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Abstract—Visual Acuity (VA) testing traditionally requires 
an ophthalmologist, limiting accessibility in non-clinical 
settings. This paper presents an automated VA test system 
designed for precise vision assessment without professional 
supervision, which leverages the Early Treatment Diabetic 
Retinopathy Study (ETDRS) eye chart for higher accuracy 
compared to the conventional Snellen chart. The system uses 
a computer with an Liquid Crystal Display (LCD) monitor 
and incorporates automated scoring with 0.02 LogMAR 
precision. To facilitate remote operation, we implement 
speech recognition in Vietnamese via a microphone, utilizing 
Azure Speech API, which is enhanced with a correction 
function and noise classification for improved accuracy. An 
experiment with 80 participants (N = 80) demonstrated a 
speech recognition accuracy of 93.1%, with a mean response 
time of 4.6 s per optotype. The VA scores from our system 
closely matched those from standard printed ETDRS charts, 
with 95.6% of measurements differing by ≤0.1 LogMAR. Our 
automated VA test system provides a reliable, low-cost 
solution for vision assessment in non-clinical environments, 
combining high accuracy with user-friendly remote 
operation. 
 
Keywords—automated visual acuity test, automated Early 
Treatment Diabetic Retinopathy Study (ETDRS) test, speech 
recognition, isolated letter recognition 
 

I. INTRODUCTION 

In recent years, the increase of vision loss, particularly 
myopia, has become a significant public health challenge. 
Independent surveys [1–3] conducted in various countries 
reveal that the prevalence of myopia among young people 
exceeds 50%. To detect and assess refractive error, 
individuals need to visit an eye clinic for a Visual Acuity 
(VA) test, where ophthalmologists use the eye chart placed 
3 to 6 m away from the patient. Traditionally, the eye chart 
is a print sheet. However, various advanced solutions have 
been developed, such as specialized integrated monitor, or 
computer-based eye test program as Thomson software or 
OptoNet software. These electronic eye charts can display 
randomized optotypes for different test types. However, 

none of these systems are truly automated, as patients must 
still speak their answers to a clinician. 

For conducting a VA test at home, several options are 
available, such as using a printed chart, or  
smartphone- based VA test apps. These apps are designed 
for near-distance testing, requiring users to touch the 
screen to submit their answers. While studies [4–7] have 
demonstrated the efficacy of near-distance VA testing, it 
cannot fully replace far-distance examinations.   

For early detection of refractive errors, it is necessary to 
conduct the VA tests frequently at home. This requires an 
easy-to-use and low-cost automated VA test system, that 
includes an auto-scoring engine and a remote 
communication tool, allowing users to transmit their 
responses to the system from a distance. The aim of our 
study is to develop and evaluate such a system, 
incorporating speech recognition technology for answer 
selection. 

II. LITERATURE REVIEW 

Several prior studies proposed an automated VA test 
system with different input methods. The basic idea 
involves pressing a button to select an answer. For 
example, the Freiburg VA test [8] proposed a specialized 
response box with eight buttons for selecting the directions 
of Landolt C optotype. Claessens et al. [9] proposed a 
smartphone-based input method for remote web-based eye 
charts.  While these approaches are easy to deploy, they 
require users to alternate their focus between the test chart 
and the input device, which may compromise VA 
measurement accuracy.  

Other solutions include eye tracking technology, such 
as the Tobii Pro eye tracker, used by Vrabič et al. [10] to 
monitor children’s eye movements during the test, and the 
Head-Mounted Display (HMD) approach used by  
Ong et al. [11]. However, the high cost and complexity of 
these devices limit their applicability. Chiu et al. [12] 
developed an automated VA system using hand tracking 
with a specialized sensing device for the answer selection, 
detecting the subject’s hand gesture corresponding to the 
four directions of optotypes. Similarly, the study of  
Li and Tong [13] employed a conventional camera-based 
hand tracking approach. While these methods demonstrate 
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promising results, they are primarily compatible with 
Landolt C or tumbling E chart, whereas Snellen or Sloan 
letters remain the clinical gold standards.  

