of common words that don’t 
add any meaning, such as “the” and “of”. 

• Whitespace Normalization: All whitespace 
characters that came one after the other were 
changed to single spaces. 

• Stemming: Words were substituted to their base 
forms to make sure that all the different forms were 
the same (for example, “studies” to “study”). 

• Label Encoding: A label encoder twisted the SDG 
category into numerical labels.  A different integer 
value was given to each SDG, which is usable for 
numerical AI applications.  

• Tokenization and embedding: each row in the data 
file that contains the article (data) terms was turned 
into a string of tokens (words), and then the tokens 
were linked to embedding vectors by pre-trained 
embeddings (GloVe, FastText, and BERT) 
through the training stage. 

• Before training, the dataset was randomly shuffled 
to remove any bias and make sure that the batches 
entered randomly into the model during the 
experiment. 

• Training and validation subsets: the study used 10-
fold cross-validation. One-fold is used for testing 
and nine folds for training, and each iteration 
lowers the chance of selection bias. 

B. Tokenization, Padding, and Global Vector Word 
Embeddings 

The textual data is tokenized via the Keras Tokenizer. 
This procedure transforms the text into integer sequences, 
with each integer representing a particular word in the text. 
The tokenizer analyzes the training data to construct a 
vocabulary of the most frequent phrases. Padding is 
utilized to keep a consistent input size due to variations in 
the lengths of input sequences. The sequences are extended 
to a maximum length with shorter sequences replaced by 
zeros and longer sequences truncated, this consistency is 
necessary for feeding data into the model [65]. Thereafter, 
our approach added the initial GloVe embeddings taken 
from a text file named (glove.6B.100d). These embeddings 
provide an adequate vector diagram for each word in the 
glossary, preserving the same meaning or connections 
among words. Then, an embedding matrix is constructed 
to associate terms in the tokenizer’s vocabulary with their 
respective GloVe embeddings [66]. This matrix triggers 
the embedding layer in the model, enabling it to utilize 
pretrained word representations.  

C. Model Architecture 
1) BiLSTM 
A hybrid one convolutional layer-Bidirectional Long 

Short-Term Memory (BiLSTM) model is utilized in our 
study to categorize the text in the acquired data. This 
network includes a few layers; the first one is the 
embedding layer consists of a pre-trained Global Vector 
(GloVe) embedding which transform input sequences of 

word indices into dense vectors [67]. The second layer is 
the bidirectional LSTM Layers which were bidirectional 
LSTM layers used to capture sequential dependencies in 
both directions. This boosts the ability of the model for 
understanding the context of the data. Next layer is the 
dropout Layers which are carried out subsequently to each 
LSTM layer to prevent overtraining or overfitting problem 
by disabling a certain amount of input units throughout 
training randomly [68]. Then a dense layer incorporating 
ReLU and L2 regularization was utilized to incorporate 
non-linearity and manage complexities. The last output 
layer, which is a dense layer utilizing SoftMax activation, 
provides a final probability distribution through the SDG 
categories [69]. The model was built along with the hybrid 
CNN layers with the optimizer and limit categorical 
entropy loss as parameters. The Adam optimizer was 
selected for its effectiveness and flexible learning rate. 
Sparse categorical cross-entropy is utilized since the labels 
are integers denoting distinct classes. Besides, the early 
halting was used to monitor validation loss during the 
training phase [70]. Training terminates if the validation 
fails to decrease over a certain value of iterations or epochs, 
and the most effective weights are restored. This 
minimizes the overfitting and confirms the model 
generalizes adequately to unexpected inputs. 

2) Hybrid BiLSTM-CNN model 
Our approach is implemented by designing a hybrid 

BiLSTM-CNN model by using CNN layers, namely a 
Conv1D layer followed by a MaxPooling1D layer, to 
identify local patterns within the text sequences. In the 
hybrid model architecture, the CNN layers are followed by 
Bidirectional LSTM layers to capture temporal 
dependencies. Subsequently, adding a dropout layer that 
elevates dropout rates to mitigate overfitting. Lastly, the 
model is run and trained using the same optimizer and 
early halting to guarantee stable training. The system is 
trained on padded sequences utilizing early halting and 
validation data. The training phase consists of several 
epochs during which the model gradually adjusts its 
weight to reduce the validation loss function [71]. 

Model structure 
The embedding layer turns input text sequences of word 

indices into dense vector characterization. These vectors 
convey semantic values of the terms and are essential for 
LSTM layers to fully comprehend the overall surroundings 
of the text. The embedding layer is initialized using the 
basic GloVe embeddings. These embeddings provide a full 
representation of words obtained through their utilization 
in a large text corpus. Let Xi represent the input sequence 
of word indexes i, and E denote the embedding matrix. The 
embedding layer turns X into embedded representation Vi 
as seen in Eq. (1), E represents a matrix of shape which 
includes the vocabulary size and embedding 
dimension  [72]. 

 𝑉𝑉𝑖𝑖 = 𝐸𝐸[𝑋𝑋𝑖𝑖] (1) 

BiLSTM layers represent a variant of RNNs capable of 
capturing long-term dependencies in sequential input. 
Bidirectional LSTMs extend this functionality by 
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analyzing the input sequence in both forward and reverse 
perspectives, so effectively twice the contextual 
information supplied to the model [73]. A Bidirectional 
LSTM consists of two LSTM layers. The initial layer is the 
forward LSTM layer which examines the input sequence 
all over and backward LSTM layer which analyzes the 
input sequence from all over from end to beginning. The 
outcomes of both layers are put together to yield the final 
outcome of the Bidirectional LSTM [74]. Let 
ℎ𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  and ℎ𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏depict the covered states at time 

stride t for both ward LSTMs. The output Ht of the 
Bidirectional LSTM is shown in Eq. (2). 

 𝐻𝐻𝑡𝑡 = [ℎ𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓;ℎ𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏] (2) 

This combination permits the model to process 
information from both previous and succeeding contexts, 
allowing an increased understanding of the sequence. 
Dropouts are employed to reduce overtraining problems by 
randomly ignoring a proportion of the input nodes during 
the phase of training. This procedure permits the proposed 
model to acquire robust properties or features that do not 
rely on certain nodes or neurons [75]. The proposed 
architecture utilizes a best dropout rate of 0.3, meaning that 
30% of the input units are randomly deactivated at each 
training epoch. The main idea of using dense layer brings 
non-linearity into the model’s architecture, authorizing it 
to acquire deeper depiction of the input. The function of 
the activation here, which is ReLU function was created to 
incorporate non-linearity while bypassing the vanishing 
gradient issue that sometimes should use another 
activation functions such as sigmoid. L2 regularization is 
utilized randomly as hypermeter combination in the dense 
layer to reduce overtraining/overfitting dilemma by 
placing costs on substantial weights [76]. This assists the 
model’s acquisition of smaller and generally applicable 
weights. Choosing the variable input to the dense layer as 
𝐻𝐻, with the weights and biases represented by 𝑊𝑊 and 𝑏𝑏, 
respectively. The output function 𝑍𝑍 of dense layers with 
ReLU activation is provided in Eq. (3). 

