
A Conflict-Reduced Task-to-Host Matching 
Scheme for Task Offloading in Edge  

Computing-Enabled IoT Network 
 

Wang Dayong 1,*, Kamalrulnizam Bin Abu Bakar 1, Babangida Isyaku 2, and Lei Liping 3 
1 Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia 

2 Department of Information Technology, Faculty of Computing and Information Technology, Sule Lamido University, 
Kafin Hausa, Nigeria 

3 School of Political Science and Public Administration, East China University of Political Science and Law,  
Shanghai, China 

Email: wangdayong@graduate.utm.my (W.D.); knizam@utm.my (K.B.A.B.); bangis4u@gmail.com (B.I.); 
2437@ecupl.edu.cn (L.L.) 

*Corresponding author 
 
 
 

Abstract—The continuous evolution of applications and the 
introduction of novel service models have significantly 
intensified the computational demands on Internet of Things 
(IoT) Mobile Terminal Devices (MTDs). In order to improve 
service capability, edge computing-enabled IoT shifts the 
computational burden from MTDs to edge computing hosts 
through task offloading. However, current task-to-host 
matching approaches exhibit significant limitations, 
particularly in their inability to anticipate tasks that are 
nearing the completion of data transmission and are about to 
arrive at the edge computing network. This shortcoming 
results in matching conflicts between tasks offloaded 
horizontally across sites and those directly offloaded from 
MTDs. To address this challenge, a Two-layer Asynchronous 
Conflict-reduced Task-to-host Matching (TACTM) scheme is 
proposed. The proposed scheme jointly considers the data 
upload progress of tasks and the dynamic load of edge 
computing hosts, aiming to reduce matching conflicts while 
optimizing task-to-host assignment. Simulation results 
demonstrate that the proposed TACTM scheme outperforms 
existing methods by achieving a 20.79% reduction in average 
conflict ratio, an 8.26% decrease in average processing time, 
a 4.30% drop in average task failure ratio, and a 4.05% 
improvement in average Quality of Experience (QoE).   
 
Keywords—edge computing, internet of things, task 
offloading, task-to-host matching  
 

I. INTRODUCTION 

In recent years, the Internet of Things (IoT) has been 
undergoing rapid and sustained development, driven by 
the continuous emergence of new services and 
applications. This trend has resulted in significantly 
increased computational demands on Mobile Terminal 
Devices (MTDs), due to increasingly complex 
functionalities and service requirements [1, 2]. However, 
the computational capabilities of MTDs are inherently 
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limited by cost and size constraints [3]. These limitations 
result in reduced service responsiveness. Furthermore, as 
most MTDs are battery-powered [4]. intensive 
computational tasks can rapidly drain their limited energy 
resources. 

The advent of task offloading technology has introduced 
a promising solution for alleviating the computational load 
on MTDs. It enables MTDs to offload part or all of their 
tasks to resource-abundant service networks for remote 
processing [5]. Cloud computing platforms possess 
abundant computational resources suitable for executing 
tasks offloaded from MTDs. However, the distance 
between MTDs and cloud platforms is typically  
large [6, 7], resulting in increased data transmission 
latency [8, 9]. In contrast, MTDs are more inclined to 
offload tasks to edge computing networks, owing to the 
significantly reduced communication span between MTDs 
and edge nodes [10, 11]. 

Unfortunately, edge computing hosts have limited 
capacity relative to cloud platforms [12]. When a large 
number of offloaded tasks arrive, it becomes necessary to 
optimize the matching between tasks and execution hosts. 
This problem has been extensively studied, and a variety 
of optimization techniques have been widely introduced, 
including but not limited to: mathematical optimization 
algorithms [13, 14], heuristic algorithms [15, 16],  
game-theoretic approaches [17, 18], and AI-based 
optimization methods [19, 20]. However, existing 
approaches exhibit significant limitations. They lack the 
ability to estimate the arrival time of new tasks, relying 
instead on the current network state and outdated 
offloading decisions to perform task-to-host matching. As 
a result, matching conflicts are likely to arise between 
vertically offloaded tasks from MTDs and horizontally 
offloaded tasks originating from cross-site coordination. 
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To address this challenge, a Two-layer Asynchronous 
Conflict-reduced Task-to-host Matching (TACTM) 
scheme with task data transmission progress tracking is 
proposed to mitigate matching conflicts and improve task 
execution efficiency in edge computing networks. 
Specifically, our main contributions are listed as follows:  

• Conducted a thorough analysis of the suboptimal 
task-to-host matching observed in edge computing 
networks and attributes the issue to the absence of 
effective mechanisms for avoiding matching 
conflicts. 

• Proposed a two-layer asynchronous  
conflict-reduced task-to-host matching scheme, 
which jointly considers task data transmission 
progress, edge host computational load, and 
available resources to minimize matching 
conflicts. 

