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Abstract—This article presents the design and simulation of 
an intelligent wearable device for real-time stress 
monitoring, developed in the MATLAB/Simulink 
environment. The primary goal is to create an energy-
efficient and adaptable architecture that does not rely on 
onboard machine learning, yet still ensures the accurate 
detection of stress-related physiological changes. The 
proposed system integrates 10 biosensors, Field-
Programmable Gate Array (FPGA)-based signal 
preprocessing, adaptive polling frequency control  
(1.5–10 Hz), and Stateflow-driven alarm logic. Key 
simulation results include realistic sensor responses, 
synchronized signal dynamics, and detailed power 
consumption modeling, partially validated using real 
hardware components. These findings demonstrate the 
system’s potential for low-power, real-time health 
monitoring and lay the groundwork for future physical 
implementation. 
 
Keywords—wearable device, stress monitoring, sensory 
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I. INTRODUCTION 

In recent years, the development of wearable Internet of 
Things (IoT) devices for medical applications has become 
a key direction in the digitalization of healthcare.  
Next-generation devices enable continuous real-time 
monitoring of patients’ physiological parameters, which 
significantly expands the possibilities for early diagnosis, 
prevention of complications, and personalized medicine. 
However, traditional architectures and control algorithms 
for such systems face a number of serious limitations, 
including high energy consumption, unstable data 
transmission channels, difficulties with clinical 
integration, and challenges in adapting devices for 
different patient groups. Modern approaches based on the 
concept of digital twins allow for the creation of virtual 
copies of physical devices, processes, and patients. This 

opens up opportunities for more accurate modeling, 
predictive analytics, intelligent control, and optimization 
of energy consumption in telemedicine and rehabilitation 
systems. The use of big data analytics and machine 
learning algorithms has become especially relevant, 
enabling the identification of hidden patterns, the 
prediction of critical states, and the adaptation of device 
operating modes to the individual characteristics of each 
user. 

This study explores the development of an intelligent 
cyber-physical system for patient monitoring, utilizing 
wearable IoT devices and incorporating a digital twin and 
energy-efficient algorithms. The proposed solution is 
aimed at improving diagnostic accuracy and reliability, 
reducing energy consumption, and expanding the 
possibilities for personalized medical monitoring. 

II. LITERATURE REVIEW 

A. Mathematical Modeling and Data Collection 
In Ref. [1], a mathematical basis was proposed for 

designing a wearable medical IoT device with  
multi-criteria optimization. The authors combine the state 
design method and deep learning to reduce 
communication loss and latency during remote health 
monitoring. The proposed solution accelerates disease 
detection and enhances monitoring quality by optimizing 
mathematical models. Vijayan et al. [2] discuss data 
collection methods and describe how wearable devices 
track human movements, physical activity, and sleep 
during prolonged use. The paper lists current technologies 
for recording body signals and algorithms for processing 
them, including deep learning methods, to improve patient 
health monitoring.  

B. Circadian Rhythm Modeling and Personalization 
Hannay and Moreno [3] provide an overview of 

advances in integrating wearable sensor data into 
mathematical models of circadian rhythms. It notes that 
progress has been made recently in using mathematical 
models to predict a person’s internal circadian phase based 
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on indicators measured by wearable devices. The authors 
review the available data for tuning such models, compare 
existing approaches, such as limit-cyclic oscillators, and 
discuss how to personalize model parameters to enhance 
the accuracy of predictions of circadian phases.  
Sengupta et al. [4] present in-depth characteristics of 
various wearable sensors and methods, like gait analysis 
and exercise recognition, demonstrating how personalized 
models based on wearable sensor data enable doctors to 
track patient progress and improve the quality of 
rehabilitation. Huang et al. [5] present a comparison of the 
effectiveness of four different mathematical models for 
estimating the circadian phase based on data from 
wearable devices. Datasets from ordinary people and shift 
workers were used. The results showed that models 
employing activity data from wearable devices, such as 
smartwatches, can predict the circadian phase with an 
accuracy of approximately one hour. Additionally, night 
shift workers made more precise predictions based on 
activity data than those made using measured 
illumination. 

C. Energy Optimization and Adaptive Power 
Management 

Park et al. [6] focus on optimizing energy consumption 
in wearable IoT devices to achieve energy savings. The 
authors aim to maximize the number of recognized 
gestures within a given energy budget. They emphasize 
accuracy and have developed an analytical model of 
energy consumption based on measurements from the 
prototype device. It is demonstrated that reducing the 
duration of gesture processing is equivalent to increasing 
the number of recognized gestures. The proposed 
optimization algorithm enables the recognition of up to 
2.4 times more gestures within a constrained energy 
budget compared to manual parameter setting. In Ref. [7], 
an intelligent method for adaptive power management of 
a wearable device based on deep reinforcement learning is 
introduced. The system is trained using user activity data, 
sensor readings, and energy consumption profiles. With 
multi-agent Deep Reinforcement Learning (DRL), it 
optimizes real-time power consumption. Simulations 
indicate that the proposed approach can extend the battery 
life of a wearable device by approximately 36% compared 
to traditional energy-saving schemes while also boosting 
user satisfaction with the device by 25%.  

D. Medical Applications and Clinical Integration 
Sabry et al. [8] discuss the latest research on using 

wearable electronics for monitoring activity and vital 
signs, diagnosing diseases, and caring for the elderly, 
among other applications. The main challenges of 
implementing Machine Learning (ML) in wearable 
devices, including limited accuracy, energy constraints, 
and privacy issues, are examined, along with potential 
solutions from the literature and areas that require further 
research. Ates et al. [9] analyze the primary components 
of such devices: substrate materials, sensing elements, 
data processing and transmission units, and power 
modules. The evolution of wearable systems, from the 
first generations focused mainly on tracking physical 

indicators, such as activity and pulse, to the second 
generation, which includes devices for non–invasive 
biochemical and multimodal monitoring, is discussed. 
Examples of new form factors, such as skin patches, smart 
tattoos, and contact lenses with sensors, are provided, 
expanding the possibilities for individualized medical 
control. Sreedhara et al. [10] provide an overview of 
mathematical models that describe fatigue and recovery 
during physical exertion. Various energy models of 
fatigue are analyzed, with special attention paid to the 
two–parameter model, a simple hyperbolic model 
illustrating the dependency of power on time, where the 
asymptotic power is highlighted. The review underscores 
the need for novel methods that account for individual 
CP/W variability and recovery dynamics to enhance 
training effectiveness and optimize exercise. In Ref. [11], 
a universal three-stage structure is proposed for utilizing 
wearable sensor data in clinical practice, known as the 
Automate–Illuminate–Predict (AIP) approach. Wearable 
devices are employed to (1) automate the collection of 
traditional clinical indicators, (2) identify new hidden 
correlates of diseases and functional disorders, and (3) 
predict disease outcomes and exacerbations. The authors 
demonstrate the application of the AIP model using 
examples from rehabilitation medicine.  

