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Abstract—Automatic Speech Recognition (ASR) has become 
a key technology in human-machine interaction, especially in 
supporting languages with limited resources such as Bahasa 
Indonesia. Although deep learning-based models such as 
Wav2Vec2 have shown good performance in speech 
recognition, further optimization is still needed to improve 
training accuracy and efficiency, especially in  
data-constrained and noisy environments. This research 
focuses on optimizing the Wav2Vec2 model for Indonesian 
ASR by applying the Fisher Adam (FAdam) optimizer. 
FAdam combines Natural Gradient Descent (NGD) with 
Fisher Information Matrix (FIM) to improve learning 
stability, accelerate convergence, and reduce sensitivity to 
noise in the data. The model was trained using the Indonesian 
Common Voice dataset and evaluated based on Word Error 
Rate (WER) of 5.59% and Character Error Rate (CER)  
of 1.76% on the validation set. Experimental results show 
that this approach not only improves accuracy over previous 
methods, also enhances training efficiency and improves the 
stability of model convergence compared to state-of-the-art 
models such as XLSR-53 and XLS-R 300m for Indonesian 
ASR. In addition, FAdam is shown to provide increased 
inference speed, making it a more optimal solution for ASR 
implementation in real-world scenarios. This research 
contributes to the development of a more adaptive and 
efficient ASR technology for Indonesian, while opening up 
further optimization opportunities in self-supervised 
learning-based models.   
 
Keywords—Automatic Speech Recognition (ASR), Bahasa 
Indonesia, Character Error Rate (CER), Fisher Adam 
(FAdam), Wav2Vec2, Word Error Rate (WER)  
 

I. INTRODUCTION 

In the last decade, deep learning has entered the realm 
of Automatic Speech Recognition (ASR) resulting in 
models with low word error rates [1]. One of the improved 
ASR models is the speech-to-text (S2T) model. The 
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application of deep learning in S2T makes it easier for the 
model to recognize the spoken voice even in different 
dialects and noisy environments [2]. So that S2T 
technology has now become a pioneer for various other 
models in the field of Natural Language Processing (NLP) 
such as voice assistant, real-time translation, speaker 
identification and verification, emotional recognition, 
human-machine interaction, and so on [3, 4]. These 
various developments provide further functionality to 
users, especially users with disabilities through 
communication aids for those with hearing or speech 
impairments [5].  

One S2T model that is widely used today is Wav2Vec 
version 2 [6]. This model is an advanced development of 
the first version called Wav2Vec [7] with a major 
breakthrough in the form of utilizing a self-supervised 
learning approach. Wav2Vec2 is an innovative model that 
solves many problems in traditional approaches in the field 
of ASR (e.g. S2T), especially with data efficiency and high 
performance in low-resource conditions [6]. Wav2Vec 2.0 
shows that transformer-based models can be very effective 
for speech recognition especially when coupled with  
self-supervised learning. It paves the way for building 
more inclusive, low-cost, and high-performance ASR 
systems. However, the Wav2Vec2 model has a large 
number of parameters which can lead to training 
instability. In addition, Wav2Vec2 often suffers from 
performance degradation due to the difficulty of handling 
complex noise distributions during training. 

In an effort to overcome these problems, this research 
optimizes the Wav2Vec2 model using the Fisher Adam 
(FAdam) optimizer, which utilizes the Natural Gradient 
Descent (NGD) approach based on statistical information 
geometry using the Fisher Information Matrix (FIM) [8]. 
It is expected that by using FAdam optimizer, the training 
process can be more stable, efficient, and adaptive to noise. 
FAdam’s handling of bias correction, noise, and gradient 

Journal of Advances in Information Technology, Vol. 16, No. 10, 2025

1470doi: 10.12720/jait.16.10.1470-1478

mailto:irfandarmawan@telkomuniversity.ac.id
mailto:alam@unsil.ac.id
mailto:rohmatgunawan@unsil.ac.id
mailto:wahyuwicaksono@telkomuniversity.ac.id
mailto:ghatan.fauzi.nurgraha@unj.ac.id
https://orcid.org/0000-0003-0286-6476
https://orcid.org/0000-0002-1948-7379
https://orcid.org/0000-0003-0407-2784
https://orcid.org/0000-0002-9802-8700
https://orcid.org/0009-0005-3119-1553


 

 

distribution is a superior solution for Wav2Vec2 
optimization, especially in large model training scenarios 
or datasets with limited resources. 