• Established a simulation environment and 
conducted extensive comparative experiments. 
The simulation results demonstrate that the 
proposed TACTM scheme achieves more effective 
task-to-host matching in edge computing 
networks. Improvements were observed in conflict 
ratio, processing time, task failure ratio, and 
Quality of Experience (QoE). 

The rest of this study is organized as follows. Section II 
examines current task-to-host matching methods and 
highlights their limitations. Section III elaborates on the 
proposed conflict-reduced task-to-host matching scheme. 
Section IV presents the performance evaluation and 
discusses the results. Finally, the conclusion is provided in 
Section V. 

II. LITERATURE REVIEW 

While task-to-host matching optimization in edge 
computing networks has been widely investigated, most 
existing approaches primarily consider the current state of 
the edge network, neglecting tasks that are still 
transmitting data and approaching the network. This 
limitation contributes to a rise in unanticipated matching 
conflicts. 

Early research relied on a centralized model, where a 
single controller was tasked with managing all  
resource-to-task assignments. For example,  
Zhang et al. [21] introduced an algorithm that virtualizes 
resources associated with each Access Points (AP) into a 
unified pool, allocating CPU resources based on task 
requirements and available capacity in each time slot. 
However, this approach does not possess global 
optimization capabilities, and it fails to ensure the 
completion of tasks within the required time frame, as 
resources are allocated on a best-effort basis. Additionally, 
this method does not consider the differences in data 
volume between tasks, limiting its applicability in  
real-world scenarios. 

To enhance adaptability, Tong et al. [22] introduced a 
DQN-based resource matching strategy that jointly 
optimizes task execution time and host load balancing. The 
decision policy is guided by a weighted combination of 
multiple metrics. While the method improves 

multidimensional scheduling balance, its static weight 
configuration struggles to adapt to dynamically changing 
task offloading patterns. 

Ghasemzadeh et al. [23] later presented an enhanced 
Genetic Algorithm (GA) designed to optimize both task 
execution latency and load balancing simultaneously. The 
algorithm analyzes task delays and host workloads to find 
a near-optimal allocation with minimal computational 
overhead. However, it fails to take resource limitations of 
edge hosts into account and ignores the variability in task 
data size, making it less effective in complex, real-world 
environments. 

To overcome the bottlenecks of centralized 
coordination, several studies have explored distributed 
matching strategies to improve responsiveness and 
scalability. Chu et al. [24] introduced a technique that 
breaks down the joint optimization problem into multiple 
smaller, independent sub-problems, facilitating efficient 
allocation of tasks to Virtual Machines (VMs). While this 
method is computationally efficient, it is designed for 
specific network environments and needs re-optimization 
if network conditions change. Furthermore, the parameters 
for VM resources are static, which limits flexibility. 

In large-scale IoT systems, Gao et al. [25] developed a 
distributed framework for resource allocation using  
Multi-Agent Deep Deterministic Policy Gradient 
(MADDPG), in which multiple Deep Deterministic Policy 
Gradient (DDPG) agents optimize task success rates by 
allocating precise computational resources and bandwidth. 
However, this method only considers CPU resource 
constraints, neglecting the storage needs of tasks. 
Additionally, it does not address the issue of 
communication latency between the distributed agents, 
which could impact performance in large-scale settings. 

In order to effectively manage the complexities of  
ever-changing networks and the diverse needs of tasks, 
advanced multi-tier allocation models have been proposed. 
Ren et al. [26] introduced an innovative Deep 
Reinforcement Learning (DRL)-driven framework for task 
offloading and resource allocation, which adapts 
dynamically to optimize task-to-host mappings. This 
method takes into account a variety of parameters, 
including transmission speeds, task processing durations, 
energy expenditure, resource availability, and storage 
requirements. Importantly, the approach does not rely on 
pre-existing knowledge of the network’s status; instead, it 
refines its strategies based on continuous interaction with 
the environment. Despite its potential, the scalability of 
this deep learning model is a concern when the number of 
variables and constraints increases. Additionally, the 
method assumes a fixed number of offloaded tasks, 
limiting its capacity to adjust to fluctuations in task loads. 

Zou et al. [27] presented a novel distributed 
asynchronous approach built on the Asynchronous 
Advantage Actor-Critic (A3C) reinforcement learning 
framework. In this setup, task allocation schedulers are 
distributed across edge locations where APs are situated. 
These schedulers engage in asynchronous communication 
with a centralized controller, enabling the continuous 
update and optimization of resource allocation strategies. 
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Initially, tasks are matched with local resources, but when 
these resources are exhausted, the system attempts to 
horizontally offload tasks to other nearby sites, taking into 
account the predicted task completion times at alternative 
locations. This solution is effective for balancing 
workloads across different sites, but it fails to address 
potential conflicts between the decision to offload tasks 
vertically (to nearby edge sites) versus horizontally (to 
distant edge sites), which can lead to suboptimal 
performance. 