Scherb et al. [12] provide a systematic review of 
methods for modeling the interaction between wearable 
assistive devices, such as exoskeletons and orthoses, and 
digital human models. They identify four primary 
modeling approaches and emphasize the importance of 
incorporating soft tissue behavior in simulations to 
improve the effectiveness of wearable device design. 
Uhlenberg et al. [13] present a co-simulation framework 
that integrates human digital twins with wearable inertial 
sensors to analyze gait event estimation. Their work 
compares estimated gait events with reference data to 
validate the performance of the simulation in MATLAB 
Simulink. Ambrose et al. [14] utilize Maximal Overlap 
Discrete Wavelet Transform (MODWT) to decompose 
Electrocardiography (ECG) signals and identify changes 
in the R waves within the noisy ECG input signal. 
MATLAB Simulink is employed to develop a simulation 
model for the MODWT method. A comparative analysis 
of the effectiveness of the MODWT-based remote health 
monitoring system method is performed against other 
ECG monitoring approaches, such as the Haar Wavelet 
Transform (HWT) and the Discrete Wavelet Transform 
(DWT). Sundarasekar et al. [15] describes the concept and 
practical implementation of a collaborative modeling 
interface between a System-on-a-Chip (SoC) model based 
on C and MATLAB/Simulink. The proposed approach 
enables the combination of high-level modeling with 
domain-specific applications through a virtual execution 
platform, providing precision down to the bits and cycles 
of a specific embedded Hardware/Software (HW/SW) 
platform without interface issues. Our concept was 
implemented and applied to the development of the 
Wearable Artificial Kidney Device (WAKD), an 
embedded medical device. Sadeghi et al. [16] presents the 
development of lightweight, wearable exo-gloves 
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designed for physical finger rehabilitation. Thermal 
characteristics, dynamics, and overall performance were 
modeled in MATLAB Simulink, and experimental 
verification confirmed the model’s effectiveness. 

E. Simulation and Digital Twin Approaches for 
Wearable Medical and Assistive Devices 

A simulator was developed and implemented in a 
computing environment using the set-body dynamics 
method [17]. The platform structure was designed in 
SOLIDWORKS v2017 and subsequently exported to 
MATLAB R2017a via the Simulink environment and the 
Simscape Multibody library. The same study also 
included mathematical modeling based on the Euler–
Lagrange equation for a Single-Degree-of-Freedom 
(SDOF) human hand model with two different vibration 
absorber configurations. A computational study in 
MATLAB Simulink was conducted to compare their 
performance, and the results were validated using MSC 
Adams multibody dynamics simulation software by 
Hexagon AB. Johnson et al. [18] provide an analysis of 
current research on human digital twins, outlining the 
employed methodologies, practical applications, and key 
challenges in the field. In addition, the authors propose a 
conceptual framework for developing a digital twin of the 
human body using data collected from wearable sensors. 
The use of Discrete Event Simulation (DES) to model 
patient flow scenarios involving health monitoring 
systems is proposed by Gorelova et al. [19]. A simulation 
module based on MATLAB Simulink was integrated into 
the MoSTHealth framework, enabling the incorporation 
of digital twins into a DES environment that medical 
experts can parameterize using a mobile interface. A case 
study on a wearable device under development, which 
collects real-time hormone level data during infertility 
treatment, demonstrated an 88.8% increase in the number 
of patients seen by a single doctor, along with a 36.5% 
reduction in average consultation waiting time.  
Gabhane et al. [20] present the modeling of a wearable 
device for continuous ECG monitoring. The system 
detects abnormalities in ECG signals and automatically 
sends an MMS containing the altered ECG recording to 
the patient’s mobile phone via a Bluetooth interface. The 
mobile phone then forwards the ECG image to a hospital-
based mobile device. The study demonstrates the 
modeling of this system using MATLAB wireless tools 
and Java 2 Micro Edition (J2ME, WTK). In Ref. [21], 
MODWT is employed to decompose ECG signals and 
detect changes in the R waves within the noisy ECG input 
signal. The simulation model of the MODWT method was 
developed using MATLAB Simulink. 

Fig. 1 presents a high-level functional diagram of the 
proposed wearable stress monitoring system, 
summarizing the signal flow from biosensors through 
processing modules to adaptive control and visualization. 
Fig. 1 illustrates the architecture of a wearable stress 
monitoring device. The system consists of 10 biosensors 
that capture physiological parameters, including ECG, 
Photoplethysmography (PPG), body temperature, and 
Galvanic Skin Response (GSR). The signals are initially 
sent to a Field-Programmable Gate Array (FPGA) module 

for parallel preprocessing and then forwarded to a 
microcontroller, where adaptive polling, stress level 
evaluation, and decision-making logic are applied. When 
a specified threshold is exceeded, an alarm is triggered, 
and real-time data is shown on an OLED screen. The 
entire system emphasizes energy efficiency and 
autonomous operation. 

 

 
Fig. 1. High-level architecture of the proposed wearable  

stress-monitoring system with 10 biosensors and adaptive control. 

This work aims to develop and simulate an intelligent 
architecture for a wearable device that monitors stress in a 
MATLAB/Simulink environment. It features adaptive 
polling frequency, energy-efficient control, alarm 
notifications, and data visualization, all without relying on 
machine learning algorithms on the device. 

III. MATERIALS AND METHODS 

Table I presents the key abbreviations and notations 
used throughout the article. 

TABLE I. KEY ABBREVIATIONS AND TECHNICAL TERMS USED IN THE 
ARTICLE 

Abbreviation Definition 

SD Standard Deviation–a measure of signal variability 
used in threshold detection. 

GSR Galvanic Skin Response–indicates electrodermal 
activity, often linked to stress. 

PPG Photo plethysmography–an optical method for 
measuring heart rate and pulse. 

HR Heart Rate–beats per minute, derived from PPG. 

HRV Heart Rate Variability–a time-domain measure of 
pulse fluctuations. 

EEG Electroencephalography–measures brain activity 
patterns. 

PCA 
Principal Component Analysis–a dimensionality 

reduction method used for sensor data 
visualization. 

MCU Microcontroller Unit–central processing element 
in wearable systems. 

ADC Analog-to-Digital Converter–used to digitize 
sensor signals. 

LP Mode Low Power Mode–energy-saving state for system 
components. 

