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Abstract—COVID-19, a respiratory illness that mostly 
attacks the human lungs, emerged in 2019 and quickly 
became a global health crisis. Its fast transmission has 
necessitated the creation of effective tools that could aid in its 
classification. In this paper, we present an artificial 
intelligence multimodal deep learning model that leverages 
X-ray, Computed Tomography (CT) scan, and cough signals 
to classify COVID-19 accurately. The paper’s objective is to 
meticulously compare the effectiveness of non-pre-trained 
and pre-trained versions of VGG-19, MobileNetV2, and 
ResNet across various multimodal and some unimodal 
models using cough sound, X-ray, and CT scan datasets. This 
is important because it provides a pointer as to which 
combinations of datasets could improve COVID-19 
prediction. Findings show that while the pre-trained 
unimodal systems for cough and X-ray outperform their  
non-pre-trained counterparts, the non-pre-trained CT scan 
model performs exceptionally well. This suggests that 
features learned from the VGG-19 model fail to generalize 
effectively. Remarkably, the non-pre-trained multimodal 
model accomplishes an F1-Score of 0.9804, slightly 
outperforming its pre-trained counterpart at 0.98. While this 
research advances our understanding of transfer learning, it 
also emphasizes the prospects of determining, from a range 
of options, which of the considered datasets (individual or 
combination) could give an acceptable level of COVID-19 
classification in a resource-constrained scenario.   
 
Keywords—machine learning, audio signal processing, deep 
learning, image classification, multimodal systems, transfer 
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I. INTRODUCTION 

The COVID-19 (Coronavirus Disease 2019) pandemic 
resulted from the novel SARS-CoV-2 virus that emerged 
in late 2019 [1]. Its emergence was accompanied by a 
record number of deaths across the globe. Because of the 
loss of lives, lockdowns were imminent, leading to 
businesses shutting down for months to contain the virus. 
The pandemic strained the healthcare sector to an 

 
Manuscript received December 30, 2024; revised January 7, 2025; 
accepted February 17, 2025; published October 24, 2025. 

unprecedented level, as recorded in Europe and the 
Americas, for example. The World Health Organization 
has recorded about 2452 COVID-19 deaths from early 
November 2024 to early December 2024 [2]. This 
development points to the fact that there is a need for a 
robust diagnostic system for the early detection of the 
virus. Its early detection would allow medical personnel to 
effectively contain it because affected persons would be 
isolated, contact tracing would start in earnest, and patients 
would be promptly treated. Furthermore, early detection 
could potentially save lives [3]. The traditional approach 
for testing patients for COVID-19 has been through the 
Reverse Transcription Polymerase Chain Reaction  
(RT-PCR). This test is usually time-consuming; in 
addition, it requires specialized skills to carry out the test 
on patients [4]. This development, therefore, requires that 
experts be trained on how to effectively administer this 
process. Also, the process gives many conflicting results, 
potentially allowing COVID-19 patients to go home due to 
error [5]. In addition, there have been cases of false 
positives recorded via RT-PCR [6]. 

This research aim therefore is to investigate the most 
promising approach, leveraging artificial intelligence, that 
could be effective in the prediction of COVID-19 based on 
available datasets. Datasets considered are X-ray, CT scan, 
as well as cough sounds. 

In response to this, researchers have come up with 
Artificial Intelligence (AI)-based solutions for the 
detection of COVID-19 from X-rays [6], Computed 
Tomography (CT) scans [7], and cough sounds [8]. This is 
now possible because of the availability of datasets. Cough 
sound has been used to detect COVID-19, as seen in  
Ref. [9]. This was combined with patient symptoms to 
make a prediction. The use of a cough signal is useful 
because a COVID-19 cough produces a distinctive pattern, 
differentiating it from a normal cough. This distinctive 
pattern arises as the virus attacks the lungs, damaging the 
lung structure [9]. 
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The summary of our key contributions is as follows: To 
compare the prediction accuracy of COVID-19 using 
unimodal systems on individual datasets such as CT scan, 
cough sound, and X-ray with the prediction of COVID-19 
using a combination (multimodal) of all the considered 
datasets. This is important as it provides an avenue for 
medical personnel and researchers to choose from an array 
of evidence-based options that best aid objective  
COVID-19 diagnosis. This work is novel as it analysis not 
only unimodal systems but multimodal systems that 
combines three different datasets.  

II. LITERATURE REVIEW 

Authors have researched several methods for the 
detection of COVID-19 from images. For example, 
Houby  [6] developed a deep learning model that extracts 
key features from X-ray images and then leverages a pre-
trained model for the classification of COVID-19. A pre-
trained model reflects an already existing model trained on 
thousands of images. Therefore, commonly preferred in 
image classification tasks—since it has learned images 
sufficiently from different domains. There is a high 
likelihood of improved performance when used in various 
classification tasks, including medical image classification 
tasks. Several pre-trained models have been used. 
According to the findings in Ref. [10], several pre-trained 
models were used for their proposed model. Some of the 
pre-trained models (transfer learning models) are ResNet-
18, ResNet-50, and ResNet-101 [11]. The pre-trained 
models were also finetuned on the collected X-ray images, 
where the model trained on ResNET-101 proved to have 
outperformed other models. In addition, other research 
using deep learning models for X-ray COVID-19 detection 
has also been done as seen in Refs. [12, 13].  
Haruna et al. [14] used the VGG-19 [15] pre-trained model 
for the classification of X-ray images with improved 
performance.  

