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Abstract—The continuous evolution of applications and the
introduction of novel service models have significantly
intensified the computational demands on Internet of Things
(IoT) Mobile Terminal Devices (MTDs). In order to improve
service capability, edge computing-enabled IoT shifts the
computational burden from MTDs to edge computing hosts
through task offloading. However, current task-to-host
matching approaches exhibit significant limitations,
particularly in their inability to anticipate tasks that are
nearing the completion of data transmission and are about to
arrive at the edge computing network. This shortcoming
results in matching conflicts between tasks offloaded
horizontally across sites and those directly offloaded from
MTDs. To address this challenge, a Two-layer Asynchronous
Conflict-reduced Task-to-host Matching (TACTM) scheme is
proposed. The proposed scheme jointly considers the data
upload progress of tasks and the dynamic load of edge
computing hosts, aiming to reduce matching conflicts while
optimizing task-to-host assignment. Simulation results
demonstrate that the proposed TACTM scheme outperforms
existing methods by achieving a 20.79% reduction in average
conflict ratio, an 8.26% decrease in average processing time,
a 4.30% drop in average task failure ratio, and a 4.05%
improvement in average Quality of Experience (QoE).
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I. INTRODUCTION

In recent years, the Internet of Things (IoT) has been
undergoing rapid and sustained development, driven by
the continuous emergence of new services and
applications. This trend has resulted in significantly
increased computational demands on Mobile Terminal
Devices (MTDs), due to increasingly complex
functionalities and service requirements [1, 2]. However,
the computational capabilities of MTDs are inherently
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limited by cost and size constraints [3]. These limitations
result in reduced service responsiveness. Furthermore, as
most MTDs are battery-powered [4]. intensive
computational tasks can rapidly drain their limited energy
resources.

The advent of task offloading technology has introduced
a promising solution for alleviating the computational load
on MTDs. It enables MTDs to offload part or all of their
tasks to resource-abundant service networks for remote
processing [5]. Cloud computing platforms possess
abundant computational resources suitable for executing
tasks offloaded from MTDs. However, the distance
between MTDs and cloud platforms is typically
large [6, 7], resulting in increased data transmission
latency [8, 9]. In contrast, MTDs are more inclined to
offload tasks to edge computing networks, owing to the
significantly reduced communication span between MTDs
and edge nodes [10, 11].

Unfortunately, edge computing hosts have limited
capacity relative to cloud platforms [12]. When a large
number of offloaded tasks arrive, it becomes necessary to
optimize the matching between tasks and execution hosts.
This problem has been extensively studied, and a variety
of optimization techniques have been widely introduced,
including but not limited to: mathematical optimization
algorithms [13, 14], heuristic algorithms [15, 16],
game-theoretic approaches [17, 18], and Al-based
optimization methods [19, 20]. However, existing
approaches exhibit significant limitations. They lack the
ability to estimate the arrival time of new tasks, relying
instead on the current network state and outdated
offloading decisions to perform task-to-host matching. As
a result, matching conflicts are likely to arise between
vertically offloaded tasks from MTDs and horizontally
offloaded tasks originating from cross-site coordination.

1449



Journal of Advances in Information Technology, Vol. 16, No. 10, 2025

To address this challenge, a Two-layer Asynchronous
Conflict-reduced Task-to-host Matching (TACTM)
scheme with task data transmission progress tracking is
proposed to mitigate matching conflicts and improve task
execution efficiency in edge computing networks.
Specifically, our main contributions are listed as follows:

e Conducted a thorough analysis of the suboptimal
task-to-host matching observed in edge computing
networks and attributes the issue to the absence of
effective mechanisms for avoiding matching
conflicts.

e  Proposed a two-layer asynchronous
conflict-reduced task-to-host matching scheme,
which jointly considers task data transmission
progress, edge host computational load, and

available resources to minimize matching
conflicts.
e FEstablished a simulation environment and

conducted extensive comparative experiments.
The simulation results demonstrate that the
proposed TACTM scheme achieves more effective
task-to-host matching in edge computing
networks. Improvements were observed in conflict
ratio, processing time, task failure ratio, and
Quality of Experience (QoE).

The rest of this study is organized as follows. Section II
examines current task-to-host matching methods and
highlights their limitations. Section III elaborates on the
proposed conflict-reduced task-to-host matching scheme.
Section IV presents the performance evaluation and
discusses the results. Finally, the conclusion is provided in
Section V.