Automatic Speech Recognition (ASR) is the most 
natural solution for the VA testing, with several related 
researches:  

• Ganesan and Shalini [14]: This study implemented 
a VA test system using the Microsoft Speech SDK 
within the LabView platform for English speech 
recognition. The system relied on a  
non-state-of-the-art ASR engine (in 2014), which 
lacked reported metrics for speech recognition 
accuracy or Word Error Rate (WER).  

• Taufik and Hanafiah [15]: The AutoVAT system 
employed a custom Convolutional Neural 
Network (CNN) for recognizing spoken digits in 
English, achieving 91.4% accuracy. However, 
digits are non-standard optotypes for VA testing 
and are inherently easier for ASR systems to 
recognize than letters. 

• Nisar et al. [16]: This study developed a custom 
ASR engine for English speech using an adaptive 
Mel filter bank for feature extraction and three 
classifiers (HMM, SVM, KNN), reporting  
83.8–91.9% concordance with conventional VA 
scores. However, it did not provide WER or 
recognition accuracy metrics, limiting insights into 
the ASR’s performance for isolated letter 
recognition.  

Furthermore, the VA eye chart in all studies [14–16] 
used the Snellen format, which employs a line-by-line 
scoring procedure rather than assigning the score to each 
correctly recognized optotype. In summary, these above 
limitations compromise the accuracy for evaluate the 
quality of model. 

This study introduces an automated VA testing system, 
that incorporates speech recognition via microphone input 
for answer selection. Unlike both prior studies that relied 
on English speech recognition, our system utilizes 
Vietnamese speech recognition, tailored for its application 
in Vietnam. Addressing limitations of prior works, our 
system implements three key advancements: (1) the use of 
Early Treatment Diabetic Retinopathy Study (ETDRS) eye 
chart with LogMAR-based letter-by-letter scoring; (2) a 
state-of-the-art Azure Speech API for speech recognition, 
enhanced with our novel correction function and noise 
classification function for improved accuracy; and (3) 
comprehensive performance evaluation through 
multivariate metrics, including VA scores, WER, and 
average Time per each Optotype (TpO). 

III. MATERIALS AND METHODS 

A. The Eye Chart and the Auto-Scoring Procedure  
Our system is a computer-based software solution that 

runs on a conventional PC equipped with a Liquid Crystal 
Display (LCD) monitor (see Fig. 1). We implemented the 
program in Python, which offers diverse libraries for both 
audio and image processing. The automated test is based 
on the ETDRS chart, which is widely regarded as the most 

advanced VA testing method. Numerous studies [17–19] 
indicate that it can provide a more precise VA score 
(measured in LogMAR units) compared to the traditional 
Snellen test. Our digital ETDRS chart randomly displays 
5 optotypes per line for each size with sizes decreasing 
progressively. The optotypes consists of 10 Sloan letters: 
C, D, H, K, N, O, R, S, V, Z. 
 

 
Fig. 1. System hardware components and eye chart interface. 

There are 11 different sizes, ranging from largest 
(LogMAR = 1.0) to smallest (LogMAR = 0.0). The subject 
with normal vision has a LogMAR score of 0.0, which is 
equivalent to a 20/20 score in Snellen chart. 

Our system is designed for VA testing at a distance of 
3  m. This is a feasible distance for most home or clinic 
room in our country, where space constraints are common. 
In each test round, our system displays a line of 5 random 
optotypes. Table I provides the height of each optotype 
line and its corresponding LogMAR score, following the 
guidelines of LogMAR chart [20]. The system’s 
calibration function allows it to calculate the optotype size 
(in pixels) based on the dot size (in mm) of the LCD 
monitor.  

TABLE I. CONVERSION TABLE BETWEEN THE OPTOTYPE SIZE AND 
SCORES 

Line Optotype height (mm) 
(For 3 m distance)  LogMAR score Snellen score 

0 43.7 1.0 20/200 
1 35.0 0.9 20/160 
2 27.3 0.8 20/125 
3 21.9 0.7 20/100 
4 17.5 0.6 20/80 
5 13.8 0.5 20/63 
6 10.9 0.4 20/50 
7 8.8 0.3 20/40 
8 7.0 0.2 20/32 
9 5.5 0.1 20/25 
10 4.4 0.0 20/20 
 
The system updates the LogMAR score each time the 

subject provides an answer. For each correct answer, the 
score decreases by 0.02 LogMAR units. If the subject 
correctly identifies at least 3 out of 5 optotypes on a given 
line, they can proceed to the next smaller line. The best 
achievable VA score is 0.00 LogMAR. 

