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Abstract—Visual Acuity (VA) testing traditionally requires
an ophthalmologist, limiting accessibility in non-clinical
settings. This paper presents an automated VA test system
designed for precise vision assessment without professional
supervision, which leverages the Early Treatment Diabetic
Retinopathy Study (ETDRS) eye chart for higher accuracy
compared to the conventional Snellen chart. The system uses
a computer with an Liquid Crystal Display (LCD) monitor
and incorporates automated scoring with 0.02 LogMAR
precision. To facilitate remote operation, we implement
speech recognition in Vietnamese via a microphone, utilizing
Azure Speech API, which is enhanced with a correction
function and noise classification for improved accuracy. An
experiment with 80 participants (N = 80) demonstrated a
speech recognition accuracy of 93.1%, with a mean response
time of 4.6 s per optotype. The VA scores from our system
closely matched those from standard printed ETDRS charts,
with 95.6% of measurements differing by <0.1 LogMAR. Our
automated VA test system provides a reliable, low-cost
solution for vision assessment in non-clinical environments,
combining high accuracy with user-friendly remote
operation.

Keywords—automated visual acuity test, automated Early
Treatment Diabetic Retinopathy Study (ETDRS) test, speech
recognition, isolated letter recognition

I. INTRODUCTION

In recent years, the increase of vision loss, particularly
myopia, has become a significant public health challenge.
Independent surveys [1-3] conducted in various countries
reveal that the prevalence of myopia among young people
exceeds 50%. To detect and assess refractive error,
individuals need to visit an eye clinic for a Visual Acuity
(VA) test, where ophthalmologists use the eye chart placed
3 to 6 m away from the patient. Traditionally, the eye chart
is a print sheet. However, various advanced solutions have
been developed, such as specialized integrated monitor, or
computer-based eye test program as Thomson software or
OptoNet software. These electronic eye charts can display
randomized optotypes for different test types. However,
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none of these systems are truly automated, as patients must
still speak their answers to a clinician.

For conducting a VA test at home, several options are
available, such as wusing a printed chart, or
smartphone- based VA test apps. These apps are designed
for near-distance testing, requiring users to touch the
screen to submit their answers. While studies [4-7] have
demonstrated the efficacy of near-distance VA testing, it
cannot fully replace far-distance examinations.

For early detection of refractive errors, it is necessary to
conduct the VA tests frequently at home. This requires an
easy-to-use and low-cost automated VA test system, that
includes an auto-scoring engine and a remote
communication tool, allowing users to transmit their
responses to the system from a distance. The aim of our
study is to develop and evaluate such a system,
incorporating speech recognition technology for answer
selection.

II. LITERATURE REVIEW

Several prior studies proposed an automated VA test
system with different input methods. The basic idea
involves pressing a button to select an answer. For
example, the Freiburg VA test [8] proposed a specialized
response box with eight buttons for selecting the directions
of Landolt C optotype. Claessens et al. [9] proposed a
smartphone-based input method for remote web-based eye
charts. While these approaches are easy to deploy, they
require users to alternate their focus between the test chart
and the input device, which may compromise VA
measurement accuracy.

Other solutions include eye tracking technology, such
as the Tobii Pro eye tracker, used by Vrabic et al. [10] to
monitor children’s eye movements during the test, and the
Head-Mounted Display (HMD) approach used by
Ong et al. [11]. However, the high cost and complexity of
these devices limit their applicability. Chiu et al. [12]
developed an automated VA system using hand tracking
with a specialized sensing device for the answer selection,
detecting the subject’s hand gesture corresponding to the
four directions of optotypes. Similarly, the study of
Li and Tong [13] employed a conventional camera-based
hand tracking approach. While these methods demonstrate
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promising results, they are primarily compatible with
Landolt C or tumbling E chart, whereas Snellen or Sloan
letters remain the clinical gold standards.