 
Eq. (1) allows us to determine the energy representation 

of local computing tasks when utilizing wearable devices 
capable of offloading calculations. It proposes 
computational offloading strategies that minimize local 
energy consumption in IoT devices. This approach 
directly supports the formulation of Eq. (1), which 
quantifies local energy costs in wearable systems [22]. It 
provides background on security trade-offs in mobile 
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computation offloading. Although not the primary focus 
here, it contributes to the rationale for modeling flexible 
computation placement in Eq. (1) [23]: 

 𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚∑ (𝐸𝐸1𝑛𝑛
𝑖𝑖=1 +. . . +𝐸𝐸𝑖𝑖) × 𝛿𝛿𝑖𝑖 (1) 

The energy consumption model of a wearable device 
outlines the total energy usage of all its components during 
operation. The calculations consider the energy use of the 
microcontroller, display, sensors, and wireless 
communication module operating in various modes, 
including both active and energy-saving modes. Energy 
consumption can be reduced by optimizing the 
measurement frequency, adjusting the screen brightness, 
and implementing efficient data transmission methods. 
The developed model enables the prediction of device 
battery life and identifies the key components that require 
further improvement in energy efficiency. It provides a 
model for component-level energy profiling, including 
sensors and wireless interfaces, which validates the 
structure of Eq. (2) used in our system energy model [24]: 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸32 + 𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 + 𝐸𝐸𝐷𝐷𝐷𝐷18𝐵𝐵20 + 𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐷𝐷(𝑡𝑡) = 𝑇𝑇(𝑡𝑡),𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡),𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) (2) 

The total power consumption of the device includes the 
power consumption of the ESP32 microcontroller, the 
OLED display, the temperature sensor, the galvanic skin 
response sensor, the PPG sensor, and the communication 
interfaces such as Wi-Fi and Bluetooth. 

The power consumption of a microcontroller is 
essential for the autonomous operation of a wearable 
device. Various operating modes, including active task 
execution, standby mode, and energy-saving mode, affect 
this consumption. In the active state, the microcontroller 
manages the sensors, processes the data, and transmits it, 
resulting in the highest energy usage. In sleep mode, 
power consumption is reduced by disabling auxiliary 
modules and lowering the clock frequency. Effective 
management of these modes significantly extends the 
device’s operating time without recharging. This 
demonstrates dynamic power scaling for microcontrollers 
and its effect on overall consumption. It supports Eq. (3), 
which breaks down ESP32 power consumption into active 
and sleep states [25]:  

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸32 =𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸32 × 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (3) 

where 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸32  is the power consumption of the ESP32 
microcontroller in active mode, 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎is the duration of 
operation in active mode, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠is the power consumption 
in sleep mode, and 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠is the duration of time spent in 
sleep mode. 

Refs. [22–25] provide foundational support for the 
energy modeling strategy adopted in this study. 
Specifically, Manoharan et al. [22] propose a  
CNN-TLSTM approach within an IoT–fog cloud 
architecture to optimize computational processes and 
reduce local energy consumption, which aligns with our 
Eq. (1) for estimating local processing energy costs. 
Maciá-Fernández et al. [23] complement this perspective 

by discussing security implications in distributed 
communication environments, relevant to offloaded 
architectures. The component-level energy profiling 
model from Ref. [24] directly informs the structure of 
Eq. (2), incorporating sensors, display, and wireless 
communication modules. Finally, Ramasamy et al. [25] 
details the power scaling behaviors of microcontrollers 
across active and sleep modes, supporting the formulation 
of Eq. (3) for modeling ESP32 consumption. 

The power consumption of an OLED display has a 
significant impact on the operational duration of a 
wearable device that does not require recharging. This 
consumption is influenced by factors such as screen 
brightness, the size of the active screen area, and the 
duration of device use. Lowering brightness, using dark 
interface themes, and automatically turning off the screen 
when not in use can help reduce energy consumption. By 
optimizing these parameters, the device’s battery life can 
be extended. The energy consumption of an OLED 
display is determined by Eq. (4) [26]. 

 𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (4) 

The power consumption of the DS18B20 temperature 
sensor impacts the overall energy usage of the wearable 
device, particularly in terms of long-term battery life. This 
sensor operates in pulse mode, activating only briefly to 
measure temperature before entering a low-power state. 
Key factors influencing its energy consumption include 
the frequency of measurements, data processing time, and 
the power mode utilized (normal or parasitic). Optimizing 
the reading frequency and employing standby mode can 
significantly reduce power consumption and prolong the 
device’s life without needing a recharge. The power 
consumption of the DS18B20 temperature sensor can be 
calculated using Eq. (5) [27]: 

 𝐸𝐸𝐷𝐷𝐷𝐷18𝐵𝐵20 = 𝑃𝑃𝐷𝐷𝐷𝐷18𝐵𝐵20 × 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (5) 

where 𝑃𝑃𝐷𝐷𝐷𝐷18𝐵𝐵20  is the sensor consumption power, 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the time of his active work. 

Eq. (2) represents an optimization function that 
minimizes the load on each device, which is especially 
important for wearable devices used in diagnosing various 
diseases that require additional computing resources. 
However, since the data is transmitted via a wireless 
module, Eq. (6) is used to estimate the subsequent waiting 
time for data transmission [28, 29]. 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚∑ 𝑡𝑡𝑝𝑝ℎ𝑛𝑛
𝑖𝑖=1 × 𝐸𝐸𝑐𝑐𝑐𝑐 (6) 

To illustrate the operation of connected devices, a third 
objective function, known as the minimization function, is 
employed. Eq. (7) estimates the energy consumption of 
the communication module [30]. 

 𝐸𝐸𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚∑ 𝑝𝑝𝑐𝑐𝑐𝑐
𝛽𝛽𝑖𝑖

𝑛𝑛
𝑖𝑖=1 × 𝑑𝑑𝑛𝑛(𝑖𝑖) (7) 

The sensor data integration model in wearable devices 
ensures the collection, processing, and synchronization of 
readings from various sensors. Data is sourced from 
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sensors such as temperature sensors, GSR sensors, PPG 
sensors, accelerometers, and gyroscopes, each operating 
at different measurement frequencies. To maintain 
information consistency, digitization, filtering, and signal 
synchronization are employed. This minimizes 
measurement errors and enhances the accuracy of 
analyzing users’ physiological parameters. Optimized 
data integration is crucial for energy conservation and 
reliable information transmission to the monitoring 
system. The sensor data integration and transmission time 
are modeled in Eq. (8) [31]: 

 𝐷𝐷(𝑡𝑡) = {𝑇𝑇(𝑡𝑡),𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡),𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)}𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐷𝐷×𝛾𝛾
𝑅𝑅

 (8) 

where: 𝑇𝑇(𝑡𝑡)  is the temperature; 𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡)  is the galvanic 
skin reaction; 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the photoplethysmograph data. 