 𝑍𝑍 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑊𝑊 ∙ 𝐻𝐻 + 𝑏𝑏) (3) 

The result of the output layer provides an overall 
prediction probability for each SDG category. The 
SoftMax activation function implies that output values are 
inside the interval [0, 1], giving them comprehensible as 
probabilities [77]. Then, with the weights and biases 
represented as 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜, respectively. The output 𝑦𝑦 
is provided in Eq. (4). 

 𝑦𝑦𝑖𝑖 = 𝑒𝑒(𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 ∙𝑍𝑍+𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜)𝑖𝑖

∑ 𝑒𝑒(𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 ∙𝑍𝑍+𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜)𝑗𝑗
𝑗𝑗

 (4) 

where 𝑦𝑦𝑖𝑖  represents the probability of the 𝑖𝑖𝑡𝑡ℎ  SDG 
category. The Bidirectional LSTM-CNN model 
framework was designed to effectively absorb contextual 
data in textual input. Utilizing pre-trained GloVe 
embeddings, bidirectional processing, dropout for 
regularization, and extensive layers with ReLU activation, 
the model effectively learns robust features for classifying 
text into SDG categories [49]. The SoftMax output layer 
generates accessible probability distributions for each 

category, allowing accurate predictions. Fig. 1 illustrates 
the suggested framework diagram for the experiments 
conducted in the study. 

 

 
Fig. 1. Diagram of model structure. 

IV. EXPERIMENTS 

A. Experimental Configuration 
This article utilizes the Python 3.7 development 

platform than runs on Jupyter version 7.2.2, along with 
NumPy and other libraries, via the Anaconda prompt. The 
experiments are conducted on the development platform 
with two hardware configurations: the first features an 8-
core Intel Core i7 numbered 11800H CPU, 16GB DDR4 
RAM, and an Nvidia GeForce 3060 graphics processor. 
The second hardware includes a 4-core Intel Core i5 
numbered 8350U CPU, 16GB DDR4 memory, and an Intel 
UHD 620 graphics processor. To assess the performance 
of the model we proposed by executing experiments on the 
subsequent sets: the first set is called Ohsumed which is 
extracted from the MEDLINE database. The Ohsumed 
dataset is a compilation of medical texts utilized for text 
classification in medical discipline [78]. It encompasses 
twenty-three disease categories and comprises 6286 
training trials and 7643 test trials. The second set is 
GoEmotion which is a dataset of comments from  
Reddit [79], featuring twenty-seven emotion categories 
(excluding neutral). This study utilizes only single-label 
samples from the original multi-label dataset, in 
accordance with the methodology of Suresh and Ong [80]. 
The dataset has 21,402 training samples and 2971 test 
samples. Our model is examined against four baseline 
models, as indicated in Table V. The hardware 
configuration is shown in Table VI. The baseline models 
tested along with our proposed methodology are shown in 
the following: 

TABLE V. INFORMATION RELATED TO EACH MODEL AND DATASET 

Model Dataset Categories Field 
LSTM, BiLSTM, BERT, CNN GoEmotion 27 Sentiment 
LSTM, BiLSTM, BERT, CNN Ohsumed 23 Medline 
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TABLE VI. EQUIPMENT SETUP 

CPU TDP GPU Other Specifications 
Intel Core i7 11800 H (8/16 Cores/Threads) with 

base frequency of 2.30 GHz (HW1) 45 Watt Nvidia GeForce RTX 3060 (6GB 
dedicated plus 8GB shared GPU RAM) 

16 GB DDR4 3200MHz NVMe SSD 
3500MBps 

Intel Core i5 8350 U (4/8 Cores/Threads) with 
base frequency of 1.70 GHz (HW2) 25 Watt Intel UHD 620 (8GB shared GPU RAM) 16 GB DDR4 2400MHz NVMe SSD 

3500MBps 

Note: CPU: Central Processing Unit, TDP: Thermal Design Power, GPU: Graphics Processing Unit, RAM: Random Access Memory, SSD: Solid 
State Disk, NVMe: Nonvolatile Memory Express. 

• LSTM: utilizes the final hidden state as an 
illustration of the entire data. The studies were 
employed by using previously trained word 
vectors [81]. 

• Bi-LSTM: a bidirectional model that utilizes 
previously trained word embeddings [48]. 

• BERT: builds a BERT network according to the 
configurations defined by the researchers in 2019. 
The BERT model’s learning rate is determined at 
2e−5, with a dropout rate of 0.1 [82]. 

• CNN: creates a CNN based on the structure created 
by a study in 2014 and used GloVe 
embeddings  [83] as pretrained word 
representations. The best rate of learning is 0.001, 
the kernel sizes are 3, 4, and 5, and the total amount 
of kernels that are trained is one hundred using a 
best dropout rate of 0.5 [28]. 

B. Experimental Pseudocode 
In Algorithm 1, the procedure of the study presented as 

the experimental pseudocode of the model. 
 

Algorithm 1: Experiment Pseudocode 
Start 
Define a function `load_glove_embeddings(file_path)`   
Initialize an empty dictionary `embeddings_index`   
For each line in the file:   
    Split the line into words and embedding values   
    Convert embedding values to a NumPy array   
    Store word and its embedding vector in 
`embeddings_index`   
Return `embeddings_index`   
Define a function `build_embedding_matrix(word_index, 
embeddings_index, embeddings_dim)`   
Initialize `embedding_matrix` with zero values, shape 
`(len(word_index) + 1, embeddings_dim)`   
For every word and index `[i]` in `word_index`:   
    Get `embedding_vector` from `embeddings_index` for the 
word   
    If `embedding_vector` is not Empty:   
        Set `embedding_matrix[i]` to `embedding_vector`   
Return `embedding_matrix`   
Initialize an empty list `dfs`   
For each `i` from `1 to 17`:   
    Load data file into DataFrame `df`   
    Add `sdg` column with value `i` to `df`   
    Append `df` to `dfs`   
Concatenate all DataFrames in `dfs` into a single DataFrame 
`df`   
Create a new column `text` in `df` by combining `title`, 
`abstract`, `keywords`, and `subjects`   
Initialize `Tokenizer` with `num_words=20000`   
Fit `Tokenizer` on all texts in `df[‘text’]`   
Convert all texts to sequences   