Automatic Speech Recognition (ASR) is the most
natural solution for the VA testing, with several related
researches:

e Ganesan and Shalini [14]: This study implemented
a VA test system using the Microsoft Speech SDK
within the LabView platform for English speech
recognition. The system relied on a
non-state-of-the-art ASR engine (in 2014), which
lacked reported metrics for speech recognition
accuracy or Word Error Rate (WER).

e Taufik and Hanafiah [15]: The AutoVAT system
employed a custom Convolutional Neural
Network (CNN) for recognizing spoken digits in
English, achieving 91.4% accuracy. However,
digits are non-standard optotypes for VA testing
and are inherently easier for ASR systems to
recognize than letters.

e Nisar et al. [16]: This study developed a custom
ASR engine for English speech using an adaptive
Mel filter bank for feature extraction and three
classifiers (HMM, SVM, KNN), reporting
83.8-91.9% concordance with conventional VA
scores. However, it did not provide WER or
recognition accuracy metrics, limiting insights into
the ASR’s performance for isolated letter
recognition.

Furthermore, the VA eye chart in all studies [14—16]
used the Snellen format, which employs a line-by-line
scoring procedure rather than assigning the score to each
correctly recognized optotype. In summary, these above
limitations compromise the accuracy for evaluate the
quality of model.

This study introduces an automated VA testing system,
that incorporates speech recognition via microphone input
for answer selection. Unlike both prior studies that relied
on English speech recognition, our system utilizes
Vietnamese speech recognition, tailored for its application
in Vietnam. Addressing limitations of prior works, our
system implements three key advancements: (1) the use of
Early Treatment Diabetic Retinopathy Study (ETDRS) eye
chart with LogMAR-based letter-by-letter scoring; (2) a
state-of-the-art Azure Speech API for speech recognition,
enhanced with our novel correction function and noise
classification function for improved accuracy; and (3)
comprehensive  performance  evaluation  through
multivariate metrics, including VA scores, WER, and
average Time per each Optotype (TpO).

III. MATERIALS AND METHODS

A. The Eye Chart and the Auto-Scoring Procedure

Our system is a computer-based software solution that
runs on a conventional PC equipped with a Liquid Crystal
Display (LCD) monitor (see Fig. 1). We implemented the
program in Python, which offers diverse libraries for both
audio and image processing. The automated test is based
on the ETDRS chart, which is widely regarded as the most

advanced VA testing method. Numerous studies [17-19]
indicate that it can provide a more precise VA score
(measured in LogMAR units) compared to the traditional
Snellen test. Our digital ETDRS chart randomly displays
5 optotypes per line for each size with sizes decreasing
progressively. The optotypes consists of 10 Sloan letters:
C,D,H,K,N,O,R,S,V, Z

(ep
(@)

(ep
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Fig. 1. System hardware components and eye chart interface.

There are 11 different sizes, ranging from largest
(LogMAR = 1.0) to smallest (LogMAR =0.0). The subject
with normal vision has a LogMAR score of 0.0, which is
equivalent to a 20/20 score in Snellen chart.

Our system is designed for VA testing at a distance of
3 m. This is a feasible distance for most home or clinic
room in our country, where space constraints are common.
In each test round, our system displays a line of 5 random
optotypes. Table I provides the height of each optotype
line and its corresponding LogMAR score, following the
guidelines of LogMAR chart [20]. The system’s
calibration function allows it to calculate the optotype size
(in pixels) based on the dot size (in mm) of the LCD
monitor.

TABLE I. CONVERSION TABLE BETWEEN THE OPTOTYPE SIZE AND
SCORES

Optotype height (mm)

Line (For 3 m distance) LogMAR score Snellen score
0 43.7 1.0 20/200
1 35.0 0.9 20/160
2 273 0.8 20/125
3 21.9 0.7 20/100
4 17.5 0.6 20/80
5 13.8 0.5 20/63
6 10.9 0.4 20/50
7 8.8 0.3 20/40
8 7.0 0.2 20/32
9 5.5 0.1 20/25
10 4.4 0.0 20/20

The system updates the LogMAR score each time the
subject provides an answer. For each correct answer, the
score decreases by 0.02 LogMAR units. If the subject
correctly identifies at least 3 out of 5 optotypes on a given
line, they can proceed to the next smaller line. The best
achievable VA score is 0.00 LogMAR.

B.  The Speech Recognition Module

For the implementation of this module, we use the
Python library Speech Recognition (SR), which supports
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multiple ASR engines. The speech recognition process in
our program consists of two main stages:

e Capturing the subject’s speech via a microphone
and saving it as an audio variable.
Sending the variable to an ASR engine which
transcribes it into text and returns the result.
The detailed procedure is illustrated in Fig. 2.
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Fig. 2. Answer selection workflow using the speech recognition method.

