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Abstract—Change detection plays a crucial role in various
fields such as environmental monitoring and disaster
management. In recent years, deep learning-based
approaches have significantly improved detection accuracy
and efficiency. However, challenges such as multi-scale
feature misalignment, ineffective fusion strategies, and
inconsistent cross-scale semantics still hinder their
deployment in complex real-world scenarios, especially in
geological hazard monitoring. To address these issues, we
propose a novel change detection framework that integrates
channel attention and non-local context modeling into the
feature extraction stage to enhance channel discrimination
and global dependency learning. In the decoding phase, we
introduce a flow-guided feature alignment and fusion
module, which estimates optical flow fields and performs
adaptive warping to reduce temporal feature discrepancies
and improve alignment accuracy. In addition, multi-level
feature fusion and semantic consistency refinement are
employed to better capture subtle and sparse changes.
Extensive experiments on the public LEVIR-CD dataset and
a newly constructed Three Gorges rock mass dataset
demonstrate that our method achieves state-of-the-art
performance in terms of both accuracy and computational
efficiency. Moreover, the framework exhibits strong
robustness in complex terrains while maintaining a
lightweight design, showing great potential for practical
applications in geological disaster monitoring, early warning,
and risk-informed decision-making. Quantitatively, our
method achieves an F1-Score of 90.0% and Intersection over
Union (IoU) of 81.82% on the LEVIR-CD dataset, surpassing
existing methods such as ChangeStar by 0.7% and 1.16%,
respectively.
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1. INTRODUCTION

Change detection, the process of identifying variations
in the state of objects or phenomena by analyzing
temporally separated data, plays a fundamental role in
numerous computer vision applications such as urban
development monitoring, forest cover assessment, and
infrastructure surveillance. In the context of geological
hazard prevention, change detection is particularly critical,
as it provides the technological foundation for timely early
warning and risk mitigation in events such as landslides,
rockfalls, and ground subsidence. Effective change
detection systems can significantly reduce disaster-related
losses and safeguard public safety.

With the advent of deep learning, change detection
techniques have undergone rapid evolution, progressing
through several developmental phases. Early works such
as Fully Convolutional-Early Fusion (FC-EF) [1]
introduced fully convolutional Siamese architectures for
bi-temporal image comparison, while subsequent studies
explored autoencoders [2], adversarial training [3], and
enhanced feature reuse with U-Net++ [4]. In the
architectural refinement phase (2020-2023), intermediate
fusion frameworks like IFNet [5] and multi-scale networks
such as LGPNet [6], SNUNet-CD [7], and a deep multi-
task  learning framework combining semantic
segmentation with fully convolutional LSTM networks [8]
improved feature representation and efficiency. More
recently, attention-based approaches including MFDS-
Net [9] and AM-FNet [10] have achieved notable success
by incorporating global semantic enhancement and deep
supervision.

Despite these advancements, existing methods face
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critical limitations in real-world scenarios, particularly
under complex terrain and variable imaging conditions

often  encountered in  geological environments.
Specifically, three persistent challenges remain
unresolved:

(1) Feature misalignment caused by changes in
viewpoints, lighting, and temporal shifts;

(2) Cross-scale information loss during fusion of
multi-level features;

(3) Insufficient global context modeling, limiting the
network’s ability to perceive long-range
dependencies.

Recent research in visual localization and feature
matching (e.g., LightGlue [11] and Unmanned Aerial
Vehicle (UAV) [12]-based matching) has demonstrated
the effectiveness of flow-guided alignment and context-
aware feature aggregation, providing insights applicable to
change detection. However, existing change detection
models rarely incorporate such dynamic alignment
strategies explicitly into their architectures.

To bridge this gap, we propose a novel framework that
integrates flow-guided feature alignment, global attention
modeling, and hierarchical fusion mechanisms. Our
method is tailored for fine-grained change detection in
challenging scenarios such as geological hazard
monitoring, with a particular focus on robustness,
accuracy, and computational efficiency.

