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Abstract—This article presents the design and simulation of
an intelligent wearable device for real-time stress
monitoring, developed in the MATLAB/Simulink
environment. The primary goal is to create an energy-
efficient and adaptable architecture that does not rely on
onboard machine learning, yet still ensures the accurate
detection of stress-related physiological changes. The

proposed system integrates 10 biosensors, Field-
Programmable Gate Array (FPGA)-based signal
preprocessing, adaptive polling frequency control

(1.5-10 Hz), and Stateflow-driven alarm logic. Key
simulation results include realistic sensor responses,
synchronized signal dynamics, and detailed power
consumption modeling, partially validated using real
hardware components. These findings demonstrate the
system’s potential for low-power, real-time health
monitoring and lay the groundwork for future physical
implementation.

Keywords—wearable device, stress monitoring, sensory
signals, MATLAB/Simulink, adaptive polling frequency

I. INTRODUCTION

In recent years, the development of wearable Internet of
Things (IoT) devices for medical applications has become
a key direction in the digitalization of healthcare.
Next-generation devices enable continuous real-time
monitoring of patients’ physiological parameters, which
significantly expands the possibilities for early diagnosis,
prevention of complications, and personalized medicine.
However, traditional architectures and control algorithms
for such systems face a number of serious limitations,
including high energy consumption, unstable data
transmission  channels, difficulties with clinical
integration, and challenges in adapting devices for
different patient groups. Modern approaches based on the
concept of digital twins allow for the creation of virtual
copies of physical devices, processes, and patients. This
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opens up opportunities for more accurate modeling,
predictive analytics, intelligent control, and optimization
of energy consumption in telemedicine and rehabilitation
systems. The use of big data analytics and machine
learning algorithms has become especially relevant,
enabling the identification of hidden patterns, the
prediction of critical states, and the adaptation of device
operating modes to the individual characteristics of each
user.

This study explores the development of an intelligent
cyber-physical system for patient monitoring, utilizing
wearable IoT devices and incorporating a digital twin and
energy-efficient algorithms. The proposed solution is
aimed at improving diagnostic accuracy and reliability,
reducing energy consumption, and expanding the
possibilities for personalized medical monitoring.

II. LITERATURE REVIEW

A. Mathematical Modeling and Data Collection

In Ref. [1], a mathematical basis was proposed for
designing a wearable medical IoT device with
multi-criteria optimization. The authors combine the state
design  method and deep learning to reduce
communication loss and latency during remote health
monitoring. The proposed solution accelerates disease
detection and enhances monitoring quality by optimizing
mathematical models. Vijayan et al. [2] discuss data
collection methods and describe how wearable devices
track human movements, physical activity, and sleep
during prolonged use. The paper lists current technologies
for recording body signals and algorithms for processing
them, including deep learning methods, to improve patient
health monitoring.

B. Circadian Rhythm Modeling and Personalization

Hannay and Moreno [3] provide an overview of
advances in integrating wearable sensor data into
mathematical models of circadian rhythms. It notes that
progress has been made recently in using mathematical
models to predict a person’s internal circadian phase based


mailto:tyulepberdinova@gmail.com
mailto:murat7508@yandex.kz
mailto:gulshat.aa@gmail.com
mailto:ardak.9t@mail.ru
https://orcid.org/0000-0002-4322-8983
https://orcid.org/0000-0002-5071-0110
https://orcid.org/0000-0002-5648-4476
https://orcid.org/0000-0002-9979-3121
https://orcid.org/0000-0003-3933-5476
https://orcid.org/0009-0000-6692-858X

Journal of Advances in Information Technology, Vol. 16, No. 10, 2025

on indicators measured by wearable devices. The authors
review the available data for tuning such models, compare
existing approaches, such as limit-cyclic oscillators, and
discuss how to personalize model parameters to enhance
the accuracy of predictions of circadian phases.
Sengupta et al. [4] present in-depth characteristics of
various wearable sensors and methods, like gait analysis
and exercise recognition, demonstrating how personalized
models based on wearable sensor data enable doctors to
track patient progress and improve the quality of
rehabilitation. Huang et al. [5] present a comparison of the
effectiveness of four different mathematical models for
estimating the circadian phase based on data from
wearable devices. Datasets from ordinary people and shift
workers were used. The results showed that models
employing activity data from wearable devices, such as
smartwatches, can predict the circadian phase with an
accuracy of approximately one hour. Additionally, night
shift workers made more precise predictions based on
activity data than those made using measured
illumination.

C. Energy Optimization and Adaptive Power
Management

Park et al. [6] focus on optimizing energy consumption
in wearable IoT devices to achieve energy savings. The
authors aim to maximize the number of recognized
gestures within a given energy budget. They emphasize
accuracy and have developed an analytical model of
energy consumption based on measurements from the
prototype device. It is demonstrated that reducing the
duration of gesture processing is equivalent to increasing
the number of recognized gestures. The proposed
optimization algorithm enables the recognition of up to
2.4 times more gestures within a constrained energy
budget compared to manual parameter setting. In Ref. [7],
an intelligent method for adaptive power management of
a wearable device based on deep reinforcement learning is
introduced. The system is trained using user activity data,
sensor readings, and energy consumption profiles. With
multi-agent Deep Reinforcement Learning (DRL), it
optimizes real-time power consumption. Simulations
indicate that the proposed approach can extend the battery
life of a wearable device by approximately 36% compared
to traditional energy-saving schemes while also boosting
user satisfaction with the device by 25%.