In the context of this study, the term noise encompasses 
various acoustic disturbances commonly encountered in 
real-world data, such as background sounds from vehicles, 
overlapping conversations, wind, or open-environment 
ambient noise. Additionally, linguistic noise is also 
considered, including inconsistent intonation, unclear 
pronunciation, and accent variations among different 
speakers. These disruptions can lead to errors in feature 
extraction or representation learning for speech signals. To 
address these challenges, this study employs FAdam, an 
optimization algorithm based on NGD that leverages the 
FIM to guide model parameter updates in a more stable 
and context-aware manner relative to the data distribution. 
As a result, the model becomes more adaptive to noise and 
demonstrates improved training stability compared to 
conventional optimization methods. 

II. LITERATURE REVIEW 

Automatic Speech Recognition (ASR) has become one 
of the significant topics in current technological 
developments [9]. In recent years, deep learning-based 
models have become the standard in ASR system 
development and replaced traditional approaches that rely 
on manual processing of signals and acoustic features. 
However, other challenges such as model adaptation for 
non-English languages, especially Bahasa Indonesia, are 
issues that require further attention.  

Solutions to these problems have actually been solved 
by several studies. Research conducted by  
Abidin et al. [10] addressing the limitations of Indonesian 
speech recognition datasets by building datasets from 
YouTube channels that are thoroughly validated. This 
dataset is utilized to train an acoustic model based on a 
Time Delay Neural Network (TDNN) [11] with the 
assistance of Gaussian Mixture Model-Hidden Markov 
Model (GMM-HMM) [12] alignment and data 
augmentation. This research significantly improves model 
performance and reduces the word error rate to 19.03%. In 
line with Ref. [10], research conducted by Yang et al. [13] 
building a TDNN-based ASR model with additional 
modifications resulted in the development of a new model 
called TDNN-Attention-HMM. In addition, this research 
model uses the hierarchical weight transfer method in the 
training phase so that the experimental results show that 
this model provides the best performance with a Word 
Error Rate (WER) of 6.79%, with a relative decrease  
of 26.52% compared to the DNN-HMM baseline system. 

Furthermore, the utilization of Massively Multilingual 
Speech (MMS) and Whisper models [14] is another 
possible solution. As in the research [15] that conducted 
training on both models using Indonesian language 
datasets that include a variety of speech variability. The 
modified Whisper model showed the best results with a 
fairly low reduction in WER and Character Error Rate 
(CER). This study also found that speaking style is the 
factor that most influences the performance of the model. 

These findings provide important insights for the 
development of a more robust Indonesian ASR. 

The use of other models such as Wav2Vec2 [6] is 
another option that can be used to build Indonesian ASR 
models. The research [16] utilized the XLSR-53 [17]  
pre-trained model to be used for training a  
Wav2Vec2-based ASR designed to reduce the need for 
training data on non-English languages. The results 
showed success by reducing the WER value from 20%  
to 12% on the Indonesian Common Voice dataset. This 
success made a significant impact on the field of ASR for 
local languages so that further research [18] addressed the 
improvement of the model. The study [18] centers on the 
advancement and assessment of ASR technology utilizing 
the XLS-R 300m model [19] integrated with Wav2Vec2 
for Indonesian, Javanese, and Sundanese languages. The 
results showed that the model achieved a competitive 
WER with slightly lower performance for Javanese and 
Sundanese than Indonesian. This research contributes to 
the development of ASR technology by addressing the 
challenges of linguistic diversity and provides insights for 
ASR accuracy optimization across multiple language 
contexts. 