II. LITERATURE REVIEW

While task-to-host matching optimization in edge
computing networks has been widely investigated, most
existing approaches primarily consider the current state of
the edge network, neglecting tasks that are still
transmitting data and approaching the network. This
limitation contributes to a rise in unanticipated matching
conflicts.

Early research relied on a centralized model, where a
single controller was tasked with managing all
resource-to-task assignments. For example,
Zhang et al. [21] introduced an algorithm that virtualizes
resources associated with each Access Points (AP) into a
unified pool, allocating CPU resources based on task
requirements and available capacity in each time slot.
However, this approach does not possess global
optimization capabilities, and it fails to ensure the
completion of tasks within the required time frame, as
resources are allocated on a best-effort basis. Additionally,
this method does not consider the differences in data
volume between tasks, limiting its applicability in
real-world scenarios.

To enhance adaptability, Tong et al. [22] introduced a
DQN-based resource matching strategy that jointly
optimizes task execution time and host load balancing. The
decision policy is guided by a weighted combination of
multiple metrics. While the method improves

multidimensional scheduling balance, its static weight
configuration struggles to adapt to dynamically changing
task offloading patterns.

Ghasemzadeh et al. [23] later presented an enhanced
Genetic Algorithm (GA) designed to optimize both task
execution latency and load balancing simultaneously. The
algorithm analyzes task delays and host workloads to find
a near-optimal allocation with minimal computational
overhead. However, it fails to take resource limitations of
edge hosts into account and ignores the variability in task
data size, making it less effective in complex, real-world
environments.

To overcome the bottlenecks of centralized
coordination, several studies have explored distributed
matching strategies to improve responsiveness and
scalability. Chu et al. [24] introduced a technique that
breaks down the joint optimization problem into multiple
smaller, independent sub-problems, facilitating efficient
allocation of tasks to Virtual Machines (VMs). While this
method is computationally efficient, it is designed for
specific network environments and needs re-optimization
if network conditions change. Furthermore, the parameters
for VM resources are static, which limits flexibility.

In large-scale IoT systems, Gao et al. [25] developed a
distributed framework for resource allocation using
Multi-Agent Deep Deterministic Policy Gradient
(MADDPG), in which multiple Deep Deterministic Policy
Gradient (DDPG) agents optimize task success rates by
allocating precise computational resources and bandwidth.
However, this method only considers CPU resource
constraints, neglecting the storage needs of tasks.
Additionally, it does not address the issue of
communication latency between the distributed agents,
which could impact performance in large-scale settings.

In order to effectively manage the complexities of
ever-changing networks and the diverse needs of tasks,
advanced multi-tier allocation models have been proposed.
Ren et al. [26] introduced an innovative Deep
Reinforcement Learning (DRL)-driven framework for task
offloading and resource allocation, which adapts
dynamically to optimize task-to-host mappings. This
method takes into account a variety of parameters,
including transmission speeds, task processing durations,
energy expenditure, resource availability, and storage
requirements. Importantly, the approach does not rely on
pre-existing knowledge of the network’s status; instead, it
refines its strategies based on continuous interaction with
the environment. Despite its potential, the scalability of
this deep learning model is a concern when the number of
variables and constraints increases. Additionally, the
method assumes a fixed number of offloaded tasks,
limiting its capacity to adjust to fluctuations in task loads.

Zou et al. [27] presented a novel distributed
asynchronous approach built on the Asynchronous
Advantage Actor-Critic (A3C) reinforcement learning
framework. In this setup, task allocation schedulers are
distributed across edge locations where APs are situated.
These schedulers engage in asynchronous communication
with a centralized controller, enabling the continuous
update and optimization of resource allocation strategies.
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Initially, tasks are matched with local resources, but when
these resources are exhausted, the system attempts to
horizontally offload tasks to other nearby sites, taking into
account the predicted task completion times at alternative
locations. This solution is effective for balancing
workloads across different sites, but it fails to address
potential conflicts between the decision to offload tasks
vertically (to nearby edge sites) versus horizontally (to
distant edge sites), which can lead to suboptimal
performance.