Through extensive experiments on the LEVIR-CD [13]
benchmark and a self-constructed Three Gorges rock mass
dataset, we demonstrate the superior performance and
practical utility of our approach in detecting subtle and
sparse changes under complex environmental conditions.

II. LITERATURE REVIEW

Change detection has emerged as a critical task in
remote sensing, with deep learning approaches
revolutionizing traditional pixel-based and handcrafted
feature methods. This section systematically examines
recent advances in three key aspects: feature extraction
architectures, feature fusion strategies, and multi-scale
representation learning, while identifying persistent
challenges in the field.

A. Feature Extraction Architectures

Feature extraction lies at the heart of change detection
performance, evolving through several paradigm shifts.
Early efforts such as FC-EF [1] employed Siamese
architectures with weight-sharing encoders to capture
temporal  differences.  Subsequent  developments
introduced deeper and denser models such as UNet++ [4],
leveraging nested skip connections to enhance feature
reuse.

Recent work has emphasized lightweight yet expressive
architectures. For instance, tinyCD [14] employs
depthwise separable convolutions and dual attention
mechanisms to balance accuracy with computational
efficiency. Attention-based models like AMFNet [10] and
MEFDS-Net [9] explicitly enhance long-range contextual
modeling via spatial-channel attention fusion and multi-
level supervision.

In parallel, recent studies in visual localization and
image matching have addressed similar challenges of
spatial correspondence under viewpoint and appearance
variations. For instance, LightGlue achieves efficient local
feature matching through dynamic graph construction and
attention-based refinement, enabling accurate geometric
alignment in real time [11]. Similarly, UAV visual
localization frameworks evaluate the robustness of deep
feature matchers in real-world aerial imagery, highlighting
the importance of scale-invariant and deformation-aware
representations [12]. These advances reinforce the idea
that accurate temporal feature alignment—whether sparse
or dense—is critical for downstream tasks. Inspired by
these developments, our method integrates flow-based
feature alignment to enhance spatiotemporal consistency
in change detection.

Nevertheless, challenges remain in balancing the
discriminative power of deep features with network
complexity, particularly under severe appearance
variations. This motivates the introduction of hybrid
attention structures and dynamic modeling modules in our
framework.

B.  Feature Fusion Strategies

Effective multi-temporal feature fusion is vital for
change detection. Classical paradigms include early fusion
(FC-EF [1]), late fusion (SNUNet-CD [7]), and
intermediate fusion (IFNet [5]). These approaches
respectively focus on low-level, high-level, and multi-
scale combination strategies, each with trade-offs in
information preservation and model complexity.

Recent architectures such as LGPNet [6] explore
hierarchical fusion with pyramid alignment to balance
local and global context. Additionally, transformer-based
and attention-guided methods have introduced learnable
fusion gates, enhancing adaptability in diverse scenes.

Yet, two major issues persist: (1) spatial misalignment
caused by temporal shifts or environmental variations; (2)
static fusion mechanisms that lack context adaptivity.
Inspired by the success of learnable warping and flow-
based alignment in image registration and motion
estimation tasks, newer models begin integrating
deformable feature transformation into fusion pipelines.
However, few current change detection models explicitly
incorporate  such  flow-guided  alignment  for
spatiotemporal consistency.

Our proposed method bridges this gap by leveraging
optical flow estimation and adaptive warping in the fusion
stage to mitigate inter-temporal discrepancies.

C. Multi-Scale Representation Learning

Multi-scale representation learning is essential for
addressing scale variance and hierarchical semantics in
change detection tasks. Early implementations, such as
SNUNet-CD [7], utilized skip connections to integrate
features across layers, enabling effective information flow
from low-level textures to high-level semantics. MFDS-
Net [9] further improved scale-awareness by introducing
deep supervision at multiple levels, while tinyCD [14]
demonstrated that efficient pyramidal extractors can
maintain high detection accuracy even under constrained
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computational resources.

