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Abstract—Automatic Speech Recognition (ASR) has become
a key technology in human-machine interaction, especially in
supporting languages with limited resources such as Bahasa
Indonesia. Although deep learning-based models such as
Wav2Vec2 have shown good performance in speech
recognition, further optimization is still needed to improve
training accuracy and efficiency, especially in
data-constrained and noisy environments. This research
focuses on optimizing the Wav2Vec2 model for Indonesian
ASR by applying the Fisher Adam (FAdam) optimizer.
FAdam combines Natural Gradient Descent (NGD) with
Fisher Information Matrix (FIM) to improve learning
stability, accelerate convergence, and reduce sensitivity to
noise in the data. The model was trained using the Indonesian
Common Voice dataset and evaluated based on Word Error
Rate (WER) of 5.59% and Character Error Rate (CER)
of 1.76% on the validation set. Experimental results show
that this approach not only improves accuracy over previous
methods, also enhances training efficiency and improves the
stability of model convergence compared to state-of-the-art
models such as XLSR-53 and XLS-R 300m for Indonesian
ASR. In addition, FAdam is shown to provide increased
inference speed, making it a more optimal solution for ASR
implementation in real-world scenarios. This research
contributes to the development of a more adaptive and
efficient ASR technology for Indonesian, while opening up
further optimization opportunities in self-supervised
learning-based models.

Keywords—Automatic Speech Recognition (ASR), Bahasa
Indonesia, Character Error Rate (CER), Fisher Adam
(FAdam), Wav2Vec2, Word Error Rate (WER)

I. INTRODUCTION

In the last decade, deep learning has entered the realm
of Automatic Speech Recognition (ASR) resulting in
models with low word error rates [1]. One of the improved
ASR models is the speech-to-text (S2T) model. The
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application of deep learning in S2T makes it easier for the
model to recognize the spoken voice even in different
dialects and noisy environments [2]. So that S2T
technology has now become a pioneer for various other
models in the field of Natural Language Processing (NLP)
such as voice assistant, real-time translation, speaker
identification and verification, emotional recognition,
human-machine interaction, and so on [3, 4]. These
various developments provide further functionality to
users, especially wusers with disabilities through
communication aids for those with hearing or speech
impairments [5].

One S2T model that is widely used today is Wav2Vec
version 2 [6]. This model is an advanced development of
the first version called Wav2Vec [7] with a major
breakthrough in the form of utilizing a self-supervised
learning approach. Wav2Vec? is an innovative model that
solves many problems in traditional approaches in the field
of ASR (e.g. S2T), especially with data efficiency and high
performance in low-resource conditions [6]. Wav2Vec 2.0
shows that transformer-based models can be very effective
for speech recognition especially when coupled with
self-supervised learning. It paves the way for building
more inclusive, low-cost, and high-performance ASR
systems. However, the Wav2Vec2 model has a large
number of parameters which can lead to training
instability. In addition, Wav2Vec2 often suffers from
performance degradation due to the difficulty of handling
complex noise distributions during training.

In an effort to overcome these problems, this research
optimizes the Wav2Vec2 model using the Fisher Adam
(FAdam) optimizer, which utilizes the Natural Gradient
Descent (NGD) approach based on statistical information
geometry using the Fisher Information Matrix (FIM) [8].
It is expected that by using FAdam optimizer, the training
process can be more stable, efficient, and adaptive to noise.
FAdam’s handling of bias correction, noise, and gradient
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distribution is a superior solution for Wav2Vec2
optimization, especially in large model training scenarios
or datasets with limited resources.

In the context of this study, the term noise encompasses
various acoustic disturbances commonly encountered in
real-world data, such as background sounds from vehicles,
overlapping conversations, wind, or open-environment
ambient noise. Additionally, linguistic noise is also
considered, including inconsistent intonation, unclear
pronunciation, and accent variations among different
speakers. These disruptions can lead to errors in feature
extraction or representation learning for speech signals. To
address these challenges, this study employs FAdam, an
optimization algorithm based on NGD that leverages the
FIM to guide model parameter updates in a more stable
and context-aware manner relative to the data distribution.
As a result, the model becomes more adaptive to noise and
demonstrates improved training stability compared to
conventional optimization methods.