Wang et al. [28] proposed a hybrid method combining
greedy scheduling with an advanced workload monitoring
system to enhance task completion rates and reduce system
delays. In this framework, tasks are initially assigned to the
local edge hosts based on a greedy allocation approach. A
higher-level controller continuously observes the resource
usage across the system and allocates backup resources
when hosts approach full capacity. If a host is near its limit,
tasks are redirected horizontally to available hosts. While
this method helps mitigate timeout failures, it introduces
latency during the migration process, particularly when
tasks are first directed to an overloaded host and only
rerouted once the capacity is exceeded.

Zhang et al. [29] leverages Federated Learning (FL)
techniques to optimize task offloading and resource
allocation. In this study, the control component of the
machine learning model is deployed on a cloud platform
to coordinate distributed scheduling nodes across multiple
edge computing sites. This design facilitates global
optimization of task offloading and resource allocation
from a centralized perspective. However, the approach

does not explicitly address the optimization of horizontal
offloading of computing tasks across multiple edge nodes.

In Ref. [30], a Stackelberg game model is employed to
facilitate fine-grained decision-making for task offloading
and resource allocation. Building upon this, a federated
learning-based algorithm is integrated to extract insights
from historical scheduling patterns, enabling the system to
progressively accumulate optimization knowledge. This
hybrid framework effectively combines the strategic
accuracy of Stackelberg game theory with the global
learning capabilities of federated learning. Nevertheless,
one limitation of this approach lies in the relatively long
learning curve, which may impair the system’s
responsiveness to dynamic environmental changes.
Additionally, since [oT devices are directly involved in the
offloading optimization decision-making process, their
computational overhead is further increased, potentially
straining their already limited processing capabilities.

As discussed above, although existing studies on
task-to-host matching have explored various optimization
strategies from different perspectives, they still exhibit
limitations as presented in Table I. Although many studies
attempt to optimize task-to-host allocation, existing
approaches lack consideration for the estimation of arrival
times for tasks still undergoing transmission. This
oversight frequently leads to matching conflicts.
Therefore, designing a matching mechanism that can
dynamically perceive the transmission progress of tasks,
adapt to the rapidly changing conditions of complex
network environments, and effectively reduce scheduling
conflicts remains a critical and ongoing research challenge
in [oT systems supported by edge computing.

TABLE I. COMPARISON OF EXISTING APPROACHES

Work Technique Strengths Weaknesses
[21] Lyapunov optimization Lightweight computation Ignores task data volume differences
Balances load while minimizing . . .
[22] DON execution time Static weights lack adaptability
[23] Genetic Algorithm (GA) High cost-effectiveness Near-optimal, not fully optimal
[24] Utility-Based Approach Efficient in computation Restricted flexibility
Multi-Agent Deep Deterministic . .
[25] Policy Gradient (MADDPG) Highly adaptable Costly communication
[26] Deep Reinforcement Learning (DRL) Tiered resource allocation Assume a fixed number of offloaded tasks
[27] Asynchronous Advantage Actor- Cross-site elobal optimization Overlooks conflicts between vertical and horizontal
Critic (A3C) g P task offloading
. Overlooks conflicts between vertical and horizontal
[28] Greedy Decoupled two-level matching task offloading
[29] Federated Learning (FL) Cross-site global optimization Lack of the optimization of horizontal offloading
[30] Stackelberg game with FL Refine local decision-making accuracy Heavy computational load on the IoT device side
III. TwWO-LAYER ASYNCHRONOUS CONFLICT-REDUCED M ={1,2,...,M}, and numerous devices denoted by the
TASK-TO-HOST MATCHING SCHEME set D = {1, 2, ..., D}, as illustrated in Fig. 1. Each edge site
. . consists of a single AP co-located with multiple edge
In this section, the two-layer asynchronous hosts. denoted b & the set H = {1,2, ..., H} Hip hes eg 4
conflict-reduced task-to-host matching scheme is ’ Y = L2, M. HIgHSP

proposed to optimize the allocation of computational tasks
to edge hosts. The proposed scheme jointly considers the
transmission progress of task data and the computational
load of edge hosts, effectively reducing task timeouts due
to resource contention.

We consider an [oT network composed of multiple edge
computing sites denoted by the set
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data links are utilized to interconnect the edge computing
sites, while communication between IoT devices and APs
is established via wireless connections. Each device in the
network is capable of generating computation tasks that
can be offloaded to edge computing sites for processing.
Letl = {1, 2, ...,1} denote the set of all tasks generated in
the system, where each task is indexed by i € I.
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Fig. 1. Network architecture of edge computing-enabled IoT.