Previous research related to the development of 
Indonesian ASR faces several limitations, such as dataset 
limitations, dependence on less flexible  
TDNN-HMM-based models, and the performance of 
multilingual models such as MMS and Whisper which are 
still influenced by variations in speaking style. In addition, 
the XLSR model is trained using a large model with many 
languages, so fine-tuning on small datasets often 
experiences gradient instability. Where weight updates 
become unstable and can cause slow convergence or even 
overfitting on certain training data. This study addresses 
the convergence problem of previous research by using 
FAdam, which is a more stable and adaptive optimizer 
than Adam or AdamW [8].  

This allows the model to better adapt to limited datasets, 
reducing gradient instability, and accelerating 
convergence without compromising model generalization. 
This approach helps the Wav2Vec2 model trained using 
the Indonesian language dataset achieve optimal 
performance in more efficient training time and improve 
ASR accuracy for Indonesian. 

III. MATERIALS AND METHODS 

This study concentrates on advancing an ASR model 
utilizing the Indonesian language. The proposed method 
consists of several main stages, namely dataset 
preparation, data preprocessing, feature extraction using 
Wav2Vec 2.0 model architecture [6], model optimization 
with FAdam optimizer [8], and model performance 
evaluation using WER and CER metrics. These stages are 
designed to ensure that the model is able to produce  
audio-to-text transcriptions with a high degree of accuracy 
and is able to handle variations in characteristics in the 
audio data, such as accents, intonations, and noise levels. 
The stages are shown in Fig. 1. 
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Fig. 1. Methodology. 

A. Data Preparation 
This research uses the Indonesian Common Voice 

dataset version 20.0 [20] for the training process of our 
ASR model. The Indonesian Common Voice dataset is an 
open-source audio dataset designed to support the 
development of speech recognition technology in 
Indonesian [21]. This dataset consists of a total of 66 hours 
of recorded voices, 34 hours of validated voices, and 604 
total voices. The data in this dataset consists of recordings 
with diverse audio quality, covering a wide range of 
background noise levels and reflecting real-world 
conditions. In addition, the diversity of the data is also 
evidenced by the voices produced from different age 
groups and genders. The diversity of the data is shown in 
Table I. 

TABLE I. DATA DIVERSITY BY AGE GROUP AND GENDER IN 
INDONESIAN COMMON VOICE DATASET 

Age Number of Data 
(%) Gender Number of Data 

(%) 
<20 22 Male 45 

20–29 41 Female 26 

30–39 10 Gender Not 
Specified 29 

40–49 2 - - 
Age Not 
Specified 25 - - 

 

B. Data Preprocessing 
Before the features in the data are extracted, the data 

will go through a preprocessing process to ensure 
uniformity and compatibility with the Wav2Vec2 model. 
The process at this stage involves two steps at once, 
namely, audio cleaning and normalization to provide 
maximum results in the feature extraction step [22]. The 
use of audio cleaning is intended so that noise in the audio 
signal can be removed through the filtering function. This 
research uses a Butterworth low-pass filter with the 
formula as in Eq. (1). 

 𝐻𝐻(𝑠𝑠) =  1

�1+( 𝑠𝑠
𝜔𝜔𝑐𝑐

)2𝑛𝑛
 (1) 

where 𝐻𝐻(𝑠𝑠) is the frequency response maginitude, 𝑠𝑠 is the 
corner frequency (𝜔𝜔 = 2𝜋𝜋𝜋𝜋, where f is the frequency), 𝜔𝜔𝑐𝑐 
is the cutoff function, and n is the filter order. With this 
filter, the audio signal can limit high frequencies that are 
irrelevant to the human voice signal [23]. After the 
process, it is followed by normalizing all the audio files 
available in the dataset. This is done to equalize the 
amplitude of the audio signal so that each sample has a 
consistent intensity level. Our research uses the peak 
normalization method for this process through  
Eq. (2). 