To enhance scale adaptability, a variety of attention
mechanisms have been proposed. For example, Squeeze-
and-Excitation (SE) [15] focuses on enhancing inter-
channel relationships via global pooling, while
Convolutional Block Attention Module (CBAM) [16]
integrates both channel and spatial attention sequentially
to refine feature maps. Coordinate Attention (CA) [17]
embeds location information into channel encoding,
offering better spatial sensitivity, and Mixed Local
Channel Attention (MLCA) [18] exploits hierarchical
attention fusion across multiple scales to improve change
discrimination.

While these mechanisms have achieved success in
various computer vision tasks, they each present
limitations when applied to high-resolution remote sensing
imagery. For instance, SE and CA lack explicit modeling
of spatial dependencies, while CBAM and MLCA
introduce additional computational complexity that may
hinder deployment in resource-constrained environments.

In this work, we adopt a lightweight Channel
Attention [15] module to selectively emphasize
discriminative feature channels, and further combine it
with a Non-Local Block to capture long-range
dependencies across the spatial domain. This hybrid
design balances computational efficiency and global
context modeling, which is particularly beneficial for
detecting subtle or sparsely distributed changes in complex

Convlxl

terrain. By avoiding excessive parameter overhead while
maintaining expressive capacity, our attention design
enables effective multi-scale feature representation and
robust change localization.

III. MATERIALS AND METHODS

A.  Model Overview

The proposed change detection framework is designed
to address the challenges of spatial misalignment, weak
feature representations, and inadequate contextual
modeling often encountered in multi-temporal remote
sensing imagery. As illustrated in Fig. 1, the model adopts
a modular architecture composed of three principal
components: an encoder, a feature enhancement neck, and
a decoder. Given a pair of bi-temporal optical images, the
model first encodes hierarchical semantic features using a
lightweight backbone network. The extracted features are
then refined by the neck module, which integrates attention
mechanisms to selectively enhance informative channels
and model long-range dependencies. Finally, the decoder
incorporates a novel Feature Displacement Alignment and
Fusion (FDAF) module that explicitly addresses temporal
inconsistencies through flow-guided feature alignment and
fusion, ultimately producing a pixel-wise binary change
map.

Conv3x3

BatchNorm

Convix1l

Fig. 1. The detailed architecture diagram of the model incorporates NonLocalBlock to capture non local features and strengthen global dependencies.
The Feature Displacement Alignment and Fusion module (FDAF) utilizes flow fields to achieve feature displacement alignment and fusion.
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The overall architecture is inspired by the encoder-
decoder paradigm, but with deliberate modifications to
support high-resolution inputs and preserve fine-grained
details. The encoder is implemented using TinyNet [19],
an efficient Convolution Neural Network (CNN) backbone
that balances representational capacity with computational
cost. The neck module leverages both Channel Attention
and Non-Local Blocks to improve semantic discrimination
and contextual awareness. The decoder employs FDAF to
achieve robust change localization in the presence of
object displacement, environmental variation, and
geometric noise. The entire network is trained end-to-end
using a cross-entropy-based objective function.

B. Attention-Enhanced Feature Extraction

The encoder is built upon TinyNet [19], which
processes bi-temporal images through four hierarchical
levels (stride 4 to 32 pixels) using depth-wise separable
convolutions. The StemBlock module employs an inverted
residual structure with 1x1 expansion (expand_ratio = 4)
and 3x3 depthwise convolution, followed by
PriorAttention for temporal feature fusion [19]. The
TinyBlock further re-fines features through depthwise
separable convolutions with optional squeeze-and-
excitation attention, achieving efficient computation while
maintaining feature richness [19].

The neck module contains three principal components:
First, TinyFPN performs multi-scale feature fusion

through lateral connections and top-down upsampling [19].

Second, the ChannelAttention module enhances feature
discriminability by computing channel-wise attention
weights through dual pooling paths (global average and
max pooling) followed by a bottleneck MLP with
reduction ratio of 16. The attention weights are generated
via sigmoid activation and applied to rescale the input
features. Third, the NonLocalBlock captures long-range
dependencies by computing pairwise feature affinities
across the entire spatial domain. It projects input features
into query, key and value spaces through 1x1 convolutions
(with reduction ratio of 2), computes a global similarity
matrix via SoftMax normalized dot products, and
aggregates contextual information through weighted
summation while preserving local details via residual
connections.