To determine the most suitable ASR engine for our
system, we tested three cloud-based engines integrated in
SR library: Google Speech, Microsoft Azure Speech, and
wit.ai Speech. All three engines support multi-languages,
including Vietnamese, and offer free transcription
services. However, wit.ai was eliminated from our project
because it has a long response time in Vietnamese
transcription (more than 2 s).

Vietnamese uses the same Latin alphabet as English, but
differs significantly in pronunciation. For all ASR engines,
transcribing isolated words is generally more difficult than
transcribing sentences [21-23]. Recognizing monosyllabic
letters is particularly challenging. Google Speech has the
shortest response time, from 400 to 600ms. While it works
well with the sentences, it performs poorly when
recognizing isolated Vietnamese letters (only 30-40%
success). The Azure Speech API demonstrated the best
performance, with a successful rate of around 55-65%
when recognizing isolated letters in Vietnamese.
Furthermore, the Azure APIs indicated an acceptable
response time ranged from 500 to 1200 ms.

We also explored offline ASR models inside Python
SpeechRecognition library, including Vosk and OpenAl’s
Whisper, which support Vietnamese. However, these
models demonstrated significantly lower accuracy for
recognizing isolated Vietnamese letters. Kaldi, while
powerful, requires extensive training data and
customization for Vietnamese isolated letter recognition,
which was beyond the scope of our current resources and
timeline. Based on these findings, the Azure API have
been integrated into our program as the primary
transcription engine.

When subject utters a letter, the Azure API can return
two types of errors:

Null value: This occurs when the engine fails to
transcribe the sound into any text. Causes of this
error may include background noise, unclear
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pronunciation, or poor microphone quality. When
a null value is returned, the subject needs to repeat
this letter.

Wrong word: Sometimes, the ASR transcribes the
sound into an incorrect word which is a
homophone, or a phonetically similar variant of the
intended letter. For instance, when the subject says
“C” in English, the ASR might transcribe it as
“see” or “sea”. In Vietnamese, this issue is
exacerbated, because this language has six distinct
tones, and most letters have more than one
pronunciation. Therefore, the number of incorrect
variants for each letter is significantly higher than
in English.

To improve the accuracy of speech recognition, we
implemented the correction function and the speech/noise
classification function with the Azure API process.

1)  Correction function

To address high rate incorrect words returned by the
Azure API, we implemented a correction function to
convert these errors into valid letters. This function is
based on a dictionary of variants that was constructed
through an experiment involving 20 participants, each with
a diverse voice profile. Each participant was asked to
pronounce each letter of the alphabet (using Vietnamese
pronunciation) multiple times through a microphone. The
Azure Speech engine then processed these recordings to
generate transcription variants. A variant was added to the
correction dictionary for each letter if it met three criteria:
Phonetic similarity: The variant must share at least
one similar syllable with the intended letter, based
on Vietnamese pronunciation.

Frequency Across Participants: The variant must
appear at least twice and must be spoken by at least
two different participants.

Uniqueness: the variant must correspond to only
one letter and should not appear as a valid
transcription for any other letter

Table II summarizes the number of variants identified
for the 10 Sloan letters, based on their Vietnamese
pronunciation:

TABLE II. NUMBER OF VARIANTS OBTAINED FOR 10 SLOAN LETTERS IN
VIETNAMESE PRONUNCIATION

Number of variants
12
16
10
7
14
9
6
24
11
14

Sloan letters

o O

N<»nmOZRI

Example: 12 identified variants of letter “C” in
Vietnamese that are re-transcribed to the correct answer
“C” in the correction function:

[‘C’,’CO", *CO", “CO’, ‘CO", ‘XE, XE",'XE", ‘SE", ‘SE",
‘SE’, SI']:
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These variants are phonetically like the intended letter
“C” in Vietnamese pronunciation and were mapped to the
correct transcription. By utilizing this dictionary of
variants, the system can effectively correct recognition
errors returned by the ASR engine, thereby improving the
overall accuracy of the speech recognition process. After
implementing the correction function, we observed a
significant improvement in the speech recognition success
rate during the VA test, with accuracy exceeding 90%.