The CT-scan images have also been solely analyzed for 
the detection of the presence of the COVID-19 virus. For 
example, earlier research [16] used a similar approach 
proposed in Ref. [10]. However, they used pre-trained 
models built on the VGG-19 and then compared them to 
other pre-trained models such as Xception Net, and 
Convolutional Neural Network (CNN). Their analysis 
indicated satisfactory performance. In Ref. [17], a deep 
learning model was developed that improves on traditional 
deep learning methods. Their model incorporates two key 
innovations—the ability to reason based on the passed 
data, and the ability to learn. This means the model does 
not need input from humans in setting parameters. The 
model achieved an F1-Score of 0.9731 on CT-scan  
images [17–19].  

Furthermore, evidence provided in Ref. [20] suggests 
that the adoption of a pre-trained model for CT-scan can 
further improve its classification output compared to 
models that do not use pre-trained models. On the other 
hand, researchers have also solely used cough datasets for 
the prediction of COVID-19. This is because patients 
suffering from the virus have a distinct way of coughing. 
This is because, their lung structure has been  

altered [21, 22]. A Support Vector Machine (SVM) was 
used in Ref. [23] to classify voice sounds. An ensemble 
model has also been proposed in Ref. [24]. The model 
consists of a CNN layer for feature extraction, and then 
another classification model. The authors went further to 
develop an application called “AI4COVID-19” where 
users can interface with their tool.  

The papers reviewed above point to the fact that  
pre-trained models can potentially improve the output of 
COVID-19 classification. More recently, the use of 
multimodal deep learning models has been adopted to 
improve COVID-19 accuracy. For example, in Ref. [25], a 
multimodal system was developed that uses X-ray and CT 
scan images for classification. The study further 
experimented with different transfer learning architectures 
such as the MobileNetV2 [26], VGG-19, and  
ResNet-50 [25]. Similarly, two pre-trained models were 
used in Ref. [27], one for the CT scan and another for the 
X-ray. The outputs of these different deep learning layers 
are then fused to give an improved classification output. 
Many researchers have also combined datasets from 
different sources; for example, a combination of X-ray and 
cough datasets was used in Ref. [28] to improve 
classification. Consequently, two models were developed, 
and then the outputs of these models were fused. In 
addition, their cost function gives more weight or 
relevance to the model with the least error. 

As shown in Ref. [29], the approach uses both X-ray and 
CT scan images for detection. From their experiment, it 
was established that VGG-19 gave the best result in terms 
of classification accuracy. It was also established that  
X-ray images are more accurate in the detection of the 
virus compared to CT-scan images. 

While COVID-19 detection with multimodal 
architectures exists, as discussed, the research objective is 
to develop a multimodal architecture that takes advantage 
of cough, X-ray, and CT scans together for the 
classification of the COVID-19 virus. The second 
objective is to investigate the relevance of pre-trained 
models on multimodal and unimodal architectures using 
these three datasets. 

The summary of our key contributions is as follows: To 
compare the prediction accuracy of COVID-19 using 
unimodal systems on individual datasets such as CT scan, 
cough sound, and X-ray with the prediction of COVID-19 
using a combination (multimodal) of all the considered 
datasets. This is important as it provides an avenue for 
medical personnel to choose from an array of options that 
best aid objective COVID-19 diagnosis. 

Our research objectives are to fill this gap by 
researching the relevance of a multimodal system using 
three datasets in the classification of COVID-19 with or 
without a pre-trained model. In addition, we also explored 
the contribution of pre-trained models on unimodal 
systems for cough, X-ray, and CT-scan datasets.  

This research is important as it gives a sense of direction 
as to which of the datasets could potentially be used for the 
effective prediction of COVID-19. 
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III. MATERIALS AND METHODS 

Many researchers have extensively used unimodal  
pre-trained models to improve the classification of 
COVID-19 via X-ray images, CT-scan, and cough, as well 
as multimodal designs for different combinations such as 
X-ray and CT scan. Multimodal designs that combine 
cough, CT-scan, and X-rays remain largely unexplored in 
existing studies. In addition, we investigate further the 
impact of the VGG-19 pre-trained model on unimodal 
classifications such as for cough, CT-scan, and X-ray, and 
then the effect of the VGG-19 on a multimodal design that 
leverages three datasets—cough, X-ray and CT scan. 
Therefore, this research investigates the impact of  
pre-trained models (VGG-19, ResNET, and 
MobileNetV2) on a multimodal system that combines 
three datasets of cough, X-ray and CT scan.  