D. Medical Applications and Clinical Integration

Sabry et al. [8] discuss the latest research on using
wearable electronics for monitoring activity and vital
signs, diagnosing diseases, and caring for the elderly,
among other applications. The main challenges of
implementing Machine Learning (ML) in wearable
devices, including limited accuracy, energy constraints,
and privacy issues, are examined, along with potential
solutions from the literature and areas that require further
research. Ates et al. [9] analyze the primary components
of such devices: substrate materials, sensing elements,
data processing and transmission units, and power
modules. The evolution of wearable systems, from the
first generations focused mainly on tracking physical
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indicators, such as activity and pulse, to the second
generation, which includes devices for non-invasive
biochemical and multimodal monitoring, is discussed.
Examples of new form factors, such as skin patches, smart
tattoos, and contact lenses with sensors, are provided,
expanding the possibilities for individualized medical
control. Sreedhara et al. [10] provide an overview of
mathematical models that describe fatigue and recovery
during physical exertion. Various energy models of
fatigue are analyzed, with special attention paid to the
two—parameter model, a simple hyperbolic model
illustrating the dependency of power on time, where the
asymptotic power is highlighted. The review underscores
the need for novel methods that account for individual
CP/W variability and recovery dynamics to enhance
training effectiveness and optimize exercise. In Ref. [11],
a universal three-stage structure is proposed for utilizing
wearable sensor data in clinical practice, known as the
Automate—Illuminate—Predict (AIP) approach. Wearable
devices are employed to (1) automate the collection of
traditional clinical indicators, (2) identify new hidden
correlates of diseases and functional disorders, and (3)
predict disease outcomes and exacerbations. The authors
demonstrate the application of the AIP model using
examples from rehabilitation medicine.

Scherb et al. [12] provide a systematic review of
methods for modeling the interaction between wearable
assistive devices, such as exoskeletons and orthoses, and
digital human models. They identify four primary
modeling approaches and emphasize the importance of
incorporating soft tissue behavior in simulations to
improve the effectiveness of wearable device design.
Uhlenberg et al. [13] present a co-simulation framework
that integrates human digital twins with wearable inertial
sensors to analyze gait event estimation. Their work
compares estimated gait events with reference data to
validate the performance of the simulation in MATLAB
Simulink. Ambrose et al. [14] utilize Maximal Overlap
Discrete Wavelet Transform (MODWT) to decompose
Electrocardiography (ECG) signals and identify changes
in the R waves within the noisy ECG input signal.
MATLAB Simulink is employed to develop a simulation
model for the MODWT method. A comparative analysis
of the effectiveness of the MODWT-based remote health
monitoring system method is performed against other
ECG monitoring approaches, such as the Haar Wavelet
Transform (HWT) and the Discrete Wavelet Transform
(DWT). Sundarasekar ef al. [15] describes the concept and
practical implementation of a collaborative modeling
interface between a System-on-a-Chip (SoC) model based
on C and MATLAB/Simulink. The proposed approach
enables the combination of high-level modeling with
domain-specific applications through a virtual execution
platform, providing precision down to the bits and cycles
of a specific embedded Hardware/Software (HW/SW)
platform without interface issues. Our concept was
implemented and applied to the development of the
Wearable Artificial Kidney Device (WAKD), an
embedded medical device. Sadeghi ef al. [16] presents the
development of lightweight, wearable exo-gloves
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designed for physical finger rehabilitation. Thermal
characteristics, dynamics, and overall performance were
modeled in MATLAB Simulink, and experimental
verification confirmed the model’s effectiveness.

E.  Simulation and Digital Twin Approaches for
Wearable Medical and Assistive Devices

A simulator was developed and implemented in a
computing environment using the set-body dynamics
method [17]. The platform structure was designed in
SOLIDWORKS v2017 and subsequently exported to
MATLAB R2017a via the Simulink environment and the
Simscape Multibody library. The same study also
included mathematical modeling based on the Euler—
Lagrange equation for a Single-Degree-of-Freedom
(SDOF) human hand model with two different vibration
absorber configurations. A computational study in
MATLAB Simulink was conducted to compare their
performance, and the results were validated using MSC
Adams multibody dynamics simulation software by
Hexagon AB. Johnson et al. [18] provide an analysis of
current research on human digital twins, outlining the
employed methodologies, practical applications, and key
challenges in the field. In addition, the authors propose a
conceptual framework for developing a digital twin of the
human body using data collected from wearable sensors.
The use of Discrete Event Simulation (DES) to model
patient flow scenarios involving health monitoring
systems is proposed by Gorelova ef al. [19]. A simulation
module based on MATLAB Simulink was integrated into
the MoSTHealth framework, enabling the incorporation
of digital twins into a DES environment that medical
experts can parameterize using a mobile interface. A case
study on a wearable device under development, which
collects real-time hormone level data during infertility
treatment, demonstrated an 88.8% increase in the number
of patients seen by a single doctor, along with a 36.5%
reduction in average consultation waiting time.
Gabhane et al. [20] present the modeling of a wearable
device for continuous ECG monitoring. The system
detects abnormalities in ECG signals and automatically
sends an MMS containing the altered ECG recording to
the patient’s mobile phone via a Bluetooth interface. The
mobile phone then forwards the ECG image to a hospital-
based mobile device. The study demonstrates the
modeling of this system using MATLAB wireless tools
and Java 2 Micro Edition (J2ME, WTK). In Ref. [21],
MODWT is employed to decompose ECG signals and
detect changes in the R waves within the noisy ECG input
signal. The simulation model of the MODWT method was
developed using MATLAB Simulink.

Fig. 1 presents a high-level functional diagram of the
proposed  wearable stress  monitoring  system,
summarizing the signal flow from biosensors through
processing modules to adaptive control and visualization.
Fig. 1 illustrates the architecture of a wearable stress
monitoring device. The system consists of 10 biosensors
that capture physiological parameters, including ECG,
Photoplethysmography (PPG), body temperature, and
Galvanic Skin Response (GSR). The signals are initially
sent to a Field-Programmable Gate Array (FPGA) module
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for parallel preprocessing and then forwarded to a
microcontroller, where adaptive polling, stress level
evaluation, and decision-making logic are applied. When
a specified threshold is exceeded, an alarm is triggered,
and real-time data is shown on an OLED screen. The
entire system emphasizes energy efficiency and
autonomous operation.

ECi

Sp0,
Adaptive
Temperature
Accelerometer
Stress
Detection

Gyroscope

Fig. 1. High-level architecture of the proposed wearable
stress-monitoring system with 10 biosensors and adaptive control.

This work aims to develop and simulate an intelligent
architecture for a wearable device that monitors stress in a
MATLAB/Simulink environment. It features adaptive
polling frequency, energy-efficient control, alarm
notifications, and data visualization, all without relying on
machine learning algorithms on the device.

III. MATERIALS AND METHODS

Table I presents the key abbreviations and notations
used throughout the article.

