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Abstract—Change detection plays a crucial role in various 
fields such as environmental monitoring and disaster 
management. In recent years, deep learning-based 
approaches have significantly improved detection accuracy 
and efficiency. However, challenges such as multi-scale 
feature misalignment, ineffective fusion strategies, and 
inconsistent cross-scale semantics still hinder their 
deployment in complex real-world scenarios, especially in 
geological hazard monitoring. To address these issues, we 
propose a novel change detection framework that integrates 
channel attention and non-local context modeling into the 
feature extraction stage to enhance channel discrimination 
and global dependency learning. In the decoding phase, we 
introduce a flow-guided feature alignment and fusion 
module, which estimates optical flow fields and performs 
adaptive warping to reduce temporal feature discrepancies 
and improve alignment accuracy. In addition, multi-level 
feature fusion and semantic consistency refinement are 
employed to better capture subtle and sparse changes. 
Extensive experiments on the public LEVIR-CD dataset and 
a newly constructed Three Gorges rock mass dataset 
demonstrate that our method achieves state-of-the-art 
performance in terms of both accuracy and computational 
efficiency. Moreover, the framework exhibits strong 
robustness in complex terrains while maintaining a 
lightweight design, showing great potential for practical 
applications in geological disaster monitoring, early warning, 
and risk-informed decision-making. Quantitatively, our 
method achieves an F1-Score of 90.0% and Intersection over 
Union (IoU) of 81.82% on the LEVIR-CD dataset, surpassing 
existing methods such as ChangeStar by 0.7% and 1.16%, 
respectively. 
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alignment, deep learning, feature fusion, attention 
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I. INTRODUCTION 

Change detection, the process of identifying variations 
in the state of objects or phenomena by analyzing 
temporally separated data, plays a fundamental role in 
numerous computer vision applications such as urban 
development monitoring, forest cover assessment, and 
infrastructure surveillance. In the context of geological 
hazard prevention, change detection is particularly critical, 
as it provides the technological foundation for timely early 
warning and risk mitigation in events such as landslides, 
rockfalls, and ground subsidence. Effective change 
detection systems can significantly reduce disaster-related 
losses and safeguard public safety. 

With the advent of deep learning, change detection 
techniques have undergone rapid evolution, progressing 
through several developmental phases. Early works such 
as Fully Convolutional-Early Fusion (FC-EF) [1] 
introduced fully convolutional Siamese architectures for 
bi-temporal image comparison, while subsequent studies 
explored autoencoders [2], adversarial training [3], and 
enhanced feature reuse with U-Net++ [4]. In the 
architectural refinement phase (2020–2023), intermediate 
fusion frameworks like IFNet [5] and multi-scale networks 
such as LGPNet [6], SNUNet-CD [7], and a deep multi-
task learning framework combining semantic 
segmentation with fully convolutional LSTM networks [8] 
improved feature representation and efficiency. More 
recently, attention-based approaches including MFDS-
Net  [9] and AM-FNet [10] have achieved notable success 
by incorporating global semantic enhancement and deep 
supervision. 

Despite these advancements, existing methods face 
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critical limitations in real-world scenarios, particularly 
under complex terrain and variable imaging conditions 
often encountered in geological environments. 
Specifically, three persistent challenges remain 
unresolved: 

(1) Feature misalignment caused by changes in 
viewpoints, lighting, and temporal shifts; 

(2) Cross-scale information loss during fusion of 
multi-level features; 

(3) Insufficient global context modeling, limiting the 
network’s ability to perceive long-range 
dependencies. 

Recent research in visual localization and feature 
matching (e.g., LightGlue [11] and Unmanned Aerial 
Vehicle (UAV) [12]-based matching) has demonstrated 
the effectiveness of flow-guided alignment and context-
aware feature aggregation, providing insights applicable to 
change detection. However, existing change detection 
models rarely incorporate such dynamic alignment 
strategies explicitly into their architectures. 

To bridge this gap, we propose a novel framework that 
integrates flow-guided feature alignment, global attention 
modeling, and hierarchical fusion mechanisms. Our 
method is tailored for fine-grained change detection in 
challenging scenarios such as geological hazard 
monitoring, with a particular focus on robustness, 
accuracy, and computational efficiency. 