Wang et al. [28] proposed a hybrid method combining 
greedy scheduling with an advanced workload monitoring 
system to enhance task completion rates and reduce system 
delays. In this framework, tasks are initially assigned to the 
local edge hosts based on a greedy allocation approach. A 
higher-level controller continuously observes the resource 
usage across the system and allocates backup resources 
when hosts approach full capacity. If a host is near its limit, 
tasks are redirected horizontally to available hosts. While 
this method helps mitigate timeout failures, it introduces 
latency during the migration process, particularly when 
tasks are first directed to an overloaded host and only 
rerouted once the capacity is exceeded. 

Zhang et al. [29] leverages Federated Learning (FL) 
techniques to optimize task offloading and resource 
allocation. In this study, the control component of the 
machine learning model is deployed on a cloud platform 
to coordinate distributed scheduling nodes across multiple 
edge computing sites. This design facilitates global 
optimization of task offloading and resource allocation 
from a centralized perspective. However, the approach 

does not explicitly address the optimization of horizontal 
offloading of computing tasks across multiple edge nodes. 

In Ref. [30], a Stackelberg game model is employed to 
facilitate fine-grained decision-making for task offloading 
and resource allocation. Building upon this, a federated 
learning-based algorithm is integrated to extract insights 
from historical scheduling patterns, enabling the system to 
progressively accumulate optimization knowledge. This 
hybrid framework effectively combines the strategic 
accuracy of Stackelberg game theory with the global 
learning capabilities of federated learning. Nevertheless, 
one limitation of this approach lies in the relatively long 
learning curve, which may impair the system’s 
responsiveness to dynamic environmental changes. 
Additionally, since IoT devices are directly involved in the 
offloading optimization decision-making process, their 
computational overhead is further increased, potentially 
straining their already limited processing capabilities. 

As discussed above, although existing studies on  
task-to-host matching have explored various optimization 
strategies from different perspectives, they still exhibit 
limitations as presented in Table I. Although many studies 
attempt to optimize task-to-host allocation, existing 
approaches lack consideration for the estimation of arrival 
times for tasks still undergoing transmission. This 
oversight frequently leads to matching conflicts. 
Therefore, designing a matching mechanism that can 
dynamically perceive the transmission progress of tasks, 
adapt to the rapidly changing conditions of complex 
network environments, and effectively reduce scheduling 
conflicts remains a critical and ongoing research challenge 
in IoT systems supported by edge computing. 

TABLE I. COMPARISON OF EXISTING APPROACHES 
Work Technique Strengths Weaknesses 
[21] Lyapunov optimization Lightweight computation Ignores task data volume differences 

[22] DQN Balances load while minimizing 
execution time Static weights lack adaptability 

[23] Genetic Algorithm (GA) High cost-effectiveness Near-optimal, not fully optimal 
[24] Utility-Based Approach Efficient in computation Restricted flexibility 

[25] Multi-Agent Deep Deterministic 
Policy Gradient (MADDPG) Highly adaptable Costly communication 

[26] Deep Reinforcement Learning (DRL) Tiered resource allocation Assume a fixed number of offloaded tasks 

[27] Asynchronous Advantage Actor-
Critic (A3C) Cross-site global optimization Overlooks conflicts between vertical and horizontal 

task offloading 

[28] Greedy Decoupled two-level matching Overlooks conflicts between vertical and horizontal 
task offloading 

[29] Federated Learning (FL) Cross-site global optimization Lack of the optimization of horizontal offloading 
[30] Stackelberg game with FL Refine local decision-making accuracy Heavy computational load on the IoT device side 
 

III. TWO-LAYER ASYNCHRONOUS CONFLICT-REDUCED 
TASK-TO-HOST MATCHING SCHEME 

In this section, the two-layer asynchronous  
conflict-reduced task-to-host matching scheme is 
proposed to optimize the allocation of computational tasks 
to edge hosts. The proposed scheme jointly considers the 
transmission progress of task data and the computational 
load of edge hosts, effectively reducing task timeouts due 
to resource contention. 

We consider an IoT network composed of multiple edge 
computing sites denoted by the set  

𝑀𝑀 = {1, 2, … , 𝑀𝑀}, and numerous devices denoted by the 
set 𝐷𝐷 = {1, 2, … , 𝐷𝐷}, as illustrated in Fig. 1. Each edge site 
consists of a single AP co-located with multiple edge 
hosts, denoted by the set 𝐻𝐻 = {1, 2, … , 𝐻𝐻} . High-speed 
data links are utilized to interconnect the edge computing 
sites, while communication between IoT devices and APs 
is established via wireless connections. Each device in the 
network is capable of generating computation tasks that 
can be offloaded to edge computing sites for processing. 
Let 𝐼𝐼 = {1, 2, … , 𝐼𝐼} denote the set of all tasks generated in 
the system, where each task is indexed by 𝑖𝑖 ∈ 𝐼𝐼. 
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Fig. 1. Network architecture of edge computing-enabled IoT. 

