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Abstract—COVID-19, a respiratory illness that mostly
attacks the human lungs, emerged in 2019 and quickly
became a global health crisis. Its fast transmission has
necessitated the creation of effective tools that could aid in its
classification. In this paper, we present an artificial
intelligence multimodal deep learning model that leverages
X-ray, Computed Tomography (CT) scan, and cough signals
to classify COVID-19 accurately. The paper’s objective is to
meticulously compare the effectiveness of non-pre-trained
and pre-trained versions of VGG-19, MobileNetV2, and
ResNet across various multimodal and some unimodal
models using cough sound, X-ray, and CT scan datasets. This
is important because it provides a pointer as to which
combinations of datasets could improve COVID-19
prediction. Findings show that while the pre-trained
unimodal systems for cough and X-ray outperform their
non-pre-trained counterparts, the non-pre-trained CT scan
model performs exceptionally well. This suggests that
features learned from the VGG-19 model fail to generalize
effectively. Remarkably, the non-pre-trained multimodal
model accomplishes an F1-Score of 0.9804, slightly
outperforming its pre-trained counterpart at 0.98. While this
research advances our understanding of transfer learning, it
also emphasizes the prospects of determining, from a range
of options, which of the considered datasets (individual or
combination) could give an acceptable level of COVID-19
classification in a resource-constrained scenario.

Keywords—machine learning, audio signal processing, deep
learning, image classification, multimodal systems, transfer
learning, unimodal systems

1. INTRODUCTION

The COVID-19 (Coronavirus Disease 2019) pandemic
resulted from the novel SARS-CoV-2 virus that emerged
in late 2019 [1]. Its emergence was accompanied by a
record number of deaths across the globe. Because of the
loss of lives, lockdowns were imminent, leading to
businesses shutting down for months to contain the virus.
The pandemic strained the healthcare sector to an
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unprecedented level, as recorded in Europe and the
Americas, for example. The World Health Organization
has recorded about 2452 COVID-19 deaths from early
November 2024 to early December 2024 [2]. This
development points to the fact that there is a need for a
robust diagnostic system for the early detection of the
virus. Its early detection would allow medical personnel to
effectively contain it because affected persons would be
isolated, contact tracing would start in earnest, and patients
would be promptly treated. Furthermore, early detection
could potentially save lives [3]. The traditional approach
for testing patients for COVID-19 has been through the
Reverse Transcription Polymerase Chain Reaction
(RT-PCR). This test is usually time-consuming; in
addition, it requires specialized skills to carry out the test
on patients [4]. This development, therefore, requires that
experts be trained on how to effectively administer this
process. Also, the process gives many conflicting results,
potentially allowing COVID-19 patients to go home due to
error [5]. In addition, there have been cases of false
positives recorded via RT-PCR [6].

This research aim therefore is to investigate the most
promising approach, leveraging artificial intelligence, that
could be effective in the prediction of COVID-19 based on
available datasets. Datasets considered are X-ray, CT scan,
as well as cough sounds.

In response to this, researchers have come up with
Artificial Intelligence (Al)-based solutions for the
detection of COVID-19 from X-rays [6], Computed
Tomography (CT) scans [7], and cough sounds [8]. This is
now possible because of the availability of datasets. Cough
sound has been used to detect COVID-19, as seen in
Ref. [9]. This was combined with patient symptoms to
make a prediction. The use of a cough signal is useful
because a COVID-19 cough produces a distinctive pattern,
differentiating it from a normal cough. This distinctive
pattern arises as the virus attacks the lungs, damaging the
lung structure [9].
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The summary of our key contributions is as follows: To
compare the prediction accuracy of COVID-19 using
unimodal systems on individual datasets such as CT scan,
cough sound, and X-ray with the prediction of COVID-19
using a combination (multimodal) of all the considered
datasets. This is important as it provides an avenue for
medical personnel and researchers to choose from an array
of evidence-based options that best aid objective
COVID-19 diagnosis. This work is novel as it analysis not
only unimodal systems but multimodal systems that
combines three different datasets.

II. LITERATURE REVIEW

Authors have researched several methods for the
detection of COVID-19 from images. For example,
Houby [6] developed a deep learning model that extracts
key features from X-ray images and then leverages a pre-
trained model for the classification of COVID-19. A pre-
trained model reflects an already existing model trained on
thousands of images. Therefore, commonly preferred in
image classification tasks—since it has learned images
sufficiently from different domains. There is a high
likelihood of improved performance when used in various
classification tasks, including medical image classification
tasks. Several pre-trained models have been used.
According to the findings in Ref. [10], several pre-trained
models were used for their proposed model. Some of the
pre-trained models (transfer learning models) are ResNet-
18, ResNet-50, and ResNet-101 [11]. The pre-trained
models were also finetuned on the collected X-ray images,
where the model trained on ResNET-101 proved to have
outperformed other models. In addition, other research
using deep learning models for X-ray COVID-19 detection
has also been done as seen in Refs. [12, 13].
Haruna et al. [14] used the VGG-19 [15] pre-trained model
for the classification of X-ray images with improved
performance.