Through extensive experiments on the LEVIR-CD [13] 
benchmark and a self-constructed Three Gorges rock mass 
dataset, we demonstrate the superior performance and 
practical utility of our approach in detecting subtle and 
sparse changes under complex environmental conditions. 

II. LITERATURE REVIEW 

Change detection has emerged as a critical task in 
remote sensing, with deep learning approaches 
revolutionizing traditional pixel-based and handcrafted 
feature methods. This section systematically examines 
recent advances in three key aspects: feature extraction 
architectures, feature fusion strategies, and multi-scale 
representation learning, while identifying persistent 
challenges in the field. 

A. Feature Extraction Architectures 
Feature extraction lies at the heart of change detection 

performance, evolving through several paradigm shifts. 
Early efforts such as FC-EF [1] employed Siamese 
architectures with weight-sharing encoders to capture 
temporal differences. Subsequent developments 
introduced deeper and denser models such as UNet++ [4], 
leveraging nested skip connections to enhance feature 
reuse. 

Recent work has emphasized lightweight yet expressive 
architectures. For instance, tinyCD [14] employs 
depthwise separable convolutions and dual attention 
mechanisms to balance accuracy with computational 
efficiency. Attention-based models like AMFNet [10] and 
MFDS-Net [9] explicitly enhance long-range contextual 
modeling via spatial-channel attention fusion and multi-
level supervision. 

In parallel, recent studies in visual localization and 
image matching have addressed similar challenges of 
spatial correspondence under viewpoint and appearance 
variations. For instance, LightGlue achieves efficient local 
feature matching through dynamic graph construction and 
attention-based refinement, enabling accurate geometric 
alignment in real time [11]. Similarly, UAV visual 
localization frameworks evaluate the robustness of deep 
feature matchers in real-world aerial imagery, highlighting 
the importance of scale-invariant and deformation-aware 
representations [12]. These advances reinforce the idea 
that accurate temporal feature alignment—whether sparse 
or dense—is critical for downstream tasks. Inspired by 
these developments, our method integrates flow-based 
feature alignment to enhance spatiotemporal consistency 
in change detection. 

Nevertheless, challenges remain in balancing the 
discriminative power of deep features with network 
complexity, particularly under severe appearance 
variations. This motivates the introduction of hybrid 
attention structures and dynamic modeling modules in our 
framework. 

B. Feature Fusion Strategies 
Effective multi-temporal feature fusion is vital for 

change detection. Classical paradigms include early fusion 
(FC-EF [1]), late fusion (SNUNet-CD [7]), and 
intermediate fusion (IFNet [5]). These approaches 
respectively focus on low-level, high-level, and multi-
scale combination strategies, each with trade-offs in 
information preservation and model complexity. 

Recent architectures such as LGPNet [6] explore 
hierarchical fusion with pyramid alignment to balance 
local and global context. Additionally, transformer-based 
and attention-guided methods have introduced learnable 
fusion gates, enhancing adaptability in diverse scenes. 

Yet, two major issues persist: (1) spatial misalignment 
caused by temporal shifts or environmental variations; (2) 
static fusion mechanisms that lack context adaptivity. 
Inspired by the success of learnable warping and flow-
based alignment in image registration and motion 
estimation tasks, newer models begin integrating 
deformable feature transformation into fusion pipelines. 
However, few current change detection models explicitly 
incorporate such flow-guided alignment for 
spatiotemporal consistency. 

Our proposed method bridges this gap by leveraging 
optical flow estimation and adaptive warping in the fusion 
stage to mitigate inter-temporal discrepancies. 

C. Multi-Scale Representation Learning 
Multi-scale representation learning is essential for 

addressing scale variance and hierarchical semantics in 
change detection tasks. Early implementations, such as 
SNUNet-CD [7], utilized skip connections to integrate 
features across layers, enabling effective information flow 
from low-level textures to high-level semantics. MFDS-
Net [9] further improved scale-awareness by introducing 
deep supervision at multiple levels, while tinyCD [14] 
demonstrated that efficient pyramidal extractors can 
maintain high detection accuracy even under constrained 
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computational resources. 
To enhance scale adaptability, a variety of attention 

mechanisms have been proposed. For example, Squeeze-
and-Excitation (SE) [15] focuses on enhancing inter-
channel relationships via global pooling, while 
Convolutional Block Attention Module (CBAM) [16] 
integrates both channel and spatial attention sequentially 
to refine feature maps. Coordinate Attention (CA) [17] 
embeds location information into channel encoding, 
offering better spatial sensitivity, and Mixed Local 
Channel Attention (MLCA) [18] exploits hierarchical 
attention fusion across multiple scales to improve change 
discrimination. 