The decoder incorporates our novel Feature Dis-
placement Alignment and Fusion (FDAF) module to
address temporal misalignment. In the change detection
task, in order to extract more discriminative features from
the input image and enhance attention to key regions, we
designed a feature expression module in the Neck part of
the model, which improves the model’s ability to capture
important features through channel attention mechanism
and NonLocalBlock.

The channel attention mechanism aims to enhance the
expressive power of key channels by weighting the
importance differences of channel features in change
detection tasks. Specifically, this mechanism utilizes
global average pooling and max pooling to extract two
global feature descriptors, each reflecting the overall
feature distribution of each channel. These two descriptors
undergo a series of convolution operations and ReLU

activation to generate attention weights, which are then
normalized using the Sigmoid function. Finally, these
weights are multiplied with the original features channel
by channel to highlight the important channel information
for change detection, while suppressing irrelevant or
redundant features, significantly improving the model’s
discriminative ability for change regions. The final output
features xo. as showed in Eq. (1).

x, . =x-Attn )

out

To further capture the global dependencies in the feature
map, the model also introduces NonLocalBlocks. This
module enhances the model’s ability to perceive complex
changes by constructing a global relationship matrix
between any two points in the feature map. Specifically,
the input feature map is mapped to a low dimensional
space, generating three feature maps: query (), key (¢),
and value (g). Query and key features are used to calculate
the global similarity matrix fas showed in Eq. (2), Indicate
the correlation between each location and other locations.

[ = Softmax(0" - ¢) )

Subsequently, the value features g is weighted and
aggregated using a similarity matrix to generate global
enhanced features, which are then fused with the original
features through residual connections for output x,, as
showed in Eq. (3).

xzml :WZ (fg)+x (3)

This non local operation not only preserves the
resolution of local features, but also effectively captures
long-distance global contextual information, providing
powerful global modeling capabilities for change detection
tasks. By combining channel attention mechanism with
non local modules, the model can accurately extract local
and global information from multi-scale features, thereby
significantly enhancing the modeling ability and detection
accuracy of changing regions.

C. Feature Displacement Alignment and Fusion
(FDAF)

In change detection tasks, due to the temporal difference
between the two input images, their feature distributions
often experience spatial displacement. Directly fusing the
two images for feature fusion may lead to accumulated
errors or inaccurate detection results. To address this issue,
we have designed a feature displacement alignment and
fusion module in the decoder, which achieves precise
alignment and fusion of feature maps at different time
steps by generating flow fields. FDAF first estimates a
two-dimensional flow field by analyzing feature
correlations between temporal inputs through a
lightweight network containing a 3%3 convolution and 1x1
convolution. This flow field is then used to warp one
temporal feature set to align with the other using
differentiable bilinear sampling. The aligned features are
subsequently fused through element-wise addition,
effectively reducing registration artifacts  while
highlighting genuine changes.
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Specifically, the feature displacement alignment and
fusion module aligns input features through optical flow
estimation methods. Concatenate the two input feature
maps x; and x; and input them into a convolutional network
to generate a two-dimensional flow field “Flow” as
showed in Eq. (4), representing the displacement
information of the feature maps.

Flow = Conv2D(Concat(x,,x,)) 4)
Subsequently, the flow field is used to distort the feature
map x,, and the features in x, are remapped to the

warp

,  as showed in

coordinate system of x; to obtain x
Eq. (9).

x,“" = GridSample(x,, Flow) ®)

warp
2
the original feature x;, more robust variation features are
generated x,,, as showed in Eq. (6).