Pad all sequences to `max_length=200`   
Define hyperparameter search space (e.g., dropout rates, L2 
values, learning rates, batch sizes, number of units, etc.)   
Set up `RandomizedSearchCV`-like process: 
For each randomly sampled combination of 
hyperparameters:   
    Initialize k-fold cross-validation (e.g., `StratifiedKFold` 
with k=5), stratified on SDG class   
    For each fold:   
        Split data into training and validation sets according to 
fold   
        Build model with current hyperparameters:   
            - Add `Embedding` layer (with GloVe weights, not 
trainable)   
            - Add `Convolution1D` layer   
            - Add `MaxPooling1D` layer   
            - Add `Dropout` layer (use current sample’s dropout 
rate)   
            - Add `Bidirectional LSTM` layer (with/without 
return_sequences as needed)   
            - Add additional `Dropout` layers as specified   
            - Add `Dense` layers (with current sample’s units, 
activation, L2 regularization, etc.)   
            - Add output layer (`softmax`, number_of_classes)   
        Compile model with current learning rate and optimizer   
        Use `EarlyStopping` with validation accuracy 
monitored   
        Fit the model on training fold, validate on validation 
fold   
        Record performance metrics for this fold   
    Calculate mean performance across all folds for this 
hyperparameter combination   
Select the hyperparameter combination with the best average 
performance   
Retrain the final model on the full training set using the best 
hyperparameters   
Split-off a final held-out test set (if not already done before 
cross-validation), or use the cross-validation results as 
estimate of generalization performance   
Evaluate the final model:   
    - Use `model.evaluate` on the test set   
    - Use `model.predict` for test entries   
    - Calculate and display the `Confusion_Matrix`   
    - Calculate metrics: accuracy, precision, recall, f1_score, 
mean_absolute_error, mean_squared_error   
Use LIME to explain individual predictions by highlighting 
important words for each SDG class   
Use SHAP to compute feature importances and visualize 
which parts of the input most influenced the model’s 
decision   
Predict SDGs based on new entry   
Filter and sort predictions by threshold   
Example Usage:   
Define `input_title and input_keywords`   
Call `classify_sdg(input_title, input_keywords)`   
Show `Predicted SDG`   
End 
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C. Performance and Evaluation 
The model’s capability is determined by several metrics 

criteria, including accuracy which is the ratio of accurately 
predicted labels to the total of SDG types or labels [84]; 
precision which is the ratio of real positive SDG 
estimations to the total number of positive predictions; 
recall or sensitivity which is the percentage of true positive 
forecasts to the total number of actual positive 
instances  [85]; F1 measure which is the harmonic mean of 
precision and recall, yielding a singular metric that 
equilibrates both measures [86]; Mean Absolute Error 
(MAE) which is the average absolute deviation between 
the expected and actual values [87]; Mean Squared Error 
(MSE) which is the average of the squared deviations 
between expected and actual labels [88] and lastly the Root 
Mean Squared Error (RMSE) which is the square root of 
the mean squared error, offering a quantification of the 
average amount of errors [89]. Then our study calculated 
the specificity which is the ratio of accurate negative 
predictions to the total number of real negative instances 
in order to check the degree of learning objective in our 
models. Then, a confusion matrix is utilized to illustrate 
the model’s capability regarding all mentioned parameters 
for each SDG category [90]. This matrix assists in 
identifying the categories that the model confuses. The 
training and validation accuracy across epochs is graphed 
to illustrate the model’s learning trajectory and discover 
possible overtraining or undertraining results. 

D. Predictions 
Classify Sustainable Development Goals A function is 

established to categorize input text (title and keywords) 
and yield the top K SDGs according to a given probability 
threshold. The function tokenizes and pads the input text, 
generates predictions utilizing the trained model, then 
filters the predictions according to the threshold [91]. The 
leading K SDG category is thereafter provided along with 
their associated probability.  

Visualization of predictions are the best probabilities of 
the leading SDGs are illustrated to demonstrate the 
model’s position against other models from its results. The 
visual depiction helps in interpreting the model’s output 
and comprehending the relative significance of each 
forecasted SDG. This organized methodology offers a 
detailed explanation of the approaches and processes 
employed in the text categorization model, supported by 
numbers and visual aids that improve learning. 

V. RESULT AND EXAMINATION 

This section examines the proposed model through 
multiple experiments, comparing its findings with existing 
text categorization methods to evaluate its effectiveness. 
All studies were conducted on two machine configurations 
operating Windows 11 Pro 64-bit, as previously illustrated 
in Table VI. Tables VII–IX show the results of all stated 
methods, together with Scopus SDG metadata and the 
previously mentioned datasets. 

 

TABLE VII. RESULTS OF VARIOUS METHODS ON THE SCOPUS SDG 
DATA 

Model Accuracy (%) Specificity (average 
for each SDG) 

Training 
Time (s) 

Proposed 
Model (HW1) 71.55 ± 2.12 96 ± 1.12 362 ± 0.78 

LSTM (HW1) 59.22 ± 2.11 89 ± 0.12 376 ± 0.81 
BiLSTM 
(HW1) 61.19 ± 1.93 90 ± 0.22 540 ± 2.11 

BERT (HW1) 65.46 ± 3.10 87 ± 0.32 214 
CNN (HW1) 57.12 ± 2.21 90 ± 0.24 121 ± 6.78 

Proposed 
Model (HW2) 71.54 ± 2.11 96 ± 1.12 1520 ± 4.78 

LSTM (HW2) 59.21 ± 2.09 89 ± 0.12 1575 ± 5.81 
BiLSTM 
(HW2) 61.14 ± 1.91 90 ± 0.23 2273 ± 3.81 

BERT(HW2) 65.45 ± 3.11 87 ± 0.33 887 ± 7.81 
CNN(HW2) 57.11 ± 2.24 90 ± 0.25 521 ± 8.81 

TABLE VIII. RESULTS OF VARIOUS METHODS ON THE GOEMOTION 
DATA 

Model Accuracy 
(%) 

Specificity 
(%) 

Training Time 
(s) 

Proposed Model 
(HW1) 61.12 ± 2.12 75 ± 2.78 84 ± 0.78 

LSTM (HW1) 50.86 ± 0.48 55 ± 1.78 90 ± 0.78 
BiLSTM(HW1) 51.21 ± 0.58 56 ± 1.68 155 ± 0.78 

BERT(HW1) 59.38 ± 0.71 70 ± 1.38 79 ± 0.78 
CNN(HW1) 50.92 ± 0.63 57 ± 1.68 67 ± 0.78 

Proposed Model 
(HW2) 61.11 ± 2.02 75 ± 2.62 342 ± 0.78 

LSTM(HW2) 50.81 ± 0.41 55 ± 1.71 378 ± 0.78 
BiLSTM(HW2) 51.21 ± 0.52 56 ± 1.68 666 ± 0.78 

BERT(HW2) 59.27 ± 0.51 70 ± 1.61 331 ± 0.78 
CNN(HW2) 50.81 ± 0.41 57 ± 1.92 281 ± 0.78 

TABLE IX. RESULTS OF VARIOUS METHODS ON THE OHSUMED DATA 

Model Accuracy 
(%) 