The TACTM scheme is designed with a hierarchical 
two-layer structure, and the algorithms within each layer 
execute independently in an asynchronous manner, as 
illustrated in Fig. 2. The lower layer performs  
task-to-host matching within each individual edge site, 
while the upper layer coordinates task allocation across 
multiple edge sites. while minimizing task matching 
conflicts. 

 

 
Fig. 2. Two-layer asynchronous task-to-host matching architecture. 

A. In-site Task-to-host Matching at the Lower Level 
In the lower-level algorithm, the depth-first approach is 

introduced to provide optimized task-to-host matching 
within each site. To reduce the computational cost of the 
algorithm, pruning is applied to avoid exploring a large 
number of meaningless allocation strategies. 

Differing from previous methods, the computational 
resource demand of each task is recalculated due to the 
delay introduced during task data transmission before 
arriving at the edge computing site, as shown in Eq. (1). 

 𝐶𝐶𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡𝑡𝑡) = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 (1) 

where 𝐶𝐶𝐶𝐶𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡𝑡𝑡)  is the Millions of Instructions Per 

Second (MIPS) required to achieve completion within the 
allotted time at time slot ts. 

Moreover, the available resources of edge hosts are not 
allocated based on instruction counts or percentages, but 
rather in terms of MIPS. This enables support for the 
dynamic variation in computational resource requirements 
caused by changes in the remaining execution time of 
tasks. At each time slot ts, the dynamic variation of 

available computational resources on the edge host is 
determined by Eq. (2). 

 𝐻𝐻𝑗𝑗
𝑐𝑐𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡) = 𝐻𝐻𝑗𝑗

𝑐𝑐𝑐𝑐𝑐𝑐_𝑡𝑡𝑡𝑡𝑡𝑡 − ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) (2) 

where 𝐻𝐻𝑗𝑗
𝑐𝑐𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡) , 𝐻𝐻𝑗𝑗

𝑐𝑐𝑐𝑐𝑐𝑐_𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐_𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡) 

represent the available CPU resources of edge host jjj at 
time slot tststs, the total CPU resources of host jjj, and the 
CPU resources occupied by task iii at time slot tststs, 
respectively. 

Algorithm 1 outlines the procedure for in-site  
task-to-host matching. 
 

Algorithm 1: In-site task-to-host matching 
Input: Tasks pending matching and host status 
Output: In-site matching result 
1. // Define the boundary procedure 
2. procedure boundary 
3.  if Available_CPU_resources == 0 then 
4.   return current_exploration_results 
5.  end if 
6.  for each pending task do  
7.   if a task can be assigned to the host  then 
8.    Accumulate current_value 
9.   else 

10.    Estimate the potential value of the 
current path 

11.    break 
12.   end if 
13.  end for 
14.  return current_value 
15. end procedure 
16. // Define the search procedure 
17. procedure df_search 
18.  if the current path has insufficient value then 
19.   Stop exploring and return 
20.  end if 
21.  if all tasks have been matched then 
22.   Output matching result 
23.  end if 
24.  call procedure boundary 
25.  if (current_value + ) < rest_value then 
26.   Stop exploring and return 
27.  end if 
28.  call df_search recursively 
29.  for each host do 
30.   if available resources > demand then 

31.    Continue the df_search recursively with 
the next task 

32.   end if 
33.  end for 
34. end procedure 
35. // Main program 

36. Compute the CPU resource needs of each task in 
relation to their deadlines 

37. call procedure df_search 
 
In Algorithm 1, the procedure boundary, used to 

compute the matching boundary, is defined (Algorithm 1, 
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lines 2–15). Within this procedure, hosts with insufficient 
available resources are filtered out, as they are not eligible 
for further matching (Algorithm 1, lines 3–5). Then, each 
task is traversed, and the value of the current exploration 
path is computed based on the outcome of attempted 
matchings (Algorithm 1, lines 6–13). Finally, the 
procedure outputs the computed value of the current 
exploration path. In parallel, the procedure df_search is 
defined to perform recursive depth-first exploration of 
task-to-host matchings (Algorithm 1, lines 17–34). Within 
this procedure, two base conditions for terminating the 
search are first checked: the current path has insufficient 
value and all tasks have been successfully matched 
(Algorithm 1, lines 18–23). Next, the boundary procedure 
is invoked to estimate the potential value of the current 
exploration path. If the sum of the current path value and 
the estimated potential value is still lower than the 
remaining optimal value, the search is terminated, and the 
branch is pruned (Algorithm 1, lines 25–27). 
Consequently, the df_search procedure is recursively 
called by iterating over each host. If a host has sufficient 
available resources to meet the task’s requirements, the 
search proceeds recursively to process the next task 
(Algorithm 1, lines 28–32). Finally, in the main program, 
each task's computational resource requirement is updated, 
and the df_search procedure is invoked to initiate the 
search for an optimized matching strategy (Algorithm 1, 
lines 36–37). 