B. The Speech Recognition Module 
For the implementation of this module, we use the 

Python library Speech Recognition (SR), which supports 
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multiple ASR engines. The speech recognition process in 
our program consists of two main stages: 

• Capturing the subject’s speech via a microphone 
and saving it as an audio variable.  

• Sending the variable to an ASR engine which 
transcribes it into text and returns the result. 

The detailed procedure is illustrated in Fig. 2. 
 

 
Fig. 2. Answer selection workflow using the speech recognition method. 

To determine the most suitable ASR engine for our 
system, we tested three cloud-based engines integrated in 
SR library: Google Speech, Microsoft Azure Speech, and 
wit.ai Speech. All three engines support multi-languages, 
including Vietnamese, and offer free transcription 
services. However, wit.ai was eliminated from our project 
because it has a long response time in Vietnamese 
transcription (more than 2 s). 

Vietnamese uses the same Latin alphabet as English, but 
differs significantly in pronunciation. For all ASR engines, 
transcribing isolated words is generally more difficult than 
transcribing sentences [21–23]. Recognizing monosyllabic 
letters is particularly challenging. Google Speech has the 
shortest response time, from 400 to 600ms. While it works 
well with the sentences, it performs poorly when 
recognizing isolated Vietnamese letters (only 30–40% 
success). The Azure Speech API demonstrated the best 
performance, with a successful rate of around 55–65% 
when recognizing isolated letters in Vietnamese. 
Furthermore, the Azure APIs indicated an acceptable 
response time ranged from 500 to 1200 ms.  

We also explored offline ASR models inside Python 
SpeechRecognition library, including Vosk and OpenAI’s 
Whisper, which support Vietnamese. However, these 
models demonstrated significantly lower accuracy for 
recognizing isolated Vietnamese letters. Kaldi, while 
powerful, requires extensive training data and 
customization for Vietnamese isolated letter recognition, 
which was beyond the scope of our current resources and 
timeline. Based on these findings, the Azure API have 
been integrated into our program as the primary 
transcription engine.  

When subject utters a letter, the Azure API can return 
two types of errors:  

• Null value: This occurs when the engine fails to 
transcribe the sound into any text. Causes of this 
error may include background noise, unclear 

pronunciation, or poor microphone quality. When 
a null value is returned, the subject needs to repeat 
this letter.  

• Wrong word: Sometimes, the ASR transcribes the 
sound into an incorrect word which is a 
homophone, or a phonetically similar variant of the 
intended letter. For instance, when the subject says 
“C” in English, the ASR might transcribe it as 
“see” or “sea”. In Vietnamese, this issue is 
exacerbated, because this language has six distinct 
tones, and most letters have more than one 
pronunciation. Therefore, the number of incorrect 
variants for each letter is significantly higher than 
in English. 

To improve the accuracy of speech recognition, we 
implemented the correction function and the speech/noise 
classification function with the Azure API process. 

1) Correction function 
To address high rate incorrect words returned by the 

Azure API, we implemented a correction function to 
convert these errors into valid letters. This function is 
based on a dictionary of variants that was constructed 
through an experiment involving 20 participants, each with 
a diverse voice profile. Each participant was asked to 
pronounce each letter of the alphabet (using Vietnamese 
pronunciation) multiple times through a microphone. The 
Azure Speech engine then processed these recordings to 
generate transcription variants. A variant was added to the 
correction dictionary for each letter if it met three criteria: 

• Phonetic similarity: The variant must share at least 
one similar syllable with the intended letter, based 
on Vietnamese pronunciation. 

• Frequency Across Participants: The variant must 
appear at least twice and must be spoken by at least 
two different participants. 