Finally, by fusing the aligned feature map x with

warp

X, =X +x 6)

The feature displacement alignment and fusion module
effectively alleviates the impact of differences in temporal
image feature distribution on detection accuracy through
flow field generation and feature distortion operations,
ensuring high-quality detection of changing areas.
Meanwhile, the module combines multi-scale feature
maps to further enhance the model’s ability to perceive
subtle changes.

D. Loss Function

The loss function design of the model is based on
CrossEntropy Loss, which is used to optimize the
prediction results of the decoder output in the changing
region. Cross entropy loss guides the model to learn more
accurate category discrimination ability by measuring the
difference between the predicted category probability
distribution and the true labels. Its formula as showed in

Eq. (7).

1 .
L =—=—>C_ v log(yf (7)
. NZc_ly g()

Among them, ; is the true label of the i-th pixel (in

One Hot encoding form), and )A/f is the predicted

probability. In this task, the loss function is designed for
binary classification problems (with and without changes),
generating predicted probability distributions through
SoftMax and comparing them with real labels to calculate
errors. The use of cross entropy loss can effectively
optimize the classification ability of the model, improve
the detection performance of the model for changing
regions by accurately measuring the difference between
the predicted results and the true labels.
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IV. RESULT AND DISCUSSION

A. Datasets

This study used two datasets to evaluate model
performance. LEVIR-CD is a standard dataset for remote
sensing image change detection, consisting of 637 pairs of
images with a resolution of 1,024x1,024, mainly
annotating the change areas of newly added and
demolished buildings [13]. In addition to using the public
LEVIR-CD dataset, we constructed a real-world dataset
named TG-HRC, specifically designed to support change
detection in geological hazard monitoring scenarios, with
an image resolution of 1,920x1,080. The images were
sourced from long-term monitoring video streams in the
Three Gorges Reservoir area of Chongqing, China, a
region known for frequent rockfall and landslide activities
due to complex terrain and seasonal variation. TG-HRC
covers diverse scenes including steep rock cliffs,
vegetation-covered slopes, and artificial retaining
structures. Image pairs were extracted under varying
illumination and weather conditions to ensure temporal
diversity. The change areas were manually annotated
under the guidance of geological experts. The final dataset
contains 12,184 training samples and 3,000 testing
samples. Image  registration and  illumination
normalization were performed as preprocessing steps.
Although the dataset is representative of real-world
hazardous terrain, potential biases may arise from
geographic limitation (focused on a single river basin),
viewpoint changes between time steps, and inherent
subjectivity in manually labeling ambiguous rock shifts.
To mitigate this, we applied data augmentation techniques
and included varied scenes across multiple sub-regions to
enhance generalization. A portion of the annotated dataset
will be publicly released upon publication to support
further research.

B. Evaluation Metrics

To quantitatively assess the performance of the
proposed change detection model, we adopt four standard
evaluation metrics widely used in binary classification
tasks, particularly in remote sensing change detection:
Precision, Recall, F1-Score, and Intersection over Union
(IoU). These metrics jointly evaluate the model’s ability to
correctly identify and localize change regions, balancing
the trade-off between detection completeness and
reliability.

Let True Positives (TP) denote the number of correctly
detected change pixels, False Positives (FP) the number of
unchanged pixels incorrectly predicted as changed, and
False Negatives (FN) the number of missed change pixels.
The metrics are defined as follows:

Precision = _Ir ®)
TP+ FP
Recall = _r )
TP+ FN
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Precision - Recall

F1=2 (10)
Precision + Recall
Ue__ 1P an
TP+ FP+ FN

Precision measures the proportion of detected changes
that are truly changed, reflecting the model’s accuracy in
avoiding false alarms. Recall evaluates the model’s ability
to detect actual changes, indicating its sensitivity to
relevant objects. F1-Score provides a harmonic mean of
precision and recall, particularly useful when the dataset is
imbalanced. IoU, also known as the Jaccard Index,
assesses the overlap between predicted and ground-truth
change areas, offering a spatial perspective of detection
quality.