TABLE I. KEY ABBREVIATIONS AND TECHNICAL TERMS USED IN THE

ARTICLE
Abbreviation Definition
sD Standard Deviation—a measure of signal variability
used in threshold detection.
GSR Galvanic SkiniResponse‘—indicates electrodermal
activity, often linked to stress.
PPG Photo plethysmography—an optical method for
measuring heart rate and pulse.
HR Heart Rate—beats per minute, derived from PPG.
Heart Rate Variability—a time-domain measure of
HRV .
pulse fluctuations.
EEG Electroencephalography—measures brain activity
patterns.
Principal Component Analysis—a dimensionality
PCA reduction method used for sensor data
visualization.
Microcontroller Unit—central processing element
MCU .
in wearable systems.
ADC Analog-to-Digital Converter—used to digitize
sensor signals.
LP Mode Low Power Mode—energy-saving state for system

components.

Eq. (1) allows us to determine the energy representation
of local computing tasks when utilizing wearable devices
capable of offloading calculations. It proposes
computational offloading strategies that minimize local
energy consumption in IoT devices. This approach
directly supports the formulation of Eq. (1), which
quantifies local energy costs in wearable systems [22]. It
provides background on security trade-offs in mobile
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computation offloading. Although not the primary focus
here, it contributes to the rationale for modeling flexible
computation placement in Eq. (1) [23]:

E; =minY}

i=1

(Ey +...+E) X §; @)

The energy consumption model of a wearable device
outlines the total energy usage of all its components during
operation. The calculations consider the energy use of the
microcontroller, display, sensors, and wireless
communication module operating in various modes,
including both active and energy-saving modes. Energy
consumption can be reduced by optimizing the
measurement frequency, adjusting the screen brightness,
and implementing efficient data transmission methods.
The developed model enables the prediction of device
battery life and identifies the key components that require
further improvement in energy efficiency. It provides a
model for component-level energy profiling, including
sensors and wireless interfaces, which validates the
structure of Eq. (2) used in our system energy model [24]:

Etotar = Egsp3z + Eorep + Epsigp20 + Egsr + Eppe + Ecomm(z)
D(t) = T(t),GSR(t), PPG(t)

The total power consumption of the device includes the
power consumption of the ESP32 microcontroller, the
OLED display, the temperature sensor, the galvanic skin
response sensor, the PPG sensor, and the communication
interfaces such as Wi-Fi and Bluetooth.

The power consumption of a microcontroller is
essential for the autonomous operation of a wearable
device. Various operating modes, including active task
execution, standby mode, and energy-saving mode, affect
this consumption. In the active state, the microcontroller
manages the sensors, processes the data, and transmits it,
resulting in the highest energy usage. In sleep mode,
power consumption is reduced by disabling auxiliary
modules and lowering the clock frequency. Effective
management of these modes significantly extends the
device’s operating time without recharging. This
demonstrates dynamic power scaling for microcontrollers
and its effect on overall consumption. It supports Eq. (3),
which breaks down ESP32 power consumption into active
and sleep states [25]:

Egspsz = Pgsp3z X Tactive + Psleep + Tsleep 3)
where Pggps, is the power consumption of the ESP32
microcontroller in active mode, T,.¢ipeis the duration of
operation in active mode, Psleepis the power consumption
in sleep mode, and Tge,pis the duration of time spent in
sleep mode.

Refs. [22-25] provide foundational support for the
energy modeling strategy adopted in this study.
Specifically, Manoharan et al [22] propose a
CNN-TLSTM approach within an IoT—fog cloud
architecture to optimize computational processes and
reduce local energy consumption, which aligns with our
Eq. (1) for estimating local processing energy costs.
Macia-Fernandez et al. [23] complement this perspective
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by discussing security implications in distributed
communication environments, relevant to offloaded
architectures. The component-level energy profiling
model from Ref. [24] directly informs the structure of
Eq. (2), incorporating sensors, display, and wireless
communication modules. Finally, Ramasamy et al. [25]
details the power scaling behaviors of microcontrollers
across active and sleep modes, supporting the formulation
of Eq. (3) for modeling ESP32 consumption.

The power consumption of an OLED display has a
significant impact on the operational duration of a
wearable device that does not require recharging. This
consumption is influenced by factors such as screen
brightness, the size of the active screen area, and the
duration of device use. Lowering brightness, using dark
interface themes, and automatically turning off the screen
when not in use can help reduce energy consumption. By
optimizing these parameters, the device’s battery life can
be extended. The energy consumption of an OLED
display is determined by Eq. (4) [26].

Eorep = Porep X Taisplay “)

The power consumption of the DS18B20 temperature
sensor impacts the overall energy usage of the wearable
device, particularly in terms of long-term battery life. This
sensor operates in pulse mode, activating only briefly to
measure temperature before entering a low-power state.
Key factors influencing its energy consumption include
the frequency of measurements, data processing time, and
the power mode utilized (normal or parasitic). Optimizing
the reading frequency and employing standby mode can
significantly reduce power consumption and prolong the
device’s life without needing a recharge. The power
consumption of the DS18B20 temperature sensor can be
calculated using Eq. (5) [27]:

)

Epsigez0 = Ppsisez0 X Tmeasure

where Ppgiggao 1S the sensor consumption power,
Trneasure 1S the time of his active work.

Eq. (2) represents an optimization function that
minimizes the load on each device, which is especially
important for wearable devices used in diagnosing various
diseases that require additional computing resources.
However, since the data is transmitted via a wireless
module, Eq. (6) is used to estimate the subsequent waiting
time for data transmission [28, 29].

Wait; = min ¥, t,, X Ecp (6)

To illustrate the operation of connected devices, a third
objective function, known as the minimization function, is
employed. Eq. (7) estimates the energy consumption of
the communication module [30].

n Pcm
i=1
Bi

Eqn =min} X dp (1) (7
The sensor data integration model in wearable devices
ensures the collection, processing, and synchronization of

readings from various sensors. Data is sourced from



Journal of Advances in Information Technology, Vol. 16, No. 10, 2025

sensors such as temperature sensors, GSR sensors, PPG
sensors, accelerometers, and gyroscopes, each operating
at different measurement frequencies. To maintain
information consistency, digitization, filtering, and signal
synchronization are employed. This minimizes
measurement errors and enhances the accuracy of
analyzing users’ physiological parameters. Optimized
data integration is crucial for energy conservation and
reliable information transmission to the monitoring
system. The sensor data integration and transmission time
are modeled in Eq. (8) [31]:

Dxy

R

D(t) ={T(t), GSR(t), PPG(O)} Teransmic = 3
where: T(t) is the temperature; GSR(t) is the galvanic
skin reaction; PPG (t) is the photoplethysmograph data.