This research is important as it provides an in-depth 
analysis of how the combination of three datasets can be 
used to improve COVID-19 classification. In addition, it 
provides a comparative study of how selected pre-trained 
models can influence COVID-19 classification from the 
perspective of unimodal and multimodal systems. 
Furthermore, this research also provides a platform to look 
at medical diagnosis from the multimodal perspective as it 
may potentially improve classification. 

The motivation behind the combination of these 
datasets is based on the fact that COVID-19 patients 
usually exhibit these symptoms—lung abnormalities, and 
cough [30]. Lung abnormalities can be detected from  
X-ray images as well as CT scans. There are several 
advantages to the proposed model of using three datasets. 
One of them is the ability to harness complementary 
information—the sound from a cough could depict 
respiratory disease while images from X-rays and CT 
scans could reveal the structure of the lungs. In addition, 
X-rays and CT scans can also reveal the extent of damage 
to the lungs while the cough sounds might indicate early 
signs of COVID-19. In addition, there is the potential to 
increase sensitivity (correctly identifying persons with 
COVID-19) and specificity (correctly identifying persons 
without COVID-19) Lastly, data from one source might be 
unreliable for examination due to poor X-ray or CT-scan 
images [31]. 

This section discusses the architecture of the proposed 
model as well as the data preprocessing stages for the 
datasets used. Recall that we used three datasets: cough 
sound, X-ray, and CT scan. We therefore need to 
preprocess the data before passing it into the proposed 
multimodal architecture. The equations from this section 
have been derived from Pytorch framework [32]. 

A. Data Pre-Processing  
The first dataset is the cough dataset found in Ref. [33]. 

This dataset has audio that lasts up to 9 seconds, however, 
on average, each audio contains approximately a  
two-second cough segment. Therefore, we needed to 
extract this segment. To do this, each cough file is loaded 
using the PyTorch torchaudio.load() function. This 
function then reads the audio waveform (wf) as seen in  
Eq. (1). 

 𝑤𝑤𝑤𝑤, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = torchaudio. load(audio _path) (1) 

In Eq. (1), 𝑤𝑤𝑤𝑤 is the cough waveform (wf). The next 
stage is resampling. If the sample rate of the audio is not at 
16 kHz, we then resample (Eq. (2)) [34]. 

 wf = Resample(wf, 16000) (2) 

The conversion of the waveform to a mono channel is 
next (Eq. (3)). The conversion is necessary because, the 
critical information (cough) can be found in one channel, 
another advantage of using one channel is for noise 
reduction [35].  

 wf = wf[0: 1, : ] (3) 

Next, the detection of the cough segment kicks in and it 
is then extracted. This is done by using the Short-Time 
Fourier Transform (STFT) [36, 37]. The STFT breaks the 
cough waveform into small time windows that would 
enable signal change detection [36]. STFT converts the 
waveform from a time domain into the frequency domain 
(F) for each frame F = |STFT(𝑤𝑤𝑤𝑤)| [36, 37]. 

The next is to calculate the energy of each frame as seen 
in Eq. (4) [37]: 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  ∑(𝐹𝐹2 ,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0) (4) 

where 𝐹𝐹2 squares the size or magnitude of the STFT for 
each frame. In the next stage, we normalized the energy 
(Eq. (5)) [37].  

 𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−min (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
max( 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)−min (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)

 (5) 

The normalized energy (𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) is then analyzed 
based on a set threshold of 0.5. If an energy’s frame 
exceeds 0.5, the algorithm then selects the first two 
seconds of the waveform, effectively collecting the cough 
portion into 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 [37]. 

We used the X-ray dataset found in Refs. [38–44] while 
for the CT scan, we used the dataset in Refs. [17–19, 45]. 
The pre-processing for X-ray and CT-scan images is 
similar. Each image is opened using the PIL image.open() 
function [46], and read as coloured images. The images are 
further resized into 224 by 224—since some pre-trained 
models take images in this size. The preprocessed X-ray 
images are stored in 𝑋𝑋𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 while 𝑋𝑋𝑐𝑐𝑐𝑐−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is for CT-scan.  

B. Proposed Model 
Fig. 1 depicts the proposed model which has five layers, 

excluding the pre-processing layer. The pre-processing 
layer ensures each dataset has a size of 224 by 224 by 3. 
For C1 (which houses the first convolution layer for 
cough). The preprocessed cough sound (X_audio) is being 
fed into the model via block C1. This block takes the 
processed cough sounds as input as seen in the equation 
below. Eqs. (6)–(8) encapsulate the processes in block C1. 
In Eq. (7) p is the dropout value, set to 0.5. in_channels are 
input neurons, while out_channels are output neurons. 
Kernel depicts the shape of the filter, while stride reflects 
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the kernel’s movement. MaxPool2D helps in the shrinkage 
of the features as they move towards the classification 
layer. Padding of 1 means adding one pixel around the 
feature boundary. Dropout means randomly removes some 
neurons from the network [47].  

The convolutional blocks used in Eqs. (6)–(27) follow 
the design patterns of CNNs [32, 48], which consist of 
convolutional layers, ReLU activations, dropout, Kernel 
(mask size) and max-pooling. 