C. Training Strategy and Hyperparameters

Our experiment was conducted on a desktop computer
running Ubuntu 20.04 operating system, which was
equipped with NVIDIA TITAN V GPUs (12GB of video
memory) and CUDA 10.1. Implement the use of PyTorch
library [20]. During training, the model is optimized using
the AdamW [21] optimizer with an initial learning rate of
0.003, momentum parameters (£ = 0.9, 2 =0.999), and
a weight decay of 0.05. We use cosine annealing with
warm restarts to enhance convergence stability.

The input image pairs are resized to 256x256, and we
apply extensive data augmentation including random
rotation (£15°), horizontal flipping, random cropping,
brightness adjustment, contrast jittering, and time-channel

swapping. The batch size is set to 16, and the training
process lasts for 200 epochs.

All modules including ChannelAttention,
NonLocalBlock, and FDAF are trained end-to-end from
scratch. We adopt Xavier initialization for all
convolutional and attention layers.

D. Quantitative Comparison

The experimental results show that the proposed model
achieves optimal performance on both the publicly
available dataset LEVIR-CD and the self-made Three
Gorges dangerous rock dataset TG-HRC. As shown in
Table I, on the LEVIR-CD dataset, the F1 value of the
model reached 90.0%, and the IoU reached 81.82%.
Compared with the better performing ChangeStar method,
it improved by 0.7% and 1.16%, respectively, significantly
improving the detection accuracy and robustness of change
regions. In the TG-HRC dataset, the model also performs
well in complex geological change scenarios, with an F1
value of 89.86% and an IoU of 81.59%. Both accuracy and
recall are at a leading level, indicating that the model can
effectively capture sparse and small change areas. The
superior performance of the model is attributed to the
introduced module design. The channel attention
mechanism enhances the ability to capture key features,
the non local module improves the perception ability of
change regions by modeling global dependencies, and the
feature displacement alignment and fusion module
significantly reduces false alarm rates through feature
alignment, providing an accurate and robust solution for
change detection tasks.

TABLE I. THE QUANTITATIVE COMPARISON BETWEEN THE LEVIR-CD [11] AND TG-HRC DATASETS SHOWS THE BEST RESULTS IN BOLD. ALL
RESULTS ARE DESCRIBED IN PERCENTAGE (%) FORM

Method LEVIR-CD TG-HRC Dataset
F1 (%) Pre. (%) Rec. (%) ToU (%) F1 (%) Pre. (%) Rec. (%) ToU (%)

FC-EF [1] 83.4 86.91 80.17 71.53 68.38 81.2 59.05 51.95
FC-Siam-Di [1] 86.31 89.53 83.31 75.92 61.84 65.94 58.22 44.76
FC-Siam-Conc [1] 83.69 91.99 76.77 71.96 57.66 50.03 68.05 40.51
IFNet [5] 88.13 91.78 82.93 78.77 86.19 85.4 86.99 75.73
BIT [22] 89.31 89.24 89.37 80.68 76.79 91.19 66.31 62.32
SNUNet [7] 88.16 89.18 87.17 78.83 87.57 88.3 86.85 77.89
ChangeStar(FarSeg) [23] 89.30 89.88 88.72 80.66 75.12 88.38 65.32 60.16
Ours 90.0 90.05 89.95 81.82 89.86 92.51 87.36 81.59

TABLE 1II. COMPARISON RESULTS OF PARAMETER QUANTITY
(PARAMS, M) AND COMPUTATIONAL COST (FLOPS;, G). THE BEST
RESULTS ARE DISPLAYED IN BOLD, WHILE THE SECONDARY RESULTS
ARE SHOWN WITH AN UNDERLINE

Method Params (M)  FLOPs (G)
[FNet [5] 50.44 82.26
SNUNet [7] 12.03 54.88
BIT [22] 3.55 435
Ours 0.29 7.45

The model proposed in this article not only focuses on
improving accuracy in design, but also on optimizing
computational efficiency and parameter scale. By
introducing efficient attention mechanisms and feature
alignment modules, the model achieved high accuracy
metrics in change detection tasks, such as significantly
improving F1-Scores and IoU metrics. However, at the

same time, the FLOPs and parameter count of the model
remained at a low level, reflecting the advantage of
lightweight design, as shown in Table II. This design
enables the model to significantly reduce the demand for
computing resources while ensuring high detection
performance, providing the possibility for large-scale
deployment in practical scenarios.