The data transfer model in wearable devices defines the
process of sending information gathered from sensors to
external devices or cloud platforms. Data is transmitted
using wireless technologies such as Wi-Fi, Bluetooth, or
Low-Power Wide Area Network (LPWAN), depending
on the requirements for speed and power consumption.
Key aspects of the model include encoding, compression,
filtering, and optimizing transmission to minimize delays
and reduce energy consumption. Reliable transmission is
ensured through error correction mechanisms, packet
resending, and data flow control. The efficient
organization of the data transmission model allows for
reduced power consumption and ensures a stable
connection to monitoring systems. The data transmission
and interpretation model is presented in Eq. (9) [32]:

DXxy
Ttransmit ~ R

H(t) = f(T(f), GSR(t), HRpp¢ (t), SPO2ppg(t))

where Tiransmie 1S the data transfer time; D is the data
size; y is the compression ratio; R is the data transfer rate.

The health assessment model in wearable devices is
based on analyzing data obtained from various sensors to
monitor the wuser’s physiological parameters. The
evaluation process utilizes signal processing, data
normalization, and machine learning algorithms to assist
in classifying user states. This model is used for early
disease detection, personalized recommendations, and
emergency notification of medical services in the event of
critical changes in health parameters. The health
assessment and consumption evaluation model is defined
in Eq. (10) [33]:

H(t) = f(T(f), GSR(t), HRpps (), SPO2ppg (1)) |
) = Co - [ 1(D)dr (10

)

where H(t) is the status indicator; GSR(t) is the galvanic
skin response; HRpp; (t) is the heart rate derived from the
PPG signal; and SPO2pp;(t) is the oxygen saturation
level.

The battery charge model in wearable devices describes
the process of energy accumulation and consumption by
the battery, depending on the operating conditions. The
main parameters of the model include battery capacity,
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voltage, charge current, and charging efficiency. An
important aspect is optimizing charging speed, preventing
overheating, and extending battery life. The model also
considers the efficiency of the power controller, which
manages the charging and energy distribution processes
among the device components. Analyzing these
parameters enables improved energy efficiency and
prolonged battery life of the wearable device. The battery
charge model is described by Eq. (11) [34]:
C(t) = Co— [, I(T)dr (11)
where: C(t) is the battery charge at the moment; Cyis the
initial battery charge; I(7) is the current consumption.
The sensor error model in wearable devices describes
the deviations of measured data from actual values, which
occur due to both internal and external factors. Digital
filtering  methods, calibration algorithms, and
compensation models are employed to minimize these
errors. Optimizing sensor operations and accounting for
potential  deviations enhances the accuracy of
measurements and the reliability of data used in health
monitoring systems. The sensor error and signal reliability
model is expressed by Eq. (12) [35]:

Xreal (t) = Xmeasured(t) i Esensor

At (12)
R(t)=e
where X,oq;(t) is the actual value of the measured;
Xmeasured(t) is the value measured by the sensor;
Esensor IS Sensor.

The reliability model of a device assesses the likelihood
of its uninterrupted operation over a specified period,
considering the characteristics of its components and
external operating conditions. Optimized power
consumption modes, fault-tolerant data transmission
schemes, and routine component health diagnostics
enhance the device’s durability. This strategy reduces the
likelihood of failures and extends the wearable device’s
lifespan. The reliability and energy efficiency model of the
device is defined by Eq. (13) [36]:

R(t) = e M
y[n] = X0 bi X x[n — k]
Egspsz = Pgsp3z X Tactive + Psleep + Tsleep

(13)

where R(t) is the device reliability over time; A is the
failure rate.

The digital signal filtering model in wearable devices
eliminates noise and enhances the accuracy of data
measured from sensors. Interference, motion artifacts, and
external electrical disturbances can occur during device
operation, distorting the source data. Optimizing the
digital filtering model is crucial for ensuring the reliability
of data analysis and decision-making based on sensory
measurements. The digital signal filtering model is
defined by Eq. (14) [37]:

yln] = Xko bie X x[n — k] (14)
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where y[n] is the output signal after filtering; x[n] is the
original signal; by is the filter coefficient. The thermal
model of the device outlines the heating and heat
dissipation processes in wearable electronic systems,
which influence their stability and user comfort. To
prevent overheating, energy-efficient operating modes,
processor clock frequency optimization, and the
incorporation of heat-dissipating materials in the design
are employed. The device’s thermal behavior is modeled
by Eq. (15) [38]:

__t
Tdev(t) = Tamp + Paiss X Ren (1 —e€ Rthcth) (15)

where Ty, (t) is the temperature of the device at a given
time; Tympis the ambient temperature; Pgy;q is the power
dissipation; R;;, C;;, Thermal resistance and heat capacity.
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Fig. 2. Architecture of a wearable stress monitoring device.
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Fig. 2 illustrates the architecture of a wearable stress
monitoring device. The system comprises a network of
sensors (for example, sensors for skin temperature,
electrical conductivity, ECG, etc.), whose signals are
transmitted to the FPGA module for initial digital
processing. Subsequently, the data flows through an
adaptive polling and alarm module, after which it is
relayed to a trained machine learning model and a logical
state management unit implemented using StateFlow. The
architecture offers functions for energy management,
self-diagnosis, assessment of remaining battery life, and
protection against failures. Information is exchanged with
cloud platforms and mobile devices through secure
channels via a wireless module, while considering
location and weather conditions.

Fig. 3 presents a model of a wearable stress monitoring
device. The system receives data from ten sensors,
including SkinTemp, Heart Rate, Skin Resistance (SR),
Electroencephalogram (EE), Electrocardiogram (EC),
Galvanic Skin Response (GS), Electromyography (EM),
Tactile Sensor (TS), Temperature, and MAX30102. The
signals are aggregated and sent to the PID controller,
which stabilizes the output. Next, the stress level is
compared to the threshold, and when exceeded, an alarm
indicator activates. A GPS module is also included to
display the geo-location, enabling the tracking of the
relationship between stress levels and the user’s location.
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Fig. 3. Simulation model of a wearable stress monitoring device.