The data transfer model in wearable devices defines the 
process of sending information gathered from sensors to 
external devices or cloud platforms. Data is transmitted 
using wireless technologies such as Wi-Fi, Bluetooth, or 
Low-Power Wide Area Network (LPWAN), depending 
on the requirements for speed and power consumption. 
Key aspects of the model include encoding, compression, 
filtering, and optimizing transmission to minimize delays 
and reduce energy consumption. Reliable transmission is 
ensured through error correction mechanisms, packet 
resending, and data flow control. The efficient 
organization of the data transmission model allows for 
reduced power consumption and ensures a stable 
connection to monitoring systems. The data transmission 
and interpretation model is presented in Eq. (9) [32]: 

 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐷𝐷×𝛾𝛾
𝑅𝑅

𝐻𝐻(𝑡𝑡) = 𝑓𝑓(𝑇𝑇(𝑓𝑓),𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡),𝐻𝐻𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡), 𝑆𝑆𝑆𝑆𝑆𝑆2𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡))
 (9) 

where 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the data transfer time; 𝐷𝐷  is the data 
size; 𝛾𝛾 is the compression ratio; 𝑅𝑅 is the data transfer rate. 

The health assessment model in wearable devices is 
based on analyzing data obtained from various sensors to 
monitor the user’s physiological parameters. The 
evaluation process utilizes signal processing, data 
normalization, and machine learning algorithms to assist 
in classifying user states. This model is used for early 
disease detection, personalized recommendations, and 
emergency notification of medical services in the event of 
critical changes in health parameters. The health 
assessment and consumption evaluation model is defined 
in Eq. (10) [33]: 

 
𝐻𝐻(𝑡𝑡) = 𝑓𝑓(𝑇𝑇(𝑓𝑓),𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡),𝐻𝐻𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡), 𝑆𝑆𝑆𝑆𝑆𝑆2𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡))

𝐶𝐶(𝑡𝑡) = 𝐶𝐶0 − ∫ 𝐼𝐼(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡
0

 (10) 

where 𝐻𝐻(𝑡𝑡) is the status indicator; GSR(t) is the galvanic 
skin response; 𝐻𝐻𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the heart rate derived from the 
PPG signal; and 𝑆𝑆𝑆𝑆𝑆𝑆2𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)  is the oxygen saturation 
level. 

The battery charge model in wearable devices describes 
the process of energy accumulation and consumption by 
the battery, depending on the operating conditions. The 
main parameters of the model include battery capacity, 

voltage, charge current, and charging efficiency. An 
important aspect is optimizing charging speed, preventing 
overheating, and extending battery life. The model also 
considers the efficiency of the power controller, which 
manages the charging and energy distribution processes 
among the device components. Analyzing these 
parameters enables improved energy efficiency and 
prolonged battery life of the wearable device. The battery 
charge model is described by Eq. (11) [34]: 

 𝐶𝐶(𝑡𝑡) = 𝐶𝐶0 − ∫ 𝐼𝐼(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡
0  (11) 

where: 𝐶𝐶(𝑡𝑡) is the battery charge at the moment; 𝐶𝐶0is the 
initial battery charge; 𝐼𝐼(𝜏𝜏) is the current consumption. 

The sensor error model in wearable devices describes 
the deviations of measured data from actual values, which 
occur due to both internal and external factors. Digital 
filtering methods, calibration algorithms, and 
compensation models are employed to minimize these 
errors. Optimizing sensor operations and accounting for 
potential deviations enhances the accuracy of 
measurements and the reliability of data used in health 
monitoring systems. The sensor error and signal reliability 
model is expressed by Eq. (12) [35]: 

 
𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) = 𝑋𝑋measured(𝑡𝑡) ± 𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅(𝑡𝑡) = 𝑒𝑒−𝜆𝜆𝜆𝜆
 (12) 

where 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)  is the actual value of the measured; 
𝑋𝑋measured(𝑡𝑡) is the value measured by the sensor; 
𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖s Sensor. 

The reliability model of a device assesses the likelihood 
of its uninterrupted operation over a specified period, 
considering the characteristics of its components and 
external operating conditions. Optimized power 
consumption modes, fault-tolerant data transmission 
schemes, and routine component health diagnostics 
enhance the device’s durability. This strategy reduces the 
likelihood of failures and extends the wearable device’s 
lifespan. The reliability and energy efficiency model of the 
device is defined by Eq. (13) [36]: 

 
𝑅𝑅(𝑡𝑡) = 𝑒𝑒−𝜆𝜆𝜆𝜆

𝑦𝑦[𝑛𝑛] = ∑ 𝑏𝑏𝑘𝑘𝑀𝑀
𝑘𝑘=0 × 𝑥𝑥[𝑛𝑛 − 𝑘𝑘]  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸32 =𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸32 × 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (13) 

where 𝑅𝑅(𝑡𝑡)  is the device reliability over time; 𝜆𝜆  is the 
failure rate. 

The digital signal filtering model in wearable devices 
eliminates noise and enhances the accuracy of data 
measured from sensors. Interference, motion artifacts, and 
external electrical disturbances can occur during device 
operation, distorting the source data. Optimizing the 
digital filtering model is crucial for ensuring the reliability 
of data analysis and decision-making based on sensory 
measurements. The digital signal filtering model is 
defined by Eq. (14) [37]:  

 𝑦𝑦[𝑛𝑛] = ∑ 𝑏𝑏𝑘𝑘 × 𝑥𝑥[𝑛𝑛 − 𝑘𝑘]𝑀𝑀
𝑘𝑘=0  (14) 
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where 𝑦𝑦[𝑛𝑛] is the output signal after filtering; 𝑥𝑥[𝑛𝑛] is the 
original signal; 𝑏𝑏𝑘𝑘 is the filter coefficient. The thermal 
model of the device outlines the heating and heat 
dissipation processes in wearable electronic systems, 
which influence their stability and user comfort. To 
prevent overheating, energy-efficient operating modes, 
processor clock frequency optimization, and the 
incorporation of heat-dissipating materials in the design 
are employed. The device’s thermal behavior is modeled 
by Eq. (15) [38]: 

 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑅𝑅𝑡𝑡ℎ �1 − 𝑒𝑒
− 𝑡𝑡
𝑅𝑅𝑡𝑡ℎ𝐶𝐶𝑡𝑡ℎ� (15) 

where 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) is the temperature of the device at a given 
time; 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎is the ambient temperature; 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑is the power 
dissipation; 𝑅𝑅𝑡𝑡ℎ, 𝐶𝐶𝑡𝑡ℎ Thermal resistance and heat capacity. 
 

 
Fig. 2. Architecture of a wearable stress monitoring device. 

Fig. 2 illustrates the architecture of a wearable stress 
monitoring device. The system comprises a network of 
sensors (for example, sensors for skin temperature, 
electrical conductivity, ECG, etc.), whose signals are 
transmitted to the FPGA module for initial digital 
processing. Subsequently, the data flows through an 
adaptive polling and alarm module, after which it is 
relayed to a trained machine learning model and a logical 
state management unit implemented using StateFlow. The 
architecture offers functions for energy management,  
self-diagnosis, assessment of remaining battery life, and 
protection against failures. Information is exchanged with 
cloud platforms and mobile devices through secure 
channels via a wireless module, while considering 
location and weather conditions. 