2) Speech/Noise pre-classification function

The speech recognition procedure can be disrupted by
ambiance noise, and significant efforts have been made to
address this issue [24, 25]. Although the Azure Speech API
incorporates effective background noise suppression, we
identify an additional vulnerability: when ambiance noise
occurs during subject silence, the system captures and
process this audio through Azure API. The result is
typically a null value, then the program resumes listening.
However, if subject begins speaking during the API’s
processing window (500-1200 ms) following prior noise
capture, the program may miss speech input due to
interrupted audio sampling.

To address this issue, we developed a Speech/Noise
pre-classification function that executes following the
audio capture. When the classifier identifies the audio
segment as noise, the system: (1) bypasses the API
transcription, (2) immediately reinitializes the listening
phase. These two actions prevent the risk of missing the
subject speech.

The classification function utilizes the Root Mean
Square (RMS) energy of the captured audio, computed via
Python’s audioop library. Through empirical observation,
we found two key characteristics: (1) moderate ambient
noise (<50 dB) exhibits RMS value 3—6 times lowers than
that of subject speech. (2) Individual speakers maintain
relatively consistent volume, with speech RMS variation
remaining within a 2x range throughout testing. Based on
these findings, the classification works as follows
(see Fig. 3)

Initiate
RMS_ threshol Capt}lre Calculate
~100 audio RMS

Set RMS_ threshold = 50% of APTI's Transciption /
minimum RMS from audios of Correction / Scoring

3 prior transcribed letters process

Fig. 3. Speech/Noise classification workflow.

Since rms_threshold adjust dynamically after each test
iteration, the sensitivity variations of microphone don’t
impact the classification result. Our evaluations of three
mid-range microphones (Jabra Biz 150, Yealink UH37,
Logitech H540) demonstrate consistent performance,
while minor sensitivity differences were evident in RMS
measurement, the system maintained effective
speech/noise discrimination across all devices. This
eliminates the need for device-specific parameter
calibration. However, the low-end microphones are not

recommended as they may compromise recognition
accuracy due to inferior audio capture quality.

C. Feedback by Speech From Computer

Once the system successfully recognizes an optotype
through subject’s speech, it immediately provides
feedback by computer speech through either headphones
or the PC’s loudspeaker. For speech recognition method,
the feedback is given in the form of: identified letter +
“correct” or identified letter + “wrong”, depending on the
matching of the recognized letter with the letter on screen.
To generate speech from the text, we utilize the Python
library gTTS (Google Text-to-Speech). To ensure
response accuracy, subject may say “Lai” (Vietnamese for
Undo) when recognized letter differ from their spoken
input, activating a repeat of current optotype. The auditory
feedback ensures the process is more intuitive and
transparent for the user

D. The Experiment Procedure

To evaluate the performance of our system, we
conducted 2 separate experiments, with 80 participants
(N = 80), including 40 males and 40 females, aged 18—65
years (mean age = 32). The participants were recruited
from the Institute of Materials Sciences, comprising
employees and internship students. These well-educated
subjects were selected to ensure comprehension of the
unsupervised self-testing process, which is critical for the
system’s intended use in non-clinical settings. For
home-based VA testing, we recommend that at least one
family member be a competent computer user to set up the
system, while children can perform the test under parental
guidance.

The participant group consisted of 44 emmetropes
(without wearing refractive glasses) and 36 myopes
(refractive error ranging from —0.5 to —3.0 diopters).
Myopic participants were instructed to wear their
corrective lenses during testing. This distribution reflects a
common range of visual conditions in the general
population, supporting the system’s applicability to both
corrected and uncorrected vision.

Participant with severe visual impairment (unable to
identify optotypes at LogMAR 1.0, Snellen 20/200) were
excluded from this study. The testing procedure adheres
International Visual Acuity measurement standard [26]
and the guidelines proposed by Elliott [27].

Each participant sat 3 m away from a 32 inches
Samsung LCD screen (luminance ~190cd/m?). We used a
moderately powered computer (Intel Core i5, 8 GB RAM)
running Windows 10 for the test. For speech recognition
module, we used a Jabra Biz 150 microphone/headset.
Other mid-range microphone could also be substituted
without affecting the system’s performance. The
experiments took place in an office room at our institution
(Institute of Materials Science).

Each subject participated in three VA experiments, first
with the right eye (OD), then with the left eye (OS). The
experimental setup was as follows:

e Experiment 1 (speech recognition): the subject
spoke the Sloan letters in Vietnamese through
microphone and the system recognized these
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responses. Subjects had option to start from line 1,
line 3, line 5, or the default line 7, depend on the
estimated visual acuity.