IV. EXPERIMENTAL RESULTS

A. Sensor Dynamics and Signal Behavior

During the simulation of the developed wearable device
system, data from ten sensors were generated and
analyzed to replicate key physiological parameters of the
user. All signals were digitally filtered, visualized, and
evaluated using various analytical methods, including
time series analysis, three-dimensional graphs, heat maps,
spectral analysis, and statistical distributions. The results
obtained confirm the operability and effectiveness of the
system’s primary functions: adaptive polling frequency,
alarm event management, and power consumption
optimization.

Fig. 4 illustrates the dynamics of nine biosignals over a
10-second range. All sensors exhibit notable periodic
fluctuations with amplitudes reaching +1.1, indicating the
system’s high activity and sensitivity to physiological
changes. This visualization is helpful for a quick
assessment of each signal’s behavior and also helps
identify synchronicity and potential relationships among
different sensors.

3D Graph of Sensor Signals

8

Time (s)

10

Fig. 4. Change of values of nine different biosignals in time from 0 to
10s.

Fig. 5 displays the signals from all sensors over a
15-second interval, illustrating characteristic oscillatory
patterns. The Heart Rate signal varies from —0.5 to 0.8,
while SkinTemp ranges from —0.3 to 1.0. Most signals
have a positive offset relative to zero, indicating sustained
sensor activity during the observed period. This type of
visualization enables a visual comparison of the amplitude
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and dynamics of various sensors, as well as the
identification of features in their behavior.

3D Graph of All Sensor Signals

0.3
= SkinTemp
=~ HeartRate

035 GSR
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— EM
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= MAX30102
-0.1

0.0

8

Fig. 5. Signals from all sensors for 15 s.

Fig. 6 displays the time series of signals from all 10
sensors over the range of 0 to 10 s. To enhance clarity,
each signal is vertically shifted, allowing for a clear
distinction of their dynamics. The amplitude values range
from 0 to approximately 27 conventional units; for
instance, the GSR signal strength remains stable at
about 7, while the MAX30102 value reaches 27. This
visualization proves useful for analyzing temporal
changes, detecting anomalies, identifying bursts of
activity, and assessing the behavior of each sensor
individually.
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Fig. 6. Time series of all 10 sensors for the interval from 0 to 10 s.

B.  Amplitude and Frequency Analysis

The histograms in Fig. 7 reveal that the SkinTemp and
HeartRate sensors display the highest density of values in
the range from 0.8 to 1.2, where the measurement
frequency exceeds 30—40. The GSR sensor demonstrates
a characteristic double-humped distribution with notable
peaks at —0.8 and +0.8, which may suggest an alternation
between phases of excitation and rest. For the MAX30102
sensor, the majority of values cluster in the range
from —1.0 to —0.5, with a frequency of about 30.
Analyzing the histogram enables the determination of the
amplitude distribution of signals, identification of
predominant values, and assessment of the symmetry or
presence of offsets in the data from each sensor.
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The EEG spectrogram shown in Fig. 8 indicates that the
main activity of the signal is concentrated in the frequency
range of 0-1 Hz, corresponding to delta waves
characteristic of deep sleep or relaxation. Frequencies
above 1 Hz practically do not appear—the intensity of the
spectrum remains at zero. The time interval from 3 to 7 s
demonstrates a stable spectral pattern, which may indicate
both signal stability and weak brain activity in the alpha
and beta wave ranges. The highest spectral density is
recorded in the lower frequency band, reaching an
amplitude of approximately 0.01-0.02, as indicated by the
yellow area on the spectrogram.
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Fig. 8. EEG signal spectrogram.

C. Statistical and Spatial Trends

Fig. 9 illustrates a heat map of sensor activity over time.
The highest intensity is shown by the HeartRate, EEG, and
GS sensors in the range from 1600 to 2200 ms, where
values reach 0.8—1.0 and higher. The GSR and EM sensors
exhibit local peaks of activity between 3000 and 3600 ms,
with an amplitude of approximately +1.1. Minimum
values (about —1.0) were detected at the EC and
MAX30102 sensors in the range of 4000 to 4800 m/s. This
visualization facilitates the practical analysis of time
synchronization and activity differences between sensors,
highlighting key periods of physiological change.

Fig. 10 illustrates the results of Principal Component
Analysis (PCA), where data from multiple sensors are
projected into a two-dimensional space defined by the two
main components, PC1 and PC2. The distribution of
points takes on a ring shape, indicating a strong correlation
between sensory parameters. The color scale reflects the
average signal values: red shades correspond to positive
values up to +0.25, while blue shades correspond to
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negative values up to —0.25. This projection enables the
visual identification of hidden relationships in the data,
which can be used to classify physiological conditions,
including potential stress levels.

Fig. 11 shows the signals received from ten different
sensors. The graph displays a distinct monotonous and
repetitive behavior, which may indicate the presence of
physiological rthythms or cyclical activity of the body. The
illustrated three-dimensional surface allows for effective
analysis of the synchronicity of readings, identification of
deviations, and tracking of temporary changes in sensory
data.
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Fig. 9. Heat map of sensor activity.
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D. Battery and Power Consumption Analysis

Fig. 12 illustrates the change in the battery level of the
wearable device over a duration of 10 s. The charge
decreases from an initial value of 100% to approximately
57% by the end of the interval, which corresponds to an
average discharge rate of about 4.3% per second. Such
high energy consumption may be due to the significant
load on the system—active operation of sensors, data
transmission, or the absence of energy-saving modes.

Battery Level Over Time
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Fig. 12. Battery charge level of the device for 10 s.

Fig. 13 illustrates the adaptive frequency of sensor
polling within a 10-second range. The frequency
fluctuates between approximately 1.5 and 10 Hz, creating
an undulating profile. The most pronounced peaks—
reaching up to 9—10 Hz—are observed at the start of the
time window and around the 6th second, indicating
heightened activity of the monitoring system. During the
rest of the period, the polling frequency decreases to 2—3
Hz, enabling the device to conserve energy when there are
no significant changes in physiological parameters.

Adaptive Polling Frequency
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Fig. 13. Adaptive sensor polling rate for 10 s.