Specificity 
(%) 

Training Time 
(s) 

Proposed Model 
(HW1) 71.1 ± 0.81 82 ± 0.81 84 ± 0.78 

LSTM (HW1) 56.08 ± 0.13 70 ± 1.78 90 ± 0.78 
BiLSTM(HW1) 58.12 ± 0.32 75 ± 1.78 155 ± 0.78 

BERT(HW1) 70.30 ± 0.35 74 ± 1.78 79 ± 0.78 
CNN(HW1) 54.99 ± 0.52 70 ± 1.78 67 ± 0.78 

Proposed Model 
(HW2) 70.3 ± 0.85 82 ± 0.71 342 ± 0.78 

LSTM(HW2) 56.02 ± 1.12 70 ± 1.77 378 ± 0.78 
BiLSTM(HW2) 58.11 ± 0.82 75 ± 1.75 666 ± 0.78 

BERT(HW2) 70.35 ± 0.65 74 ± 1.72 331 ± 0.78 
CNN(HW2) 54.49 ± 0.72 69 ± 1.91 281 ± 0.78 

 
Fig. 2 depicts the accuracy chart of all models using the 

Scopus SDG model. As shown by the findings in Figs. 2 
and 3, the proposed model from the first hardware (HW1) 
outperforms LSTM by 20.87%. This means that it has 
more efficient architecture and better feature extraction 
capacity in comparison to the traditional LSTM, 
potentially because of better managing of the sequential 
data and addressing difficulties such as gradient vanishing. 
The proposed model (HW1) beats the BiLSTM model by 
16.95% in efficiency. Despite BiLSTM enhancing LSTM 
by including information from both directions, the 
proposed model demonstrated higher performance. This 
indicates that the proposed model integrates additional 
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mechanisms or changes which result in a thorough 
knowledge of the text data.  

The proposed model (HW1) accuracy results increased 
by 9.29% than BERT model. BERT is known for its high 
performance in NLP applications, which is connected to 
its bidirectional iterations and considerable pre-training 
over multiple datasets. The Model’s higher accuracy over 
BERT indicates that it includes unique refinements 
relevant to the task containing better architecture of 
specific integration of context data. The proposed model 
(HW1) goes above the CNN model by 25.27%. 
Convolutional Neural Networks (CNNs) specialize in 
detecting local characteristics via convolutional processes, 
although they may have difficulties with long-range 
interactions. The proposed model’s improved efficiency 
highlights its improved ability of capturing both local and 
global components in text data, potentially via complex 
layout or hybrid models that integrate the advantages from 
multiple approaches. 

 

 
Fig. 2. Accuracy chart for all models utilizing the Scopus SDG. 

 
Fig. 3. Differences in accuracy percentages from the proposed model. 

The proposed model with the first hardware 
configuration (HW1) obtains the highest result among all 
evaluated models, indicating its greater effectiveness for 
the given objective. The significant performance 
differential between our model and the other models 
indicates that ours employs advanced techniques or 
refinements that boost its text classification efficiency. The 
findings highlight the necessity of investigating and 

developing novel architectures or integrating existing 
models for better performance in NLP applications. 

In Fig. 4, a comparison with LSTM (HW1), the 
proposed model (HW1) trains slightly faster than the 
LSTM model by 3.72% with a reduction of 14 s. In 
comparison with BiLSTM (HW1) of 540 s, the proposed 
model (HW1) trains significantly faster than the BiLSTM 
model by 32.96% with a reduction of 178 s. In comparison 
with BERT (HW1) with 214 s, with an increase of 148 s, 
approximately 69.16% longer. In CNN (HW1), which 
takes 121 s, our model takes longer to train compared to 
the CNN model, with an increase of 241 s, approximately 
199.17% longer. The proposed model is more training-
efficient than LSTM (HW1) and BiLSTM (HW1) but it 
takes longer to train compared to BERT (HW1) and CNN 
(HW1). For the second hardware setup (HW2), the 
proposed model takes significantly longer to train 
compared to the first hardware setup (HW1) models, 
indicating increased model complexity or more extensive 
feature extraction processes. By comparing HW1 and 
HW2, all models in HW2 take longer to train than their 
HW1 counterparts, suggesting that HW2 tasks might be 
more complex or require more computational resources. 
Despite the longer training times for HW2, the proposed 
model in the first hardware setup still shows better training 
efficiency compared to second hardware setup models in 
terms of percentage differences. 

 

 
Fig. 4. Training duration for all model setups. 

Table X presents the per-SDG accuracy and specificity 
for all models evaluated using HW1. The proposed model 
consistently outperforms baselines across nearly all SDGs, 
with accuracy typically above 70% and specificity close to 
or exceeding 95% for each goal. In contrast, LSTM, 
BiLSTM, BERT, and CNN baselines demonstrate lower 
accuracy and specificity, especially for more challenging 
SDGs. These detailed results confirm the robustness of the 
proposed approach across the full range of sustainable 
development goals. 
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TABLE X. PERFORMANCE OF ZERO-SHOT LLMS VERSUS THE HYBRID 
MODEL ON SDG CLASSIFICATION (ACCURACY/SPECIFICITY) 

Model Proposed 
Model LSTM BiLSTM BERT CNN 

SDG 1 63.2/92.1 51.0/83.9 54.1/85.1 57.3/81.1 48.4/83.6 
SDG 2 68.0/94.2 55.2/87.2 57.9/88.8 62.1/85.0 53.0/88.1 
SDG 3 80.2/98.5 67.5/91.6 70.1/92.8 75.0/90.1 65.8/92.6 
SDG 4 69.8/95.1 57.7/87.2 60.2/88.8 64.8/85.3 55.2/88.0 
SDG 5 65.9/93.6 53.1/84.9 56.2/86.5 59.7/82.7 51.2/85.8 
SDG 6 78.5/98.1 65.3/91.2 68.0/92.4 73.1/89.5 63.7/92.0 
SDG 7 77.1/97.8 64.6/90.8 66.2/91.7 71.5/88.9 62.9/91.3 
SDG 8 70.1/95.6 57.0/87.9 59.7/89.4 64.4/85.9 55.9/87.9 
SDG 9 70.0/95.5 57.1/87.8 60.2/89.2 63.5/85.7 55.1/87.8 
SDG 10 67.5/94.1 54.1/85.2 56.3/86.6 60.0/82.9 52.5/86.1 
SDG 11 75.8/97.5 62.9/89.7 65.1/91.0 69.8/87.5 60.8/90.8 
SDG 12 69.3/95.2 56.3/87.3 59.0/88.8 63.7/85.6 54.0/87.6 
SDG 13 68.2/94.9 55.2/86.9 58.0/88.3 61.7/84.2 53.2/86.9 
SDG 14 66.7/94.3 53.8/85.3 56.5/87.0 60.1/82.5 50.4/85.1 
SDG 15 68.0/94.6 55.9/86.1 58.4/87.7 62.5/83.8 53.7/86.4 
SDG 16 61.4/91.0 48.2/80.2 51.0/82.7 53.6/77.3 45.8/80.0 
SDG 17 80.7/98.7 67.8/91.9 70.2/93.0 75.3/90.4 66.0/92.8 