 

 
Fig. 1. Proposed multimodal architecture. 

 
𝐶𝐶1 = ReLU (Conv2D(inchannel = 3, outchannels :

32, mask size = 3, stride = 1, padding = 1))   (6) 

 𝐶𝐶1 =  Dropout (𝐶𝐶1),𝑝𝑝 = 0.5) (7) 

 𝐶𝐶1 =  MaxPool2D (𝐶𝐶1, mask size = 2, stride = 2) (8) 

For block C2, we have Eqs. (9) and (10) where 𝐶𝐶1 is the 
output from the previous layer while 𝑊𝑊2 and 𝑏𝑏2  are the 
weights and biases of the block. 

𝐶𝐶2 = ReLU(Conv2D(𝐶𝐶1, inchannel = 32, outchannels :
64, mask size = 3, stride = 1, padding = 1))  (9) 

 𝐶𝐶2 =  Dropout (𝐶𝐶2,𝑝𝑝 = 0.5)  

𝐶𝐶2 =  MaxPool2D �𝐶𝐶2, mask size  = 2, stride = 2�  (10) 

For X-ray pre-processed images, we have Eqs. (11), 
(12)–(16) for blocks X1 and X2. 

 
𝑋𝑋1 = ReLU(Conv2D(inchannel = 3, outchannels :

32, mask size = 3, stride = 1, padding = 1))  (11) 

 𝑋𝑋1 =  Dropout (𝑋𝑋1,𝑝𝑝 = 0.5) (12) 

𝑋𝑋1 =  MaxPool2D (𝑋𝑋1, mask size = 2, stride = 2) (13) 
𝑋𝑋2 = ReLU(Conv2D(𝑋𝑋1, inchannel = 32, outchannels  :

64, mask size = 3, stride = 1, padding = 1))  (14) 

 𝑋𝑋2 =  Dropout (𝑋𝑋2,𝑝𝑝 = 0.5) (15) 

𝑋𝑋2 =  MaxPool2D �𝑋𝑋2, mask size  = 2, stide = 2� (16) 

For CT-scan images, we have the following Eqs. (17)–
(22). 

 
𝐶𝐶𝐶𝐶1 = ReLU (inchannel = 3, outchannels :

32, mask size = 3, stride = 1, padding = 1) (17) 

 𝐶𝐶𝐶𝐶1 =  Dropout (𝐶𝐶𝐶𝐶1,𝑝𝑝 = 0.5) (18) 

𝐶𝐶𝐶𝐶1 =  MaxPool2D (𝐶𝐶𝐶𝐶1, mask size = 2, stide = 2) (19) 

𝐶𝐶𝐶𝐶2 = ReLU (Conv2D(𝐶𝐶𝐶𝐶1, inchannel = 32, outchannels  :
64, mask size = 3, stride = 1, padding = 1)) (20) 

 𝐶𝐶𝐶𝐶2 =  Dropout (𝐶𝐶𝐶𝐶2,𝑝𝑝 = 0.5) (21) 

𝐶𝐶𝐶𝐶2 =  MaxPool2D (𝐶𝐶𝐶𝐶2, mask size = 2, stide = 2) (22) 

For FC1, in Fig. 1, we have Eq. (23) that combines the 
outputs from C2, X2, and CT2. 𝐹𝐹𝐹𝐹1 is then passed onto 
𝐹𝐹𝐹𝐹2 and then to the sigmoid function (Eq. (25)) for binary 
classification. 

𝐹𝐹𝐹𝐹1  = ReLU( ��
𝐶𝐶2
𝑋𝑋2
𝐶𝐶𝐶𝐶2 

� , infeatures = 602112, outfeatures = 164�  ) (23) 

 𝐹𝐹𝐹𝐹2 =  σ(𝐹𝐹𝐹𝐹1 , infeatures = 164, outfeatures = 1) (24) 

 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  σ(𝐹𝐹𝐹𝐹2) (25) 

 𝑖𝑖𝑖𝑖 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ≥ 𝑇𝑇 (𝑇𝑇 = 0.5):
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 19 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (26) 

 
𝑖𝑖𝑖𝑖 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 < 𝑇𝑇 (𝑇𝑇 = 0.5):

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 19 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ) (27) 

In summary, each architecture in Fig. 1 has its own 
convolutional layers (C1, X1, CT1, and C2, X2, CT2). 
These compartments extract features from each dataset. 
This information is then concatenated [49]. Meaning 
critical features from each modality are merged and then 
passed on to the classification layer. Obviously, each 
modality contributes uniquely to the classification of 
COVID-19 classification. 

For the training process, we used Eq. (28) [50]. Each 
dataset has an input size of 224 by 224. We trained for 30 
epochs with a learning rate of 0.0001 and a batch size of 8. 
The inputs to the proposed model go into the model at the 
same time. This means that a sample of positive  
COVID-19 cough, X-ray and CT scan goes into the model 
at once. The same applies to negative COVID-19 samples.  