 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑥𝑥(𝑡𝑡)|)

 (2) 

where 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)  is the amplitude of the signal after 
normalization, 𝑥𝑥(𝑡𝑡)  is the amplitude of the signal after 
normalization, and 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑥𝑥(𝑡𝑡)|) is the absolute maximum 
amplitude value of the signal. Peak Normalization ensures 
that the highest amplitude in the signal reaches a certain 
value, usually ±1 or in the range of 0 to 1. 

C. Feature Extraction 
This process is performed using the framework of 

Wav2Vec2 to convert the raw audio signals from the 
dataset into feature representations that can be used by the 
ASR model. The working procedure of this stage is in 
accordance with the framework of the research [6] in  
Fig. 2. 

 

 
Fig. 2. Wav2Vec2 framework [6]. 
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Feature extraction starts by feeding raw audio data (𝑋𝑋) 
in the form of waveforms into the framework which are 
represented as one-dimensional signals in the time domain. 
Wav2Vec2 uses a Convolutional Neural Network (CNN) 
architecture consisting of several convolution blocks with 
Gaussian Error Linear Unit (GELU) activation and 
normalization layers for the feature encoder. This is done 
to convert the raw audio data into a latent speech 
representation (𝑋𝑋 → 𝑍𝑍,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑍𝑍 ∈ 𝑧𝑧𝑡𝑡).  Next, the 
procedure continues by applying a masking technique to 
the latent speech representation 𝑧𝑧𝑡𝑡  before feeding it into 
the transformer network. The masking is done in much the 
same way as the masking in BERT [24], the masking aims 
to make the model learn contextual patterns in the speech 
signal. When 𝑧𝑧𝑡𝑡 the masked one is passed into the network 
transformer, it is converted 𝑧𝑧𝑡𝑡 into context representation 
(𝑍𝑍 → 𝐶𝐶,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶 ∈ 𝑐𝑐𝑡𝑡).  During the transformation, 
quantization operation is performed to quantize 𝑧𝑧𝑡𝑡 it into 
discrete units (𝑍𝑍 → 𝑄𝑄,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑄𝑄 ∈ 𝑞𝑞𝑡𝑡)  using product 
quantization technique. Quantization is done by selecting 
a vector from the set of codebooks using Gumbel  
SoftMax [25] which allows the process to remain 
differentiable. The quantization phase does not require 𝑧𝑧𝑡𝑡 
masking so the process between context representation 
transformation and quantization is in a different branch of 
work. The workflow of the two phases is depicted  
in Fig. 3. 

 

 
Fig. 3. Feature extraction flowchart using Wav2Vec2. 

After getting the value 𝑐𝑐𝑡𝑡  and 𝑞𝑞𝑡𝑡  from the raw audio 
data, the next step is to calculate the loss value using the 
constrative learning object function as in Eq. (3) [6]. 

 𝐿𝐿𝑚𝑚 = −log exp (𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑡𝑡,𝑞𝑞𝑡𝑡)/κ
∑ exp (𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑡𝑡,𝑞𝑞�)/κ𝑞𝑞�∈𝑄𝑄𝑡𝑡

 (3) 

The objective function for contrastive learning [26] is 
utilized to guide the model in acquiring an audio 
representation. Throughout this process, the model’s goal 
is to differentiate the correct quantized latent speech 
representation (𝑞𝑞𝑡𝑡)  from a group of candidate 
representations (𝑄𝑄𝑡𝑡), which includes  𝑞𝑞𝑡𝑡 along with several 
distractor representations. The contextual representation 
(𝑐𝑐𝑡𝑡 ) generated by the transformer is matched with the 
quantized representation through the cosine equation 
(𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑡𝑡 ,𝑞𝑞𝑡𝑡) = 𝑐𝑐𝑡𝑡

𝑇𝑇𝑞𝑞𝑡𝑡
‖𝑐𝑐𝑡𝑡‖‖𝑞𝑞𝑡𝑡‖

) . The contrastive loss function 
(𝐿𝐿𝑚𝑚) is formulated as the log probability of the correct pair 
of 𝑐𝑐𝑡𝑡 and 𝑞𝑞𝑡𝑡 in the context of the set of distractors, with a 
temperature parameter (𝜅𝜅) that controls the sensitivity of 
the distribution. 