The TACTM scheme is designed with a hierarchical
two-layer structure, and the algorithms within each layer
execute independently in an asynchronous manner, as
illustrated in Fig. 2. The Ilower layer performs
task-to-host matching within each individual edge site,
while the upper layer coordinates task allocation across
multiple edge sites. while minimizing task matching
conflicts.
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Fig. 2. Two-layer asynchronous task-to-host matching architecture.

A. In-site Task-to-host Matching at the Lower Level

In the lower-level algorithm, the depth-first approach is
introduced to provide optimized task-to-host matching
within each site. To reduce the computational cost of the
algorithm, pruning is applied to avoid exploring a large
number of meaningless allocation strategies.

Differing from previous methods, the computational
resource demand of each task is recalculated due to the
delay introduced during task data transmission before
arriving at the edge computing site, as shown in Eq. (1).

Instructions required
CPUgIEIé’S(tS) = Time left before the deadline (1)
where CPURE5(ts) is the Millions of Instructions Per
Second (MIPS) required to achieve completion within the
allotted time at time slot #s.

Moreover, the available resources of edge hosts are not
allocated based on instruction counts or percentages, but
rather in terms of MIPS. This enables support for the
dynamic variation in computational resource requirements
caused by changes in the remaining execution time of
tasks. At each time slot ts, the dynamic variation of

available computational resources on the edge host is
determined by Eq. (2).

Hjcpu_avl (ts) — Hjcpu_tot _ Z Taskicpu_exe(ts) (2)

where HP“¥(ts) | HP™ and Task“*(ts)

represent the available CPU resources of edge host jjj at
time slot tststs, the total CPU resources of host jjj, and the
CPU resources occupied by task iii at time slot tststs,
respectively.

Algorithm 1 outlines the procedure for in-site
task-to-host matching.

Algorithm 1: In-site task-to-host matching
Input: Tasks pending matching and host status
Output: In-site matching result

1. // Define the boundary procedure

2.  procedure boundary

3 if Available CPU resources == 0 then
4. | return current_exploration_results
5. end if
6

7

8

9

for each pending task do
if a task can be assigned to the host then
| Accumulate current value
else
Estimate the potential value of the

10. current path
11. break

12. end if

13. end for

14. return current value

15. end procedure
16. // Define the search procedure
17. procedure df search

18. if the current path has insufficient value then

19. ‘ Stop exploring and return

20. end if

21. if all tasks have been matched then

22. | Output matching result

23. end if

24. call procedure boundary

25. if (current value + ) <rest value then

26. | Stop exploring and return

27. end if

28. call df search recursively

29. for each host do

30. if available resources > demand then
Continue the df search recursively with

31.
the next task

32. end if

33. end for

34. end procedure

35. // Main program

36 Compute the CPU resource needs of each task in
" relation to their deadlines

37. call procedure df search

In Algorithm 1, the procedure boundary, used to
compute the matching boundary, is defined (Algorithm 1,
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lines 2—15). Within this procedure, hosts with insufficient
available resources are filtered out, as they are not eligible
for further matching (Algorithm 1, lines 3-5). Then, each
task is traversed, and the value of the current exploration
path is computed based on the outcome of attempted
matchings (Algorithm 1, lines 6-13). Finally, the
procedure outputs the computed value of the current
exploration path. In parallel, the procedure df search is
defined to perform recursive depth-first exploration of
task-to-host matchings (Algorithm 1, lines 17-34). Within
this procedure, two base conditions for terminating the
search are first checked: the current path has insufficient
value and all tasks have been successfully matched
(Algorithm 1, lines 18-23). Next, the boundary procedure
is invoked to estimate the potential value of the current
exploration path. If the sum of the current path value and
the estimated potential value is still lower than the
remaining optimal value, the search is terminated, and the
branch is pruned (Algorithm 1, lines 25-27).
Consequently, the df search procedure is recursively
called by iterating over each host. If a host has sufficient
available resources to meet the task’s requirements, the
search proceeds recursively to process the next task
(Algorithm 1, lines 28-32). Finally, in the main program,
each task's computational resource requirement is updated,
and the df search procedure is invoked to initiate the
search for an optimized matching strategy (Algorithm 1,
lines 36-37).