The CT-scan images have also been solely analyzed for
the detection of the presence of the COVID-19 virus. For
example, earlier research [16] used a similar approach
proposed in Ref. [10]. However, they used pre-trained
models built on the VGG-19 and then compared them to
other pre-trained models such as Xception Net, and
Convolutional Neural Network (CNN). Their analysis
indicated satisfactory performance. In Ref. [17], a deep
learning model was developed that improves on traditional
deep learning methods. Their model incorporates two key
innovations—the ability to reason based on the passed
data, and the ability to learn. This means the model does
not need input from humans in setting parameters. The
model achieved an F1-Score of 0.9731 on CT-scan
images [17-19].

Furthermore, evidence provided in Ref. [20] suggests
that the adoption of a pre-trained model for CT-scan can
further improve its classification output compared to
models that do not use pre-trained models. On the other
hand, researchers have also solely used cough datasets for
the prediction of COVID-19. This is because patients
suffering from the virus have a distinct way of coughing.
This is because, their lung structure has been

altered [21, 22]. A Support Vector Machine (SVM) was
used in Ref. [23] to classify voice sounds. An ensemble
model has also been proposed in Ref. [24]. The model
consists of a CNN layer for feature extraction, and then
another classification model. The authors went further to
develop an application called “AI4COVID-19” where
users can interface with their tool.

The papers reviewed above point to the fact that
pre-trained models can potentially improve the output of
COVID-19 classification. More recently, the use of
multimodal deep learning models has been adopted to
improve COVID-19 accuracy. For example, in Ref. [25], a
multimodal system was developed that uses X-ray and CT
scan images for classification. The study further
experimented with different transfer learning architectures
such as the MobileNetV2 [26], VGG-19, and
ResNet-50 [25]. Similarly, two pre-trained models were
used in Ref. [27], one for the CT scan and another for the
X-ray. The outputs of these different deep learning layers
are then fused to give an improved classification output.
Many researchers have also combined datasets from
different sources; for example, a combination of X-ray and
cough datasets was used in Ref. [28] to improve
classification. Consequently, two models were developed,
and then the outputs of these models were fused. In
addition, their cost function gives more weight or
relevance to the model with the least error.

As shown in Ref. [29], the approach uses both X-ray and
CT scan images for detection. From their experiment, it
was established that VGG-19 gave the best result in terms
of classification accuracy. It was also established that
X-ray images are more accurate in the detection of the
virus compared to CT-scan images.

While COVID-19 detection with multimodal
architectures exists, as discussed, the research objective is
to develop a multimodal architecture that takes advantage
of cough, X-ray, and CT scans together for the
classification of the COVID-19 virus. The second
objective is to investigate the relevance of pre-trained
models on multimodal and unimodal architectures using
these three datasets.

The summary of our key contributions is as follows: To
compare the prediction accuracy of COVID-19 using
unimodal systems on individual datasets such as CT scan,
cough sound, and X-ray with the prediction of COVID-19
using a combination (multimodal) of all the considered
datasets. This is important as it provides an avenue for
medical personnel to choose from an array of options that
best aid objective COVID-19 diagnosis.

Our research objectives are to fill this gap by
researching the relevance of a multimodal system using
three datasets in the classification of COVID-19 with or
without a pre-trained model. In addition, we also explored
the contribution of pre-trained models on unimodal
systems for cough, X-ray, and CT-scan datasets.

This research is important as it gives a sense of direction
as to which of the datasets could potentially be used for the
effective prediction of COVID-19.
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III. MATERIALS AND METHODS

Many researchers have extensively used unimodal
pre-trained models to improve the classification of
COVID-19 via X-ray images, CT-scan, and cough, as well
as multimodal designs for different combinations such as
X-ray and CT scan. Multimodal designs that combine
cough, CT-scan, and X-rays remain largely unexplored in
existing studies. In addition, we investigate further the
impact of the VGG-19 pre-trained model on unimodal
classifications such as for cough, CT-scan, and X-ray, and
then the effect of the VGG-19 on a multimodal design that
leverages three datasets—cough, X-ray and CT scan.
Therefore, this research investigates the impact of
pre-trained  models (VGG-19, ResNET, and
MobileNetV2) on a multimodal system that combines
three datasets of cough, X-ray and CT scan.

This research is important as it provides an in-depth
analysis of how the combination of three datasets can be
used to improve COVID-19 classification. In addition, it
provides a comparative study of how selected pre-trained
models can influence COVID-19 classification from the
perspective of unimodal and multimodal systems.
Furthermore, this research also provides a platform to look
at medical diagnosis from the multimodal perspective as it
may potentially improve classification.