D. Optimization 
We use FAdam to optimize the trained Wav2Vec 

model. This NGD based optimization algorithm uses 
Diagonal Empirical FIM to improve convergence [8]. 
FAdam can help speed up and stabilize the training of 
Wav2Vec2 which has large parameters. With the FIM in 
FAdam, the model during training can capture the 
relationship between the parameter distribution and the 
data. Thus, with this optimization, the model can reach 
convergence faster because FIM captures the structure of 
the loss landscape which allows the model to adapt better 
to the parameters. In addition, FAdam provides improved 
training stability with gradient clipping and FIM 
normalization that reduces gradient oscillations. The 
resilience of this optimization method is evidenced by the 
stability of the loss curve during the training and validation 
process. The use of FAdam works by maintaining gradient 
stability as a result of utilizing FIM to prevent sharp 
oscillations in parameter updates. In addition, the 
application of NGD to FAdam allows the model to adapt 
effectively to noisy data distributions, thus increasing its 
resistance to data variation. As shown in result and 
discussion section, it is evident that the loss value in the 
validation data remains stable in each epoch. This shows 
that FAdam not only accelerates convergence but also 
ensures resilience in various training scenarios. In 
addition, compared to other optimization methods, FAdam 
is able to maintain the generalization balance of the model, 
thus reducing the risk of overfitting. 

E. Model Evaluation 
The trained model is subsequently assessed using the 

WER and CER metrics, as defined by Eqs. (4) and (5). 

 𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑆𝑆+𝐼𝐼+𝐷𝐷
𝑁𝑁

× 100% (4) 

 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑆𝑆𝑐𝑐+𝐼𝐼𝑐𝑐+𝐷𝐷𝑐𝑐
𝑁𝑁𝑐𝑐

× 100% (5) 

where 𝑆𝑆 is the number of word or character substitutions, 
𝐼𝐼  is the number of insertions (additional words or 
characters that are not in the reference), 𝐷𝐷 is the number of 
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deletions of missing words or characters in the prediction, 
and 𝑁𝑁  is the total words or characters in the reference 
transcription. The results of this evaluation are then 
compared with existing research in related works based on 
the same dataset benchmark (using the Indonesian 
Common Voice dataset). In addition, we also validated the 
model through comparison with various models trained 
using the Wav2Vec2 framework and different 
optimization methods. This is intended to show the 
effectiveness of the Wav2Vec2 model optimized by the 
FAdam optimizer. 

IV. RESULT AND DISCUSSION 

A clearly structured results section, along with a 
compelling discussion, will highlight the originality and 
significance of your research. It should offer a brief yet 
accurate summary of the experimental outcomes, their 
analysis, and the conclusions that can be derived from the 
experiments. 

The experimental part is done by training and evaluating 
the optimized Wav2Vec2 model using FAdam optimizer. 
In the training process we used a batch size configuration 

of 16 and a reduced learning rate using the LamdaLR 
method. For the use of FAdam optimizer we used a 
configuration with learning rate 0.001, weight decay 0.1, 
β1 0.9, β2 0.999, and epsilon 1 × 10−8. The selection of 
these parameters is based on a combination of initial 
experiments and references from previous research using 
a NGD based optimizer. A weight decay of 0.1 is used to 
prevent overfitting by maintaining parameter regulation 
during training, based on the regulatory approach to 
Transformer-based models. The learning rate and 
momentum coefficient (β1 and β2) are set  
to 0.001, 0.9, and 0.999 respectively following the default 
configuration of FAdam, as this combination has been 
proven effective in handling gradient accumulation in FIM 
based optimization. An epsilon value (1 × 10⁻⁸) is chosen 
to prevent division by zero in gradient normalization. 