II. LITERATURE REVIEW

Automatic Speech Recognition (ASR) has become one
of the significant topics in current technological
developments [9]. In recent years, deep learning-based
models have become the standard in ASR system
development and replaced traditional approaches that rely
on manual processing of signals and acoustic features.
However, other challenges such as model adaptation for
non-English languages, especially Bahasa Indonesia, are
issues that require further attention.

Solutions to these problems have actually been solved
by several studies. Research conducted by
Abidin et al. [10] addressing the limitations of Indonesian
speech recognition datasets by building datasets from
YouTube channels that are thoroughly validated. This
dataset is utilized to train an acoustic model based on a
Time Delay Neural Network (TDNN) [11] with the
assistance of Gaussian Mixture Model-Hidden Markov
Model (GMM-HMM) [12] alignment and data
augmentation. This research significantly improves model
performance and reduces the word error rate to 19.03%. In
line with Ref. [10], research conducted by Yang et al. [13]
building a TDNN-based ASR model with additional
modifications resulted in the development of a new model
called TDNN-Attention-HMM. In addition, this research
model uses the hierarchical weight transfer method in the
training phase so that the experimental results show that
this model provides the best performance with a Word
Error Rate (WER) of 6.79%, with a relative decrease
0f 26.52% compared to the DNN-HMM baseline system.

Furthermore, the utilization of Massively Multilingual
Speech (MMS) and Whisper models [14] is another
possible solution. As in the research [15] that conducted
training on both models using Indonesian language
datasets that include a variety of speech variability. The
modified Whisper model showed the best results with a
fairly low reduction in WER and Character Error Rate
(CER). This study also found that speaking style is the
factor that most influences the performance of the model.
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These findings provide important insights for the
development of a more robust Indonesian ASR.

The use of other models such as Wav2Vec2 [6] is
another option that can be used to build Indonesian ASR
models. The research [16] utilized the XLSR-53 [17]
pre-trained model to be wused for training a
Wav2Vec2-based ASR designed to reduce the need for
training data on non-English languages. The results
showed success by reducing the WER value from 20%
to 12% on the Indonesian Common Voice dataset. This
success made a significant impact on the field of ASR for
local languages so that further research [18] addressed the
improvement of the model. The study [18] centers on the
advancement and assessment of ASR technology utilizing
the XLS-R 300m model [19] integrated with Wav2Vec2
for Indonesian, Javanese, and Sundanese languages. The
results showed that the model achieved a competitive
WER with slightly lower performance for Javanese and
Sundanese than Indonesian. This research contributes to
the development of ASR technology by addressing the
challenges of linguistic diversity and provides insights for
ASR accuracy optimization across multiple language
contexts.

Previous research related to the development of
Indonesian ASR faces several limitations, such as dataset
limitations, dependence on less flexible
TDNN-HMM-based models, and the performance of
multilingual models such as MMS and Whisper which are
still influenced by variations in speaking style. In addition,
the XLSR model is trained using a large model with many
languages, so fine-tuning on small datasets often
experiences gradient instability. Where weight updates
become unstable and can cause slow convergence or even
overfitting on certain training data. This study addresses
the convergence problem of previous research by using
FAdam, which is a more stable and adaptive optimizer

than Adam or AdamW [8].
This allows the model to better adapt to limited datasets,
reducing gradient instability, and accelerating

convergence without compromising model generalization.
This approach helps the Wav2Vec2 model trained using
the Indonesian language dataset achieve optimal
performance in more efficient training time and improve
ASR accuracy for Indonesian.