Fig. 14 illustrates the dynamics of changes in the
battery charge level over time, as influenced by the
device’s computing load. The observed load fluctuations
as the charge decreases indicate peak periods of power
consumption, probably related to the activity of sensors or
the data transfer module. Such an analysis allows not only
to estimate the remaining battery life, but also serves as
the basis for adaptive energy management of the device.
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Fig. 14. The relationship between the battery charge level and the
calculated device load over time.

E.  Stress Events and System Responsiveness

Fig. 15 illustrates the time scale of alarm activation over
a 10-second interval. The alarm activation is recorded
during two time periods: from O to 1.5 s and from 5.5 to
7.3 s, during which the signal value switches to the active
state (1), indicating that the set threshold has been
exceeded or the trigger condition has been met. For the
remainder of the time, the alarm remained inactive (level
0), signifying that there were no critical conditions.
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Fig. 15. Alarm time scale.
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Fig. 16. Alarm time scale for 10 s.

Fig. 16 shows a time diagram of alarm activation over
a 10-second interval. The alarm is triggered in two key
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time intervals—from 0 to 1.5 s and from 5.5 to 7.3 s,
which may indicate short-term periods of increased stress
or intense load on the user. Such a graph is helpful for
accurate localization of critical conditions and subsequent
analysis of their causes.

F.  Comparative Analysis of Wearable Device Metrics

Table II presents a comparative analysis of the
proposed wearable stress monitoring system with typical
solutions described in Ref. [6-8]. The evaluation
highlights improvements in sensor integration, polling
flexibility, energy efficiency, and support for real-time
data visualization.

The proposed device architecture demonstrates
superior adaptability and energy optimization, positioning
it as a next-generation solution for wearable stress
monitoring applications.

TABLE II. COMPARATIVE ANALYSIS OF WEARABLE DEVICE METRICS

Parameter This Work Prior Art Example [6-8]

Sensor Count 10 biosensors 3-6 typical
. . Fixed or semi-adaptive
Polling Frequency Adaptive (1.5-10 Hz) (2-5 Hz)

On-Device ML No (logic-based) Yes (CNN, DL)

Energy Adaptive control + Static power-saving
Management sleep modes profiles
Energy ~90-93 mW 100150 mW typical
Consumption
Battery Duration =10 min full-load test 5-8 min
Real-time Yes (PCA, .
T spectrogram, Limited or none
Visualization
heatmap)

IV. RESULT AND DISCUSSION

A.  Power Consumption Validation on Real Hardware

A functional subsystem prototype was constructed
using the ESP32 microcontroller, MAX30102 PPG
sensor, and DS18B20 temperature sensor. A lithium
polymer battery (3.7 V, 1000 mAh) served as the power
source. Power consumption was recorded with an INA219
current/voltage monitor while performing continuous
sensor acquisition for 10 min.

Measured energy draw: ~93 mW average under
full load.

Simulated energy estimate: ~90 mW (from
Eq. (4)).

Deviation: <3.3%.

This close correspondence confirms the validity of the
mathematical energy model used in the simulation and
shows that the simulated discharge behavior (Fig. 10,
Eq. (5)) accurately reflects real-world battery usage
patterns.

B. Sensor Response Verification

To verify signal fidelity, a test subject wore a minimal
setup that integrated the DS18B20, MAX30102, and a
GSR sensor connected to the ESP32 module. Data was
captured for 15 min under both resting and stress-induced
conditions (e.g., physical exertion, cold exposure, and
emotional stimuli via video playback).

PPG Sensor (MAX30102): Pulse signals were
clearly detectable, with peak amplitudes matching
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simulation thresholds. Alarm thresholds set in the
firmware were triggered at the same intervals as
shown in Fig. 13.

Skin Temperature (DS18B20): Responded to hand
cooling with a decrease of approximately 2.3°C,
closely mimicking the variations in the simulated
temperature signal (Fig. 4).

GSR Sensor: Exhibited bimodal distribution in
real time matching the simulated histogram
(Fig. 6), with peaks around +0.7.

These results support the accuracy of the simulated
signal models and confirm the sensors’ reactivity to
physiological changes. Moreover, the adaptive polling
algorithm exhibited the expected frequency shifts in
response to heightened stress levels, reducing energy
consumption during calm periods and increasing sampling
when anomalies were detected.

C. Correlation between Real and Simulated Outputs

By overlaying real and simulated signals, it was
confirmed that:

e The stress response logic, including thresholds
and alarms, was consistent in both domains.

The battery discharge profile over 10 min matched
the predicted curve within 5% variance.

Polling rate dynamics in response to
environmental changes (e.g., movement, pulse
rate spikes) were identical in trend and timing.

These results enhance confidence in the proposed
simulation model, confirming that it offers both
theoretical and practical validity when applied to real-
world hardware.

This study presents a comprehensive simulation of a
wearable stress monitoring device and introduces several
key innovations. First, a hybrid system architecture is
proposed, combining FPGA-based preprocessing with
Stateflow-based logic for stress detection without onboard
machine learning. Second, the model incorporates an
adaptive polling mechanism (1.5-10 Hz) linked to battery
status and sensor activity, which improves energy
efficiency. Third, detailed component-level energy
modeling is performed and partially validated on real
hardware. Finally, a wide range of analytical
visualizations—including heatmaps, PCA, and spectral
analysis—demonstrates the system’s ability to detect and
respond to physiological changes in real time. Together,
these contributions form a foundation for the development
of next-generation wearable health monitoring systems.

D. Sensor Error Reflection in Real Scenarios

The sensor error model defined in Eq. (12), ¢ = Xtrue —
Xmeasured, simulates the deviation between the true
physiological signal and the signal captured by the sensor.
In real-world conditions, this error arises from several
factors:

e Motion Artifacts: During user movement, such as
walking or hand gestures, PPG and ECG sensors
frequently encounter signal distortion due to skin
displacement, pressure variations, and mechanical
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vibrations. This leads to transient spikes or
waveform irregularities that elevate the value of €.
Environmental Interference: Changes in ambient
temperature, humidity, or exposure to light
sources (e.g., sunlight for optical sensors) can
cause sensors like MAX30102 or GSR to drift or
display biased readings. For example, rapid
cooling of the skin may lead to underestimated
core temperature values.