 
The results show clear evidence of class imbalance on 

SDG classification performance. SDGs with many training 
samples such as SDG 3, SDG 6, SDG 7, SDG 11, and SDG 
17 consistently achieve the highest accuracy rates across 
all models. For instance, the proposed model achieves over 
78% accuracy for SDG 3 and SDG 17, compared to just 
63% for SDGs like SDG 1 and 61% for SDG 16. In 
contrast, SDGs with the fewest titles (SDG 1, SDG 5, SDG 
16) show lower performance for all models, confirming 
that the models struggle with minority classes. 

A. LIME and SHAP Findings  
Applying LIME and SHAP to your SDG classification 

model reveals which words most strongly drive model 
decisions for each SDG class. The attached image shows, 
for each SDG, a ranked list of keywords (e.g., “poverty”, 
“inequality”, “nutrition”, “health”, “education”, “gender”, 
“water”, “energy”, etc.) that were found to be most 
influential. The following are the SDGs with Distinctive 
and Important Words: 

• SDG 1 (“No Poverty”): Words like “poverty”, 
“inequality”, “social”, and “access” are top 
contributors. 

• SDG 3 (“Good Health and Well-being”): “health”, 
“disease”, “medical”, and “mortality” dominate. 

• SDG 5 (“Gender Equality”): “gender”, “women”, 
“equality”, and “empowerment” are most 
important. 

• SDG 6 (“Clean Water and Sanitation”): “water”, 
“sanitation”, “hygiene”, and “access” are most 
influential. 

In addition, some SDGs, such as SDG 10 (Reduced 
Inequalities) and SDG 17 (Partnerships), have more 
diffuse important words that overlap with other SDGs (e.g., 
“equality”, “inclusion”, “cooperation”), making them 
harder to distinguish and less robust in explainability. 
Table XI shows the most important words for each type of 
SDG goal. By surfacing these keywords, we saw that 
LIME and SHAP allowed them to create the following: 

 
 

• Validate that predictions are based on relevant, 
meaningful features. 

• Identify if a model’s decisions are dominated by a 
few general words (potentially a sign of overfitting 
or lack of specificity). 

• Communicate results to non-technical 
stakeholders and support transparent SDG 
mapping. 

TABLE XI. MOST IMPORTANT WORDS PER SDG 

SDG Type Most Important Words 
1 poverty, inequality, social, access 
2 hunger, nutrition, food, agriculture 
3 health, disease, medical, mortality 
4 education, literacy, school, teachers 
5 gender, women, equality, empowerment 
6 water, sanitation, hygiene, access 
7 energy, renewable, electricity, solar 
8 work, employment, growth, economic 
9 infrastructure, industry, innovation, technology 
10 equality, discrimination, inclusion 
11 cities, urban, housing, resilience 
12 consumption, production, waste, sustainable 
13 climate, emissions, carbon, adaptation 
14 ocean, marine, fisheries, coastal 
15 land, biodiversity, forest, ecosystem 
16 peace, justice, governance, law 
17 partnership, cooperation, finance, resources 

 

B. Incorporating Prompt Engineering and Zero-Shot 
Classification 

To further evaluate the robustness and generalizability 
of SDG text classification, prompt engineering is 
employed with Large Language Models (LLMs) such as 
GPT-3.5/4 and Flan-T5. These models were used in a zero-
shot setting, where no additional fine-tuning was 
performed on SDG-labeled data [92]. Instead, natural 
language prompts were crafted to elicit SDG category 
predictions directly from the models. For each test sample, 
the placeholder was replaced with the article’s title, 
abstract, or combined fields. The model’s response was 
parsed to extract the predicted SDG(s). This procedure was 
repeated for a representative subset of the evaluation 
dataset. 

C. Comparison Protocol 
To ensure a fair comparison, the same set of test samples 

was used for both the prompt-based LLMs and the 
proposed hybrid BiLSTM–CNN model. Evaluation 
metrics such as accuracy, precision, recall, and F1-score 
were computed for each approach. Additionally, 
qualitative analysis was conducted to examine cases where 
predictions diverged, highlighting potential advantages 
and limitations of zero-shot LLMs for SDG classification. 
Table XII summarizes the quantitative comparison 
between the prompt-based zero-shot approach (using 
GPT-3.5/4 and Flan-T5) and the proposed hybrid deep 
learning model. 
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TABLE XII. PERFORMANCE OF ZERO-SHOT LLMS VERSUS THE 
HYBRID MODEL ON SDG CLASSIFICATION 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-
measure 

Hybrid BiLSTM–
CNN 71.5 0.72 0.71 0.71 

GPT-3.5 (zero-
shot) 63.2 0.65 0.62 0.63 

GPT-4 (zero-shot) 66.8 0.68 0.67 0.67 
Flan-T5 (zero-

shot) 59.7 0.60 0.58 0.59 

 
The hybrid BiLSTM–CNN model, trained with domain-

specific data and embeddings, outperformed prompt-based 
zero-shot LLMs on all quantitative metrics [93]. 
Nevertheless, LLMs showed promising results without 
any task-specific training, demonstrating the potential of 
prompt engineering for rapid deployment in new domains. 
Qualitative analysis indicated that LLMs occasionally 
provided broader or multi-label responses, which could be 
advantageous for exploratory or weakly supervised 
settings. 

The inclusion of prompt-engineered zero-shot 
classification highlights the strengths and limitations of 
each approach. While LLMs offer flexibility and require 
no-label data, their performance lags behind specialized 
models trained on curated datasets. However, their utility 
for rapid prototyping and low-resource contexts is evident 
and warrants further investigation, including the use of 
few-shot or in-context learning for potential performance 
gains [94]. 

To rigorously assess the effectiveness of our SDG text 
classification pipeline, we benchmarked our approach 
against several State-Of-The-Art (SOTA) language 
models, including RoBERTa, DeBERTa, and Large 
Language Models (LLMs) such as GPT-3.5/4. These 
models have demonstrated superior performance across 
diverse NLP benchmarks due to their advanced pre-
training strategies and architectural innovations [95]: 

• Robustly Optimized BERT Pretraining Approach 
(RoBERTa) enhances BERT by leveraging larger 
training data, removing the next-sentence 
prediction objective, and using dynamic masking. 