Specifically, the time complexity of the in-site  
task-to-host matching algorithm primarily depends on the 
number of tasks iii and the number of hosts 𝑗𝑗 . In the  
worst-case scenario, each task may be matched to any of 
the 𝑖𝑖 hosts, resulting in a total of 𝑗𝑗𝑖𝑖 possible combinations. 
During each search step, the algorithm evaluates the 
current state and explores potential matches for all hosts, 
with an additional call to the boundary function to estimate 
the value of the current path. This leads to a per-step 
overhead of 𝑂𝑂(𝑖𝑖 ⋅ 𝑗𝑗) , and thus a worst-case total time 
complexity of 𝑂𝑂(𝑖𝑖 ⋅ 𝑗𝑗𝑖𝑖+1) . However, the algorithm 
incorporates pruning strategies based on current value 
checks and upper-bound estimates through the boundary 
procedure, which effectively reduces unnecessary 
exploration. As a result, the actual runtime is significantly 
lower than the worst-case bound, especially when the 
pruning is effective.  

The space complexity of the algorithm is mainly 
determined by the recursion depth and the storage of 
intermediate states. Since the algorithm uses depth-first 
search, the maximum recursion depth corresponds to the 
number of tasks, i.e., 𝑂𝑂(𝑖𝑖) . Additionally, during the 
matching process, the algorithm maintains the state of each 
task and the available resources on each host, which 
requires 𝑂𝑂(𝑖𝑖 + 𝑗𝑗)  space. Therefore, the algorithm is 
relatively efficient and scalable, even in large-scale 
application scenarios. 

B. Cross-site Matching at the Upper Level 
The upper-layer algorithm is responsible for monitoring 

the task backlog at each site and performing cross-site 
task-to-host matching to allocate them to idle hosts. 

However, new tasks generated by IoT devices 
continuously arrive at edge computing sites through 
wireless data transmission. To avoid conflicts between 
horizontally offloaded tasks (i.e., cross-site) and newly 
arriving tasks from the vertical direction (i.e., from 
devices), TACTM continuously monitors the transmission 
progress of uploaded task data and estimates the arrival 
time of new tasks at their target edge computing sites. 

Two-layer Asynchronous Conflict-reduced Task-to-
host Matching (TACTM) establishes a task arrival record 
table for each edge computing site, as presented in Fig. 3. 
The arrival timeslot of each task is estimated based on its 
data transmission progress. Since the transmission speed 
of task data varies dynamically in each timeslot, the 
estimated arrival time of tasks at the edge computing sites 
is also updated dynamically in real time, as shown in  
Eq. (3). 

 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

+ 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (3) 

where 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 correspond to the time when 
the task data reaches the edge network and the present 
time, respectively. 

Thus, TACTM is able to simulate task-to-host matching 
in advance at each site by leveraging the in-site matching 
algorithm and temporarily reserving available host 
resources based on the predicted incoming tasks. In this 
way, cross-site task matching conflicts are reduced, as 
computing resources at the target site have already been 
pre-allocated to upcoming tasks. 

 

 
Fig. 3. Task arrival estimation. 

The upper-level cross-site matching algorithm 
leverages A3C reinforcement learning, as it must jointly 
account for the status of all hosts across the edge network 
and the task accumulation at each site. To operate 
effectively in a dynamic environment, the algorithm must 
support adaptive learning and real-time optimization. 
Accordingly, the definitions of state, action, and loss are 
as follows. 

State space: Define S as the set of all possible system 
states. At each time slot st, the system occupies a state s(ts) 
such that s(ts) ∈ S, which can be expressed as Eq. (4): 

 𝑆𝑆(𝑡𝑡𝑡𝑡) = �𝐶𝐶𝑀𝑀𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡), 𝐴𝐴𝐴𝐴𝑀𝑀𝑚𝑚

𝑗𝑗 (𝑡𝑡𝑡𝑡)� (4) 

where 𝑆𝑆(𝑡𝑡𝑡𝑡) is the system state at time st, 𝐶𝐶𝑀𝑀𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is 

the required CPU MIPS for pending tasks, and 𝐴𝐴𝐴𝐴𝑀𝑀𝑚𝑚
𝑗𝑗  is 
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the available CPU MIPS of host j at edge computing site 
m. 

Action space: In each time slot ts, decision-making is 
performed by the intelligent agent, aiming to optimize the 
system reward derived from task-to-host mapping. Denote 
A as the action space; each composite action is represented 
as Eq. (5): 

 𝐴𝐴𝑖𝑖(𝑡𝑡𝑡𝑡) = �𝐻𝐻𝑚𝑚
𝑗𝑗

𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 (5) 

where ( )iA ts  and j
mH  represent the decision to assign 

task i at timeslot ts and host j at edge computing site m, 
respectively. In addition, 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  represents a decision 
where the task remains unmatched to an edge computing 
host during the current inference cycle. In actual 
implementation, the neural network inference yields a 
probability distribution indicating the likelihood of 
assigning the task to each edge computing host, as shown 
in Fig. 4.  