The motivation behind the combination of these
datasets is based on the fact that COVID-19 patients
usually exhibit these symptoms—Ilung abnormalities, and
cough [30]. Lung abnormalities can be detected from
X-ray images as well as CT scans. There are several
advantages to the proposed model of using three datasets.
One of them is the ability to harness complementary
information—the sound from a cough could depict
respiratory disease while images from X-rays and CT
scans could reveal the structure of the lungs. In addition,
X-rays and CT scans can also reveal the extent of damage
to the lungs while the cough sounds might indicate early
signs of COVID-19. In addition, there is the potential to
increase sensitivity (correctly identifying persons with
COVID-19) and specificity (correctly identifying persons
without COVID-19) Lastly, data from one source might be
unreliable for examination due to poor X-ray or CT-scan
images [31].

This section discusses the architecture of the proposed
model as well as the data preprocessing stages for the
datasets used. Recall that we used three datasets: cough
sound, X-ray, and CT scan. We therefore need to
preprocess the data before passing it into the proposed
multimodal architecture. The equations from this section
have been derived from Pytorch framework [32].

A. Data Pre-Processing

The first dataset is the cough dataset found in Ref. [33].
This dataset has audio that lasts up to 9 seconds, however,
on average, each audio contains approximately a
two-second cough segment. Therefore, we needed to
extract this segment. To do this, each cough file is loaded
using the PyTorch torchaudio.load() function. This
function then reads the audio waveform (wf) as seen in

Eq. (1).
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wf, sample_rate = torchaudio.load(audio _path) (1)

In Eq. (1), wf is the cough waveform (wf). The next
stage is resampling. If the sample rate of the audio is not at
16 kHz, we then resample (Eq. (2)) [34].

wf = Resample(wf, 16000) )

The conversion of the waveform to a mono channel is
next (Eq. (3)). The conversion is necessary because, the
critical information (cough) can be found in one channel,
another advantage of using one channel is for noise
reduction [35].

wf = wff0:1,:] 3)

Next, the detection of the cough segment kicks in and it
is then extracted. This is done by using the Short-Time
Fourier Transform (STFT) [36, 37]. The STFT breaks the
cough waveform into small time windows that would
enable signal change detection [36]. STFT converts the
waveform from a time domain into the frequency domain
(F) for each frame F = |STFT(wf)| [36, 37].

The next is to calculate the energy of each frame as seen
in Eq. (4) [37]:

energy = Y(F?,axis = 0) 4)

where F? squares the size or magnitude of the STFT for
each frame. In the next stage, we normalized the energy

(Eq. (5)) [37].

energy—min (energy)

)

norMenergy = max( energy)—min (energy)

The normalized energy (noTMepergy) is then analyzed
based on a set threshold of 0.5. If an energy’s frame
exceeds 0.5, the algorithm then selects the first two
seconds of the waveform, effectively collecting the cough
portion into X, 4i0 [37]-

We used the X-ray dataset found in Refs. [38—44] while
for the CT scan, we used the dataset in Refs. [17-19, 45].
The pre-processing for X-ray and CT-scan images is
similar. Each image is opened using the PIL image.open()
function [46], and read as coloured images. The images are
further resized into 224 by 224—since some pre-trained
models take images in this size. The preprocessed X-ray
images are stored in Xy;.q,, while Xo¢_gcqn is for CT-scan.

B.  Proposed Model

Fig. 1 depicts the proposed model which has five layers,
excluding the pre-processing layer. The pre-processing
layer ensures each dataset has a size of 224 by 224 by 3.
For C1 (which houses the first convolution layer for
cough). The preprocessed cough sound (X _audio) is being
fed into the model via block C1. This block takes the
processed cough sounds as input as seen in the equation
below. Eqgs. (6)—(8) encapsulate the processes in block Cl1.
In Eq. (7) p is the dropout value, set to 0.5. in_channels are
input neurons, while out channels are output neurons.
Kernel depicts the shape of the filter, while stride reflects
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the kernel’s movement. MaxPool2D helps in the shrinkage
of the features as they move towards the classification
layer. Padding of 1 means adding one pixel around the
feature boundary. Dropout means randomly removes some
neurons from the network [47].

The convolutional blocks used in Eqgs. (6)—(27) follow
the design patterns of CNNs [32, 48], which consist of
convolutional layers, ReLU activations, dropout, Kernel
(mask size) and max-pooling.

preprocessed
cough images—»- C e CcoviD-19
| Positive
|
preprocessed FC1 +——» FC2
X-ray images ! X2 —>
COVID-19
Negative
preprocessed
Clscan —> CT1 —» CT2 —>
images
\ J -——

Fig. 1. Proposed multimodal architecture.