Fig. 3 presents a model of a wearable stress monitoring 
device. The system receives data from ten sensors, 
including SkinTemp, Heart Rate, Skin Resistance (SR), 
Electroencephalogram (EE), Electrocardiogram (EC), 
Galvanic Skin Response (GS), Electromyography (EM), 
Tactile Sensor (TS), Temperature, and MAX30102. The 
signals are aggregated and sent to the PID controller, 
which stabilizes the output. Next, the stress level is 
compared to the threshold, and when exceeded, an alarm 
indicator activates. A GPS module is also included to 
display the geo-location, enabling the tracking of the 
relationship between stress levels and the user’s location. 

 
Fig. 3. Simulation model of a wearable stress monitoring device. 

IV. EXPERIMENTAL RESULTS 

A. Sensor Dynamics and Signal Behavior 
During the simulation of the developed wearable device 

system, data from ten sensors were generated and 
analyzed to replicate key physiological parameters of the 
user. All signals were digitally filtered, visualized, and 
evaluated using various analytical methods, including 
time series analysis, three-dimensional graphs, heat maps, 
spectral analysis, and statistical distributions. The results 
obtained confirm the operability and effectiveness of the 
system’s primary functions: adaptive polling frequency, 
alarm event management, and power consumption 
optimization. 

Fig. 4 illustrates the dynamics of nine biosignals over a 
10-second range. All sensors exhibit notable periodic 
fluctuations with amplitudes reaching ±1.1, indicating the 
system’s high activity and sensitivity to physiological 
changes. This visualization is helpful for a quick 
assessment of each signal’s behavior and also helps 
identify synchronicity and potential relationships among 
different sensors. 

 

 
Fig. 4. Change of values of nine different biosignals in time from 0 to 

10 s. 

Fig. 5 displays the signals from all sensors over a  
15-second interval, illustrating characteristic oscillatory 
patterns. The Heart Rate signal varies from −0.5 to 0.8, 
while SkinTemp ranges from −0.3 to 1.0. Most signals 
have a positive offset relative to zero, indicating sustained 
sensor activity during the observed period. This type of 
visualization enables a visual comparison of the amplitude 
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and dynamics of various sensors, as well as the 
identification of features in their behavior. 

 

 
Fig. 5. Signals from all sensors for 15 s. 

Fig. 6 displays the time series of signals from all 10 
sensors over the range of 0 to 10 s. To enhance clarity, 
each signal is vertically shifted, allowing for a clear 
distinction of their dynamics. The amplitude values range 
from 0 to approximately 27 conventional units; for 
instance, the GSR signal strength remains stable at  
about 7, while the MAX30102 value reaches 27. This 
visualization proves useful for analyzing temporal 
changes, detecting anomalies, identifying bursts of 
activity, and assessing the behavior of each sensor 
individually. 

 

 
Fig. 6. Time series of all 10 sensors for the interval from 0 to 10 s. 

B. Amplitude and Frequency Analysis 
The histograms in Fig. 7 reveal that the SkinTemp and 

HeartRate sensors display the highest density of values in 
the range from 0.8 to 1.2, where the measurement 
frequency exceeds 30–40. The GSR sensor demonstrates 
a characteristic double-humped distribution with notable 
peaks at −0.8 and +0.8, which may suggest an alternation 
between phases of excitation and rest. For the MAX30102 
sensor, the majority of values cluster in the range  
from −1.0 to −0.5, with a frequency of about 30. 
Analyzing the histogram enables the determination of the 
amplitude distribution of signals, identification of 
predominant values, and assessment of the symmetry or 
presence of offsets in the data from each sensor. 

The EEG spectrogram shown in Fig. 8 indicates that the 
main activity of the signal is concentrated in the frequency 
range of 0–1 Hz, corresponding to delta waves 
characteristic of deep sleep or relaxation. Frequencies 
above 1 Hz practically do not appear—the intensity of the 
spectrum remains at zero. The time interval from 3 to 7 s 
demonstrates a stable spectral pattern, which may indicate 
both signal stability and weak brain activity in the alpha 
and beta wave ranges. The highest spectral density is 
recorded in the lower frequency band, reaching an 
amplitude of approximately 0.01–0.02, as indicated by the 
yellow area on the spectrogram. 

 

 
Fig. 7. Histogram of sensor signal distribution. 

 
Fig. 8. EEG signal spectrogram. 

C. Statistical and Spatial Trends 
Fig. 9 illustrates a heat map of sensor activity over time. 

The highest intensity is shown by the HeartRate, EEG, and 
GS sensors in the range from 1600 to 2200 ms, where 
values reach 0.8–1.0 and higher. The GSR and EM sensors 
exhibit local peaks of activity between 3000 and 3600 ms, 
with an amplitude of approximately +1.1. Minimum 
values (about −1.0) were detected at the EC and 
MAX30102 sensors in the range of 4000 to 4800 m/s. This 
visualization facilitates the practical analysis of time 
synchronization and activity differences between sensors, 
highlighting key periods of physiological change. 

Fig. 10 illustrates the results of Principal Component 
Analysis (PCA), where data from multiple sensors are 
projected into a two-dimensional space defined by the two 
main components, PC1 and PC2. The distribution of 
points takes on a ring shape, indicating a strong correlation 
between sensory parameters. The color scale reflects the 
average signal values: red shades correspond to positive 
values up to +0.25, while blue shades correspond to 

Journal of Advances in Information Technology, Vol. 16, No. 10, 2025

1406



negative values up to −0.25. This projection enables the 
visual identification of hidden relationships in the data, 
which can be used to classify physiological conditions, 
including potential stress levels. 

Fig. 11 shows the signals received from ten different 
sensors. The graph displays a distinct monotonous and 
repetitive behavior, which may indicate the presence of 
physiological rhythms or cyclical activity of the body. The 
illustrated three-dimensional surface allows for effective 
analysis of the synchronicity of readings, identification of 
deviations, and tracking of temporary changes in sensory 
data. 

 

 
Fig. 9. Heat map of sensor activity. 

 
Fig. 10. Principal component projection. 

 
Fig. 11. Signal from 10 different sensors. 

D. Battery and Power Consumption Analysis 
Fig. 12 illustrates the change in the battery level of the 

wearable device over a duration of 10 s. The charge 
decreases from an initial value of 100% to approximately 
57% by the end of the interval, which corresponds to an 
average discharge rate of about 4.3% per second. Such 
high energy consumption may be due to the significant 
load on the system—active operation of sensors, data 
transmission, or the absence of energy-saving modes. 

 

 
Fig. 12. Battery charge level of the device for 10 s. 