While these mechanisms have achieved success in 
various computer vision tasks, they each present 
limitations when applied to high-resolution remote sensing 
imagery. For instance, SE and CA lack explicit modeling 
of spatial dependencies, while CBAM and MLCA 
introduce additional computational complexity that may 
hinder deployment in resource-constrained environments. 

In this work, we adopt a lightweight Channel 
Attention  [15] module to selectively emphasize 
discriminative feature channels, and further combine it 
with a Non-Local Block to capture long-range 
dependencies across the spatial domain. This hybrid 
design balances computational efficiency and global 
context modeling, which is particularly beneficial for 
detecting subtle or sparsely distributed changes in complex 

terrain. By avoiding excessive parameter overhead while 
maintaining expressive capacity, our attention design 
enables effective multi-scale feature representation and 
robust change localization. 

III. MATERIALS AND METHODS 

A. Model Overview 
The proposed change detection framework is designed 

to address the challenges of spatial misalignment, weak 
feature representations, and inadequate contextual 
modeling often encountered in multi-temporal remote 
sensing imagery. As illustrated in Fig. 1, the model adopts 
a modular architecture composed of three principal 
components: an encoder, a feature enhancement neck, and 
a decoder. Given a pair of bi-temporal optical images, the 
model first encodes hierarchical semantic features using a 
lightweight backbone network. The extracted features are 
then refined by the neck module, which integrates attention 
mechanisms to selectively enhance informative channels 
and model long-range dependencies. Finally, the decoder 
incorporates a novel Feature Displacement Alignment and 
Fusion (FDAF) module that explicitly addresses temporal 
inconsistencies through flow-guided feature alignment and 
fusion, ultimately producing a pixel-wise binary change 
map. 

 

 
Fig. 1. The detailed architecture diagram of the model incorporates NonLocalBlock to capture non local features and strengthen global dependencies. 

The Feature Displacement Alignment and Fusion module (FDAF) utilizes flow fields to achieve feature displacement alignment and fusion. 
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The overall architecture is inspired by the encoder-
decoder paradigm, but with deliberate modifications to 
support high-resolution inputs and preserve fine-grained 
details. The encoder is implemented using TinyNet [19], 
an efficient Convolution Neural Network (CNN) backbone 
that balances representational capacity with computational 
cost. The neck module leverages both Channel Attention 
and Non-Local Blocks to improve semantic discrimination 
and contextual awareness. The decoder employs FDAF to 
achieve robust change localization in the presence of 
object displacement, environmental variation, and 
geometric noise. The entire network is trained end-to-end 
using a cross-entropy-based objective function. 

B. Attention-Enhanced Feature Extraction 
The encoder is built upon TinyNet [19], which 

processes bi-temporal images through four hierarchical 
levels (stride 4 to 32 pixels) using depth-wise separable 
convolutions. The StemBlock module employs an inverted 
residual structure with 1×1 expansion (expand_ratio = 4) 
and 3×3 depthwise convolution, followed by 
PriorAttention for temporal feature fusion [19]. The 
TinyBlock further re-fines features through depthwise 
separable convolutions with optional squeeze-and-
excitation attention, achieving efficient computation while 
maintaining feature richness [19]. 

The neck module contains three principal components: 
First, TinyFPN performs multi-scale feature fusion 
through lateral connections and top-down upsampling [19]. 
Second, the ChannelAttention module enhances feature 
discriminability by computing channel-wise attention 
weights through dual pooling paths (global average and 
max pooling) followed by a bottleneck MLP with 
reduction ratio of 16. The attention weights are generated 
via sigmoid activation and applied to rescale the input 
features. Third, the NonLocalBlock captures long-range 
dependencies by computing pairwise feature affinities 
across the entire spatial domain. It projects input features 
into query, key and value spaces through 1×1 convolutions 
(with reduction ratio of 2), computes a global similarity 
matrix via SoftMax normalized dot products, and 
aggregates contextual information through weighted 
summation while preserving local details via residual 
connections. 