Sensor Aging and Calibration Drift: Over time,
sensors may exhibit baseline shifts due to material
fatigue, oxidation, or electronic drift, particularly
in analog signal components. These shifts result in
a persistent non-zero error, undermining the
reliability of long-term monitoring.

Electrical Noise: Wireless communication
modules (e.g., Wi-Fi, BLE) and nearby electronic
devices can  introduce  Electromagnetic
Interference (EMI), which corrupts analog or
low-voltage sensor signals.

During the experimental validation (Section IV.B),
such deviations were noted. For instance, the GSR sensor
exhibited bimodal behavior consistent with the
simulation, and MAX30102 demonstrated peak amplitude
variation under varying lighting and physical conditions,
confirming the relevance of the error model. Additionally,
the implemented digital filters and adaptive polling
mechanisms contributed to mitigating transient errors,
enhancing signal stability, and energy efficiency.

E.  Justification of Thresholds and Sampling
Frequencies

The selection of the alarm activation threshold (0.8
standard units) and the adaptive sampling frequency range
(1.5-10 Hz) was based on a combination of empirical
testing and theoretical considerations.

Alarm Threshold (0.8 std. units):

This value was derived by analyzing the standard
deviation of normalized sensor signals (e.g., GSR, Heart
Rate, PPG) across multiple simulation trials and pilot
hardware tests. In resting states, most biosignals remained
within +0.5 standard deviation units. A threshold of 0.8
was therefore selected to represent statistically significant
deviations (typically exceeding 1.55), corresponding to
potential stress events or physiological anomalies. This
level balances false positives with detection sensitivity
and aligns with signal-to-noise ratios observed in
comparable biomedical applications.

e Adaptive Sampling Frequency (1.5-10 Hz):

The lower bound of 1.5 Hz ensures minimal energy
consumption during calm physiological states (e.g., rest or
sleep) while still capturing relevant slow-changing signals
(e.g., skin temperature, GSR drift). The upper bound of 10
Hz supports accurate real-time tracking of fast-changing
parameters, such as Heart Rate Variability (HRV) and
pulse waveforms, which require higher temporal
resolution. These values were tuned based on real sensor
behavior and physiological literature, ensuring dynamic
responsiveness without compromising battery life.
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The adaptive polling algorithm utilizes signal
derivative monitoring and local variance metrics to adjust
sampling rates in real time, increasing frequency during
stress events and reducing it in steady states.

F.  Trade-offs in Threshold and Polling Strategy

The design of threshold-based and adaptive
mechanisms in wearable stress monitoring involves
inherent trade-offs between detection sensitivity, system
responsiveness, and energy efficiency.

Alarm Threshold Trade-offs:

Setting a higher threshold (e.g., >1.0 std. units) helps to
reduce the number of false alarms caused by minor signal
fluctuations, sensor noise, or brief motion artifacts.
However, this can lead to missed detection of early or
subtle physiological stress markers, such as slight
increases in heart rate or galvanic skin response.
Conversely, a lower threshold (e.g., 0.5-0.6) enhances
sensitivity but raises the likelihood of false positives,
potentially overwhelming users with non-critical alerts
and decreasing system trust.

Adaptive Polling Rate Trade-offs:

Frequent sampling (around 10 Hz) ensures high signal
fidelity and responsiveness to rapid physiological
changes, which is vital during dynamic stress episodes.
However, it leads to quicker battery depletion and a
heavier computational load. In contrast, lowering the
polling frequency (below 2 Hz) improves energy
efficiency but risks aliasing and loss of detail in rapidly
changing biosignals, especially for PPG-based heart rate
variability.

The selected threshold (0.8 std. units) and frequency
range (1.5-10 Hz) represent a balanced compromise,
providing reliable stress detection while ensuring power
efficiency and reducing unnecessary alerts. These values
can be further optimized in future iterations through
user-specific calibration and machine learning-based
threshold adjustment.

G. Limitations and Future Work

While the simulation results show the effectiveness of
the proposed wearable stress monitoring system, several
limitations must be acknowledged.

Lack of Full Hardware Prototype:

The system currently functions as a software simulation
model with limited real-world validation. Although
specific subsystems (e.g., sensor integration and energy
consumption modeling) were tested using ESP32-based
prototypes, a fully integrated hardware prototype with all
ten biosensors has not yet been developed.

e Absence of Clinical Testing:

No clinical or user-based validation has been conducted
to assess the accuracy of the system under real-life
physiological conditions. The current simulation does not
account  for  inter-user  variability,  real-world
environmental factors (e.g., motion, noise, temperature),
or long-term wearability and comfort of the device.
Communication Delay and Environmental
Effects:

Wireless latency, signal interference, and network
reliability were not considered in the current simulation,
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which may impact real-time performance and cloud
connectivity in deployed systems.

To address these limitations, future work will focus on
developing a comprehensive hardware prototype that
integrates all biosensors, along with a mobile application
for real-time visualization and control. Clinical validation
involving human subjects under controlled stress
conditions will be carried out to assess performance,
optimize thresholds, and ensure compliance with
biomedical standards.

H. Recognition of Potential Distortions in Simulated
Sensor Data

Despite the sophistication of the developed simulation
environment, the sensor data models used may introduce
certain distortions that do not completely reflect real-
world conditions. These potential limitations should be
considered when interpreting the results.

Idealized Noise Models:

The simulated noise added to sensor signals usually
follows Gaussian or uniform distributions, which may not
fully capture the spectrum of real-world artifacts,
including  motion-induced jitter, electromagnetic
interference, or non-stationary noise patterns.

e Absence of Nonlinear Drift and Aging Effects:

Simulated sensors do not account for long-term
degradation, calibration drift, or hysteresis behaviors that
are often observed in physical hardware. As a result,
simulated signals may seem more stable and consistent
than their real-world counterparts.

e Oversimplifying Multi-Sensor Interference:

In actual devices, signals from multiple sensors can
interact through shared power lines, thermal coupling, or
electronic crosstalk. These complex interactions are not
yet modeled in the current simulation framework.

e Signal Synchronization Assumptions:

The simulation assumes perfect temporal alignment
between sensor streams. However, in practice,
asynchronous sampling, buffer delays, and transmission
latencies introduce inconsistencies that can impact
real-time signal fusion and decision-making.