• Decoding-enhanced BERT with Disentangled 
Attention (DeBERTa) further improves upon 
BERT and RoBERTa by disentangling content and 

position information and introducing enhanced 
mask decoders [96]. For both RoBERTa and 
DeBERTa, a publicly available pre-trained models 
were utilized and fine-tuned them on the SDG 
classification dataset under identical experimental 
conditions. 

The experiment also evaluated zero-shot and prompt-
based classification using LLMs as shown in Table X 
employing crafted prompts to elicit SDG predictions for 
each sample. This provides insight into the generalization 
capacity of LLMs without domain-specific fine-tuning. 
Performance metrics such as accuracy, precision, recall, 
and F1-Score were computed for all models. Table XIII 
presents comparative results. 

TABLE XIII. COMPARISON OF SDG CLASSIFICATION PERFORMANCE 
ACROSS PROPOSED AND SOTA MODELS 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-
measure 

Hybrid 
BiLSTM-CNN 71.5 0.72 0.71 0.71 

BERT (fine-
tuned) 74.2 0.74 0.74 0.74 

RoBERTa (fine-
tuned) 75.8 0.76 0.75 0.75 

DeBERTa (fine-
tuned) 77.1 0.77 0.77 0.77 

GPT-3.5 (zero-
shot) 63.2 0.65 0.62 0.63 

GPT-4 (zero-
shot) 66.8 0.68 0.67 0.67 

 
BERT outperforms the hybrid model mainly due to its 

advanced language modeling and pretraining. The hybrid 
model can be better in terms of computational complexity, 
speed, and ease of deployment. Aspect-based summary is 
shown in Table XIV. Pretraining Indicates whether the 
model benefits from large-scale language pretraining. 
Contextual Understanding shows how well the model 
understands context and relationships in language. Model 
Size/Complexity/deployment as relative size and 
computational complexity in which higher means more 
resources needed. Inference Speed is the relative speed at 
which the model can process data (higher size/complexity 
= slower inference). The hardware requirements in which 
a typical hardware is needed for practical use. 

TABLE XIV. ASPECT-BASED SUMMARY MODELS 

Aspect Hybrid 
BiLSTM-CNN 

BERT  
(fine-tuned) 

RoBERTa  
(fine-tuned) 

DeBERTa  
(fine-tuned) 

GPT-3.5  
(zero-shot) 

GPT-4  
(zero-shot) 

Accuracy Moderate High Higher Highest Lower Lower 
Language 

Understanding Limited context Deep contextual Deep contextual 
(improved) 

Very deep 
contextual 

Very deep 
contextual 

Very deep 
contextual 

Pretraining Rarely used Pretrained on 
large corpora 

Pretrained, robust 
corpora 

Pretrained, 
advanced 

Extensive (general 
LLM) 

Extensive (general 
LLM) 

Resource Usage Low High High High Very high Extremely high 

Inference Speed Fast Moderate Moderate Moderate Slow Slowest 

Deployment Easy (low 
resource) 

Needs powerful 
hardware 

Needs powerful 
hardware 

Needs powerful 
hardware 

Requires 
cloud/high-end 

GPU 

Requires 
cloud/high-end 

GPU 
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D. Benchmark Comparison with Metadata Quality 
Control Tools 

In order to improve the validation of our model’s 
efficiency, the study compared its performance with that 
of major metadata quality control tools, such as 
OpenRefine and DataCleaner. The tools were built up with 
their default rule sets and utilized on the Scopus SDG, 
GoEmotion, and Ohsumed datasets. Table XV presents a 
summary of comparison outcomes utilizing error detection 
rate, false positive rate, and rule coverage as evaluative 
measures. 

TABLE XV. COMPARATIVE RESULTS USING ERROR DETECTION RATE 
AND RULE COVERAGE 

Tool Error Detection 
Rate (%) 

False Positive 
Rate (%) 

Rule 
Coverage (%) 

Proposed Model 92 3 98 
OpenRefine 75 9 85 
DataCleaner 70 7 82 

XML Schema 68 5 80 
 
Our experiment continued further quantitative metrics 

such as rule coverage, error detection rate, and rates of 
false positives and negatives, as shown in Table XIV. 
These metrics add an evaluation of the model’s operational 
reliability. Traditional rule-based validation techniques, 
including Extensible Markup Language (XML) Schema 
and Shapes Constraint Language (SHACL), are good for 
schema-driven metadata but require users to make rule 
decisions and management. Our model reacts to new data 
patterns, providing significant benefits in dynamic 
metadata cases. The findings exceed the error detection 
capabilities of conventional applications while minimizing 
human intervention. 

VI. DISCUSSION 

The results of the text categorization model for SDGs 
showed the effectiveness of the utilized DL methodologies 
in managing complicated text type of data [89]. The model 
obtained a test accuracy of about 72%, indicating a robust 
capacity to generalize unknown data. The proposed model 
(HW1) has improved effectiveness in training relative to 
the LSTM and BiLSTM models, showing reduced training 
periods. Nonetheless, the proposed model (HW1) has 
higher training time compared to the BERT and CNN 
models, requiring considerably more time. In case of the 
complexity of the model, the higher time required for 
training time of the proposed model relative to BERT and 
CNN occurred due to the increased model complexity or 
additional feature extraction approaches. Despite the 
extended training times, the proposed model (HW1) 
attains improved precision, indicating that the increased 
training time may be justified by its enhanced 
performance. For the trade-offs, it exists between training 
duration and model performance. The proposed model 
(HW1) requires more training time than certain models 
such as BERT and CNN, although it delivers high 
accuracy performance. If the perfect precision is a 
requirement, the proposed model (HW1) may be the more 
suitable choice. 

The choice of hardware significantly influences both the 
training time and inference speed of deep learning models 
for SDG text classification. The study explicitly compared 
performance on Graphical Processing Units (GPUs) and 
Central Processing Units (CPUs) to inform practical 
deployment decisions. 

GPUs are optimized for parallel processing and matrix 
operations, which align well with the computational 
demands of Deep Neural Networks (DNNs). Training our 
hybrid BiLSTM–CNN and transformer-based models on 
an NVIDIA RTX 3060 GPU resulted in a substantial 
reduction in training time up to five times faster compared 
to CPU-only execution. For example, training epochs that 
required several hours on an Intel Core ultra 7 CPU 
completed within minutes on GPU hardware. Inference 
latency per sample was also reduced, enabling near real-
time classification for large batches of documents. 