 𝜃𝜃𝑡𝑡−1 =  𝜃𝜃𝑡𝑡 − 𝑙𝑙𝑙𝑙 𝛿𝛿𝐿𝐿�𝑀𝑀(𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,,𝑋𝑋𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥,,𝑋𝑋𝑐𝑐𝑐𝑐−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,�,𝑦𝑦)
𝛿𝛿𝛿𝛿

 (28) 

In Eq. (28), 𝜃𝜃 is the model parameter, while 
�𝑀𝑀(𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋,𝑋𝑋𝑐𝑐𝑐𝑐−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,� is the forward pass of the 
model. 𝐿𝐿𝐿𝐿  is the learning rate. Lastly, 
𝐿𝐿�𝑀𝑀(𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋,𝑋𝑋𝑐𝑐𝑐𝑐−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�,𝑦𝑦) is the loss function. 

Fig. 2 provides the structure of the dataset for training, 
testing and validation. 
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Fig. 2. Training, testing and validation configuration. 

C. Validation 
We perform validation on the model, and if the 

validation loss is lower than in the previous epoch, we save 
the current model state.  For each batch, i of 8 data points 
(eight cough sounds, eight X-ray images, and eight  
CT-scan), do the following in Algorithm 1 [48, 51].  

 
Algorithm 1: Model Loss Tracker 
1. Initialize model’s best loss 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  ∞ 
2. Forward pass and compute loss 
3. Compute accuracy  
4. Then calculate the total loss 𝐿𝐿(𝑡𝑡) on the validation dataset 
for each epoch. 

𝐿𝐿(𝑡𝑡) =
1
𝑁𝑁�  

𝑁𝑁

𝑖𝑖=1
�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖^� 

5. 𝑖𝑖𝑖𝑖 𝐿𝐿(𝑡𝑡) <   𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , 𝑡𝑡ℎ𝑒𝑒𝑒𝑒  𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐿𝐿(𝑡𝑡) 

IV. UNIMODAL SYSTEMS 

To test the robustness of the proposed model, we 
developed two versions of the model for each dataset, one 
without any pre-trained model (Fig. 3), and one using the 
VGG-19 pre-trained model (Fig. 4). In the unimodal 
system in Fig. 3, the T1 and T2 blocks cough replicate the 
C1 and C2 blocks in Fig. 1. Similarly, the T1 and T2 blocks 
for X-ray replicate the X1 and X2 blocks.  The same 
applies to CT scans, where CT1 and CT2 correspond to T1 
and T2. This also applies to FC1 and FC2. 

In Fig. 4, the pre-trained model is the VGG-19. FC2 
reflect the same architecture as seen in Fig. 1. While for 
FC1, in-features is 4096 and out-features is 164. The FC1 
layer modifies the classification layer of the pre-trained 
model (VGG-19). The training, and testing validation of 

the unimodal systems follow the same process prescribed 
for the multimodal systems, earlier. Except that the 
combination of datasets is not implemented.  Each of the 
pre-trained models used in this study was fine-tuned on the 
target dataset. 

 

 
Fig. 3. Unimodal architecture used for Cough, X-ray, and CT-scan for 

COVID-19 classification. 

 
Fig. 4. Unimodal architecture with pre-trained model (VGG-19) used 

for cough, X-ray, and CT-scan for COVID-19 classification. 

V. MULTIMODAL PRE-TRAINED SYSTEMS 

Furthermore, we developed a multimodal pre-trained 
model (Fig. 5). Its FC1 layer has 31,360 input features  
and 64 out features (VGG-19). FC2 has 64 input features 
and 1 output feature (VGG-19). We experimented with 
three pre-trained models: VGG-19, ResNet-18 and 
MobileNetV2, as they are widely used in the literature for 
image classification tasks.   

 

 
Fig. 5. Multimodal architecture with pre-trained model (VGG19) used 

for cough, X-ray, and CT-scan for COVID-19 classification. 

VI. EVALUATION  

To evaluate the proposed multimodal system, we passed 
test dataset samples in batches of 8. Each sample includes 
a cough signal (C), an X-ray image (X), and a CT scan 
(CT). These inputs are then fed into the model to generate 
a prediction: 𝑦𝑦𝑖𝑖  = 𝑀𝑀(𝐶𝐶𝐼𝐼 ,𝑋𝑋𝐼𝐼,𝐶𝐶𝐶𝐶𝐼𝐼) where M represents the 
trained model. We also performed this evaluation on the 
multimodal system with pre-trained models, as well as on 
unimodal systems with and without pre-trained models. 
The following evaluation metrics are used (Eqs. (29)–
(33)), where TP = true positive, TN = true negative, FP = 
false positive, and FN = false negative.  
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 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 × 100 (29) 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (30) 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (31) 

 𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (32) 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (33) 

VII. RESULT 

The results highlight several key insights into the use of 
deep learning models. First, for the unimodal systems for 
cough, X-ray, and CT scan, the result from Table I shows 
the accuracy score as well as the F1-Score of the unimodal 
system for cough. Looking at the graphs of the unimodal 
and pre-trained unimodal models in Figs. 6 and 7, it is clear 
that the model without a pre-trained model (Fig. 6) shows 
a flat validation loss throughout. This suggests it may not 
be learning during training, which could explain the poor 
results (Table I). In Table II, there is improved 
performance in accuracy. This shows the importance of 
transfer learning on the cough dataset in delivering a better 
outcome. The architectural complexity of VGG-19 might 
have contributed to this improvement.  