Specifically, the time complexity of the in-site
task-to-host matching algorithm primarily depends on the
number of tasks iii and the number of hosts j. In the
worst-case scenario, each task may be matched to any of
the i hosts, resulting in a total of j¢ possible combinations.
During each search step, the algorithm evaluates the
current state and explores potential matches for all hosts,
with an additional call to the boundary function to estimate
the value of the current path. This leads to a per-step
overhead of O(i-j), and thus a worst-case total time
complexity of O(i-j**') . However, the algorithm
incorporates pruning strategies based on current value
checks and upper-bound estimates through the boundary
procedure, which effectively reduces unnecessary
exploration. As a result, the actual runtime is significantly
lower than the worst-case bound, especially when the
pruning is effective.

The space complexity of the algorithm is mainly
determined by the recursion depth and the storage of
intermediate states. Since the algorithm uses depth-first
search, the maximum recursion depth corresponds to the
number of tasks, i.e., O(i) . Additionally, during the
matching process, the algorithm maintains the state of each
task and the available resources on each host, which
requires O(i +j) space. Therefore, the algorithm is
relatively efficient and scalable, even in large-scale
application scenarios.

B.  Cross-site Matching at the Upper Level

The upper-layer algorithm is responsible for monitoring
the task backlog at each site and performing cross-site
task-to-host matching to allocate them to idle hosts.

However, new tasks generated by IoT devices
continuously arrive at edge computing sites through
wireless data transmission. To avoid conflicts between
horizontally offloaded tasks (i.e., cross-site) and newly
arriving tasks from the vertical direction (i.e., from
devices), TACTM continuously monitors the transmission
progress of uploaded task data and estimates the arrival
time of new tasks at their target edge computing sites.
Two-layer Asynchronous Conflict-reduced Task-to-
host Matching (TACTM) establishes a task arrival record
table for each edge computing site, as presented in Fig. 3.
The arrival timeslot of each task is estimated based on its
data transmission progress. Since the transmission speed
of task data varies dynamically in each timeslot, the
estimated arrival time of tasks at the edge computing sites
is also updated dynamically in real time, as shown in

Eq. (3).

Remaining data

TArrival — Current (3)

Current transfer rate

where T4ATal and TC¥Tent correspond to the time when
the task data reaches the edge network and the present
time, respectively.

Thus, TACTM is able to simulate task-to-host matching
in advance at each site by leveraging the in-site matching
algorithm and temporarily reserving available host
resources based on the predicted incoming tasks. In this
way, cross-site task matching conflicts are reduced, as
computing resources at the target site have already been
pre-allocated to upcoming tasks.

Task arrival estimation
Arriving tasks
ts Task ’ Task Task Task ‘
ts+1 Task || Task | Nul | - [ Nul ]
ts+2 Task [ Nul |[ Nub | e [ ONul |
ts+x Task || Nul || Nul | | Nul |
Timeslot
Fig. 3. Task arrival estimation.
The wupper-level cross-site matching algorithm

leverages A3C reinforcement learning, as it must jointly
account for the status of all hosts across the edge network
and the task accumulation at each site. To operate
effectively in a dynamic environment, the algorithm must
support adaptive learning and real-time optimization.
Accordingly, the definitions of state, action, and loss are
as follows.

State space: Define S as the set of all possible system
states. At each time slot s¢, the system occupies a state s(zs)
such that s(zs) € S, which can be expressed as Eq. (4):

S(ts) = {CM] "™ (ts), ACM], (ts))} (4)

where S(ts) is the system state at time st, CM; ending jq

the required CPU MIPS for pending tasks, and AC M,’;l is
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the available CPU MIPS of host j at edge computing site
m.

Action space: In each time slot ts, decision-making is
performed by the intelligent agent, aiming to optimize the
system reward derived from task-to-host mapping. Denote
A as the action space; each composite action is represented
as Eq. (5):

Aes) = )

Hnone

where 4, (ts) and H ;Z represent the decision to assign

task i at timeslot ts and host j at edge computing site m,
respectively. In addition, H™*™¢ represents a decision
where the task remains unmatched to an edge computing
host during the current inference cycle. In actual
implementation, the neural network inference yields a
probability distribution indicating the likelihood of
assigning the task to each edge computing host, as shown
in Fig. 4.

Priority ordering
for matching
_—

Task; [HO, Hy, .. Hj} Target hosts

Fig. 4. Selection of model inference results.

Based on this distribution, TACTM directs the task to
the host associated with the highest probability. The
detailed logic for host selection is formulated in Eq. (6).