 

 
Fig. 4. Selection of model inference results. 

Based on this distribution, TACTM directs the task to 
the host associated with the highest probability. The 
detailed logic for host selection is formulated in Eq. (6). 

 𝐻𝐻𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐻𝐻𝑗𝑗
 𝑃𝑃𝑖𝑖,𝑗𝑗 (6) 

where 𝐻𝐻𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡𝑡)denotes the target host matched for 

task i at time slot ts, and 𝑃𝑃𝑖𝑖,𝑗𝑗  represents the matching 
preference probability of task i for host j. 

Reward: Since the objective of cross-site task-to-host 
matching is to maximize the allocation of available 
computational resources to pending tasks, the unified 
system reward is formally defined as Eq. (7): 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = − ∑ 𝐶𝐶𝑀𝑀𝑘𝑘
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒

∑ 𝐶𝐶𝑀𝑀𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (7) 

where 𝐶𝐶𝑀𝑀𝑘𝑘
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒 and 𝐶𝐶𝑀𝑀𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 represent the amount of 
CPU MIPS required by the matched task and the total 
amount of CPU MIPS required by all pending tasks, 
respectively. 

Since the upper and lower layers of the TACTM 
algorithm operate asynchronously, there is a certain 
probability that they may produce different matching 
decisions for the same task. To address this issue, TACTM 
assigns a lower priority to the decisions made by the  
cross-site matching algorithm in the upper layer, compared 
to those made by the in-site task-to-host matching 
algorithm in the lower layer. When a conflict occurs 

between the two layers, the cross-site matching decision is 
discarded as shown in Eq. (8). 

 𝐻𝐻𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �

𝐻𝐻𝑖𝑖
𝑖𝑖𝑖𝑖−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   if 𝐻𝐻𝑖𝑖

𝑖𝑖𝑖𝑖−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≠  none
𝐻𝐻𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  otherwise
 (8) 

where 𝐻𝐻𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 indicates the final target host for task i, and 

𝐻𝐻𝑖𝑖
𝑖𝑖𝑖𝑖−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  denotes the in-site host selected by the  

lower-layer algorithm, and 𝐻𝐻𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the cross-site 

candidate host selected by the upper-layer algorithm. 
A summary of the workflow for cross-site task-to-host 

matching is presented in Algorithm 2. 
 

Algorithm 2: Cross-site task-to-host matching 
Input: Status of available computing resources across 
all hosts and the set of pending tasks within each edge 
site 
Output: Cross-site matching result 
1. for each time slot do 
2.  if number_of_accumulated_tasks > 0 then 

3. 
  Recalculate the computational resource 

requirements of each task according to the 
current time 

4.   Update the system state S 

5.   Infer the matching results A and select the 
match with the highest probability 

6.   Validate the matching to avoid duplicate 
assignments 

7.   Delete corresponding tasks from the 
pending queue 

8.   Output matching result 
9.  end if 

10. end for 
 
In Algorithm 2, the outer loop drives the algorithm to 

operate continuously at each timeslot (Algorithm 2, lines 1 
and 10). At the beginning of each timeslot, the algorithm 
checks whether there is any task backlog at the edge 
computing sites. If no backlog is detected, cross-site task 
matching is skipped (Algorithm 2, lines 2–9). Conversely, 
if some sites do have accumulated tasks, the computational 
resource requirements of the queued tasks are recalculated 
based on the current time, and the system state parameters 
used by the reinforcement learning algorithm are updated 
accordingly (Algorithm 2, lines 3–4). Next, an A3C-based 
reinforcement learning model infers the target host 
recommendations for each task. To prevent duplicate 
assignments, the algorithm checks whether a task has 
already been matched locally within a site, since the  
upper-layer and lower-layer matching algorithms operate 
asynchronously. When a conflict occurs between the two 
layers, the cross-site matching decision is discarded 
(Algorithm 2, lines 5–6). Subsequently, successfully 
matched tasks are removed from the pending queue, and 
the matching results are recorded as output (Algorithm 2, 
lines 7–8). 

Specifically, the time complexity of the A3C algorithm 
primarily depends on the number of agents 𝑀𝑀, the number 
of interaction steps each agent performs with the 
environment 𝑇𝑇, and the computational cost of the neural 

0 1  ,  ,  ... i jTask H H H 
  ...

Priority ordering 
for matching

Target hosts
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network model, including both forward and backward 
passes. Overall, the time complexity per update can be 
expressed as 𝑂𝑂(𝑀𝑀 ⋅ 𝑇𝑇 ⋅ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), where 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 denotes the 
cost of a single forward-backward cycle of the model. In 
practical applications, A3C leverages asynchronous 
parallel execution, allowing multiple agents to run 
concurrently and significantly improving training 
efficiency, despite the theoretical linear growth in 
computational cost. This makes it well-suited for the  
large-scale state–action space problem addressed in this 
study. 