Fig. 13 illustrates the adaptive frequency of sensor 
polling within a 10-second range. The frequency 
fluctuates between approximately 1.5 and 10 Hz, creating 
an undulating profile. The most pronounced peaks—
reaching up to 9–10 Hz—are observed at the start of the 
time window and around the 6th second, indicating 
heightened activity of the monitoring system. During the 
rest of the period, the polling frequency decreases to 2–3 
Hz, enabling the device to conserve energy when there are 
no significant changes in physiological parameters. 

 

 
Fig. 13. Adaptive sensor polling rate for 10 s. 

Fig. 14 illustrates the dynamics of changes in the 
battery charge level over time, as influenced by the 
device’s computing load. The observed load fluctuations 
as the charge decreases indicate peak periods of power 
consumption, probably related to the activity of sensors or 
the data transfer module. Such an analysis allows not only 
to estimate the remaining battery life, but also serves as 
the basis for adaptive energy management of the device. 
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Fig. 14. The relationship between the battery charge level and the 

calculated device load over time. 

E. Stress Events and System Responsiveness 
Fig. 15 illustrates the time scale of alarm activation over 

a 10-second interval. The alarm activation is recorded 
during two time periods: from 0 to 1.5 s and from 5.5 to 
7.3 s, during which the signal value switches to the active 
state (1), indicating that the set threshold has been 
exceeded or the trigger condition has been met. For the 
remainder of the time, the alarm remained inactive (level 
0), signifying that there were no critical conditions. 

 

 
Fig. 15. Alarm time scale. 

 
Fig. 16. Alarm time scale for 10 s. 

Fig. 16 shows a time diagram of alarm activation over 
a 10-second interval. The alarm is triggered in two key 

time intervals—from 0 to 1.5 s and from 5.5 to 7.3 s, 
which may indicate short-term periods of increased stress 
or intense load on the user. Such a graph is helpful for 
accurate localization of critical conditions and subsequent 
analysis of their causes. 

F. Comparative Analysis of Wearable Device Metrics 
Table II presents a comparative analysis of the 

proposed wearable stress monitoring system with typical 
solutions described in Ref. [6–8]. The evaluation 
highlights improvements in sensor integration, polling 
flexibility, energy efficiency, and support for real-time 
data visualization. 

The proposed device architecture demonstrates 
superior adaptability and energy optimization, positioning 
it as a next-generation solution for wearable stress 
monitoring applications. 

TABLE II. COMPARATIVE ANALYSIS OF WEARABLE DEVICE METRICS 

Parameter This Work Prior Art Example [6–8] 
Sensor Count 10 biosensors 3–6 typical 

Polling Frequency Adaptive (1.5–10 Hz) Fixed or semi-adaptive 
(2–5 Hz) 

On-Device ML No (logic-based) Yes (CNN, DL) 
Energy 

Management 
Adaptive control + 

sleep modes 
Static power-saving 

profiles 
Energy 

Consumption ~90–93 mW 100–150 mW typical 

Battery Duration ≈10 min full-load test 5–8 min 

Real-time 
Visualization 

Yes (PCA, 
spectrogram, 

heatmap) 
Limited or none 

IV. RESULT AND DISCUSSION 

A. Power Consumption Validation on Real Hardware 
A functional subsystem prototype was constructed 

using the ESP32 microcontroller, MAX30102 PPG 
sensor, and DS18B20 temperature sensor. A lithium 
polymer battery (3.7 V, 1000 mAh) served as the power 
source. Power consumption was recorded with an INA219 
current/voltage monitor while performing continuous 
sensor acquisition for 10 min. 

• Measured energy draw: ~93 mW average under 
full load. 

• Simulated energy estimate: ~90 mW (from 
Eq. (4)). 

• Deviation: <3.3%. 
This close correspondence confirms the validity of the 

mathematical energy model used in the simulation and 
shows that the simulated discharge behavior (Fig. 10, 
Eq. (5)) accurately reflects real-world battery usage 
patterns. 

B. Sensor Response Verification 
To verify signal fidelity, a test subject wore a minimal 

setup that integrated the DS18B20, MAX30102, and a 
GSR sensor connected to the ESP32 module. Data was 
captured for 15 min under both resting and stress-induced 
conditions (e.g., physical exertion, cold exposure, and 
emotional stimuli via video playback).  

• PPG Sensor (MAX30102): Pulse signals were 
clearly detectable, with peak amplitudes matching 
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simulation thresholds. Alarm thresholds set in the 
firmware were triggered at the same intervals as 
shown in Fig. 13. 

• Skin Temperature (DS18B20): Responded to hand 
cooling with a decrease of approximately 2.3°C, 
closely mimicking the variations in the simulated 
temperature signal (Fig. 4). 

• GSR Sensor: Exhibited bimodal distribution in 
real time matching the simulated histogram 
(Fig. 6), with peaks around ±0.7. 

These results support the accuracy of the simulated 
signal models and confirm the sensors’ reactivity to 
physiological changes. Moreover, the adaptive polling 
algorithm exhibited the expected frequency shifts in 
response to heightened stress levels, reducing energy 
consumption during calm periods and increasing sampling 
when anomalies were detected. 

C. Correlation between Real and Simulated Outputs 
By overlaying real and simulated signals, it was 

confirmed that: 
• The stress response logic, including thresholds 

and alarms, was consistent in both domains. 
• The battery discharge profile over 10 min matched 

the predicted curve within 5% variance. 
• Polling rate dynamics in response to 

environmental changes (e.g., movement, pulse 
rate spikes) were identical in trend and timing. 

These results enhance confidence in the proposed 
simulation model, confirming that it offers both 
theoretical and practical validity when applied to real-
world hardware. 

This study presents a comprehensive simulation of a 
wearable stress monitoring device and introduces several 
key innovations. First, a hybrid system architecture is 
proposed, combining FPGA-based preprocessing with 
Stateflow-based logic for stress detection without onboard 
machine learning. Second, the model incorporates an 
adaptive polling mechanism (1.5–10 Hz) linked to battery 
status and sensor activity, which improves energy 
efficiency. Third, detailed component-level energy 
modeling is performed and partially validated on real 
hardware. Finally, a wide range of analytical 
visualizations—including heatmaps, PCA, and spectral 
analysis—demonstrates the system’s ability to detect and 
respond to physiological changes in real time. Together, 
these contributions form a foundation for the development 
of next-generation wearable health monitoring systems. 

D. Sensor Error Reflection in Real Scenarios 
The sensor error model defined in Eq. (12), ε = Xtrue – 

Xmeasured, simulates the deviation between the true 
physiological signal and the signal captured by the sensor. 
In real-world conditions, this error arises from several 
factors: 

• Motion Artifacts: During user movement, such as 
walking or hand gestures, PPG and ECG sensors 
frequently encounter signal distortion due to skin 
displacement, pressure variations, and mechanical 

vibrations. This leads to transient spikes or 
waveform irregularities that elevate the value of ε. 