III. MATERIALS AND METHODS

This study concentrates on advancing an ASR model
utilizing the Indonesian language. The proposed method
consists of several main stages, namely dataset
preparation, data preprocessing, feature extraction using
Wav2Vec 2.0 model architecture [6], model optimization
with FAdam optimizer [8], and model performance
evaluation using WER and CER metrics. These stages are
designed to ensure that the model is able to produce
audio-to-text transcriptions with a high degree of accuracy
and is able to handle variations in characteristics in the
audio data, such as accents, intonations, and noise levels.
The stages are shown in Fig. 1.
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Fig. 1. Methodology.

A. Data Preparation

This research uses the Indonesian Common Voice
dataset version 20.0 [20] for the training process of our
ASR model. The Indonesian Common Voice dataset is an
open-source audio dataset designed to support the
development of speech recognition technology in
Indonesian [21]. This dataset consists of a total of 66 hours
of recorded voices, 34 hours of validated voices, and 604
total voices. The data in this dataset consists of recordings
with diverse audio quality, covering a wide range of
background noise levels and reflecting real-world
conditions. In addition, the diversity of the data is also
evidenced by the voices produced from different age
groups and genders. The diversity of the data is shown in
Table L.

TABLE 1. DATA DIVERSITY BY AGE GROUP AND GENDER IN
INDONESIAN COMMON VOICE DATASET

Number of Data Number of Data

Age Gender

(%) (%)
<20 22 Male 45
20-29 41 Female 26
Gender Not
30-39 10 Specified 29
40-49 2 - -
Age Not
Specified 2 ) )
Context
representations C I%l

B. Data Preprocessing

Before the features in the data are extracted, the data
will go through a preprocessing process to ensure
uniformity and compatibility with the Wav2Vec2 model.
The process at this stage involves two steps at once,
namely, audio cleaning and normalization to provide
maximum results in the feature extraction step [22]. The
use of audio cleaning is intended so that noise in the audio
signal can be removed through the filtering function. This
research uses a Butterworth low-pass filter with the
formula as in Eq. (1).

1
[14y2n O
()

where H(s) is the frequency response maginitude, s is the
corner frequency (w = 2rf, where f is the frequency), w,
is the cutoff function, and n is the filter order. With this
filter, the audio signal can limit high frequencies that are
irrelevant to the human voice signal [23]. After the
process, it is followed by normalizing all the audio files
available in the dataset. This is done to equalize the
amplitude of the audio signal so that each sample has a
consistent intensity level. Our research uses the peak

H(s) =

normalization method for this process through
Eq. (2).
®
Xnorm (£) = s )

where X0, (t) is the amplitude of the signal after
normalization, x(t) is the amplitude of the signal after
normalization, and max (|x(t)|) is the absolute maximum
amplitude value of the signal. Peak Normalization ensures
that the highest amplitude in the signal reaches a certain
value, usually +1 or in the range of 0 to 1.

C. Feature Extraction

This process is performed using the framework of
Wav2Vec2 to convert the raw audio signals from the
dataset into feature representations that can be used by the
ASR model. The working procedure of this stage is in
accordance with the framework of the research [6] in
Fig. 2.

Contrastive loss

JERIE.

Transformer
Masked

Quantized
representations

\®)

Latent speech Z
representations

CNN

raw waveform

© o

Fig. 2. Wav2Vec2 framework [6].
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Feature extraction starts by feeding raw audio data (X)
in the form of waveforms into the framework which are
represented as one-dimensional signals in the time domain.
Wav2Vec2 uses a Convolutional Neural Network (CNN)
architecture consisting of several convolution blocks with
Gaussian Error Linear Unit (GELU) activation and
normalization layers for the feature encoder. This is done
to convert the raw audio data into a latent speech
representation (X —» Z,where Z € z;). Next, the
procedure continues by applying a masking technique to
the latent speech representation z; before feeding it into
the transformer network. The masking is done in much the
same way as the masking in BERT [24], the masking aims
to make the model learn contextual patterns in the speech
signal. When z, the masked one is passed into the network
transformer, it is converted z, into context representation
(Z -» C,where C € ¢;). During the transformation,
quantization operation is performed to quantize z, it into
discrete units (Z — Q,where Q € q;) using product
quantization technique. Quantization is done by selecting
a vector from the set of codebooks using Gumbel
SoftMax [25] which allows the process to remain
differentiable. The quantization phase does not require z;
masking so the process between context representation
transformation and quantization is in a different branch of
work. The workflow of the two phases is depicted
in Fig. 3.
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Fig. 3. Feature extraction flowchart using Wav2Vec2.