C; = ReLU (Conv2D(inchannel = 3, OUtchannels *

32, mask size = 3, stride = 1, padding = 1)) ©)

C; = Dropout (C;),p = 0.5) (7
C, = MaxPool2D (C;, mask size = 2,stride = 2) (8)

For block C2, we have Egs. (9) and (10) where C; is the
output from the previous layer while W, and b, are the
weights and biases of the block.

C, = ReLU(Conv2D(Cy, in¢hannel = 32, 0Utchannels
64, mask size = 3, stride = 1, padding = 1))
C, = Dropout (C,,p = 0.5)
C, = MaxPool2D (Cz,mask size = 2,stride = 2) (10)

)

For X-ray pre-processed images, we have Egs. (11),
(12)—(16) for blocks X1 and X2.

X1 = ReLU(Conv2D(inchannel = 3, 0Utchannels :

32, mask size = 3, stride = 1, padding = 1)) (i

X, = Dropout (X;,p = 0.5) (12)
X; = MaxPool2D (X,, mask size = 2, stride = 2) (13)

X, = ReLU(Conv2D(Xy, in¢hannel = 32, 0Utchannels (14)
64, mask size = 3, stride = 1, padding = 1))

X, = Dropout (X,,p = 0.5) (15)
X, = MaxPool2D (Xz,mask size = 2,stide = 2) (16)

For CT-scan images, we have the following Eqs. (17)—
(22).

CT; = ReLU (inchannet = 3, 0Utchannels

1
32, mask size = 3, stride = 1, padding = 1) a7

CT, = Dropout (CT;,p = 0.5) (18)

CT, = MaxPool2D (CT;, mask size = 2,stide = 2) (19)

CT, = ReLU (Conv2D(CTy, inchanner = 32, 0Utchannels :(20
64, mask size = 3, stride = 1, padding = 1)) )

CT, = Dropout (CT,,p = 0.5) (21)

CT, = MaxPool2D (CT,, mask size = 2,stide = 2) (22)

For FC1, in Fig. 1, we have Eq. (23) that combines the
outputs from C2, X2, and CT2. FC, is then passed onto
FC, and then to the sigmoid function (Eq. (25)) for binary
classification.

G
FC, = ReLU(( X2 |, iNgeqrures = 602112, 0Utgeprures = 164) )(23)
2
FCy = o(FCy,Nfeatures = 164, 0Utgeatures = 1) (24)
Ouput = o(FC,) (25)
if Ouput =T (T =0.5):
i . (26)
Positive (Covid — 19 present)
if O t<T(T=0.5):
if Ouput <T (T = 0.5) on

Negative (Covid — 19 absent )

In summary, each architecture in Fig. 1 has its own
convolutional layers (C1, X1, CT1, and C2, X2, CT2).
These compartments extract features from each dataset.
This information is then concatenated [49]. Meaning
critical features from each modality are merged and then
passed on to the classification layer. Obviously, each
modality contributes uniquely to the classification of
COVID-19 classification.

For the training process, we used Eq. (28) [50]. Each
dataset has an input size of 224 by 224. We trained for 30
epochs with a learning rate of 0.0001 and a batch size of 8.
The inputs to the proposed model go into the model at the
same time. This means that a sample of positive
COVID-19 cough, X-ray and CT scan goes into the model
at once. The same applies to negative COVID-19 samples.

et—l — et _ lT SL(M(Xaudio,:XJ;rHay,vXct—scan,)vJ’) (28)

In Eq. (28), 6 is the model parameter, while
(M (Xauaio, Xxray, Xct_smn_) is the forward pass of the
model. Lr is the learning rate.  Lastly,
L(M (Xauaio, Xxray, Xct_scan), y) is the loss function.

Fig. 2 provides the structure of the dataset for training,
testing and validation.
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- Cough (subfolder)
- Val: (subfolder)
- Negative (folder has 340 covid 19 cough audios)
- Positive (folder has 340 covid 19 cough audios)
- Train
- Negative (folder has 650 covid 19 cough audios)
- Positive (folder has 650 covid 19 cough audios)
- Test
- Negative (folder has 100 covid 19 cough audios)
- Positive (folder has 100 covid 19 cough audios)

- Xray (subfolder)
- Val (subfolder)
- Negative (folder has 340 covid 19 images)
- Positive (folder has 340 covid 19 images)
- Train
- Negative (folder has 650 covid 19 images)
- Positive (folder has 650 covid 19 images)
- Test
- Negative (folder has 100 covid 19 images)
- Positive (folder has 100 covid 19 images)

- CT scan (subfolder)
- Val (subfolder)
- Negative (folder has 340 covid 19 images)
- Positive (folder has 340 covid 19 images)
- Train (subfolder)
- Negative (folder has 650 covid 19 images)
- Positive (folder has 650 covid 19 images)
- Test
- Negative (folder has 100 covid 19 images)
- Positive (folder has 100 covid 19 images)

Fig. 2. Training, testing and validation configuration.