• Uniqueness: the variant must correspond to only 
one letter and should not appear as a valid 
transcription for any other letter  

Table II summarizes the number of variants identified 
for the 10 Sloan letters, based on their Vietnamese 
pronunciation:  

TABLE II. NUMBER OF VARIANTS OBTAINED FOR 10 SLOAN LETTERS IN 
VIETNAMESE PRONUNCIATION 

Sloan letters Number of variants 
C 12 
D 16 
H 10 
K 7 
N 14 
O 9 
R 6 
S 24 
V 11 
Z 14 

 
Example: 12 identified variants of letter “C” in 

Vietnamese that are re-transcribed to the correct answer 
“C” in the correction function: 

[‘C’,’CƠ’, ‘CỜ’, ‘CÒ’, ‘CỒ’, ‘XÊ’,’XỀ’,’XE’, ‘SÊ’, ‘SỀ’, 
‘SẺ’, ‘SI’]: 

Journal of Advances in Information Technology, Vol. 16, No. 10, 2025

1381



These variants are phonetically like the intended letter 
“C” in Vietnamese pronunciation and were mapped to the 
correct transcription. By utilizing this dictionary of 
variants, the system can effectively correct recognition 
errors returned by the ASR engine, thereby improving the 
overall accuracy of the speech recognition process. After 
implementing the correction function, we observed a 
significant improvement in the speech recognition success 
rate during the VA test, with accuracy exceeding 90%. 

2) Speech/Noise pre-classification function 
The speech recognition procedure can be disrupted by 

ambiance noise, and significant efforts have been made to 
address this issue [24, 25]. Although the Azure Speech API 
incorporates effective background noise suppression, we 
identify an additional vulnerability: when ambiance noise 
occurs during subject silence, the system captures and 
process this audio through Azure API. The result is 
typically a null value, then the program resumes listening. 
However, if subject begins speaking during the API’s 
processing window (500–1200 ms) following prior noise 
capture, the program may miss speech input due to 
interrupted audio sampling.  

To address this issue, we developed a Speech/Noise  
pre-classification function that executes following the 
audio capture. When the classifier identifies the audio 
segment as noise, the system: (1) bypasses the API 
transcription, (2) immediately reinitializes the listening 
phase. These two actions prevent the risk of missing the 
subject speech. 

The classification function utilizes the Root Mean 
Square (RMS) energy of the captured audio, computed via 
Python’s audioop library. Through empirical observation, 
we found two key characteristics: (1) moderate ambient 
noise (<50 dB) exhibits RMS value 3–6 times lowers than 
that of subject speech. (2) Individual speakers maintain 
relatively consistent volume, with speech RMS variation 
remaining within a 2× range throughout testing. Based on 
these findings, the classification works as follows  
(see Fig. 3) 

 

 
Fig. 3. Speech/Noise classification workflow. 

Since rms_threshold adjust dynamically after each test 
iteration, the sensitivity variations of microphone don’t 
impact the classification result. Our evaluations of three 
mid-range microphones (Jabra Biz 150, Yealink UH37, 
Logitech H540) demonstrate consistent performance, 
while minor sensitivity differences were evident in RMS 
measurement, the system maintained effective 
speech/noise discrimination across all devices. This 
eliminates the need for device-specific parameter 
calibration. However, the low-end microphones are not 

recommended as they may compromise recognition 
accuracy due to inferior audio capture quality. 

C. Feedback by Speech From Computer 
Once the system successfully recognizes an optotype 

through subject’s speech, it immediately provides 
feedback by computer speech through either headphones 
or the PC’s loudspeaker. For speech recognition method, 
the feedback is given in the form of: identified letter + 
“correct” or identified letter + “wrong”, depending on the 
matching of the recognized letter with the letter on screen. 
To generate speech from the text, we utilize the Python 
library gTTS (Google Text-to-Speech). To ensure 
response accuracy, subject may say “Lại” (Vietnamese for 
Undo) when recognized letter differ from their spoken 
input, activating a repeat of current optotype.  The auditory 
feedback ensures the process is more intuitive and 
transparent for the user  

D. The Experiment Procedure 
To evaluate the performance of our system, we 

conducted 2 separate experiments, with 80 participants  
(N = 80), including 40 males and 40 females, aged 18–65 
years (mean age = 32). The participants were recruited 
from the Institute of Materials Sciences, comprising 
employees and internship students. These well-educated 
subjects were selected to ensure comprehension of the 
unsupervised self-testing process, which is critical for the 
system’s intended use in non-clinical settings. For  
home-based VA testing, we recommend that at least one 
family member be a competent computer user to set up the 
system, while children can perform the test under parental 
guidance. 