E. Visualize Results

To provide qualitative insights into the effectiveness of
the proposed method, we present visual comparisons with
four representative change detection approaches—FC-EF,
FC-Siam-Diff, IFNet, and SNUNet—on the LEVIR-CD
dataset, as shown in Fig. 2. These results illustrate the
visual differences in change localization and error patterns
across various methods.

In the wvisualization,

false positives (incorrectly
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predicted change areas) are marked in red, false negatives
(missed change regions) in green, and correctly detected
changes in white. Compared to the baseline methods, our
approach produces more precise boundaries and
significantly fewer misclassified pixels, particularly in

regions with small-scale or ambiguous changes. This
demonstrates the benefits of our flow-guided alignment
and attention-enhanced feature representation in capturing
fine-grained differences across time.

Fig. 2. Qualitative comparison of change detection results on the LEVIR-CD dataset. From left to right: (a) Image at time T1, (b) Image at time T2, (¢)
Ground truth, (d) FC-EF, (e) FC-Siam-Diff, (f) IFNet, (g) SNUNet, (h) Ours. False positives are shown in red, false negatives in green, and correctly

detected pixels in white.

F. Ablation Experiments

We conduct extensive ablation experiments to validate
the effectiveness of the proposed module: NonLocalBlock
(NL) and FDAF.

All experiments are trained on the TG-HRCD dataset
and evaluated on the standard validation set. The baseline
model removes all three modules, while other variants

incrementally add them to analyze individual contributions.

Table III presents the quantitative results of different
model variants, where we incrementally add each module
to analyze its individual contribution.

TABLE III. ABLATION STUDY OF DIFFERENT MODEL COMPONENTS

Model Variant F1 Pre Rec TIoU

Baseline 89.44 92.16 86.88 80.9
BaselinetNL  89.14 91.14 8722  80.4
Baseline+tFDAF 89.57 9233 8697 81.11
Ours 89.86 92.51 87.36 81.59

V. CONCLUSION

This paper presents an enhanced change detection
framework that incorporates Non-Local Blocks and a
novel Feature Displacement Alignment and Fusion
(FDAF) module to address core challenges in multi-

temporal image analysis. Specifically, Non-Local Blocks
strengthen global contextual modeling, improving the
network’s ability to capture long-range dependencies in
complex terrain. The Channel Attention mechanism
improves the discriminability of relevant features, while
the FDAF module addresses spatial misalignment by
generating flow fields and performing adaptive feature
warping, thereby reducing false detections and enhancing
localization accuracy.

Extensive experiments on both the publicly available
LEVIR-CD dataset and our self-constructed TG-HRC
geological hazard dataset demonstrate the method’s
superior performance in terms of precision, recall, F1-
Score, and IoU, validating its effectiveness and robustness
across diverse scenarios. The proposed model not only
achieves state-of-the-art accuracy but also maintains a
lightweight architecture suitable for real-time or embedded
applications.

In terms of practical application, the method shows
strong potential for integration into early warning systems
for geological hazards, enabling proactive risk assessment
and improved disaster preparedness.

Looking ahead, future work may focus on improving the
model’s generalization to multi-modal remote sensing data,
such as hyperspectral imagery and LiDAR point clouds. In
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addition, the incorporation of self-supervised or
unsupervised learning paradigms could alleviate reliance
on annotated datasets. Combining our framework with
transformer-based architectures, generative adversarial
training, or interpretable learning techniques may further
improve its accuracy, robustness, and trustworthiness in
high-risk monitoring tasks.

Overall, this work provides a solid foundation for
change detection research in complex environments and
opens up new directions for developing scalable,
adaptable, and explainable change detection systems in the
field of remote sensing.
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