• Environmental Interference: Changes in ambient 
temperature, humidity, or exposure to light 
sources (e.g., sunlight for optical sensors) can 
cause sensors like MAX30102 or GSR to drift or 
display biased readings. For example, rapid 
cooling of the skin may lead to underestimated 
core temperature values. 

• Sensor Aging and Calibration Drift: Over time, 
sensors may exhibit baseline shifts due to material 
fatigue, oxidation, or electronic drift, particularly 
in analog signal components. These shifts result in 
a persistent non-zero error, undermining the 
reliability of long-term monitoring. 

• Electrical Noise: Wireless communication 
modules (e.g., Wi-Fi, BLE) and nearby electronic 
devices can introduce Electromagnetic 
Interference (EMI), which corrupts analog or  
low-voltage sensor signals.  

During the experimental validation (Section IV.B), 
such deviations were noted. For instance, the GSR sensor 
exhibited bimodal behavior consistent with the 
simulation, and MAX30102 demonstrated peak amplitude 
variation under varying lighting and physical conditions, 
confirming the relevance of the error model. Additionally, 
the implemented digital filters and adaptive polling 
mechanisms contributed to mitigating transient errors, 
enhancing signal stability, and energy efficiency. 

E. Justification of Thresholds and Sampling 
Frequencies 

The selection of the alarm activation threshold (0.8 
standard units) and the adaptive sampling frequency range 
(1.5–10 Hz) was based on a combination of empirical 
testing and theoretical considerations. 

• Alarm Threshold (0.8 std. units): 
This value was derived by analyzing the standard 

deviation of normalized sensor signals (e.g., GSR, Heart 
Rate, PPG) across multiple simulation trials and pilot 
hardware tests. In resting states, most biosignals remained 
within ±0.5 standard deviation units. A threshold of 0.8 
was therefore selected to represent statistically significant 
deviations (typically exceeding 1.5σ), corresponding to 
potential stress events or physiological anomalies. This 
level balances false positives with detection sensitivity 
and aligns with signal-to-noise ratios observed in 
comparable biomedical applications. 

• Adaptive Sampling Frequency (1.5–10 Hz): 
The lower bound of 1.5 Hz ensures minimal energy 

consumption during calm physiological states (e.g., rest or 
sleep) while still capturing relevant slow-changing signals 
(e.g., skin temperature, GSR drift). The upper bound of 10 
Hz supports accurate real-time tracking of fast-changing 
parameters, such as Heart Rate Variability (HRV) and 
pulse waveforms, which require higher temporal 
resolution. These values were tuned based on real sensor 
behavior and physiological literature, ensuring dynamic 
responsiveness without compromising battery life. 
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The adaptive polling algorithm utilizes signal 
derivative monitoring and local variance metrics to adjust 
sampling rates in real time, increasing frequency during 
stress events and reducing it in steady states. 

F. Trade-offs in Threshold and Polling Strategy 
The design of threshold-based and adaptive 

mechanisms in wearable stress monitoring involves 
inherent trade-offs between detection sensitivity, system 
responsiveness, and energy efficiency. 

• Alarm Threshold Trade-offs: 
Setting a higher threshold (e.g., >1.0 std. units) helps to 

reduce the number of false alarms caused by minor signal 
fluctuations, sensor noise, or brief motion artifacts. 
However, this can lead to missed detection of early or 
subtle physiological stress markers, such as slight 
increases in heart rate or galvanic skin response. 
Conversely, a lower threshold (e.g., 0.5–0.6) enhances 
sensitivity but raises the likelihood of false positives, 
potentially overwhelming users with non-critical alerts 
and decreasing system trust. 

• Adaptive Polling Rate Trade-offs: 
Frequent sampling (around 10 Hz) ensures high signal 

fidelity and responsiveness to rapid physiological 
changes, which is vital during dynamic stress episodes. 
However, it leads to quicker battery depletion and a 
heavier computational load. In contrast, lowering the 
polling frequency (below 2 Hz) improves energy 
efficiency but risks aliasing and loss of detail in rapidly 
changing biosignals, especially for PPG-based heart rate 
variability. 

The selected threshold (0.8 std. units) and frequency 
range (1.5–10 Hz) represent a balanced compromise, 
providing reliable stress detection while ensuring power 
efficiency and reducing unnecessary alerts. These values 
can be further optimized in future iterations through  
user-specific calibration and machine learning-based 
threshold adjustment. 

G. Limitations and Future Work 
While the simulation results show the effectiveness of 

the proposed wearable stress monitoring system, several 
limitations must be acknowledged. 

• Lack of Full Hardware Prototype: 
The system currently functions as a software simulation 

model with limited real-world validation. Although 
specific subsystems (e.g., sensor integration and energy 
consumption modeling) were tested using ESP32-based 
prototypes, a fully integrated hardware prototype with all 
ten biosensors has not yet been developed. 

• Absence of Clinical Testing: 
No clinical or user-based validation has been conducted 

to assess the accuracy of the system under real-life 
physiological conditions. The current simulation does not 
account for inter-user variability, real-world 
environmental factors (e.g., motion, noise, temperature), 
or long-term wearability and comfort of the device. 

• Communication Delay and Environmental 
Effects: 

Wireless latency, signal interference, and network 
reliability were not considered in the current simulation, 

which may impact real-time performance and cloud 
connectivity in deployed systems. 

To address these limitations, future work will focus on 
developing a comprehensive hardware prototype that 
integrates all biosensors, along with a mobile application 
for real-time visualization and control. Clinical validation 
involving human subjects under controlled stress 
conditions will be carried out to assess performance, 
optimize thresholds, and ensure compliance with 
biomedical standards. 

H. Recognition of Potential Distortions in Simulated 
Sensor Data 

Despite the sophistication of the developed simulation 
environment, the sensor data models used may introduce 
certain distortions that do not completely reflect real-
world conditions. These potential limitations should be 
considered when interpreting the results. 

• Idealized Noise Models: 
The simulated noise added to sensor signals usually 

follows Gaussian or uniform distributions, which may not 
fully capture the spectrum of real-world artifacts, 
including motion-induced jitter, electromagnetic 
interference, or non-stationary noise patterns. 

• Absence of Nonlinear Drift and Aging Effects: 
Simulated sensors do not account for long-term 

degradation, calibration drift, or hysteresis behaviors that 
are often observed in physical hardware. As a result, 
simulated signals may seem more stable and consistent 
than their real-world counterparts. 

• Oversimplifying Multi-Sensor Interference: 
In actual devices, signals from multiple sensors can 

interact through shared power lines, thermal coupling, or 
electronic crosstalk. These complex interactions are not 
yet modeled in the current simulation framework. 

• Signal Synchronization Assumptions: 
The simulation assumes perfect temporal alignment 

between sensor streams. However, in practice, 
asynchronous sampling, buffer delays, and transmission 
latencies introduce inconsistencies that can impact  
real-time signal fusion and decision-making. 