The actual deployment of the upper-layer algorithm 
should be determined based on the application scenario, as 
reinforcement learning algorithms incur a certain level of 
learning overhead. In scenarios where edge computing 
network resources are abundant, the upper-layer algorithm 
should be deployed at the edge network layer to reduce 
network transmission latency. In contrast, it can be 
deployed on a resource-rich cloud computing platform to 
improve the algorithm’s execution speed. 

IV. RESULT AND DISCUSSION 

In this section, the experimental results are presented 
and thoroughly discussed. The performance of the 
proposed TACTM scheme is assessed through  
simulation-based evaluation. Initially, the simulation 
environment, system configurations, and parameter 
settings are introduced. Subsequently, the outcomes are 
analyzed from various perspectives. 

TABLE II. PARAMETER SETTINGS IN THE SIMULATION 

No. Parameters Value 
1. Duration of simulation (Mins) 30 
2. Number of edge computing site 10 
3. Number of host in edge computing site 10 
4. MIPS of host on edge network 10,000 
5. Bandwidth of WLAN (Mbps) 100 
6. Data transmission model MMPP/M1 
7. Number of mobile IoT devices 1000–4000 
8. Task length (GI) 1–45 
9. Task data size (KB) 0.5–2500 

 

A. Simulation Settings 
Performance verification of the TACTM mechanism 

was carried out through simulation trials. For this purpose, 
the EdgeCloudSim [31] tool was adopted to emulate the 
edge computing offloading environment. The 
experimental platform utilized a machine configured with 
an Intel Core i7 processor and 16 GB RAM to ensure stable 
simulation execution. To evaluate the adaptability of the 
TACTM scheme, task heterogeneity is incorporated into 
the experimental setup. Light and heavy computation tasks 
are randomly initiated by IoT devices in a mixed manner. 
The task lengths vary by up to a factor of 45. In addition, 
the size of the data associated with each task also differs. 
Specific configuration details are presented in Table II. 

The simulation adopts a real-world distribution of 
computing sites, where 10 base stations are randomly 
selected from those deployed by Optus in the CBD area of 
Melbourne, Australia, to serve as access points for the edge 

computing network, covering a total area of 6.2 square 
kilometers [32], as shown in Fig. 5. 

 

 
Fig. 5. The geographical distribution of edge computing sites.  

In order to assess the effectiveness of the TACTM 
scheme, the average conflict ratio, average processing 
time, average multiple horizontal offload ratio, average 
task failure ratio, and average QoE are adopted as 
evaluation metrics for comparison with benchmark 
methods. 

The task-to-host matching scheme designed to 
implement similar functionality was selected as the 
benchmark. The specifics are described below: 

• First-Fit [31]. The most classic and widely adopted 
task-to-host mapping method. It checks hosts one 
by one for each task and stops when it finds the 
first host that meets the resource requirements of 
the task. It serves as the baseline in this study. 

• M2TORA [33]. This approach employs  
multi-agent reinforcement learning to manage all 
hosts in the edge computing network as a shared 
resource pool, enabling coordinated optimization 
of task allocation. 

• Vanilla-A3C [34]. This approach leverages deep 
reinforcement learning and employs asynchronous 
parallelism to optimize the task allocation strategy. 

The following Section B presents a detailed discussion 
of the simulation results and numerical analysis based on 
this environment.  

B. Analysis of Results and Discussion 
Reducing matching conflicts is one of the primary 

objectives of this study. Fig. 6 presents a comparison of the 
average conflict ratio under varying numbers of Mbile IoT 
devices between the proposed TACTM scheme and the 
benchmark algorithms. It can be observed that the baseline 
method exhibits the highest conflict ratio, while TACTM 
achieves the lowest. This is primarily because the baseline 
approach greedily assigns tasks to hosts that satisfy 
computing resource requirements, while completely 
ignoring potential matching conflicts between horizontally 
and vertically offloaded tasks.  
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Additionally, although the two benchmark algorithms 
do not incorporate a conflict-aware assignment 
mechanism, their reinforcement learning techniques 
enable them to dynamically adapt to changes in the 
network environment. During this adaptive process, 
certain patterns of potential conflicts can be implicitly 
learned, resulting in a lower conflict ratio compared to the 
baseline. In contrast, the TACTM scheme features  
task-arrival awareness by tracking the data transmission 
progress of each task, which allows it to more effectively 
reduce the likelihood of task matching conflicts. 

 

 
Fig. 6. Average conflict ratio with different number of IoT devices. 

Fig. 7 illustrates the average processing time of four 
different task offloading schemes as the number of IoT 
devices increases from 1000 to 4000. The processing time 
is measured in seconds. The First-Fit algorithm exhibits 
the highest average processing time, primarily due to a 
high rate of task matching conflicts, which results in 
frequent execution delays. Additionally, this method lacks 
global optimization capabilities and relies on a greedy 
strategy to select target hosts. In contrast, M2TORA and 
Vanilla-A3C demonstrate lower average processing times, 
as both incorporate self-learning mechanisms and global 
optimization capabilities. However, M2TORA makes host 
allocation decisions during the offloading stage, without 
accounting for the uncertainty in task arrival times caused 
by interference during subsequent data transmission. On 
the other hand, Vanilla-A3C optimizes host matching 
based on tasks that have already arrived at the edge 
computing site, leading to more accurate task state 
information and thus lower processing time. However, due 
to the lack of explicit conflict control mechanisms, 
Vanilla-A3C still shows a higher processing time 
compared to the TACTM scheme. 