After getting the value ¢, and g, from the raw audio
data, the next step is to calculate the loss value using the
constrative learning object function as in Eq. (3) [6].

exp (sim(ct,qt)/K
Lm = —logg  exp Gim(coayn )

The objective function for contrastive learning [26] is
utilized to guide the model in acquiring an audio
representation. Throughout this process, the model’s goal
is to differentiate the correct quantized latent speech
representation (q,) from a group of candidate
representations (Q;), which includes q; along with several
distractor representations. The contextual representation
(c;) generated by the transformer is matched with the
quantized representation through the cosine equation

. _ cht
(sim(e 4e) = 2 gey
(L,,) is formulated as the log probability of the correct pair
of ¢; and g, in the context of the set of distractors, with a
temperature parameter (x) that controls the sensitivity of
the distribution.

). The contrastive loss function

D. Optimization

We use FAdam to optimize the trained Wav2Vec
model. This NGD based optimization algorithm uses
Diagonal Empirical FIM to improve convergence [8].
FAdam can help speed up and stabilize the training of
Wav2Vec2 which has large parameters. With the FIM in
FAdam, the model during training can capture the
relationship between the parameter distribution and the
data. Thus, with this optimization, the model can reach
convergence faster because FIM captures the structure of
the loss landscape which allows the model to adapt better
to the parameters. In addition, FAdam provides improved
training stability with gradient clipping and FIM
normalization that reduces gradient oscillations. The
resilience of this optimization method is evidenced by the
stability of the loss curve during the training and validation
process. The use of FAdam works by maintaining gradient
stability as a result of utilizing FIM to prevent sharp
oscillations in parameter updates. In addition, the
application of NGD to FAdam allows the model to adapt
effectively to noisy data distributions, thus increasing its
resistance to data variation. As shown in result and
discussion section, it is evident that the loss value in the
validation data remains stable in each epoch. This shows
that FAdam not only accelerates convergence but also
ensures resilience in various training scenarios. In
addition, compared to other optimization methods, FAdam
is able to maintain the generalization balance of the model,
thus reducing the risk of overfitting.

E. Model Evaluation

The trained model is subsequently assessed using the
WER and CER metrics, as defined by Egs. (4) and (5).

S+I1+D

WER = =2 % 100% (4)
CER = % x 100% (5)

c

where S is the number of word or character substitutions,
I is the number of insertions (additional words or
characters that are not in the reference), D is the number of
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deletions of missing words or characters in the prediction,
and N is the total words or characters in the reference
transcription. The results of this evaluation are then
compared with existing research in related works based on
the same dataset benchmark (using the Indonesian
Common Voice dataset). In addition, we also validated the
model through comparison with various models trained
using the Wav2Vec2 framework and different
optimization methods. This is intended to show the
effectiveness of the Wav2Vec2 model optimized by the
FAdam optimizer.

IV. RESULT AND DISCUSSION

A clearly structured results section, along with a
compelling discussion, will highlight the originality and
significance of your research. It should offer a brief yet
accurate summary of the experimental outcomes, their
analysis, and the conclusions that can be derived from the
experiments.