CPUs, while more accessible and cost-effective, are less 
efficient for DNN training due to their limited parallelism. 
On CPU-only systems, model training was significantly 
slower, and inference throughput was reduced by an order 
of magnitude [97]. However, CPUs remain suitable for 
lightweight models, small-scale inference, or scenarios 
where GPU resources are unavailable [98]. Recent 
advances, such as quantization and model distillation, can 
partially mitigate CPU performance gaps but generally at 
the cost of some predictive accuracy. Practical 
considerations and recommendations are mentioned 
below: 

• Development and Prototyping: GPUs are highly 
recommended for model development, 
hyperparameter tuning, and large-scale training, 
especially with transformer-based architecture or 
large datasets. 

• Deployment: For production environments with 
high thoughts or real-time requirements, GPU 
acceleration is advantageous. For resource-
constrained or edge deployments, optimized CPU 
inference may suffice if models are pruned or 
quantized. 

• Cost and Accessibility: While GPUs deliver 
superior performance, they entail higher 
acquisition and operational costs. Cloud-based 
solutions can offer scalable GPU access as needed. 

In summary, GPUs deliver significant speedups for both 
training and inference in deep learning-based SDG 
classification, but CPUs may still be viable for limited or 
cost-sensitive applications. The trade-off should be 
evaluated based on dataset size, required latency, and 
available resources. 

The usage of pre-trained embeddings created a robust 
boost to the model which contains semantic connections 
among words cause to boost performance. The 
Bidirectional LSTM layers effectively collected context 
from both sides or directions in which they are important 
for understanding the meaning of words acquired from the 
data. The confusion matrix outcomes shown that the model 
had good performance across the majority of classes, 
demonstrating increased true positive rates for several 
SDGs. Nevertheless, several classes demonstrated higher 
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misclassification rates, highlighting possible areas for 
model development. Classes with limited training samples 
or confusing textual content may require supplementary 
data or advanced preprocessing techniques. The results 
showed useful information on the model’s achievements 
across each type of SDGs. The metrics with precision and 
recall scores for most SDG classes indicate that the model 
is both accurate and dependable in its predictions and the 
model converged successfully, showing no evidence of 
overfitting or underfitting. The successful creation of this 
deep learning architectures for SDG classification support 
multiple benefits which are outlined as follows: 

• The approach facilitates the automated 
classification of extensive text data pertaining to 
SDGs, assisting scholars, policymakers, and other 
parties in rapidly identifying appropriate 
information. 

• The process shows diversity and flexibility, 
allowing for adaptability to various text 
categorization assignments. 

• The findings highlight the necessity for further 
research into sophisticated models, such as 
Transformers, and the investigation of alternative 
embedding approaches. 

Although the model demonstrated remarkable 
performance, many opportunities for development can be 
created which include the following: 

• Extending the volume and variety of the dataset 
may boost performance, especially for minority 
categories. 

• Investigating more complex architectures, 
including Hybrid architectures, to further improve 
system efficiency. 

• Configuring an exhaustive tuning of the 
hyperparameters should strengthen the model 
effectiveness yet effect the generalization. 

• Implementing domain-specific embeddings 
trained on SDG-related data or semantic texts 
could capture more word connections. 

Limitations of the Proposed Study while our proposed 
deep learning pipeline for SDG text classification 
demonstrates promising results and advances the state of 
the art in several respects, there are important limitations 
to acknowledge: 

• Dependence on Labeled Data: the performance of 
supervised models such as ours heavily relies on 
the quality and quantity of labeled SDG data. 
Manually annotated SDG datasets are scarce and 
often imbalanced, which may restrict 
generalizability to new domains or document types. 

• Computational Resource Requirements: training 
and fine-tuning deep learning models, especially 
transformer-based architecture like BERT, 
RoBERTa, and DeBERTa, require significant 
computational resources (e.g., high-end GPUs). 
This may limit accessibility for organizations with 
constrained hardware or in edge computing 
scenarios. 

• Interpretability Constraints: while the integration 
of attention visualization, SHAP, and LIME 

improves transparency, these methods still offer 
only post-hoc explanations and may not fully 
capture the complex decision-making processes of 
deep models. 

• Handling of Noisy and Short Texts: although 
advanced preprocessing is applied, noisy, 
ambiguous, or extremely short texts such as social 
media posts remain challenging for accurate SDG 
classification. 

• Multilingual and Cross-Domain Generalization: 
the current pipeline is optimized for English-
language texts and may require significant 
adaptation for multilingual or cross-domain 
applications. Out-of-vocabulary and domain-
specific terminology may still degrade 
performance. 

• Potential for Overfitting: despite the use of 
regularization and class balancing techniques, the 
risk of overfitting persists, particularly when 
training on small or imbalanced datasets. 

• Benchmarking Constraints: while extensive 
benchmarking is performed, results are contingent 
on the selected datasets and may not fully reflect 
real-world deployment conditions or all possible 
SDG classification scenarios. 

By recognizing these limitations, our study provides a 
balanced perspective on the applicability of our approach 
and identify directions for future improvement and 
research. This article highlights the achievement of the 
usage of AI models in SDG data classification. The 
implementation of pre-trained GloVe embeddings and 
hybrid CNN-Bidirectional LSTM were shown to be 
effective in capturing the semantic and contextual 
information required for appropriate class. The evaluation 
of metrics and visualizations showed important 
perspectives into the model’s pros and cons, allowing for 
more research in similar disciplines. 

VII. CONCLUSION 

This study presents research demonstrating the 
successful application of a complete deep neural network 
framework for text classification, specifically applied to 
SDGs. This conclusion section offers an in-depth 
evaluation of the results, examines the implications of the 
research, and suggests prospective paths for later 
exploration. The main purpose of this effort was to provide 
an extensive process for categorizing text related to the 
SDGs through artificial intelligence techniques. The 
method includes gathering data and preparation, model 
development, training, evaluation, and prediction. The 
implications from the study are as follows: 

• The data preparation procedure covered the 
acquisition of SDG-related data from several Excel 
files, mixing relevant text fields, encoding target 
labels, and partitioning the data into training and 
testing with tokenization and padding also 
performed to make certain a uniform input length 
for the model. 
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• Pre-trained GloVe embeddings were utilized to 
construct an embedding matrix, which 
subsequently initialized the model’s embedding 
layer. This allows massive semantic information 
from the beginning. 

• The model architecture designed with a sequential 
model which contains an embedding layer, a 
hybrid CNN-Bidirectional LSTM besides the 
ReLU activation, L2 regularization, and a SoftMax 
layer. This architecture summarized the necessary 
semantic and contextual information for high 
performance results. 

• The model employed early stopping to mitigate 
overfitting during training. The performance was 
evaluated on the test sample utilizing multiple 
metrics, including precision, recall, F1 score, and 
specificity. The findings demonstrated robust 
performance, with good accuracy and balanced 
precision and recall across the majority of classes 
(SDG types). 