The same outcome is also observed for the unimodal 
deep learning system for X-ray (Tables III and IV, Figs. 8 
and 9); however, it shows an improved F1-Score in 
addition to the accuracy metric. The pre-trained VGG-19 
model outperformed the traditional CNN-based deep 
learning model (Tables III and IV). It can also be observed 
that overfitting is minimized (Fig. 9), as the training and 
validation loss curves are relatively close. 

 

 
Fig. 6. Unimodal COVID-19 cough classification—training loss vs 

validation loss.  

 
Fig. 7. Unimodal COVID-19 cough classification with VGG-19—

training loss vs validation loss.  

TABLE I. EVALUATION FOR UNIMODAL–COUGH 

Evaluation metrics Values 
Accuracy 50% 
Sensitivity 1 
Specificity 0 
F1-Score 0.6667 

Confusion matrix [[0 100] 
[0 100]] 

True Positives (TP) 100 
True Negatives (TN) 0 
False Positives (FP) 100 

False Negatives (FN) 0 

TABLE II. EVALUATION FOR UNIMODAL–COUGH VGG-19 

Evaluation metrics Values 
Accuracy 55% 
Sensitivity 0.68 
Specificity 0.42 
F1-Score 0.6018 

Confusion matrix [[42 58] 
[32 68]] 

TP 68 
TN 42 
FP 58 
FN 32 

TABLE III. EVALUATION FOR UNIMODAL–X-RAY 

Evaluation metrics Values 
Accuracy 98.00% 
Sensitivity 1 
Specificity 0.960 
F1-Score 0.9804 

Confusion matrix [[96 4] 
[0 100]] 

TP 100 
TN 96 
FP 4 
FN 0 

TABLE IV. EVALUATION FOR UNIMODAL–X-RAY VGG-19 

Evaluation metrics Values 
Accuracy 99.00% 
Sensitivity 1 
Specificity 0.98 
F1-Score 0.9901 

Confusion matrix [[98 2] 
[0 100]] 

TP 100 
TN 98 
FP 2 
FN 0 

 

 
Fig. 8. Unimodal COVID-19 X-ray classification—training loss vs 

validation loss.  
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Fig. 9. Unimodal COVID-19 X-ray classification with VGG-19—

training loss vs validation loss.  

However, this is not the case for the CT scan. The 
traditional unimodal deep learning model outperformed 
the pre-trained unimodal model for CT scans (Tables V 
and VI) in almost all the metrics. One possible explanation 
is that the images learned from the pre-trained model may 
not generalize well to CT scan data. Both the pre-trained 
and traditional models did attempt to address the 
overfitting issue during training (Figs. 10 and 11).  

TABLE V. EVALUATION FOR UNIMODAL–CT-SCAN 

Evaluation metrics Values 
Accuracy 91.00% 
Sensitivity 0.91 
Specificity 0.91 
F1-Score 0.91 

Confusion matrix [[91 9] 
[9 91]] 

TP 91 
TN 91 
FP 9 
FN 9 

TABLE VI. EVALUATION FOR UNIMODAL–CT-SCAN VGG-19 

Evaluation metrics Values 
Accuracy 88.50% 
Sensitivity 0.80 
Specificity 0.97 
F1-Score 0.8743 

Confusion matrix [[97 3] 
[20 80]] 

TP 80 
TN 97 
FP 3 
FN 20 

 

 
Fig. 10. Unimodal COVID-19 CT-scan classification—training loss vs 

validation loss.  

 
Fig. 11. Unimodal COVID-19 CT-scan classification with VGG-19—

training loss vs validation loss.  

Moving on to multimodal systems (Tables VII–X), it is 
observed that the model leveraging a pre-trained model 
and the one without both have the same accuracy of 98% 
(Tables VII vs. VIII). However, using the F1-Score, the 
non-pre-trained model outperformed the pre-trained 
model. This could be explained by the fact that the 
multimodal system has learned from three different 
datasets and aggregated complementary information from 
them. As a result, it is possible to learn unique attributes 
from these sources, enabling a more effective COVID-19 
classification model. 

We also extended the experiment to two additional  
pre-trained models—ResNet-18 and MobileNetV2—as 
shown in Tables IX and X; however, neither could 
outperform the multimodal system developed without a 
pre-trained model. 

Using the F1-Score, it is also evident that the  
non-pre-trained multimodal model performs better than 
the unimodal CT scan model proposed in Refs. [17–19], 
which reported an F1-Score of 0.9731. The multimodal 
system we proposed is enriched by learning from three 
diverse datasets. In addition, analyzing the training graphs 
(Figs. 12 and 13) shows that the non-pre-trained 
multimodal system (Fig. 12) exhibits less overfitting 
compared to the VGG-19-based pre-trained multimodal 
system (Fig. 13). 