Hiselected(ts) = argmax Pi,j ©)
Hj

where H¢'ected(ts)denotes the target host matched for
task i at time slot fs, and P;; represents the matching
preference probability of task i for host ;.

Reward: Since the objective of cross-site task-to-host
matching is to maximize the allocation of available
computational resources to pending tasks, the unified
system reward is formally defined as Eq. (7):

b CM}I(VIatched

Loss = W (7)

where CMp@tched and C Ml.P ending represent the amount of
CPU MIPS required by the matched task and the total
amount of CPU MIPS required by all pending tasks,
respectively.

Since the upper and lower layers of the TACTM
algorithm operate asynchronously, there is a certain
probability that they may produce different matching
decisions for the same task. To address this issue, TACTM
assigns a lower priority to the decisions made by the
cross-site matching algorithm in the upper layer, compared
to those made by the in-site task-to-host matching
algorithm in the lower layer. When a conflict occurs

between the two layers, the cross-site matching decision is
discarded as shown in Eq. (8).
Hfinal _ {Hiin—site iinin—site # none (8)
‘ Hyelected gtherwise

where Hif mal ihdicates the final target host for task i, and
H"™s®¢ denotes the in-site host selected by the
lower-layer algorithm, and H7¢¢®? is the cross-site
candidate host selected by the upper-layer algorithm.

A summary of the workflow for cross-site task-to-host
matching is presented in Algorithm 2.

Algorithm 2: Cross-site task-to-host matching
Input: Status of available computing resources across
all hosts and the set of pending tasks within each edge
site
Output: Cross-site matching result

1. for each time slot do

2. if number of accumulated tasks > 0 then
Recalculate the computational resource

3. requirements of each task according to the
current time

4. Update the system state S

5 Infer the matching results 4 and select the

match with the highest probability
Validate the matching to avoid duplicate

6. assignments

7 Delete corresponding tasks from the
’ pending queue

8. Output matching result

9. end if

10. end for

In Algorithm 2, the outer loop drives the algorithm to
operate continuously at each timeslot (Algorithm 2, lines 1
and 10). At the beginning of each timeslot, the algorithm
checks whether there is any task backlog at the edge
computing sites. If no backlog is detected, cross-site task
matching is skipped (Algorithm 2, lines 2-9). Conversely,
if some sites do have accumulated tasks, the computational
resource requirements of the queued tasks are recalculated
based on the current time, and the system state parameters
used by the reinforcement learning algorithm are updated
accordingly (Algorithm 2, lines 3—4). Next, an A3C-based
reinforcement learning model infers the target host
recommendations for each task. To prevent duplicate
assignments, the algorithm checks whether a task has
already been matched locally within a site, since the
upper-layer and lower-layer matching algorithms operate
asynchronously. When a conflict occurs between the two
layers, the cross-site matching decision is discarded
(Algorithm 2, lines 5-6). Subsequently, successfully
matched tasks are removed from the pending queue, and
the matching results are recorded as output (Algorithm 2,
lines 7-8).

Specifically, the time complexity of the A3C algorithm
primarily depends on the number of agents M, the number
of interaction steps each agent performs with the
environment T, and the computational cost of the neural
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network model, including both forward and backward
passes. Overall, the time complexity per update can be
expressed as O(M - T - Cpoger), Where Cpppqe; denotes the
cost of a single forward-backward cycle of the model. In
practical applications, A3C leverages asynchronous
parallel execution, allowing multiple agents to run
concurrently and significantly improving training
efficiency, despite the theoretical linear growth in
computational cost. This makes it well-suited for the
large-scale state—action space problem addressed in this
study.

The actual deployment of the upper-layer algorithm
should be determined based on the application scenario, as
reinforcement learning algorithms incur a certain level of
learning overhead. In scenarios where edge computing
network resources are abundant, the upper-layer algorithm
should be deployed at the edge network layer to reduce
network transmission latency. In contrast, it can be
deployed on a resource-rich cloud computing platform to
improve the algorithm’s execution speed.

IV. RESULT AND DISCUSSION

In this section, the experimental results are presented
and thoroughly discussed. The performance of the
proposed TACTM scheme is assessed through
simulation-based evaluation. Initially, the simulation
environment, system configurations, and parameter
settings are introduced. Subsequently, the outcomes are
analyzed from various perspectives.