C. Validation

We perform validation on the model, and if the
validation loss is lower than in the previous epoch, we save
the current model state. For each batch, i of 8 data points
(eight cough sounds, eight X-ray images, and eight
CT-scan), do the following in Algorithm 1 [48, 51].

Algorithm 1: Model Loss Tracker

1. Initialize model’s best loss Lyes = 0

2. Forward pass and compute loss

3. Compute accuracy

4. Then calculate the total loss L® on the validation dataset

for each epoch.
1

L(t)z—ZN (loss;)
N L= :

5.if LO < Ly, then Ly,e = L

IV. UNIMODAL SYSTEMS

To test the robustness of the proposed model, we
developed two versions of the model for each dataset, one
without any pre-trained model (Fig. 3), and one using the
VGG-19 pre-trained model (Fig. 4). In the unimodal
system in Fig. 3, the T1 and T2 blocks cough replicate the
C1 and C2 blocks in Fig. 1. Similarly, the T1 and T2 blocks
for X-ray replicate the X1 and X2 blocks. The same
applies to CT scans, where CT1 and CT2 correspond to T1
and T2. This also applies to FC1 and FC2.

In Fig. 4, the pre-trained model is the VGG-19. FC2
reflect the same architecture as seen in Fig. 1. While for
FC1, in-features is 4096 and out-features is 164. The FCI
layer modifies the classification layer of the pre-trained
model (VGG-19). The training, and testing validation of

the unimodal systems follow the same process prescribed
for the multimodal systems, earlier. Except that the
combination of datasets is not implemented. Each of the
pre-trained models used in this study was fine-tuned on the
target dataset.

COVID-19
Positive

preprocessed

images

COVID-19
Negative

Fig. 3. Unimodal architecture used for Cough, X-ray, and CT-scan for
COVID-19 classification.

COVID-19
Positive

preprocessed pre-trained

model

images

COVID-19
Negative

Fig. 4. Unimodal architecture with pre-trained model (VGG-19) used
for cough, X-ray, and CT-scan for COVID-19 classification.

V. MULTIMODAL PRE-TRAINED SYSTEMS

Furthermore, we developed a multimodal pre-trained
model (Fig. 5). Its FCI1 layer has 31,360 input features
and 64 out features (VGG-19). FC2 has 64 input features
and 1 output feature (VGG-19). We experimented with
three pre-trained models: VGG-19, ResNet-18 and
MobileNetV2, as they are widely used in the literature for
image classification tasks.

)

preprocessed Pre-trained
cough imagesl——» model —>

COVID-19

Positive

;))(r_erg;.}(r::as;:g Pr:’:;‘z:lled , FC1 FC2
COVID-19
Negative
preprocessed e
CT.scan Pre-trained
model

images

Fig. 5. Multimodal architecture with pre-trained model (VGG19) used
for cough, X-ray, and CT-scan for COVID-19 classification.

VI. EVALUATION

To evaluate the proposed multimodal system, we passed
test dataset samples in batches of 8. Each sample includes
a cough signal (C), an X-ray image (X), and a CT scan
(CT). These inputs are then fed into the model to generate
a prediction: y; = M(Cy, X;, CT;) where M represents the
trained model. We also performed this evaluation on the
multimodal system with pre-trained models, as well as on
unimodal systems with and without pre-trained models.
The following evaluation metrics are used (Egs. (29)-
(33)), where TP = true positive, TN = true negative, FP =
false positive, and FN = false negative.
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Accuracy = TPV » 100 (29)

TP+TN+FP+FN
Sensitivity = —— 30
ensitivity = —— (30)

e ps s TN
Specificity = TNIEP 31
F1 — score = 2 x Precision x Recall (32)

TN+FP

Precision = —= (33)

TN+FP

VII. RESULT

The results highlight several key insights into the use of
deep learning models. First, for the unimodal systems for
cough, X-ray, and CT scan, the result from Table I shows
the accuracy score as well as the F1-Score of the unimodal
system for cough. Looking at the graphs of the unimodal
and pre-trained unimodal models in Figs. 6 and 7, it is clear
that the model without a pre-trained model (Fig. 6) shows
a flat validation loss throughout. This suggests it may not
be learning during training, which could explain the poor
results (Table I). In Table II, there is improved
performance in accuracy. This shows the importance of
transfer learning on the cough dataset in delivering a better
outcome. The architectural complexity of VGG-19 might
have contributed to this improvement.

The same outcome is also observed for the unimodal
deep learning system for X-ray (Tables III and IV, Figs. 8
and 9); however, it shows an improved FI1-Score in
addition to the accuracy metric. The pre-trained VGG-19
model outperformed the traditional CNN-based deep
learning model (Tables III and I'V). It can also be observed
that overfitting is minimized (Fig. 9), as the training and
validation loss curves are relatively close.