TABLE VII. EVALUATION FOR PROPOSED MODEL–MULTIMODAL 

Evaluation metrics Values 
Accuracy 98.00% 
Sensitivity 1 
Specificity 0.9600 
F1-Score 0.9804 

Confusion matrix [[96 4] 
[0 100]] 

TP 100 
TN 96 
FP 4 
FN 0 

 
In Table I, it is evident that the unimodal system without 

the pre-trained model correctly identified COVID-19 
positive cases (as sensitivity is 1); however, it failed to 
identify non-COVID-19 cases (specificity is 0). 
Meanwhile, in Table II, the unimodal system equipped 
with VGG-19 strikes a balance—sensitivity is 0.68 while 
specificity is 0.42. Due to the introduction of the  
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pre-trained model, Table II shows improved results over 
Table I. It is important to note that in medical diagnosis, 
high sensitivity ensures that false negatives are 
significantly reduced. The implication of high sensitivity 
is a reduced likelihood of predicting that a person does not 
have COVID-19 when they actually do. 

TABLE VIII. EVALUATION FOR PROPOSED MODE–MULTIMODAL  
VGG-19 

Evaluation metrics Values 
Accuracy 98.00 % 
Sensitivity 0.98 
Specificity 0.98 
F1-Score 0.980 

Confusion matrix [[98 2] 
[2 98]] 

TP 98 
TN 98 
FP 2 
FN 2 

TABLE IX. EVALUATION FOR PROPOSED MODEL–MULTIMODAL 
RESNET-18 

Evaluation metrics Values 
Accuracy 50.00 % 
Sensitivity 1 
Specificity 0 
F1-Score 0.6667 

Confusion matrix [[0 100] 
[0 100]] 

TP 100 
TN 0 
FP 100 
FN 0 

TABLE X. EVALUATION FOR PROPOSED MODEL–MULTIMODAL 
MOBILENETV2 

Evaluation metrics Values 
Accuracy 96% 
Sensitivity 0.96 
Specificity 0.96 
F1-Score 0.96 

Confusion matrix [[96 4] 
[4 96]] 

TP 96 
TN 96 
FP 4 
FN 4 

 

 
Fig. 12. Multimodal COVID-19 classification - training loss vs 

validation loss.  

The same trend is also observed for X-ray (Tables III 
and IV). It is observed that the VGG-19 intervention 
improved the specificity score. However, for CT scan 

(Tables V and VI), the reverse is the case—the model 
without VGG-19 performed better in terms of sensitivity, 
accuracy and F1-Score. This shows that the VGG-19  
pre-trained model did not complement the CT scan images. 

Furthermore, for the multimodal system (Table VII) 
without VGG-19, sensitivity is 1, while its specificity  
is 0.96. However, for the multimodal system with  
VGG-19 (Table VIII), sensitivity is 0.98, and its 
specificity is 0.98. The multimodal system without  
VGG-19 shows improved sensitivity—meaning it has zero 
false negatives. 

 

 
Fig. 13. Multimodal COVID-19 classification with VGG-19 - training 

loss vs validation loss. 

 
(a) 

 
(b)  

 
(c) 

Fig. 14. How datasets contribute to COVID-19 prediction. (a) X-ray. 
(b)  CT-scan (c). Cough.  
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Fig. 14 shows how each dataset contributes to the 
prediction of COVID-19. Figs. 14(a) and 14(b) show 
bright areas. These bright areas are critical structures that 
are used to make decisions. In addition, Fig. 14(c) shows 
spikes with higher amplitudes. This indicates that specific 
spikes at given times also contributed to the COVID-19 
prediction. We used the framework from Refs. [52, 53] to 
generate the diagram shown. The diagram illustrates how 
the three datasets contributed to COVID-19 prediction. A 
similar approach was also adopted in Refs. [54−57]. 

VIII. DISCUSSIONS  

The results highlight several key insights into the use of 
deep learning models. First, for the unimodal systems for 
cough, X-ray, and CT-scan: the result from Table I shows 
the accuracy score as well as the F1-Score of the unimodal 
system for cough. In Table II, there is an improved 
performance in accuracy. This shows the importance of 
transfer learning on the cough dataset to deliver an 
improved outcome. A similar outcome is recorded for 
unimodal deep learning systems using X-rays. The  
pre-trained model for the VGG-19 outperformed the 
traditional CNN deep learning model (Tables III and IV) 
in both accuracy and F1-Score. However, this is not the 
case for the CT scan. The unimodal deep learning model 
mostly outperformed the pre-trained unimodal for  
CT-scans (Tables V and VI). An explanation for this is that 
the images used on the pre-trained models did not 
complement the CT-scan images. 

VGG-19 pre-trained models are trained on thousands of 
images, where edges and structures may be similar to those 
found in X-ray images and the visual representation of 
cough. Since there is an improvement in the output of  
pre-trained unimodal models for cough and X-ray, it 
suggests that the structures and textures learned by  
VGG-19 complement these unimodal datasets. However, 
for CT scans, the edges and textures of the images used in 
the pre-training process differ significantly from those in 
CT-scan images. For this reason, the CT-scan model 
backed with a pre-trained VGG-19 did not perform well. 