The participant group consisted of 44 emmetropes 
(without wearing refractive glasses) and 36 myopes 
(refractive error ranging from −0.5 to −3.0 diopters). 
Myopic participants were instructed to wear their 
corrective lenses during testing. This distribution reflects a 
common range of visual conditions in the general 
population, supporting the system’s applicability to both 
corrected and uncorrected vision. 

Participant with severe visual impairment (unable to 
identify optotypes at LogMAR 1.0, Snellen 20/200) were 
excluded from this study. The testing procedure adheres 
International Visual Acuity measurement standard [26] 

and the guidelines proposed by Elliott [27].  
Each participant sat 3 m away from a 32 inches 

Samsung LCD screen (luminance ~190cd/m2). We used a 
moderately powered computer (Intel Core i5, 8 GB RAM) 
running Windows 10 for the test. For speech recognition 
module, we used a Jabra Biz 150 microphone/headset. 
Other mid-range microphone could also be substituted 
without affecting the system’s performance. The 
experiments took place in an office room at our institution 
(Institute of Materials Science). 

Each subject participated in three VA experiments, first 
with the right eye (OD), then with the left eye (OS). The 
experimental setup was as follows: 

• Experiment 1 (speech recognition): the subject 
spoke the Sloan letters in Vietnamese through 
microphone and the system recognized these 
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responses. Subjects had option to start from line 1, 
line 3, line 5, or the default line 7, depend on the 
estimated visual acuity. 

• Experiment 2 (manual ETDRS control): a 
conventional printed ETDRS chart was placed in 
the same position of the LCD screen. During this 
test, an assistant was required to stand near the 
chart to point to each letter, while the subject 
verbally identified the letter. The assistant then 
manually recorded the result following standard 
clinical protocol.  

Beyond standard VA scoring, the system quantified two 
addition parameters: 1) Total test duration (T) and 2) 
Number of attempted optotypes (Op). Otherwise, we 
manually recorded Es: Instances of failed speech 
recognition by ASR during each test. Therefore, two 
important factors were calculated and analyzed: 

(1) Word Error Rate (WER) = 𝐸𝐸𝑠𝑠
𝑂𝑂𝑂𝑂

  

(2) Time per Optotype (TpO) = 𝑇𝑇
𝑂𝑂𝑂𝑂

 

IV. RESULT AND DISCUSSION 

A. The VA Scores 
Fig. 4 presents the comparative VA between the two 

experiments with Bland–Altman analysis [28].  
 

 
Fig. 4. VA score difference in LogMAR between Experiment 1 and 

Experiment 2.  

Key findings include: 
(1) Mean difference: The mean difference in VA score 

across 160 tests was −0.008 LogMAR  
(SD = 0.046). This mean value is close to 0, 
indicating no significant systematic bias between 
the two experiments. The small standard deviation 
(equivalent to a variation of 2 optotypes) reflects 
minor variability, which falls within acceptable 
clinical limits. 

(2) Agreement: The 95% Limits of Agreement (LoA) 
ranged from −0.096 to 0.082 LogMAR, well 
within the acceptable deviation threshold of ±0.1 
LogMAR (equivalent to a variation of 1 line). 
Notably, 95.6% of measurements (153/160 eyes) 
had the VA score difference ≤0.1 LogMAR, 

indicating strong concordance between two 
measurement methods.  

(3) Identical results: In 56.3% of tests (90/160 eyes), 
the VA score difference was ≤0.02 LogMAR  
(≤1 optotype variation), further supporting the 
high agreement between measurements. 