Training vs Validation Loss Over 30 Epochs

—— Training Loss
0.77 —— Validation Loss

Loss

0 5 10 15 20 25 30
Epoch

Fig. 6. Unimodal COVID-19 cough classification—training loss vs
validation loss.

Training vs Validation Loss Over 30 Epochs

—— Training Loss
—— Validation Loss

Loss
° °
3 S
3 B

0 5 10 15 20 25 30
Epoch

Fig. 7. Unimodal COVID-19 cough classification with VGG-19—
training loss vs validation loss.
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TABLE I. EVALUATION FOR UNIMODAL—COUGH

Evaluation metrics Values
Accuracy 50%
Sensitivity 1
Specificity 0
F1-Score 0.6667

Confusion matrix E)Oli)%?}

True Positives (TP) 100

True Negatives (TN) 0

False Positives (FP) 100

False Negatives (FN) 0

TABLE II. EVALUATION FOR UNIMODAL—COUGH VGG-19

Evaluation metrics Values
Accuracy 55%
Sensitivity 0.68
Specificity 0.42
F1-Score 0.6018
Confusion matrix %422 658%
TP 68
N 42
FP 58
FN 32

TABLE III. EVALUATION FOR UNIMODAL—X-RAY

Evaluation metrics Values
Accuracy 98.00%
Sensitivity 1
Specificity 0.960
F1-Score 0.9804

Confusion matrix [E)[gléog]]]
TP 100
N 96
FP 4
FN 0

TABLE IV. EVALUATION FOR UNIMODAL-X-RAY VGG-19

Evaluation metrics Values
Accuracy 99.00%
Sensitivity 1
Specificity 0.98
F1-Score 0.9901
Confusion matrix [E)[gﬁ)é]]]
TP 100
™N 98
FP 2
FN 0

Training vs Validation Loss Over 30 Epochs

025 —— Training Loss
— Validation Loss

0 5 10 15 20 25 30
Epoch

Fig. 8. Unimodal COVID-19 X-ray classification—training loss vs
validation loss.
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Training vs Validation Loss Over 30 Epochs

—— Training Loss
—— Validation Loss

HAS

0 5 10 15 20 25 30
Epoch

Fig. 9. Unimodal COVID-19 X-ray classification with VGG-19—
training loss vs validation loss.

However, this is not the case for the CT scan. The
traditional unimodal deep learning model outperformed
the pre-trained unimodal model for CT scans (Tables V
and VI) in almost all the metrics. One possible explanation
is that the images learned from the pre-trained model may
not generalize well to CT scan data. Both the pre-trained
and traditional models did attempt to address the
overfitting issue during training (Figs. 10 and 11).

TABLE V. EVALUATION FOR UNIMODAL—CT-SCAN

Evaluation metrics Values
Accuracy 91.00%
Sensitivity 0.91
Specificity 0.91
F1-Score 0.91
Confusion matrix {5991 1?}
TP 91
TN 91
FP 9
FN 9

TABLE VI. EVALUATION FOR UNIMODAL-CT-SCAN VGG-19

Evaluation metrics Values
Accuracy 88.50%
Sensitivity 0.80
Specificity 0.97
F1-Score 0.8743
Confusion matrix [[2[3 78 g]]]
TP 80
N 97
FP 3
FN 20

Training vs Validation Loss

06 —— Training Loss

—— Validation Loss

0.5

0.4

Loss

0.2

0.1

0.0
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Fig. 10. Unimodal COVID-19 CT-scan classification—training loss vs
validation loss.

Training vs Validation Loss

—— Training Loss
—— Validation Loss

Loss

0 5 10 15 20 25 30
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Fig. 11. Unimodal COVID-19 CT-scan classification with VGG-19—
training loss vs validation loss.

Moving on to multimodal systems (Tables VII-X), it is
observed that the model leveraging a pre-trained model
and the one without both have the same accuracy of 98%
(Tables VII vs. VIII). However, using the F1-Score, the
non-pre-trained model outperformed the pre-trained
model. This could be explained by the fact that the
multimodal system has learned from three different
datasets and aggregated complementary information from
them. As a result, it is possible to learn unique attributes
from these sources, enabling a more effective COVID-19
classification model.

We also extended the experiment to two additional
pre-trained models—ResNet-18 and MobileNetV2—as
shown in Tables IX and X; however, neither could
outperform the multimodal system developed without a
pre-trained model.

Using the F1-Score, it is also evident that the
non-pre-trained multimodal model performs better than
the unimodal CT scan model proposed in Refs. [17-19],
which reported an F1-Score of 0.9731. The multimodal
system we proposed is enriched by learning from three
diverse datasets. In addition, analyzing the training graphs
(Figs. 12 and 13) shows that the non-pre-trained
multimodal system (Fig. 12) exhibits less overfitting
compared to the VGG-19-based pre-trained multimodal
system (Fig. 13).