To enhance realism, future versions of the simulation 
will incorporate empirically derived noise profiles, 
models of sensor degradation, and asynchronous data 
acquisition behaviors. These refinements are essential for 
achieving more accurate and transferable results for real-
world applications. 

I. Planned Sensor Integration and Anticipated Impact 
To enhance the capabilities of the wearable stress 

monitoring system, several additional sensors are planned 
for integration. These components are designed to 
improve context-awareness, precision, and robustness of 
stress detection under various conditions. 

• Accelerometer (3-axis): 
This will enable motion detection and physical activity 

classification. It allows differentiation between  
stress-induced signals and those caused by movement 
(e.g., increased heart rate due to exercise vs. emotional 
stress), thereby reducing false positives. 
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• Gyroscope: 
Complements the accelerometer by supplying 

rotational movement data. This enhances postural and 
gesture recognition, resulting in a more accurate 
interpretation of sensor data under dynamic conditions. 

• GPS Module: 
Provides location data to analyze geo-contextual stress 

patterns (e.g., crowding, workplace stress zones). 
Supports stress mapping and facilitates behavioral studies 
linking location to physiological changes. 

• Ambient Temperature Sensor: 
Aids in distinguishing internal (skin) temperature 

variations from environmental influences, enhancing 
thermal signal interpretation across various weather or 
room conditions. 

• Microphone (voice tension analysis): 
Enables the detection of vocal stress features, including 

pitch changes and speech rate. It can provide additional 
cues during emotional episodes. 

Together, these additional sensors will enhance the 
multidimensional profiling of user states, enabling more 
accurate, adaptive, and context-sensitive stress 
assessments. Future iterations of the system will also 
explore fusion algorithms to intelligently combine 
multimodal data intelligently, thereby improving 
reliability and personalization. 

J. Proposal for Collaboration on Real-World Testing 
To validate and refine the proposed wearable stress 

monitoring system, collaboration with clinical or 
institutional partners is essential. We invite healthcare 
organizations, hospitals, research centers, and 
rehabilitation clinics to participate in pilot studies focused 
on stress assessment and physiological monitoring. 

• Clinical Trials: 
Conduct structured trials with patients in diverse 

settings (e.g., pre-surgery, chronic pain, burnout, or PTSD 
diagnosis) to assess the device’s accuracy, usability, and 
reliability. 

• Stress Research: 
Collaborate with psychology departments or wellness 

programs to analyze behavioral and physiological 
responses to controlled stimuli, supported by real-time 
biometric data. 

• Occupational Health Studies: 
Collaborate with workplace wellness initiatives and 

industrial environments to assess stress in high-pressure 
jobs and evaluate interventions. 

• Data Collection and Model Improvement: 
Use collected data to improve calibration algorithms, 

validate sensor thresholds, and explore machine learning 
models for personalized stress classification. 

Organizations interested in collaborative research or 
field testing are encouraged to contact the project team. 
Such cooperation will accelerate the development of 
practical, evidence-based stress monitoring tools that can 
positively impact healthcare and personal well-being. 

K. Comparative Analysis with Related Research 
To assess the significance of the proposed wearable 

stress monitoring system, it is essential to compare our 

results with findings from related studies. This 
comparison highlights the advantages of our system in 
terms of energy efficiency, adaptability, and signal 
responsiveness. 

• In contrast to Park et al. [6], which demonstrates a 
2.4× increase in gesture recognition efficiency 
using a static energy budget, our model introduces 
an adaptive polling frequency (1.5–10 Hz), 
allowing for dynamic energy management that 
responds to real-time sensor activity, thereby 
achieving similar energy efficiency gains. 

• Compared to the deep reinforcement learning 
approach in Ref. [7], which extends wearable 
device battery life by 36%, our method achieves 
comparable energy savings without requiring  
on-device machine learning, relying instead on 
deterministic logic and signal-driven control. 

• Studies such as Sabry et al. [8] highlight the 
challenges of integrating machine learning in low-
power devices due to processing and memory 
constraints. Our solution addresses these 
limitations by avoiding embedded ML and instead 
using lightweight thresholding and signal filtering 
strategies. 

• Ambrose et al. [14] uses MODWT for ECG signal 
decomposition and highlights improved accuracy 
compared to Haar or DWT methods. Although our 
system does not utilize wavelets, we achieve  
real-time reliability through multi-sensor 
correlation, spectrograms, and PCA. 

These comparisons highlight the practical relevance of 
our model, which strikes a balance between simplicity, 
energy awareness, and responsiveness. Future research 
can integrate selective machine learning models and real-
time feedback systems while preserving the device’s low-
power operation profile. 

V. CONCLUSION 

This study presents the development and simulation of 
a next-generation wearable stress monitoring system, 
designed for energy-efficient, real-time operation without 
reliance on onboard machine learning. The proposed 
architecture incorporates ten biosensors, adaptive polling 
frequency control (1.5–10 Hz), component-level energy 
modeling, and deterministic stress detection logic using 
Stateflow. Simulation results confirmed the system’s 
responsiveness, signal fidelity, and realistic power usage 
behavior, with partial validation on ESP32-based 
hardware. The importance of this work lies in its practical 
balance between hardware simplicity and intelligent 
behavior. Unlike many recent studies that rely heavily on 
machine learning, our system achieves comparable 
responsiveness using threshold logic and signal-driven 
control, making it highly suitable for low-power IoT 
health applications. The model also demonstrates 
scalability for future deployment in clinical and 
occupational settings. Despite the high accuracy of the 
simulation and successful validation of individual 
components, the proposed system currently exists only as 
a software model and lacks a fully integrated physical 
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prototype. Real-time interaction between all subsystems 
has not yet been implemented, and important factors such 
as wireless communication delays (Wi-Fi/BLE), 
environmental influences (e.g., temperature, humidity, or 
movement), and inter-user physiological variability are 
not considered in the current version. To increase the 
practical value of the system, future work will focus on 
developing a fully functional hardware prototype with all 
10 biosensors integrated, creating a mobile application for 
control and visualization, and implementing lightweight 
machine learning algorithms for self-calibration and 
adaptive behavior. Final validation will involve clinical or 
lab-based tests with real users to confirm the system’s 
reliability in practical conditions and enable its transition 
from simulation to real-world deployment. Future work 
will focus on the physical implementation of a complete 
prototype integrating all ten sensors, mobile app 
development for data visualization and control, and 
clinical validation with real users under controlled stress 
conditions. Additional enhancements may include 
personalized threshold calibration, selective integration of 
lightweight machine learning, and dynamic user feedback 
mechanisms. Overall, the proposed system represents a 
robust and energy-aware platform for wearable stress 
monitoring, bridging the gap between simulation and real-
world deployment. 
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