The decoder incorporates our novel Feature Dis-
placement Alignment and Fusion (FDAF) module to 
address temporal misalignment. In the change detection 
task, in order to extract more discriminative features from 
the input image and enhance attention to key regions, we 
designed a feature expression module in the Neck part of 
the model, which improves the model’s ability to capture 
important features through channel attention mechanism 
and NonLocalBlock. 

The channel attention mechanism aims to enhance the 
expressive power of key channels by weighting the 
importance differences of channel features in change 
detection tasks. Specifically, this mechanism utilizes 
global average pooling and max pooling to extract two 
global feature descriptors, each reflecting the overall 
feature distribution of each channel. These two descriptors 
undergo a series of convolution operations and ReLU 

activation to generate attention weights, which are then 
normalized using the Sigmoid function. Finally, these 
weights are multiplied with the original features channel 
by channel to highlight the important channel information 
for change detection, while suppressing irrelevant or 
redundant features, significantly improving the model’s 
discriminative ability for change regions. The final output 
features xout as showed in Eq. (1). 

                               outx x Attn= ⋅                                   (1) 

To further capture the global dependencies in the feature 
map, the model also introduces NonLocalBlocks. This 
module enhances the model’s ability to perceive complex 
changes by constructing a global relationship matrix 
between any two points in the feature map. Specifically, 
the input feature map is mapped to a low dimensional 
space, generating three feature maps: query (θ), key (ϕ), 
and value (g). Query and key features are used to calculate 
the global similarity matrix f as showed in Eq. (2), Indicate 
the correlation between each location and other locations. 

( )Tf Softmax θ φ= ⋅                           (2) 

Subsequently, the value features g is weighted and 
aggregated using a similarity matrix to generate global 
enhanced features, which are then fused with the original 
features through residual connections for output xout as 
showed in Eq. (3). 

( )out Zx W f g x= ⋅ ⋅ +                        (3) 

This non local operation not only preserves the 
resolution of local features, but also effectively captures 
long-distance global contextual information, providing 
powerful global modeling capabilities for change detection 
tasks. By combining channel attention mechanism with 
non local modules, the model can accurately extract local 
and global information from multi-scale features, thereby 
significantly enhancing the modeling ability and detection 
accuracy of changing regions. 

C. Feature Displacement Alignment and Fusion 
(FDAF)  

In change detection tasks, due to the temporal difference 
between the two input images, their feature distributions 
often experience spatial displacement. Directly fusing the 
two images for feature fusion may lead to accumulated 
errors or inaccurate detection results. To address this issue, 
we have designed a feature displacement alignment and 
fusion module in the decoder, which achieves precise 
alignment and fusion of feature maps at different time 
steps by generating flow fields. FDAF first estimates a 
two-dimensional flow field by analyzing feature 
correlations between temporal inputs through a 
lightweight network containing a 3×3 convolution and 1×1 
convolution. This flow field is then used to warp one 
temporal feature set to align with the other using 
differentiable bilinear sampling. The aligned features are 
subsequently fused through element-wise addition, 
effectively reducing registration artifacts while 
highlighting genuine changes. 

Journal of Advances in Information Technology, Vol. 16, No. 10, 2025

1482



Specifically, the feature displacement alignment and 
fusion module aligns input features through optical flow 
estimation methods. Concatenate the two input feature 
maps x1 and x2 and input them into a convolutional network 
to generate a two-dimensional flow field “Flow” as 
showed in Eq. (4), representing the displacement 
information of the feature maps. 

      1 2( ( , ))Flow Conv2D Concat x x=                (4) 

Subsequently, the flow field is used to distort the feature 
map x2, and the features in x2 are remapped to the 
coordinate system of x1 to obtain 2

warpx  as showed in 
Eq.  (5). 

   2 2( , )warpx GridSample x Flow=                  (5) 

Finally, by fusing the aligned feature map 2
warpx  with 

the original feature x1, more robust variation features are 
generated xout as showed in Eq. (6). 

  1 2
warp

outx x x= +                               (6) 

The feature displacement alignment and fusion module 
effectively alleviates the impact of differences in temporal 
image feature distribution on detection accuracy through 
flow field generation and feature distortion operations, 
ensuring high-quality detection of changing areas. 
Meanwhile, the module combines multi-scale feature 
maps to further enhance the model’s ability to perceive 
subtle changes. 