TABLE VII. EVALUATION FOR PROPOSED MODEL-MULTIMODAL

Evaluation metrics Values
Accuracy 98.00%
Sensitivity 1
Specificity 0.9600
F1-Score 0.9804

Confusion matrix [E)[glf)(‘)‘]]]
TP 100
N 96
FP 4
FN 0

In Table I, it is evident that the unimodal system without
the pre-trained model correctly identified COVID-19
positive cases (as sensitivity is 1); however, it failed to
identify non-COVID-19 cases (specificity is 0).
Meanwhile, in Table II, the unimodal system equipped
with VGG-19 strikes a balance—sensitivity is 0.68 while
specificity is 0.42. Due to the introduction of the
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pre-trained model, Table II shows improved results over
Table I. It is important to note that in medical diagnosis,
high sensitivity ensures that false negatives are
significantly reduced. The implication of high sensitivity
is a reduced likelihood of predicting that a person does not
have COVID-19 when they actually do.

TABLE VIII. EVALUATION FOR PROPOSED MODE-MULTIMODAL

VGG-19
Evaluation metrics Values
Accuracy 98.00 %
Sensitivity 0.98
Specificity 0.98
F1-Score 0.980
Confusion matrix {ggggzﬁ
TP 98
™N 98
FP 2
FN 2

TABLE IX. EVALUATION FOR PROPOSED MODEL-MULTIMODAL

RESNET-18
Evaluation metrics Values
Accuracy 50.00 %
Sensitivity 1
Specificity 0
F1-Score 0.6667
Confusion matrix E)Oll()%%
TP 100
™ 0
FP 100
FN 0

TABLE X. EVALUATION FOR PROPOSED MODEL-MULTIMODAL

MOBILENETV2
Evaluation metrics Values
Accuracy 96%
Sensitivity 0.96
Specificity 0.96
F1-Score 0.96
. . [[96 4]
Confusion matrix [4 96]]
TP 96
TN 96
FP 4
FN 4
Training vs Validation Loss Over 30 Epochs
0.30 —— Training Loss
—— Validation Loss
0.25
0.20
% 015
0.10
0.00
0 5 10 15 20 25 30

Epoch

Fig. 12. Multimodal COVID-19 classification - training loss vs
validation loss.

The same trend is also observed for X-ray (Tables III
and IV). It is observed that the VGG-19 intervention
improved the specificity score. However, for CT scan

(Tables V and VI), the reverse is the case—the model
without VGG-19 performed better in terms of sensitivity,
accuracy and F1-Score. This shows that the VGG-19
pre-trained model did not complement the CT scan images.

Furthermore, for the multimodal system (Table VII)
without VGG-19, sensitivity is 1, while its specificity
is 0.96. However, for the multimodal system with
VGG-19 (Table VIII), sensitivity is 0.98, and its
specificity is 0.98. The multimodal system without
VGG-19 shows improved sensitivity—meaning it has zero
false negatives.

Training vs Validation Loss

—— Training Loss
—— Validation Loss

0.10

0 5 10 15 20 25 30
Epoch

Fig. 13. Multimodal COVID-19 classification with VGG-19 - training
loss vs validation loss.
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Fig. 14. How datasets contribute to COVID-19 prediction. (a) X-ray.

(b) CT-scan (c). Cough.
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Fig. 14 shows how each dataset contributes to the
prediction of COVID-19. Figs. 14(a) and 14(b) show
bright areas. These bright areas are critical structures that
are used to make decisions. In addition, Fig. 14(c) shows
spikes with higher amplitudes. This indicates that specific
spikes at given times also contributed to the COVID-19
prediction. We used the framework from Refs. [52, 53] to
generate the diagram shown. The diagram illustrates how
the three datasets contributed to COVID-19 prediction. A
similar approach was also adopted in Refs. [54—57].

VIII. DISCUSSIONS

The results highlight several key insights into the use of
deep learning models. First, for the unimodal systems for
cough, X-ray, and CT-scan: the result from Table I shows
the accuracy score as well as the F1-Score of the unimodal
system for cough. In Table II, there is an improved
performance in accuracy. This shows the importance of
transfer learning on the cough dataset to deliver an
improved outcome. A similar outcome is recorded for
unimodal deep learning systems using X-rays. The
pre-trained model for the VGG-19 outperformed the
traditional CNN deep learning model (Tables III and IV)
in both accuracy and F1-Score. However, this is not the
case for the CT scan. The unimodal deep learning model
mostly outperformed the pre-trained unimodal for
CT-scans (Tables V and VI). An explanation for this is that
the images used on the pre-trained models did not
complement the CT-scan images.