TABLE II. PARAMETER SETTINGS IN THE SIMULATION

No. Parameters Value
1. Duration of simulation (Mins) 30
2. Number of edge computing site 10
3. Number of host in edge computing site 10
4. MIPS of host on edge network 10,000
5. Bandwidth of WLAN (Mbps) 100
6. Data transmission model MMPP/M1
7. Number of mobile IoT devices 1000—4000
8. Task length (GI) 1-45
9. Task data size (KB) 0.5-2500

A.  Simulation Settings

Performance verification of the TACTM mechanism
was carried out through simulation trials. For this purpose,
the EdgeCloudSim [31] tool was adopted to emulate the
edge computing offloading  environment. = The
experimental platform utilized a machine configured with
an Intel Core 17 processor and 16 GB RAM to ensure stable
simulation execution. To evaluate the adaptability of the
TACTM scheme, task heterogeneity is incorporated into
the experimental setup. Light and heavy computation tasks
are randomly initiated by loT devices in a mixed manner.
The task lengths vary by up to a factor of 45. In addition,
the size of the data associated with each task also differs.
Specific configuration details are presented in Table II.

The simulation adopts a real-world distribution of
computing sites, where 10 base stations are randomly
selected from those deployed by Optus in the CBD area of
Melbourne, Australia, to serve as access points for the edge

computing network, covering a total area of 6.2 square
kilometers [32], as shown in Fig. 5.
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Fig. 5. The geographical distribution of edge computing sites.

In order to assess the effectiveness of the TACTM
scheme, the average conflict ratio, average processing
time, average multiple horizontal offload ratio, average
task failure ratio, and average QoE are adopted as
evaluation metrics for comparison with benchmark
methods.

The task-to-host matching scheme designed to
implement similar functionality was selected as the
benchmark. The specifics are described below:

e First-Fit [31]. The most classic and widely adopted
task-to-host mapping method. It checks hosts one
by one for each task and stops when it finds the
first host that meets the resource requirements of
the task. It serves as the baseline in this study.

e M2TORA [33]. This approach employs
multi-agent reinforcement learning to manage all
hosts in the edge computing network as a shared
resource pool, enabling coordinated optimization
of task allocation.

e Vanilla-A3C [34]. This approach leverages deep
reinforcement learning and employs asynchronous
parallelism to optimize the task allocation strategy.

The following Section B presents a detailed discussion
of the simulation results and numerical analysis based on
this environment.

B.  Analysis of Results and Discussion

Reducing matching conflicts is one of the primary
objectives of this study. Fig. 6 presents a comparison of the
average conflict ratio under varying numbers of Mbile [oT
devices between the proposed TACTM scheme and the
benchmark algorithms. It can be observed that the baseline
method exhibits the highest conflict ratio, while TACTM
achieves the lowest. This is primarily because the baseline
approach greedily assigns tasks to hosts that satisfy
computing resource requirements, while completely
ignoring potential matching conflicts between horizontally
and vertically offloaded tasks.
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Additionally, although the two benchmark algorithms
do not incorporate a conflict-aware assignment
mechanism, their reinforcement learning techniques
enable them to dynamically adapt to changes in the
network environment. During this adaptive process,
certain patterns of potential conflicts can be implicitly
learned, resulting in a lower conflict ratio compared to the
baseline. In contrast, the TACTM scheme features
task-arrival awareness by tracking the data transmission
progress of each task, which allows it to more effectively
reduce the likelihood of task matching conflicts.
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Fig. 6. Average conflict ratio with different number of IoT devices.

Fig. 7 illustrates the average processing time of four
different task offloading schemes as the number of IoT
devices increases from 1000 to 4000. The processing time
is measured in seconds. The First-Fit algorithm exhibits
the highest average processing time, primarily due to a
high rate of task matching conflicts, which results in
frequent execution delays. Additionally, this method lacks
global optimization capabilities and relies on a greedy
strategy to select target hosts. In contrast, M2TORA and
Vanilla-A3C demonstrate lower average processing times,
as both incorporate self-learning mechanisms and global
optimization capabilities. However, M2TORA makes host
allocation decisions during the offloading stage, without
accounting for the uncertainty in task arrival times caused
by interference during subsequent data transmission. On
the other hand, Vanilla-A3C optimizes host matching
based on tasks that have already arrived at the edge
computing site, leading to more accurate task state
information and thus lower processing time. However, due
to the lack of explicit conflict control mechanisms,
Vanilla-A3C still shows a higher processing time
compared to the TACTM scheme.