This result compares favorably with established 
benchmarks: 

• Nisar et al. [16] indicated 83.8% to 91.9% 
concordance between speech recognition and 
conventional methods.  

• Taufik and Hanafiah [15] reported 0.19 row 
difference compared with conventional Snellen 
chart 

• Li and Tong [13] achieve 96.72% concordance 
between hand gesture recognition in the Tumbling 
E eye chart and conventional methods 

• Cotter et al. [29] reported 89% agreement in  
test-retest study. 

• Claessens et al. [30] found mean difference with 
the reference in VA assessment ranged from −0.08 
to +0.10 LogMAR for digital VA tools.  

Given that the visual acuity testing accepts ±1 line as 
clinical equivalent accuracy, our system’s performance 
demonstrates sufficient reliability visual screening 
applications. 

 

 
Fig. 5. The Word Error Rate (WER) distribution in Experiment 1. 

B. The Speech Recognition by Error Rate 
Experiment 1 demonstrated the following accuracy 

metrics: 
(1) Error distribution: ranged from 0−6 errors per test 

(mean = 1.15).   
(2) Word Error Rate (WER) distribution (see Fig. 5): 

ranged from 0–30% (mean 6.9% ± 6.6%), 
corresponding recognition accuracy of 93.1%.  

(3) Error-free tests: 27.5% of tests (44/160) achieved 
perfect recognition (WER = 0).  

(4) High-error tests: 5.62% of tests (9/160) exceed the 
acceptable threshold (WER > 20%). Note:  
WER = 20% represents the maximum tolerable 
error rate (equivalent to one incorrectly recognized 
letter per line) 

This result is favorable compared with other studies: 
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(1) Ganesan and Shalini [14] and Nisar et al. [16]: 
WER metrics were not reported in the VA testing,  

(2) Taufik and Hanafiah [15]: accuracy 91.4%  
(WER = 8.6%), using digit number input as 
optotype. Notably, digits are typically easier for 
ASR systems to recognize compared to letters.  

(3) Adam and Salam [23]: 64.75% accuracy of 26 
English letters for their ASR engine. 

(4) Accuracy of hand tracking input technique:  
Chiu et al. [12]: 91.6%, Li and Tong [13]: 96.7%. 

Our analysis of transcription outcome revealed 58% of 
correct transcriptions came directly from Azure Speech 
API. The remaining 42% return initially incorrect words 
but were subsequently rectified by our correction function. 
Otherwise, while our primary experiments were conducted 
in an office environment at the Institute of Materials 
Sciences, this setting was not acoustically controlled, with 
occasional ambient noises (e.g., conversations among 
waiting participants). In fact, more than 90% recorded 
concurrent noises were correctly labeled by the 
classification function, maintaining the uninterrupted 
audio sampling. These evidences proved the contribution 
of our correction function and classification function. 

The 6.9% WER (Word Error Rate—when subject spoke 
clearly but ASR failed) consists of: 

(1) False negatives (82% errors): 
• Capture failures: a) low volume speech  

(RMS < threshold, misclassified as noise) or b) 
concurrent noise (RMS ≥ threshold, misclassified 
as speech) interrupt audio sampling while the 
subject start speaking. 

• Transcription failures: a) ASR returned null for 
valid speech or b) correction function failed to 
match ASR output to a valid letter.  

• The subject needs to speak again when a false 
negative occurs 

(2) False positives (18% of errors): 
• Phonetically similar Vietnamese letter pairs (D/T, 

A/K, /L/N).  
• The correction function was unable to correct this 

type of error. 
• The subject needs to undo this answer when a false 

positive occurs, then speak the letter again. 
Users with unclear pronunciation may have difficulty in 

using this method (WER > 20%, 5.62% of tests). 
Therefore, two alternative methods were proposed for 
them in this system: (1) subject verbally responds to an 
assistant, then the assistant provides keyboard input. (2) 
the subject uses a wireless keyboard for answer input. 

In summary, our speech recognition method achieved 
relatively high success rates (93.1%). The integrated noise 
classification function effectively reduces the impact of 
moderate ambient noise (40–50 dB), such as outside 
speech or street vehicle noise, while previous 
systems  [14–16] require controlled acoustic environments 
(<30 dB). While extremely noisy conditions remain 
challenging, the system operates reliably in typical home 
settings. 