VGG-19 pre-trained models are trained on thousands of
images, where edges and structures may be similar to those
found in X-ray images and the visual representation of
cough. Since there is an improvement in the output of
pre-trained unimodal models for cough and X-ray, it
suggests that the structures and textures learned by
VGG-19 complement these unimodal datasets. However,
for CT scans, the edges and textures of the images used in
the pre-training process differ significantly from those in
CT-scan images. For this reason, the CT-scan model
backed with a pre-trained VGG-19 did not perform well.

Moving on to multimodal systems, it is observed that
models that leveraged a pre-trained model and those
without a pre-trained model are close in terms of F1-Score.
Using the F1-Score, the model without the pre-trained
model outperformed (0.9804 F1-Score) the pre-trained
model (0.98 F1-Score). An explanation for this is that since
the multimodal system has learned from three different
datasets, it aggregated complementary information from
them. As a result, there is a high possibility that it learned
the unique attributes from these datasets to deliver an
improved COVID-19 model. On the other hand, for the
pre-trained multimodal system, having already learned the
unique features from these three data sources was
sufficient. Therefore, the pre-trained model was not
necessary. This claim could also be observed in the other
experiments with ResNET-18 and MobileNetV2. In
Tables IX and X, these pre-trained models could not
outperform the multimodal system developed without a
pre-trained model.

The multimodal system is enriched by learning from
three diverse datasets. From Fig. 13, we can observe that
the multimodal system with a pre-trained model over-fits.
This also shows that the VGG-19 pre-trained model was
learning almost entirely from its own training dataset and
not adapting to the new dataset. This contrasts with the
non-pre-trained multimodal model (Fig. 12). These
findings show that for resource-constrained economies
that may not have the capacity to acquire expensive CT
scan equipment, a unimodal system (equipped with
VGG-19) that takes input from an X-ray for the prediction
of COVID-19 would be effective. On the other hand, when
funds are not limited, investment in a multimodal system
is recommended, as it can learn features from various
datasets to ensure an objective diagnosis. While the
training images for the models investigated were limited
to 1300 per dataset, it would be interesting to see the
performance when the training dataset is increased to
about 5000.

IX. CONCLUSION

This study developed a multimodal deep learning system
for classifying COVID-19 using three datasets—cough,
X-ray, and CT scan. Using pre-trained models such as
ResNet-18, VGG-19, and MobileNetV2, the results show
that a multimodal system combining these datasets can
deliver improved performance even without pre-trained
models. This is possible because the multimodal system has
learned sufficiently from different heterogeneous datasets,
making it robust enough to perform well without a
pre-trained model. This is also reflected in the sensitivity
metric: the non-pre-trained multimodal system scored 1,
while the pre-trained model scored 0.98. High sensitivity
indicates fewer false negatives in COVID-19 prediction.
However, this is not the case for the unimodal models
developed for cough and X-ray—their pre-trained versions
strike a balance between sensitivity and specificity,
reducing both false negatives and false positives.

An explanation for this is that the features learned from
VGG-19 complement the training process. On the flip side,
this was not the case for the unimodal deep learning model
developed for the CT scan (based on F1-Score, sensitivity,
and accuracy). It was discovered that the pre-trained model
did not outperform the non-pre-trained version. A possible
explanation is that the features learned by the pre-trained
model do not align with CT scan images. One possible
solution is to investigate, from the pool of available
pre-trained models, which model best aligns with or
improves COVID-19 classification from CT scans. Another
option is to apply image preprocessing to enhance the
appearance of CT scan images. This will be explored in our
future work.

The importance of this research is that it provides a
platform for researchers and medical experts to identify
which dataset combinations could be considered, given the
level of resources at their disposal. For example, a medical
expert might opt for a system with high sensitivity or high
specificity and then decide which model to adopt based on
available resources.
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In summary, for unimodal systems, an X-ray with a
pre-trained VGG-19 model could be reliable it would give
higher accuracy and F1-Score compared to the scores of the
CT scan or cough models. However, for multimodal
systems, a non-pre-trained model yields a better F1-Score.
Deploying the models requires either a cloud platform or a
dedicated computer system hosted locally to handle service
requests. This means that medical facilities with limited
resources might find it difficult to acquire the necessary
hardware or cloud infrastructure to run a multimodal
system. In such cases, a unimodal system could be
considered.

Also, in terms of noise, an improved data preprocessing
method needs to be integrated for CT scans or X-rays. A
preprocessing layer that incorporates a filter for noise
removal could be included. For cough noise, a
preprocessing layer that extracts the segmented cough, as
illustrated earlier, is essential. Regarding patient variability
which could potentially affect the model’s performance
when deployed in different environments large and diverse
datasets are required to sufficiently capture this variability.

While this paper focuses on three datasets X-ray, CT
scan, and cough sound the integration of medical history and
blood test results could further improve prediction accuracy.
In this case, the developed multimodal model will be
adjusted to handle text-based data from test results and
patient history. This implies incorporating Natural
Language Processing (NLP) into the model, which we plan
to explore in future research.
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