There is a clear correlation between task timeouts and
processing time, as higher processing times tend to result
in an increased task failure ratio. Fig. 8 presents the
average task failure ratio of the four task matching
schemes as the number of IoT devices increases. The

failure ratio is expressed as a percentage. Since the
baseline method shows the highest processing time, it also
results in the highest task failure ratio. In comparison, the
benchmark schemes achieve lower failure ratios than the
baseline. As anticipated, the TACTM scheme consistently
achieves the lowest failure ratio among all methods. In
particular, when the number of Mobile IoT Devices
reaches 2500, the difference in average failure ratio
between TACTM and Vanilla-A3C becomes notable,
reaching 2.84%. This gap further widens to 9.65% when
the devices count increases to 4000. These findings
underscore the advantage of TACTM in reducing task
failure rates, especially in scenarios with higher devices
density in IoT networks.
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Fig. 7. Average processing time with different number of IoT devices.
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Fig. 8. Average task failure ratio with different number of IoT devices.

Fig. 9 illustrates the difference in user-perceived QoE
when using IoT services, based on task offloading
optimized by different matching methods. The TACTM
scheme consistently delivers the highest QoE under all
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devices quantities, which highlights the superior
performance of this approach. Even at a scale of 4000
devices, TACTM achieves significantly better QoE
compared to other schemes, indicating strong stability and
reliability in large-scale environments.
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Fig. 9. Average QoE with different number of IoT devices.

In comparison, M2TORA and Vanilla-A3C perform
less effectively in large-scale scenarios, as reflected by a
substantial drop in QoE. Moreover, the turning point at
which the QoE begins to decline rapidly occurs later under
TACTM. Specifically, a noticeable decline in QoE for
TACTM begins when the number of devices reaches 3000.
In contrast, the benchmark methods experience a sharp
decline in QoE at an earlier stage, suggesting limitations in
scalability and adaptability.

In summary, the experimental results demonstrate that
the proposed TACTM method outperforms existing
approaches across various scenarios in terms of conflict
ratio, processing time, task failure rate, and QOE,
particularly under different scales of IoT device
deployment. The consistent improvements observed
throughout the experiments highlight the effectiveness and
robustness of TACTM in addressing the challenges of task
offloading in edge computing environments.

V. CONCLUSION

This study investigates the task offloading problem in
edge computing-enabled IoT networks and introduces a
novel scheme, termed TACTM. The proposed scheme
aims to improve task execution efficiency and enhance
overall IoT network performance by minimizing matching
conflicts through the optimized task-to-host matching
process. A detailed analysis of existing methods highlights
their limitations, especially in managing tasks that are
nearing the end of data transmission and approaching the
edge computing sites. Such scenarios frequently result in
matching conflicts during the offloading phase.

To address these issues, the TACTM scheme is
designed by jointly considering the task data transmission
progress and the dynamic load of edge computing hosts.
The effectiveness of TACTM is validated through the

development of a simulation environment and extensive
comparative  experiments.  Experimental  results
demonstrate that, compared to existing methods, TACTM
achieves  significant improvements in  multiple
performance metrics. Specifically, it reduces the average
conflict ratio by 20.79%, shortens the average processing
time by 8.26%, lowers the average task failure ratio
by 4.30%, and improves the average QoE by 4.05%.

Although the TACTM scheme demonstrates strong
performance in simulation experiments, certain limitations
of the current study are acknowledged. Further research is
needed to extend TACTM to scenarios involving more
diverse task types and more complex network topologies.
In addition, we plan to explore methods for optimizing
device energy consumption without compromising latency
performance. Through these future efforts, TACTM is
expected to offer a more comprehensive and effective
solution to the task offloading problem in edge
computing-enabled IoT environments.

Overall, the proposed TACTM scheme provides an
effective solution to the task-to-host matching problem in
edge computing-enabled [oT networks. By reducing
matching conflicts and optimizing task allocation,
TACTM significantly enhances task execution efficiency
and overall IoT network performance. As edge computing
technologies continue to evolve and application scenarios
become increasingly diverse, TACTM is expected to offer
valuable theoretical and practical contributions to IoT
network performance optimization, while also serving as a
foundation and inspiration for future research and
real-world applications.
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