D. Loss Function 
The loss function design of the model is based on 

CrossEntropy Loss, which is used to optimize the 
prediction results of the decoder output in the changing 
region. Cross entropy loss guides the model to learn more 
accurate category discrimination ability by measuring the 
difference between the predicted category probability 
distribution and the true labels. Its formula as showed in 
Eq. (7). 

                 1
1 ˆlog( )c cC

i iCc y y
N == − ∑L                     (7) 

Among them, c
iy  is the true label of the i-th pixel (in 

One Hot encoding form), and ˆ c
iy  is the predicted 

probability. In this task, the loss function is designed for 
binary classification problems (with and without changes), 
generating predicted probability distributions through 
SoftMax and comparing them with real labels to calculate 
errors. The use of cross entropy loss can effectively 
optimize the classification ability of the model, improve 
the detection performance of the model for changing 
regions by accurately measuring the difference between 
the predicted results and the true labels. 

IV. RESULT AND DISCUSSION 

A. Datasets 
This study used two datasets to evaluate model 

performance. LEVIR-CD is a standard dataset for remote 
sensing image change detection, consisting of 637 pairs of 
images with a resolution of 1,024×1,024, mainly 
annotating the change areas of newly added and 
demolished buildings [13]. In addition to using the public 
LEVIR-CD dataset, we constructed a real-world dataset 
named TG-HRC, specifically designed to support change 
detection in geological hazard monitoring scenarios, with 
an image resolution of 1,920×1,080. The images were 
sourced from long-term monitoring video streams in the 
Three Gorges Reservoir area of Chongqing, China, a 
region known for frequent rockfall and landslide activities 
due to complex terrain and seasonal variation. TG-HRC 
covers diverse scenes including steep rock cliffs, 
vegetation-covered slopes, and artificial retaining 
structures. Image pairs were extracted under varying 
illumination and weather conditions to ensure temporal 
diversity. The change areas were manually annotated 
under the guidance of geological experts. The final dataset 
contains 12,184 training samples and 3,000 testing 
samples. Image registration and illumination 
normalization were performed as preprocessing steps. 
Although the dataset is representative of real-world 
hazardous terrain, potential biases may arise from 
geographic limitation (focused on a single river basin), 
viewpoint changes between time steps, and inherent 
subjectivity in manually labeling ambiguous rock shifts. 
To mitigate this, we applied data augmentation techniques 
and included varied scenes across multiple sub-regions to 
enhance generalization. A portion of the annotated dataset 
will be publicly released upon publication to support 
further research. 

B. Evaluation Metrics 
To quantitatively assess the performance of the 

proposed change detection model, we adopt four standard 
evaluation metrics widely used in binary classification 
tasks, particularly in remote sensing change detection: 
Precision, Recall, F1-Score, and Intersection over Union 
(IoU). These metrics jointly evaluate the model’s ability to 
correctly identify and localize change regions, balancing 
the trade-off between detection completeness and 
reliability. 

Let True Positives (TP) denote the number of correctly 
detected change pixels, False Positives (FP) the number of 
unchanged pixels incorrectly predicted as changed, and 
False Negatives (FN) the number of missed change pixels. 
The metrics are defined as follows: 

                          TPPrecision
TP FP

=
+

                          (8) 

                            TPRecall
TP FN

=
+

                             (9) 
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                      1 2 Precision RecallF
Precision Recall

⋅
= ⋅

+
                   (10) 

                          TPIoU
TP FP FN

=
+ +

                        (11) 

Precision measures the proportion of detected changes 
that are truly changed, reflecting the model’s accuracy in 
avoiding false alarms. Recall evaluates the model’s ability 
to detect actual changes, indicating its sensitivity to 
relevant objects. F1-Score provides a harmonic mean of 
precision and recall, particularly useful when the dataset is 
imbalanced. IoU, also known as the Jaccard Index, 
assesses the overlap between predicted and ground-truth 
change areas, offering a spatial perspective of detection 
quality. 