The experimental part is done by training and evaluating
the optimized Wav2Vec2 model using FAdam optimizer.
In the training process we used a batch size configuration

Loss, WER, and CER

Technology, Vol. 16, No. 10, 2025

of 16 and a reduced learning rate using the Lamdal.R
method. For the use of FAdam optimizer we used a
configuration with learning rate 0.001, weight decay 0.1,
B1 0.9, P2 0.999, and epsilon 1 x 1078, The selection of
these parameters is based on a combination of initial
experiments and references from previous research using
a NGD based optimizer. A weight decay of 0.1 is used to
prevent overfitting by maintaining parameter regulation
during training, based on the regulatory approach to
Transformer-based models. The learning rate and
momentum  coefficient (Bl and p2) are set
to 0.001, 0.9, and 0.999 respectively following the default
configuration of FAdam, as this combination has been
proven effective in handling gradient accumulation in FIM
based optimization. An epsilon value (1 x 1078) is chosen
to prevent division by zero in gradient normalization.

The model was trained on an NVDIA GeForce
RTX 4060 with a number of epochs of 30 and by
calculating the contrastive learning loss function at each
epoch. Evaluation was performed on the validation data
after each epoch to monitor the WER and CER values. The
training results are shown in Fig. 4.

Trends over 30 Epochs
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Fig. 4. Model training results. The graph illustrates the decrease in loss, Word Error Rate (WER), and Character Error Rate (CER) over the course of
30 training epochs. The dashed vertical line labeled “Final Result” indicates the final validation outcome at the 30th epoch, which is used as the primary

reported value in this study.

The use of FAdam in Wav2Vec successfully reduces the
gradient oscillation during training, as evidenced by the
steady convergence of the loss curve in Fig. 4. This shows
the adaptability of the model in handling the noise present
in the dataset used. In addition, the WER and CER
decreases steadily continue to show a downward trend
without showing an increase in value between each epoch
with final results of 5.59% for WER and 1.76% for CER,
respectively. Furthermore, to further validate the model
performance results that we have obtained, we compared
the model performance with several related studies based
on the use of the same dataset in Table II.

TABLE II. MODEL PERFORMANCE COMPARISON BASED ON WER

Model Dataset V(\:;Z);l
XLS-R 300m [18] 15.30
XLS-R 300m with 2-gram 6.55
KenLM [18] )
TDNN-Attention-HMM [13] 6.79
XLSR-53[16] Indonesian Common 20.31
XLSR-53 2-gram KenLM [16] Voice Dataset 12.23
XLSR-53 3-gram KenLM [16] 12.30
XLSR-53 4-gram KenLM [16] 12.21
XLSR-53 5-gram KenLM [16] 12.25
Our Model 6.19
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The comparison in Table II uses test data contained in
Indonesian Common Voice. The table shows the success
of the Wav2Vec2 model optimized using FAdam in
Indonesian speech recognition compared to other research
models. In addition, the model we developed can provide
a lower WER value compared to the model added with
KenLM. This provides evidence of the effectiveness of
FAdam in optimizing the Wav2Vec model. However, an
increase in the WER was observed in the test data
compared to the validation results during training. This
suggests a potential occurrence of mild overfitting to the
training data, which is likely due to the extended training
duration resulting from the computation of the FIM. While
the use of FIM enables more precise parameter updates, it
also increases the risk that the model will become overly
tailored to the training data. In addition, the discrepancy in
WER may also be attributed to differences in data

distribution between the validation and test subsets within
the Common Voice dataset, such as variations in accent,
audio quality, or speaker characteristics—factors that are
commonly encountered in real-world datasets.

The selection of FAdam for ASR model development in
this study is based on its superiority in performing
optimization, especially on ASR models [8]. In support of
this statement, we evaluated the Wav2Vec2 model that
was optimized using other methods. To ensure a
computationally fair comparison across the evaluated
optimization methods, the experiments in this section were
limited to 10 training epochs. This constraint was intended
to maintain training time efficiency and measurement
consistency across methods without placing excessive
demands on computational resources. We trained each
model using 10 epochs, the evaluation results are shown in
Table III.