The model was trained on an NVDIA GeForce  
RTX 4060 with a number of epochs of 30 and by 
calculating the contrastive learning loss function at each 
epoch. Evaluation was performed on the validation data 
after each epoch to monitor the WER and CER values. The 
training results are shown in Fig. 4. 

 

 
Fig. 4. Model training results. The graph illustrates the decrease in loss, Word Error Rate (WER), and Character Error Rate (CER) over the course of 
30 training epochs. The dashed vertical line labeled “Final Result” indicates the final validation outcome at the 30th epoch, which is used as the primary 
reported value in this study.

The use of FAdam in Wav2Vec successfully reduces the 
gradient oscillation during training, as evidenced by the 
steady convergence of the loss curve in Fig. 4. This shows 
the adaptability of the model in handling the noise present 
in the dataset used. In addition, the WER and CER 
decreases steadily continue to show a downward trend 
without showing an increase in value between each epoch 
with final results of 5.59% for WER and 1.76% for CER, 
respectively. Furthermore, to further validate the model 
performance results that we have obtained, we compared 
the model performance with several related studies based 
on the use of the same dataset in Table II. 

 

TABLE II. MODEL PERFORMANCE COMPARISON BASED ON WER 

Model Dataset WER 
(%) 

XLS-R 300m [18] 

Indonesian Common 
Voice Dataset 

15.30 
XLS-R 300m with 2-gram 

KenLM [18] 6.55 

TDNN-Attention-HMM [13] 6.79 
XLSR-53 [16] 20.31 

XLSR-53 2-gram KenLM [16] 12.23 
XLSR-53 3-gram KenLM [16] 12.30 
XLSR-53 4-gram KenLM [16] 12.21 
XLSR-53 5-gram KenLM [16] 12.25 

Our Model 6.19 
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The comparison in Table II uses test data contained in 
Indonesian Common Voice. The table shows the success 
of the Wav2Vec2 model optimized using FAdam in 
Indonesian speech recognition compared to other research 
models. In addition, the model we developed can provide 
a lower WER value compared to the model added with 
KenLM. This provides evidence of the effectiveness of 
FAdam in optimizing the Wav2Vec model. However, an 
increase in the WER was observed in the test data 
compared to the validation results during training. This 
suggests a potential occurrence of mild overfitting to the 
training data, which is likely due to the extended training 
duration resulting from the computation of the FIM. While 
the use of FIM enables more precise parameter updates, it 
also increases the risk that the model will become overly 
tailored to the training data. In addition, the discrepancy in 
WER may also be attributed to differences in data 

distribution between the validation and test subsets within 
the Common Voice dataset, such as variations in accent, 
audio quality, or speaker characteristics—factors that are 
commonly encountered in real-world datasets. 

The selection of FAdam for ASR model development in 
this study is based on its superiority in performing 
optimization, especially on ASR models [8]. In support of 
this statement, we evaluated the Wav2Vec2 model that 
was optimized using other methods. To ensure a 
computationally fair comparison across the evaluated 
optimization methods, the experiments in this section were 
limited to 10 training epochs. This constraint was intended 
to maintain training time efficiency and measurement 
consistency across methods without placing excessive 
demands on computational resources. We trained each 
model using 10 epochs, the evaluation results are shown in 
Table III. 