• LIME and SHAP help interpret not just which 
SDG a document is mapped to, but also by 
showing which words were most decisive. This 
enhances the transparency of your SDG classifier 
and reveals strengths and ambiguities in the 
provided dataset. 

• The confusion matrix offered a comprehensive 
analysis of the model’s predictions, emphasizing 
strengths and areas for enhancement. 
Supplementary metrics including precision, recall, 
F1 measure, MAE, RMSE, and specificity 
provided a deep assessment of the model’s 
efficacy. 

Effective implementation of this AI pipeline for SDG 
classification has significant ramifications, including 
automated analysis, whereby the model can facilitate the 
classification of extensive text data pertaining to SDGs. 
This can assist individuals and researchers, and even 
companies in rapidly recognizing and prioritizing relevant 
information, resulting in more informed decision-making 
and resource allocation. The pipeline created in this study 
is scalable and may be modified for various text 
categorization jobs across different domains. The model 
can increase the understanding and prior knowledge of 
these goals. This can enhance communication and 
advocacy initiatives, hence make it easy to find the SDG 
types. The assessment of proposed models using the 
metrics and visualizations creates a significant insight into 
the model’s strengths and weaknesses, facilitating further 
research and applications in other scopes. 

This research has major results, highlighting the 
possibility for automated text analysis, scalability, and 
improved text comprehension of SDGs. Although the 
model exhibited admirable performance, other areas could 
be improved such as augmentation of data, model 
architecture, hyperparameter tuning, feature optimization, 
domain-specific embeddings, and even the ensemble or 
hybrid approaches. Future research avenues encompass 
the investigation of Transformer models, transfer learning, 

multilingual models, explainability, real-time applications, 
and collaborative platforms. 

Although the model exhibited commendable 
performance, there are other aspects that warrant 
enhancement, including hyperparameter optimization. 
Engaging in a more comprehensive hyperparameter search 
may enhance the model’s performance. Methods include 
grid search, random search, and Bayesian optimization can 
be employed to identify the optimal hyperparameters for 
the model. Alternative hybrid or ensemble employing 
ensemble approaches, such as bagging, boosting, or 
stacking, can enhance the robustness and accuracy of 
predictions by integrating numerous existing models. 
Ensembles and hybrids frequently could outperform single 
models by improving the values of variance and bias. 

Subsequent investigations may examine the application 
of multilingual models by creating multilingual models 
capable of classifying text in several languages that could 
enhance the pipeline’s applicability. This is especially 
pertinent for the SDGs, a worldwide endeavor that 
encompasses textual data in multiple languages. Future 
study may concentrate on enhancing the explainability and 
interpretability of the model’s predictions. Methods such 
as attention visualization, SHapley Additive exPlanations 
(SHAP), and Local Interpretable Model-agnostic 
Explanations (LIME) help elucidate the decision-making 
processes of the model. Deploying the model in real-time 
applications, such as web-based tools or mobile 
applications, enhances its accessibility and use for end-
users. This may speed up the categorization and 
assessment of text data related to the SDGs text data. In 
addition, establishing collaborative platforms for 
organizations to share and evaluate SDG-related textual 
data utilizing the model could increase the data volume, 
thus improving model’s efficiency. 

This study presents a novel deep learning-based 
framework for the automated classification of research 
texts according to the United Nations SDGs, offering 
significant theoretical and practical contributions to the 
field of text mining and policy analysis. Theoretically, our 
approach advances current understanding by 
demonstrating the effectiveness of hybrid BiLSTM-CNN 
architecture combined with contextual word embeddings 
such as BERT and FastText for handling complex and 
domain-specific classification tasks. This research also 
provides insights into the interpretability of deep learning 
models, utilizing techniques such as attention visualization 
and SHAP analysis to enhance transparency and trust in 
automated text classification. These findings contribute to 
broader literature by illustrating how diverse neural 
network architectures and interpretability methods can 
address the unique challenges of multi-label scientific text 
classification, pushing the boundaries of what is currently 
achievable in automated literature analysis. 

The main contributions of this work are threefold. First, 
we propose an integrated pipeline that unifies advanced 
preprocessing, a hybrid deep learning model, and 
interpretability methods tailored for SDG classification. 
Second, we conduct comprehensive comparative 
experiments with state-of-the-art models and zero-shot 
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prompt-based classifiers, providing a thorough benchmark 
for future research and establishing a solid methodological 
foundation for future advancements. Third, we 
demonstrate the generalizability of our approach across 
both SDG and non-SDG datasets, highlighting its 
adaptability to various domains and its potential for 
transferability to other large-scale text classification 
problems within and beyond sustainability science. 

From a practical perspective, the proposed framework 
offers substantial advantages for researchers, 
policymakers, and organizations. By automating the 
classification of large volumes of policy and academic 
documents, our method enables efficient tracking and 
assessment of SDG-related research, supporting evidence-
based decision-making and policy formulation. The 
inclusion of interpretability features further assists end-
users in understanding and trusting the classification 
outcomes, thus facilitating broader adoption in real-world 
applications. The pipeline’s scalability and modularity 
make it a valuable tool for large institutions and cross-
disciplinary teams, reducing manual effort, enhancing 
transparency, and supporting strategic planning and 
reporting aligned with global sustainability objectives. 

Overall, this research bridges critical gaps in SDG text 
classification by combining methodological innovation 
with practical utility, paving the way for more robust, 
transparent, and scalable solutions in sustainability 
assessment and beyond. By providing a reproducible and 
adaptable pipeline, this work not only advances the state-
of-the-art in artificial intelligence for sustainable 
development but also lays the foundation for future 
research and practical deployment in diverse text analytics 
scenarios. 

This study provides an extensible and efficient hybrid 
deep learning framework implementation Scopus 
metadata to identify scientific articles based on the United 
Nations Sustainable Development Goals. Using pre-
trained GloVe embeddings, CNN and BiLSTM 
architectures were combined to show better accuracy and 
specificity than existing baselines over several datasets. 
Important contributions consist in a consistent approach 
for SDG text classification, strong evaluation against 
several standards, and useful insights for automated 
research analytics in sustainability science. The results 
highlight the possibilities of hybrid neural models and 
well-chosen information for enhancing evidence-based 
decision-making and resource allocation inside the SDG 
structure. This research enhances the existing knowledge 
on text classification through AI and establishes a solid 
framework for future directions in this field. The results 
highlight the capability of AI methods to tackle 
complicated text classification challenges and facilitate the 
attainment of global objectives similar to SDGs. Future 
research will investigate further model improvements to 
increase generalizability and domain adaptation as well as 
multi-database integration 
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