There is a clear correlation between task timeouts and 
processing time, as higher processing times tend to result 
in an increased task failure ratio. Fig. 8 presents the 
average task failure ratio of the four task matching 
schemes as the number of IoT devices increases. The 

failure ratio is expressed as a percentage. Since the 
baseline method shows the highest processing time, it also 
results in the highest task failure ratio. In comparison, the 
benchmark schemes achieve lower failure ratios than the 
baseline. As anticipated, the TACTM scheme consistently 
achieves the lowest failure ratio among all methods. In 
particular, when the number of Mobile IoT Devices 
reaches 2500, the difference in average failure ratio 
between TACTM and Vanilla-A3C becomes notable, 
reaching 2.84%. This gap further widens to 9.65% when 
the devices count increases to 4000. These findings 
underscore the advantage of TACTM in reducing task 
failure rates, especially in scenarios with higher devices 
density in IoT networks. 

 

 
Fig. 7. Average processing time with different number of IoT devices. 

 
Fig. 8. Average task failure ratio with different number of IoT devices. 

Fig. 9 illustrates the difference in user-perceived QoE 
when using IoT services, based on task offloading 
optimized by different matching methods. The TACTM 
scheme consistently delivers the highest QoE under all 
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devices quantities, which highlights the superior 
performance of this approach. Even at a scale of 4000 
devices, TACTM achieves significantly better QoE 
compared to other schemes, indicating strong stability and 
reliability in large-scale environments. 

 

 
Fig. 9. Average QoE with different number of IoT devices. 

In comparison, M2TORA and Vanilla-A3C perform 
less effectively in large-scale scenarios, as reflected by a 
substantial drop in QoE. Moreover, the turning point at 
which the QoE begins to decline rapidly occurs later under 
TACTM. Specifically, a noticeable decline in QoE for 
TACTM begins when the number of devices reaches 3000. 
In contrast, the benchmark methods experience a sharp 
decline in QoE at an earlier stage, suggesting limitations in 
scalability and adaptability. 

In summary, the experimental results demonstrate that 
the proposed TACTM method outperforms existing 
approaches across various scenarios in terms of conflict 
ratio, processing time, task failure rate, and QoE, 
particularly under different scales of IoT device 
deployment. The consistent improvements observed 
throughout the experiments highlight the effectiveness and 
robustness of TACTM in addressing the challenges of task 
offloading in edge computing environments. 

V. CONCLUSION 

This study investigates the task offloading problem in 
edge computing-enabled IoT networks and introduces a 
novel scheme, termed TACTM. The proposed scheme 
aims to improve task execution efficiency and enhance 
overall IoT network performance by minimizing matching 
conflicts through the optimized task-to-host matching 
process. A detailed analysis of existing methods highlights 
their limitations, especially in managing tasks that are 
nearing the end of data transmission and approaching the 
edge computing sites. Such scenarios frequently result in 
matching conflicts during the offloading phase. 

To address these issues, the TACTM scheme is 
designed by jointly considering the task data transmission 
progress and the dynamic load of edge computing hosts. 
The effectiveness of TACTM is validated through the 

development of a simulation environment and extensive 
comparative experiments. Experimental results 
demonstrate that, compared to existing methods, TACTM 
achieves significant improvements in multiple 
performance metrics. Specifically, it reduces the average 
conflict ratio by 20.79%, shortens the average processing 
time by 8.26%, lowers the average task failure ratio  
by 4.30%, and improves the average QoE by 4.05%. 

Although the TACTM scheme demonstrates strong 
performance in simulation experiments, certain limitations 
of the current study are acknowledged. Further research is 
needed to extend TACTM to scenarios involving more 
diverse task types and more complex network topologies. 
In addition, we plan to explore methods for optimizing 
device energy consumption without compromising latency 
performance. Through these future efforts, TACTM is 
expected to offer a more comprehensive and effective 
solution to the task offloading problem in edge  
computing-enabled IoT environments. 

Overall, the proposed TACTM scheme provides an 
effective solution to the task-to-host matching problem in 
edge computing-enabled IoT networks. By reducing 
matching conflicts and optimizing task allocation, 
TACTM significantly enhances task execution efficiency 
and overall IoT network performance. As edge computing 
technologies continue to evolve and application scenarios 
become increasingly diverse, TACTM is expected to offer 
valuable theoretical and practical contributions to IoT 
network performance optimization, while also serving as a 
foundation and inspiration for future research and  
real-world applications. 
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