To enhance realism, future versions of the simulation
will incorporate empirically derived noise profiles,
models of sensor degradation, and asynchronous data
acquisition behaviors. These refinements are essential for
achieving more accurate and transferable results for real-
world applications.

L

Planned Sensor Integration and Anticipated Impact

To enhance the capabilities of the wearable stress
monitoring system, several additional sensors are planned
for integration. These components are designed to
improve context-awareness, precision, and robustness of
stress detection under various conditions.

e Accelerometer (3-axis):

This will enable motion detection and physical activity
classification. It allows differentiation between
stress-induced signals and those caused by movement
(e.g., increased heart rate due to exercise vs. emotional
stress), thereby reducing false positives.
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e Gyroscope:

Complements the accelerometer by supplying
rotational movement data. This enhances postural and
gesture recognition, resulting in a more accurate

interpretation of sensor data under dynamic conditions.

e GPS Module:
Provides location data to analyze geo-contextual stress
patterns (e.g., crowding, workplace stress zones).

Supports stress mapping and facilitates behavioral studies
linking location to physiological changes.
e Ambient Temperature Sensor:

Aids in distinguishing internal (skin) temperature
variations from environmental influences, enhancing
thermal signal interpretation across various weather or
room conditions.

e  Microphone (voice tension analysis):

Enables the detection of vocal stress features, including
pitch changes and speech rate. It can provide additional
cues during emotional episodes.

Together, these additional sensors will enhance the
multidimensional profiling of user states, enabling more
accurate, adaptive, and context-sensitive  stress
assessments. Future iterations of the system will also
explore fusion algorithms to intelligently combine
multimodal data intelligently, thereby improving
reliability and personalization.

J. Proposal for Collaboration on Real-World Testing

To validate and refine the proposed wearable stress
monitoring system, collaboration with clinical or
institutional partners is essential. We invite healthcare
organizations, hospitals, research centers, and
rehabilitation clinics to participate in pilot studies focused
on stress assessment and physiological monitoring.
Clinical Trials:

Conduct structured trials with patients in diverse
settings (e.g., pre-surgery, chronic pain, burnout, or PTSD
diagnosis) to assess the device’s accuracy, usability, and
reliability.

e Stress Research:

Collaborate with psychology departments or wellness
programs to analyze behavioral and physiological
responses to controlled stimuli, supported by real-time
biometric data.

Occupational Health Studies:

Collaborate with workplace wellness initiatives and
industrial environments to assess stress in high-pressure
jobs and evaluate interventions.

e Data Collection and Model Improvement:

Use collected data to improve calibration algorithms,
validate sensor thresholds, and explore machine learning
models for personalized stress classification.

Organizations interested in collaborative research or
field testing are encouraged to contact the project team.
Such cooperation will accelerate the development of
practical, evidence-based stress monitoring tools that can
positively impact healthcare and personal well-being.

K. Comparative Analysis with Related Research

To assess the significance of the proposed wearable
stress monitoring system, it is essential to compare our
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results with findings from related studies. This
comparison highlights the advantages of our system in
terms of energy efficiency, adaptability, and signal
responsiveness.

In contrast to Park et al. [6], which demonstrates a
2.4x increase in gesture recognition efficiency
using a static energy budget, our model introduces
an adaptive polling frequency (1.5-10 Hz),
allowing for dynamic energy management that
responds to real-time sensor activity, thereby
achieving similar energy efficiency gains.
Compared to the deep reinforcement learning
approach in Ref. [7], which extends wearable
device battery life by 36%, our method achieves
comparable energy savings without requiring
on-device machine learning, relying instead on
deterministic logic and signal-driven control.
Studies such as Sabry et al. [8] highlight the
challenges of integrating machine learning in low-
power devices due to processing and memory
constraints. Our solution addresses these
limitations by avoiding embedded ML and instead
using lightweight thresholding and signal filtering
strategies.

Ambrose et al. [14] uses MODWT for ECG signal
decomposition and highlights improved accuracy
compared to Haar or DWT methods. Although our
system does not utilize wavelets, we achieve
real-time  reliability  through  multi-sensor
correlation, spectrograms, and PCA.

These comparisons highlight the practical relevance of
our model, which strikes a balance between simplicity,
energy awareness, and responsiveness. Future research
can integrate selective machine learning models and real-
time feedback systems while preserving the device’s low-
power operation profile.

V. CONCLUSION

This study presents the development and simulation of
a next-generation wearable stress monitoring system,
designed for energy-efficient, real-time operation without
reliance on onboard machine learning. The proposed
architecture incorporates ten biosensors, adaptive polling
frequency control (1.5-10 Hz), component-level energy
modeling, and deterministic stress detection logic using
Stateflow. Simulation results confirmed the system’s
responsiveness, signal fidelity, and realistic power usage
behavior, with partial validation on ESP32-based
hardware. The importance of this work lies in its practical
balance between hardware simplicity and intelligent
behavior. Unlike many recent studies that rely heavily on
machine learning, our system achieves comparable
responsiveness using threshold logic and signal-driven
control, making it highly suitable for low-power IoT
health applications. The model also demonstrates
scalability for future deployment in clinical and
occupational settings. Despite the high accuracy of the
simulation and successful validation of individual
components, the proposed system currently exists only as
a software model and lacks a fully integrated physical
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prototype. Real-time interaction between all subsystems
has not yet been implemented, and important factors such
as wireless communication delays (Wi-Fi/BLE),
environmental influences (e.g., temperature, humidity, or
movement), and inter-user physiological variability are
not considered in the current version. To increase the
practical value of the system, future work will focus on
developing a fully functional hardware prototype with all
10 biosensors integrated, creating a mobile application for
control and visualization, and implementing lightweight
machine learning algorithms for self-calibration and
adaptive behavior. Final validation will involve clinical or
lab-based tests with real users to confirm the system’s
reliability in practical conditions and enable its transition
from simulation to real-world deployment. Future work
will focus on the physical implementation of a complete
prototype integrating all ten sensors, mobile app
development for data visualization and control, and
clinical validation with real users under controlled stress
conditions. Additional enhancements may include
personalized threshold calibration, selective integration of
lightweight machine learning, and dynamic user feedback
mechanisms. Overall, the proposed system represents a
robust and energy-aware platform for wearable stress
monitoring, bridging the gap between simulation and real-
world deployment.
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