C. Training Strategy and Hyperparameters 
Our experiment was conducted on a desktop computer 

running Ubuntu 20.04 operating system, which was 
equipped with NVIDIA TITAN V GPUs (12GB of video 
memory) and CUDA 10.1. Implement the use of PyTorch 
library [20]. During training, the model is optimized using 
the AdamW [21] optimizer with an initial learning rate of 
0.003, momentum parameters (β1 = 0.9, β2 = 0.999), and 
a weight decay of 0.05. We use cosine annealing with 
warm restarts to enhance convergence stability. 

The input image pairs are resized to 256×256, and we 
apply extensive data augmentation including random 
rotation (±15°), horizontal flipping, random cropping, 
brightness adjustment, contrast jittering, and time-channel 

swapping. The batch size is set to 16, and the training 
process lasts for 200 epochs. 

All modules including ChannelAttention, 
NonLocalBlock, and FDAF are trained end-to-end from 
scratch. We adopt Xavier initialization for all 
convolutional and attention layers. 

D. Quantitative Comparison 
The experimental results show that the proposed model 

achieves optimal performance on both the publicly 
available dataset LEVIR-CD and the self-made Three 
Gorges dangerous rock dataset TG-HRC. As shown in 
Table Ⅰ, on the LEVIR-CD dataset, the F1 value of the 
model reached 90.0%, and the IoU reached 81.82%. 
Compared with the better performing ChangeStar method, 
it improved by 0.7% and 1.16%, respectively, significantly 
improving the detection accuracy and robustness of change 
regions. In the TG-HRC dataset, the model also performs 
well in complex geological change scenarios, with an F1 
value of 89.86% and an IoU of 81.59%. Both accuracy and 
recall are at a leading level, indicating that the model can 
effectively capture sparse and small change areas. The 
superior performance of the model is attributed to the 
introduced module design. The channel attention 
mechanism enhances the ability to capture key features, 
the non local module improves the perception ability of 
change regions by modeling global dependencies, and the 
feature displacement alignment and fusion module 
significantly reduces false alarm rates through feature 
alignment, providing an accurate and robust solution for 
change detection tasks. 

TABLE Ⅰ. THE QUANTITATIVE COMPARISON BETWEEN THE LEVIR-CD [11] AND TG-HRC DATASETS SHOWS THE BEST RESULTS IN BOLD. ALL 
RESULTS ARE DESCRIBED IN PERCENTAGE (%) FORM 

Method LEVIR-CD TG-HRC Dataset 
F1 (%) Pre. (%) Rec. (%) IoU (%) F1 (%) Pre. (%) Rec. (%) IoU (%) 

FC-EF [1] 83.4 86.91 80.17 71.53 68.38 81.2 59.05 51.95 
FC-Siam-Di [1] 86.31 89.53 83.31 75.92 61.84 65.94 58.22 44.76 

FC-Siam-Conc [1] 83.69 91.99 76.77 71.96 57.66 50.03 68.05 40.51 
IFNet [5] 88.13 91.78 82.93 78.77 86.19 85.4 86.99 75.73 
BIT [22] 89.31 89.24 89.37 80.68 76.79 91.19 66.31 62.32 

SNUNet [7] 88.16 89.18 87.17 78.83 87.57 88.3 86.85 77.89 
ChangeStar(FarSeg) [23]  89.30 89.88 88.72 80.66 75.12 88.38 65.32 60.16 

Ours 90.0 90.05 89.95 81.82 89.86 92.51 87.36 81.59 
 
TABLE Ⅱ. COMPARISON RESULTS OF PARAMETER QUANTITY 
(PARAMS, M) AND COMPUTATIONAL COST (FLOPSS, G). THE BEST 
RESULTS ARE DISPLAYED IN BOLD, WHILE THE SECONDARY RESULTS 
ARE SHOWN WITH AN UNDERLINE 

Method Params (M) FLOPs (G) 
IFNet [5]  50.44 82.26 

SNUNet [7]  12.03 54.88 
BIT [22]  3.55 4.35 

Ours 0.29 7.45 
 
The model proposed in this article not only focuses on 

improving accuracy in design, but also on optimizing 
computational efficiency and parameter scale. By 
introducing efficient attention mechanisms and feature 
alignment modules, the model achieved high accuracy 
metrics in change detection tasks, such as significantly 
improving F1-Scores and IoU metrics. However, at the 

same time, the FLOPs and parameter count of the model 
remained at a low level, reflecting the advantage of 
lightweight design, as shown in Table Ⅱ. This design 
enables the model to significantly reduce the demand for 
computing resources while ensuring high detection 
performance, providing the possibility for large-scale 
deployment in practical scenarios. 