Moving on to multimodal systems, it is observed that 
models that leveraged a pre-trained model and those 
without a pre-trained model are close in terms of F1-Score. 
Using the F1-Score, the model without the pre-trained 
model outperformed (0.9804 F1-Score) the pre-trained 
model (0.98 F1-Score). An explanation for this is that since 
the multimodal system has learned from three different 
datasets, it aggregated complementary information from 
them. As a result, there is a high possibility that it learned 
the unique attributes from these datasets to deliver an 
improved COVID-19 model. On the other hand, for the 
pre-trained multimodal system, having already learned the 
unique features from these three data sources was 
sufficient. Therefore, the pre-trained model was not 
necessary. This claim could also be observed in the other 
experiments with ResNET-18 and MobileNetV2. In 
Tables IX and X, these pre-trained models could not 
outperform the multimodal system developed without a 
pre-trained model.  

The multimodal system is enriched by learning from 
three diverse datasets. From Fig. 13, we can observe that 
the multimodal system with a pre-trained model over-fits. 
This also shows that the VGG-19 pre-trained model was 
learning almost entirely from its own training dataset and 
not adapting to the new dataset. This contrasts with the 
non-pre-trained multimodal model (Fig. 12). These 
findings show that for resource-constrained economies 
that may not have the capacity to acquire expensive CT 
scan equipment, a unimodal system (equipped with  
VGG-19) that takes input from an X-ray for the prediction 
of COVID-19 would be effective. On the other hand, when 
funds are not limited, investment in a multimodal system 
is recommended, as it can learn features from various 
datasets to ensure an objective diagnosis. While the 
training images for the models investigated were limited  
to 1300 per dataset, it would be interesting to see the 
performance when the training dataset is increased to 
about 5000. 

IX. CONCLUSION 

This study developed a multimodal deep learning system 
for classifying COVID-19 using three datasets—cough,  
X-ray, and CT scan. Using pre-trained models such as 
ResNet-18, VGG-19, and MobileNetV2, the results show 
that a multimodal system combining these datasets can 
deliver improved performance even without pre-trained 
models. This is possible because the multimodal system has 
learned sufficiently from different heterogeneous datasets, 
making it robust enough to perform well without a  
pre-trained model. This is also reflected in the sensitivity 
metric: the non-pre-trained multimodal system scored 1, 
while the pre-trained model scored 0.98. High sensitivity 
indicates fewer false negatives in COVID-19 prediction. 
However, this is not the case for the unimodal models 
developed for cough and X-ray—their pre-trained versions 
strike a balance between sensitivity and specificity, 
reducing both false negatives and false positives. 

An explanation for this is that the features learned from 
VGG-19 complement the training process. On the flip side, 
this was not the case for the unimodal deep learning model 
developed for the CT scan (based on F1-Score, sensitivity, 
and accuracy). It was discovered that the pre-trained model 
did not outperform the non-pre-trained version. A possible 
explanation is that the features learned by the pre-trained 
model do not align with CT scan images. One possible 
solution is to investigate, from the pool of available  
pre-trained models, which model best aligns with or 
improves COVID-19 classification from CT scans. Another 
option is to apply image preprocessing to enhance the 
appearance of CT scan images. This will be explored in our 
future work. 

The importance of this research is that it provides a 
platform for researchers and medical experts to identify 
which dataset combinations could be considered, given the 
level of resources at their disposal. For example, a medical 
expert might opt for a system with high sensitivity or high 
specificity and then decide which model to adopt based on 
available resources. 
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In summary, for unimodal systems, an X-ray with a  
pre-trained VGG-19 model could be reliable it would give 
higher accuracy and F1-Score compared to the scores of the 
CT scan or cough models. However, for multimodal 
systems, a non-pre-trained model yields a better F1-Score. 
Deploying the models requires either a cloud platform or a 
dedicated computer system hosted locally to handle service 
requests. This means that medical facilities with limited 
resources might find it difficult to acquire the necessary 
hardware or cloud infrastructure to run a multimodal 
system. In such cases, a unimodal system could be 
considered. 

Also, in terms of noise, an improved data preprocessing 
method needs to be integrated for CT scans or X-rays. A 
preprocessing layer that incorporates a filter for noise 
removal could be included. For cough noise, a 
preprocessing layer that extracts the segmented cough, as 
illustrated earlier, is essential. Regarding patient variability 
which could potentially affect the model’s performance 
when deployed in different environments large and diverse 
datasets are required to sufficiently capture this variability. 

While this paper focuses on three datasets X-ray, CT 
scan, and cough sound the integration of medical history and 
blood test results could further improve prediction accuracy. 
In this case, the developed multimodal model will be 
adjusted to handle text-based data from test results and 
patient history. This implies incorporating Natural 
Language Processing (NLP) into the model, which we plan 
to explore in future research. 
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