TABLE III. PERFORMANCE COMPARISON OF WAV2VEC2 MODELS OPTIMIZED USING VARIOUS METHODS 

Method Train Loss ↓ Eval Loss↓ Train 
Samples/s↑ Train Steps/s↑ Eval Samples/s↑ Eval Steps/s↑ WER↓ (%) CER↓ (%) 

RMSProp 0.9089 0.5001 12.903 0.404 31.653 3.963 90.08 86.97 
Adam 1.011 0.2743 12.839 0.402 31.727 3.973 48.07 34.58 

RAdam 1.219 0.2750 12.533 0.392 31.478 3.941 63.21 49.15 
AdamW 1.016 0.2763 12.936 0.405 31.622 3.959 39.61 31.04 
K-FAC 0.992 0.2600 10.528 0.385 30.037 3.692 39.28 31.20 

Shampoo 0.971 0.2630 9.803 0.373 29.839 3.601 38.97 30.73 
FAdam 1.053 0.2651 14.614 0.457 45.067 5.643 47.64 30.66 

It can be seen in Table III that optimization using 
FAdam on the Wav2Vec2 model provides improved 
performance, especially in training and evaluation time 
efficiency. It is evident from the sample and step 
processing of the training data that we are able to  
process 14.614 samples/s and 0.457 steps/s, respectively. 
Similar to the training data, for the model validation data 
we were able to process around 45,067 samples/s  

and 5643 steps/s. This happens because FAdam combines 
the calculation efficiency of Fisher Information Matrix 
with stability and adaptability which makes it fast in 
training and inference [8]. This results in faster 
convergence and inference compared to other optimization 
methods. This is evidenced in Fig. 5 on the comparison of 
training time and inference speed of each method. 

 

 
 (a) (b) 

Fig. 5. Speed comparison of (a) training and (b) inference. 

Among the four other optimization methods, FAdam is 
able to provide the fastest training and inference speed 
with 283.08 min for training and 80.28 s for inference at 
10 epochs. In contrast, the RMSProp, Adam, AdamW, 
RAdam, K-FAC, and Shampoo methods take about more 

than 300 min for training and more than 100 s for 
inference. Furthermore, Table III shows that the train loss 
value of the model optimized by FAdam is still below the 
other models, especially by RMSProp. Although the 
RMSProp method has the smallest train loss value with 

Journal of Advances in Information Technology, Vol. 16, No. 10, 2025

1475



 

 

0.9089, it has the highest eval loss value. This proves that 
overfitting occurs in the training process optimized by the 
RMSProp method. In contrast, the model optimized using 
the FAdam method has the lowest eval loss value, which 
proves that there is a balance of predictions between the 
training and evaluation processes. In addition, the 

convergence speed of FAdam provides good stability to 
the validation process during training resulting in a stable 
eval loss value. This is evidenced by the comparison of 
eval loss gain during the training validation process for 
each epoch in Fig. 6. 

 

 
Fig. 6. Comparison of eval loss gain on various optimization methods.

Based on the experimental results up to the 10th epoch, 
FAdam shows the best performance with the lowest eval 
loss value of 0.2651, indicating stability and efficient 
convergence in training the Wav2Vec2 model. Compared 
to other optimizers such as Adam, AdamW, and RAdam 
which each have a final eval loss of around 0.2743–0.2763, 
FAdam provides improvements even with low 
computational overhead. Based on the performance 
estimates of other NGD optimizers, namely K-FAC and 
Shampoo, both are projected to have a final eval loss  
of 0.2600 and 0.2630 respectively. These values are indeed 
slightly lower than FAdam, but considering the 
computational complexity and higher memory 
requirements. Thus, FAdam is a more efficient solution in 
practice in terms of the trade-off between accuracy, 
stability, and training efficiency. 

To further test the performance of the model with the 
FAdam optimizer statistically better than other optimizers, 
two statistical evaluation approaches were carried out, 
namely the bootstrap significance test and the post-hoc 
Tukey HSD test after ANOVA. 