Experiment 2 (manual ETDRS control): a
conventional printed ETDRS chart was placed in
the same position of the LCD screen. During this
test, an assistant was required to stand near the
chart to point to each letter, while the subject
verbally identified the letter. The assistant then
manually recorded the result following standard
clinical protocol.

Beyond standard VA scoring, the system quantified two
addition parameters: 1) Total test duration (7) and 2)

Numb

manually recorded FEi:

er of attempted optotypes (Op). Otherwise, we
Instances of failed speech

recognition by ASR during each test. Therefore, two
important factors were calculated and analyzed:

(1) Word Error Rate (WER) = 5—:

(2) Time per Optotype (TpO) = OT—p

IV. RESULT AND DISCUSSION

A. The VA Scores

Fig.

4 presents the comparative VA between the two

experiments with Bland—Altman analysis [28].

0.16
0.14
0.12

0.08
0.06
0.04
0.02

-0.02
-0.04
-0.06
-0.08

VA Score difference (LogMar)

Bland - Altman VA score comparison between Experiment 1 and 2
— Mean of the difference
--- Acceptable deviation limits

@ Samples with size indicates overlap count
--- 95% limits of agreement (LoA)

0.1 LogMar

+1.96SD: 0.082 LogMar

Py Mean: -0.008 + 0.046 LogMar

-1.96SD: -0.098 LogMar

012 -0.1 LogMar
-0.14
-0.16

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Average VA score (LogMar)

Fig. 4. VA score difference in LogMAR between Experiment 1 and

Experiment 2.

Key findings include:

(M

2

Mean difference: The mean difference in VA score
across 160 tests was —0.008 LogMAR
(SD = 0.046). This mean value is close to O,
indicating no significant systematic bias between
the two experiments. The small standard deviation
(equivalent to a variation of 2 optotypes) reflects
minor variability, which falls within acceptable
clinical limits.

Agreement: The 95% Limits of Agreement (LoA)
ranged from —0.096 to 0.082 LogMAR, well
within the acceptable deviation threshold of +0.1
LogMAR (equivalent to a variation of 1 line).
Notably, 95.6% of measurements (153/160 eyes)
had the VA score difference <0.1 LogMAR,
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indicating strong concordance between two
measurement methods.

(3) Identical results: In 56.3% of tests (90/160 eyes),

the VA score difference was <0.02 LogMAR
(<1 optotype variation), further supporting the
high agreement between measurements.

This result compares favorably with established
benchmarks:

Nisar et al. [16] indicated 83.8% to 91.9%
concordance between speech recognition and
conventional methods.

Taufik and Hanafiah [15] reported 0.19 row
difference compared with conventional Snellen
chart

Li and Tong [13] achieve 96.72% concordance
between hand gesture recognition in the Tumbling
E eye chart and conventional methods

Cotter et al. [29] reported 89% agreement in
test-retest study.

Claessens et al. [30] found mean difference with
the reference in VA assessment ranged from —0.08
to +0.10 LogMAR for digital VA tools.

Given that the visual acuity testing accepts £1 line as
clinical equivalent accuracy, our system’s performance

demonstrates

sufficient reliability visual screening

applications.

Eye sample count
(3]
W

Word Error Rate (WER) distribution in Experiment 1
— — Acceptable WER limit: <20%

|
“ |
|
|
|
|
22 |
|
12 |
T 1 6 3

|

0 ==

0% 1-5%  6-10% 11-15% 16-20% 21-25% 26-30%
Word Error Rate (WER)

Fig. 5. The Word Error Rate (WER) distribution in Experiment 1.

B.  The Speech Recognition by Error Rate

Experiment 1 demonstrated the following accuracy
metrics:

()
2

3)
“4)

Error distribution: ranged from 0—6 errors per test
(mean = 1.15).

Word Error Rate (WER) distribution (see Fig. 5):
ranged from 0-30% (mean 6.9% =+ 6.6%),
corresponding recognition accuracy of 93.1%.
Error-free tests: 27.5% of tests (44/160) achieved
perfect recognition (WER = 0).