C. The Speech Recognition by Test Time 
While participants could select their starting line, total 

test duration is unreliable for evaluating automated VA 
system performance due to variable test length. Instead, 
the TpO is a more robust metric for assessing system 
efficiency.  

Key findings: 
(1) Automated system (Experiment 1): TpO ranged 

from 3.2 to 7.2 s (see TpO distribution in Fig. 6), 
mean TpO 4.6 ± 0.9 s. 

(2) Benchmark comparison:  
• Conventional clinical test (observed in Vietnamese 

clinic): 1.5–3 s,  
• Manual ETDRS test (Experiment 2): Mean 2.4 s.  

 

 
Fig. 6. The Time per Optotype (TpO) distribution in Experiment 1. 

While no prior studies explicitly reported TpO 
benchmarks, our experiment indicated the automated 
system operates at approximately half the speed of 
conventional methods. The slower TpO could be attributed 
to the cloud-based Azure Speech API process, which 
requires more response time (500–1200 ms). Otherwise, if 
a speech recognition failure occurs, the subject needs to 
repeat the letter, causing an additional delay. The computer 
feedback by speech (800–1200 ms) per optotype (with 
format: identified letter + correctness) is another factor 
which slows down the test speed. However, it is necessary 
for subjects to verify the accuracy of speech recognition. 
This yields a comparative advantage: The system of 
Ganesan and Shalini [14] and Nisar et al. [16] lack 
auditory feedback, while the feedback of Taufik and 
Hanafiah [15] is binary correct/wrong only.  

While the system’s test speed of about half that of 
conventional test, this remains acceptable for home use, 
because: 

• Eliminates need for clinical staff 
• Flexible testing procedure 
• Maintain accuracy through verification steps 

This presents the first quantitative evaluation of timing 
metrics in automated VA testing, addressing a critical gap 
in prior works. 

D. User Feedback 
A usability survey was conducted with 20 participants 

after completing the VA tests. All of them expressed their 
confidence in the VA result. Qualitatively, 16 participants 
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found the speech recognition interface intuitive and easy 
to use. However, four participants reported initial 
difficulties in pronouncing letters clearly for recognition, 
attributing this to unfamiliarity with the testing procedure. 
They noted that their performance could be improved with 
more practice. 

Additionally, feedback was gathered from 10 volunteers 
who installed the system at home for family use. These 
tests achieved a success rate of over 80% with speech 
recognition. Challenges were observed with young 
children (aged 6–12) and older adults (aged >70), who 
occasionally spoke unclearly or did not adhere to testing 
protocols. In such cases, an alternative method was 
employed: the participant spoke the letters, and a family 
member provided keyboard input, ensuring test 
completion. Volunteers reported that the system was  
user-friendly for home setups, with clear instructions and 
robust performance in typical household environments 
(40–50 dB ambient noise). 

E. Generalization to Multi-Languages 
In future work, extending the system to languages such 

as English would significantly broaden its applicability. To 
achieve it, we propose an approach in three phases: 

(1) Data collection of spoken letters: We need to 
recruit native speakers pronouncing isolated 
alphabet letters multiple times via microphone in 
the target language (e.g., English). Alternatively, 
we will search and download an online dataset of 
spoken English letters. This phase ensures 
coverage of diverse accents and pronunciations. 

(2) Construction of a Language-Specific 
Correction Dictionary: Using the collected audio 
data, we would process the recordings through the 
Azure Speech API to generate transcription 
variants for each letter. A correction dictionary 
would then be built following the three criteria 
outlined in our study: phonetic similarity, 
frequency across participants, and uniqueness to 
each letter. This dictionary would map wrong 
transcriptions to the correct letters, enhancing 
recognition accuracy for the target language. 

(3) Validation with Native Speakers: The system 
would be validated through VA tests conducted 
with a diverse group of native speakers to ensure 
robust performance across various accents and 
speaking styles. While recruiting sufficient native 
English speakers in Vietnam may have logistical 
challenges, collaboration with international 
research partners could facilitate this process. 