TABLE III. PERFORMANCE COMPARISON OF WAV2VEC2 MODELS OPTIMIZED USING VARIOUS METHODS

Method Train Loss | Eval Loss| SarTl:;leIsl st Train Steps/st Eval Samples/st Eval Steps/st WER| (%) CER|] (%)
RMSProp 0.9089 0.5001 12.903 0.404 31.653 3.963 90.08 86.97
Adam 1.011 0.2743 12.839 0.402 31.727 3.973 48.07 34.58
RAdam 1.219 0.2750 12.533 0.392 31.478 3.941 63.21 49.15
AdamW 1.016 0.2763 12.936 0.405 31.622 3.959 39.61 31.04
K-FAC 0.992 0.2600 10.528 0.385 30.037 3.692 39.28 31.20
Shampoo 0.971 0.2630 9.803 0.373 29.839 3.601 38.97 30.73
FAdam 1.053 0.2651 14.614 0.457 45.067 5.643 47.64 30.66

It can be seen in Table III that optimization using
FAdam on the Wav2Vec2 model provides improved
performance, especially in training and evaluation time
efficiency. It is evident from the sample and step
processing of the training data that we are able to
process 14.614 samples/s and 0.457 steps/s, respectively.
Similar to the training data, for the model validation data
we were able to process around 45,067 samples/s

Training Speed Comparison

and 5643 steps/s. This happens because FAdam combines
the calculation efficiency of Fisher Information Matrix
with stability and adaptability which makes it fast in
training and inference [8]. This results in faster
convergence and inference compared to other optimization
methods. This is evidenced in Fig. 5 on the comparison of
training time and inference speed of each method.

Inference Speed Comparison
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Fig. 5. Speed comparison of (a) training and (b) inference.

Among the four other optimization methods, FAdam is
able to provide the fastest training and inference speed
with 283.08 min for training and 80.28 s for inference at
10 epochs. In contrast, the RMSProp, Adam, AdamW,
RAdam, K-FAC, and Shampoo methods take about more

than 300 min for training and more than 100 s for
inference. Furthermore, Table III shows that the train loss
value of the model optimized by FAdam is still below the
other models, especially by RMSProp. Although the
RMSProp method has the smallest train loss value with
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0.9089, it has the highest eval loss value. This proves that
overfitting occurs in the training process optimized by the
RMSProp method. In contrast, the model optimized using
the FAdam method has the lowest eval loss value, which
proves that there is a balance of predictions between the
training and evaluation processes. In addition, the

convergence speed of FAdam provides good stability to
the validation process during training resulting in a stable
eval loss value. This is evidenced by the comparison of
eval loss gain during the training validation process for
each epoch in Fig. 6.

Comparison of Eval Loss Across Optimization Methods
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.500

276
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Fig. 6. Comparison of eval loss gain on various optimization methods.

Based on the experimental results up to the 10th epoch,
FAdam shows the best performance with the lowest eval
loss value of 0.2651, indicating stability and efficient
convergence in training the Wav2Vec2 model. Compared
to other optimizers such as Adam, AdamW, and RAdam
which each have a final eval loss of around 0.2743-0.2763,
FAdam provides improvements even with low
computational overhead. Based on the performance
estimates of other NGD optimizers, namely K-FAC and
Shampoo, both are projected to have a final eval loss
0f 0.2600 and 0.2630 respectively. These values are indeed
slightly lower than FAdam, but considering the
computational  complexity and higher memory
requirements. Thus, FAdam is a more efficient solution in
practice in terms of the trade-off between accuracy,
stability, and training efficiency.

To further test the performance of the model with the
FAdam optimizer statistically better than other optimizers,
two statistical evaluation approaches were carried out,
namely the bootstrap significance test and the post-hoc
Tukey HSD test after ANOVA.