The results of the pairwise bootstrap test of 1000 
iterations in Fig. 7 show that the FAdam model 
consistently produces lower WER values than all other 
optimizers tested (Adam, RMSProp, RAdam, AdamW,  
K-FAC, and Shampoo). All comparisons show positive 
ΔWER values, indicating that FAdam is superior on 
average, and all pairs show p values <0.001, indicating 

very strong statistical significance (strong evidence that 
FAdam is better, not by chance). Furthermore, to confirm 
the differences between models globally, a one-way 
ANOVA test was conducted on the WER between 
optimizer groups. The results show an F-statistic of 2.2979 
with p = 0.0321, indicating that there is a significant 
difference in general. However, the results of the Tukey 
HSD follow-up test in Fig. 8 show that only the 
comparison between FAdam and RMSProp is significantly 
different (p = 0.0489). Comparison of FAdam with other 
optimizers such as Adam, RAdam, AdamW, K-FAC, and 
Shampoo did not reach the 95% significance limit, 
although numerically FAdam remains superior. 

 

 
Fig. 7. Bootstrap significance test results. 
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Fig. 8. Post-hoc Tukey HSD test results. 

V. CONCLUSION 

This study successfully optimized the Wav2Vec2-based 
ASR model for Indonesian using the FAdam optimization 
algorithm. The use of FAdam has been proven to 
significantly increase training efficiency, convergence 
speed, and prediction accuracy compared to other 
optimization methods such as Adam, AdamW, RAdam, 
RMSProp, K-FAC, and Shampoo.  

The developed model successfully achieved a WER  
of 5.59% and a CER of 1.76% on validation data, and a 
WER of 6.19% on test data, which shows superior 
performance compared to several state-of-the-art models. 
Based on significance testing using the bootstrap method 
to validate the effectiveness of using FAdam, the 
optimization method consistently produces a lower WER 
than all comparison methods with a p-value <0.001. 
Furthermore, the ANOVA analysis followed by the Tukey 
HSD test revealed that FAdam demonstrated numerically 
superior performance compared to all evaluated 
optimization methods. The improvement was statistically 
significant when compared to the baseline method, 
RMSProp (p = 0.0489), although the differences with other 
optimizers such as AdamW and Shampoo did not reach  
the 95% significance threshold. This strengthens FAdam’s 
superiority in limited and noise-prone training 
environments.  

Although FAdam demonstrates improvements in 
training efficiency, convergence stability, and prediction 
accuracy, the results still indicate room for further 
enhancement. In several cases, the performance 
differences compared to other methods remain marginal, 
and the presence of mild overfitting suggests that 
improving generalization and handling real-world noise 
remain open challenges. Therefore, FAdam can be 
considered a promising approach for optimizing  
self-supervised ASR models such as Wav2Vec2; however, 
it is not yet fully optimal without the integration of 
regularization techniques and additional validation under 
real-world conditions. 

Future research can focus on several relevant 
developments to improve the performance of the 
Wav2Vec2-based ASR model optimized with FAdam. 
One of them is to improve model generalization through 
additional regularization techniques such as dropout or 
noise-based data augmentation to overcome potential 
overfitting. It is important to explore the use of 
multilingual datasets to test the transfer learning and 
generalization capabilities across languages. Experiments 
with new model architectures, such as Whisper or MMS 
can be conducted to provide further insight into the 
advantages of FAdam over modern ASR models. 
Furthermore, evaluation of the model’s performance on 
datasets with varying levels of noise and accents will help 
understand the model’s robustness to data variability. In 
addition, extending research that supports the development 
of ASR models for other local languages using more 
diverse datasets will further enrich inclusive and adaptive 
speech recognition technology. Another promising 
direction is to explore the integration of the  
FAdam-optimized Wav2Vec2 model with advanced 
language models such as GPT-2, Fairseq LM, 
Transformer-XL, or Recurrent Neural Network Language 
Models (RNNLM), to further enhance decoding 
performance, contextual fluency, and robustness in  
real-world applications. Furthermore, future research may 
also investigate the sensitivity of the FAdam optimizer to 
different hyperparameter settings—such as learning rate, 
weight decay, and momentum factors—to better 
understand their effect on model stability and 
performance, and to provide practical guidelines for  
real-world deployment. 
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