This approach inherits the existing framework of our 
system, particularly the Azure Speech API’s  
multi-language support and our correction function 
methodology, making it adaptable to other languages with 
minimal structural changes. Future work will implement 
and validate this process for English and other widely 
spoken languages to maximize the system’s global impact. 

F. Comparison with Prior Work in Summary 
Tables III, IV, and V indicate the comparison of our 

study and three prior works in 10 criteria: VA scoring, 

speech language, ASR engine, correction function, noise 
classification, auditory feedback, VA difference metrics, 
WER metrics, TpO metrics, and error analysis. 

TABLE III. COMPARISON OF METHODOLOGY IN FOUR VA TEST 
SYSTEMS 

System VA 
scoring 

Speech 
language ASR engine 

Ganesan and 
Shalini [14] 

Line-by-
line English Microsoft Speech SDK within 

the LabView platform 
Taufik and 

Hanafiah [15] 
Line-by-

line English Custom Convolutional Neural 
network (CNN) 

Nisar et al. 
[16] 

Line-by-
line English 

Adaptive Mel filter bank for 
feature extraction and three 

classifiers (HMM, SVM, KNN) 

Our work Letter-
by-letter Vietnamese Microsoft Speech API 

TABLE IV. COMPARISON OF FEATURES IN FOUR VA TEST SYSTEMS 

System Correction 
function 

Noise 
classification Auditory feedback 

Ganesan and 
Shalini [14] No No No 

Taufik and 
Hanafiah [15] No No Only binary 

Correct/Wrong 
Nisar et al. [16] No No No 

Our work Yes Yes Recognized letter + 
Correct/Wrong 

TABLE V. COMPARISON OF DATA ANALYSIS IN FOUR TEST VA 
SYSTEMS 

System VA difference 
metrics 

WER 
metrics 

TpO 
metrics 

Error 
analysis 

Ganesan and 
Shalini [14] No No No No 

Taufik and 
Hanafiah 

Mean 0.19 row 
difference 

91.4% 
accuracy No No 

Nisar et al. 
[16] 

83.8% to 91.9% 
concordance No No No 

Our work 
95.6% measurements 
have difference ≤ 0.1 

LogMAR 

93.1% 
accuracy 4.6 ± 0.9 s Yes 

V. CONCLUSION 

This study presents an automated Visual Acuity (VA) 
test system implemented as a Human-Computer 
Interaction (HCI) platform incorporating speech 
recognition technology. While speech recognition has 
become ubiquitous in consumer devices, no commercial 
VA testing system has successfully integrated this 
technology, due to the significant challenges in isolated 
letter recognition. 

Key innovations compared to prior works: 
(1) Accuracy enhancements:  
• Improved Azure Speech API performance  

from 58% to 93.1% accuracy for Vietnamese 
letters through our novel correction algorithm 

• Maintained robust performance in moderate noise 
environments (40–50 dB) via adaptive 
noise/speech classification 

• Comprehensive auditory feedback for verification 
(2) Established three quantitative performance 

metrics: 
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• VA score validity based on ETDRS chart, offering 
more accuracy than Snellen test in prior  
works [14–16]. 

• Recognition reliability (mean WER = 6.9%) 
• Operational efficiency (mean TpO = 4.6 s) 
(3) Provided detailed error analysis for future 

improvements 
While the system demonstrates strong reliability, it has 

two notable constraints: 
• Relatively slow speed than conventional method, 

primarily due to cloud-based speech processing 
latency (500–1200 ms), and auditory verification 
steps (800–1200 ms) 

• Requires reliable Internet connection for Azure 
Speech and Google text-to-speech service 

While this research implemented speech recognition 
exclusively in Vietnamese, future versions of the system 
will aim to support English and other languages, 
expanding its applicability worldwide. As Azure API 
supports multi-language, and almost program features are 
reusable, the main challenge remains in constructing a 
correction function dictionary for each language 
implemented in this system. 

In summary, this system represents a significant 
advancement in applied AI in medical screening, offering 
a reliable and flexible automated solution for conducting 
the VA test outside clinical environments.  
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