E. Visualize Results 
To provide qualitative insights into the effectiveness of 

the proposed method, we present visual comparisons with 
four representative change detection approaches—FC-EF, 
FC-Siam-Diff, IFNet, and SNUNet—on the LEVIR-CD 
dataset, as shown in Fig. 2. These results illustrate the 
visual differences in change localization and error patterns 
across various methods. 

In the visualization, false positives (incorrectly 
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predicted change areas) are marked in red, false negatives 
(missed change regions) in green, and correctly detected 
changes in white. Compared to the baseline methods, our 
approach produces more precise boundaries and 
significantly fewer misclassified pixels, particularly in 

regions with small-scale or ambiguous changes. This 
demonstrates the benefits of our flow-guided alignment 
and attention-enhanced feature representation in capturing 
fine-grained differences across time. 

 

 
Fig. 2. Qualitative comparison of change detection results on the LEVIR-CD dataset. From left to right: (a) Image at time T1, (b) Image at time T2, (c) 
Ground truth, (d) FC-EF, (e) FC-Siam-Diff, (f) IFNet, (g) SNUNet, (h) Ours. False positives are shown in red, false negatives in green, and correctly 
detected pixels in white. 

F. Ablation Experiments 
We conduct extensive ablation experiments to validate 

the effectiveness of the proposed module: NonLocalBlock 
(NL) and FDAF. 

All experiments are trained on the TG-HRCD dataset 
and evaluated on the standard validation set. The baseline 
model removes all three modules, while other variants 
incrementally add them to analyze individual contributions. 
Table Ⅲ presents the quantitative results of different 
model variants, where we incrementally add each module 
to analyze its individual contribution. 

TABLE Ⅲ. ABLATION STUDY OF DIFFERENT MODEL COMPONENTS 

Model Variant F1 Pre Rec IoU 
Baseline 89.44 92.16 86.88 80.9 

Baseline+NL 89.14 91.14 87.22 80.4 
Baseline+FDAF 89.57 92.33 86.97 81.11 

Ours 89.86 92.51 87.36 81.59 

V. CONCLUSION 

This paper presents an enhanced change detection 
framework that incorporates Non-Local Blocks and a 
novel Feature Displacement Alignment and Fusion 
(FDAF) module to address core challenges in multi-

temporal image analysis. Specifically, Non-Local Blocks 
strengthen global contextual modeling, improving the 
network’s ability to capture long-range dependencies in 
complex terrain. The Channel Attention mechanism 
improves the discriminability of relevant features, while 
the FDAF module addresses spatial misalignment by 
generating flow fields and performing adaptive feature 
warping, thereby reducing false detections and enhancing 
localization accuracy. 

Extensive experiments on both the publicly available 
LEVIR-CD dataset and our self-constructed TG-HRC 
geological hazard dataset demonstrate the method’s 
superior performance in terms of precision, recall, F1-
Score, and IoU, validating its effectiveness and robustness 
across diverse scenarios. The proposed model not only 
achieves state-of-the-art accuracy but also maintains a 
lightweight architecture suitable for real-time or embedded 
applications. 

In terms of practical application, the method shows 
strong potential for integration into early warning systems 
for geological hazards, enabling proactive risk assessment 
and improved disaster preparedness. 

Looking ahead, future work may focus on improving the 
model’s generalization to multi-modal remote sensing data, 
such as hyperspectral imagery and LiDAR point clouds. In 

Journal of Advances in Information Technology, Vol. 16, No. 10, 2025

1485



addition, the incorporation of self-supervised or 
unsupervised learning paradigms could alleviate reliance 
on annotated datasets. Combining our framework with 
transformer-based architectures, generative adversarial 
training, or interpretable learning techniques may further 
improve its accuracy, robustness, and trustworthiness in 
high-risk monitoring tasks. 

Overall, this work provides a solid foundation for 
change detection research in complex environments and 
opens up new directions for developing scalable, 
adaptable, and explainable change detection systems in the 
field of remote sensing. 
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