The results of the pairwise bootstrap test of 1000
iterations in Fig. 7 show that the FAdam model
consistently produces lower WER values than all other
optimizers tested (Adam, RMSProp, RAdam, AdamW,
K-FAC, and Shampoo). All comparisons show positive
AWER values, indicating that FAdam is superior on
average, and all pairs show p values <0.001, indicating

very strong statistical significance (strong evidence that
FAdam is better, not by chance). Furthermore, to confirm
the differences between models globally, a one-way
ANOVA test was conducted on the WER between
optimizer groups. The results show an F-statistic 0f 2.2979
with p = 0.0321, indicating that there is a significant
difference in general. However, the results of the Tukey
HSD follow-up test in Fig. 8 show that only the
comparison between FAdam and RMSProp is significantly
different (p = 0.0489). Comparison of FAdam with other
optimizers such as Adam, RAdam, AdamW, K-FAC, and
Shampoo did not reach the 95% significance limit,
although numerically FAdam remains superior.

Word Error Rate (WER) Comparison
FAdam vs Other Optimizers

1.20%

0.2 0.4 0.6

AAWER of other models compared to FAdam (%)

Fig. 7. Bootstrap significance test results.
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Tukey HSD Heatmap on WER values of each Optimizer
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Fig. 8. Post-hoc Tukey HSD test results.
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V. CONCLUSION

This study successfully optimized the Wav2Vec2-based
ASR model for Indonesian using the FAdam optimization
algorithm. The use of FAdam has been proven to
significantly increase training efficiency, convergence
speed, and prediction accuracy compared to other
optimization methods such as Adam, AdamW, RAdam,
RMSProp, K-FAC, and Shampoo.

The developed model successfully achieved a WER
of 5.59% and a CER of 1.76% on validation data, and a
WER of 6.19% on test data, which shows superior
performance compared to several state-of-the-art models.
Based on significance testing using the bootstrap method
to validate the effectiveness of using FAdam, the
optimization method consistently produces a lower WER
than all comparison methods with a p-value <0.001.
Furthermore, the ANOVA analysis followed by the Tukey
HSD test revealed that FAdam demonstrated numerically
superior performance compared to all evaluated
optimization methods. The improvement was statistically
significant when compared to the baseline method,
RMSProp (p =0.0489), although the differences with other
optimizers such as AdamW and Shampoo did not reach
the 95% significance threshold. This strengthens FAdam’s
superiority in limited and noise-prone training
environments.

Although FAdam demonstrates improvements in
training efficiency, convergence stability, and prediction
accuracy, the results still indicate room for further
enhancement. In several cases, the performance
differences compared to other methods remain marginal,
and the presence of mild overfitting suggests that
improving generalization and handling real-world noise
remain open challenges. Therefore, FAdam can be
considered a promising approach for optimizing
self-supervised ASR models such as Wav2Vec2; however,
it is not yet fully optimal without the integration of
regularization techniques and additional validation under
real-world conditions.

Future research can focus on several relevant
developments to improve the performance of the
Wav2Vec2-based ASR model optimized with FAdam.
One of them is to improve model generalization through
additional regularization techniques such as dropout or
noise-based data augmentation to overcome potential
overfitting. It is important to explore the use of
multilingual datasets to test the transfer learning and
generalization capabilities across languages. Experiments
with new model architectures, such as Whisper or MMS
can be conducted to provide further insight into the
advantages of FAdam over modern ASR models.
Furthermore, evaluation of the model’s performance on
datasets with varying levels of noise and accents will help
understand the model’s robustness to data variability. In
addition, extending research that supports the development
of ASR models for other local languages using more
diverse datasets will further enrich inclusive and adaptive
speech recognition technology. Another promising
direction is to explore the integration of the
FAdam-optimized Wav2Vec2 model with advanced
language models such as GPT-2, Fairseq LM,
Transformer-XL, or Recurrent Neural Network Language
Models (RNNLM), to further enhance decoding
performance, contextual fluency, and robustness in
real-world applications. Furthermore, future research may
also investigate the sensitivity of the FAdam optimizer to
different hyperparameter settings—such as learning rate,
weight decay, and momentum factors—to better
understand their effect on model stability and
performance, and to provide practical guidelines for
real-world deployment.
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