High-error tests: 5.62% of tests (9/160) exceed the
acceptable threshold (WER > 20%). Note:
WER = 20% represents the maximum tolerable
error rate (equivalent to one incorrectly recognized
letter per line)

This result is favorable compared with other studies:
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(1) Ganesan and Shalini [14] and Nisar et al. [16]:
WER metrics were not reported in the VA testing,

(2) Taufik and Hanafiah [15]: accuracy 91.4%
(WER = 8.6%), using digit number input as
optotype. Notably, digits are typically easier for
ASR systems to recognize compared to letters.

(3) Adam and Salam [23]: 64.75% accuracy of 26
English letters for their ASR engine.

(4) Accuracy of hand tracking input technique:
Chiu et al. [12]: 91.6%, Li and Tong [13]: 96.7%.

Our analysis of transcription outcome revealed 58% of
correct transcriptions came directly from Azure Speech
API. The remaining 42% return initially incorrect words
but were subsequently rectified by our correction function.
Otherwise, while our primary experiments were conducted
in an office environment at the Institute of Materials
Sciences, this setting was not acoustically controlled, with
occasional ambient noises (e.g., conversations among
waiting participants). In fact, more than 90% recorded
concurrent noises were correctly labeled by the
classification function, maintaining the uninterrupted
audio sampling. These evidences proved the contribution
of our correction function and classification function.

The 6.9% WER (Word Error Rate—when subject spoke
clearly but ASR failed) consists of:

(1) False negatives (82% errors):

e Capture failures: a) low volume speech
(RMS < threshold, misclassified as noise) or b)
concurrent noise (RMS > threshold, misclassified
as speech) interrupt audio sampling while the
subject start speaking.

e Transcription failures: a) ASR returned null for
valid speech or b) correction function failed to
match ASR output to a valid letter.

e The subject needs to speak again when a false
negative occurs

(2) False positives (18% of errors):

e Phonetically similar Vietnamese letter pairs (D/T,
A/K, /L/N).

e The correction function was unable to correct this
type of error.

e The subject needs to undo this answer when a false
positive occurs, then speak the letter again.

Users with unclear pronunciation may have difficulty in
using this method (WER > 20%, 5.62% of tests).
Therefore, two alternative methods were proposed for
them in this system: (1) subject verbally responds to an
assistant, then the assistant provides keyboard input. (2)
the subject uses a wireless keyboard for answer input.

In summary, our speech recognition method achieved
relatively high success rates (93.1%). The integrated noise
classification function effectively reduces the impact of
moderate ambient noise (40-50 dB), such as outside
speech or street vehicle noise, while previous
systems [14—16] require controlled acoustic environments
(<30 dB). While extremely noisy conditions remain
challenging, the system operates reliably in typical home
settings.

C. The Speech Recognition by Test Time

While participants could select their starting line, total
test duration is unreliable for evaluating automated VA
system performance due to variable test length. Instead,
the TpO is a more robust metric for assessing system
efficiency.

Key findings:

(1) Automated system (Experiment 1): TpO ranged
from 3.2 to 7.2 s (see TpO distribution in Fig. 6),
mean TpO 4.6 £ 0.9 s.

(2) Benchmark comparison:

e Conventional clinical test (observed in Vietnamese
clinic): 1.5-3 s,

e Manual ETDRS test (Experiment 2): Mean 2.4 s.

Time per Optotype (TpO) distribution in Experiment 1
90

80
70
60
50

75
37
30
30
20 14
: E
0 I

3-3.9s 4-4.9s 5-5.9s 6-6.9s 7.79s
Time per Optotype (TpO) in seconds

Eye sample count

Fig. 6. The Time per Optotype (TpO) distribution in Experiment 1.

While no prior studies explicitly reported TpO
benchmarks, our experiment indicated the automated
system operates at approximately half the speed of
conventional methods. The slower TpO could be attributed
to the cloud-based Azure Speech API process, which
requires more response time (500—1200 ms). Otherwise, if
a speech recognition failure occurs, the subject needs to
repeat the letter, causing an additional delay. The computer
feedback by speech (800-1200 ms) per optotype (with
format: identified letter + correctness) is another factor
which slows down the test speed. However, it is necessary
for subjects to verify the accuracy of speech recognition.
This yields a comparative advantage: The system of
Ganesan and Shalini [14] and Nisar et al. [16] lack
auditory feedback, while the feedback of Taufik and
Hanafiah [15] is binary correct/wrong only.

While the system’s test speed of about half that of
conventional test, this remains acceptable for home use,
because:

e Eliminates need for clinical staff
o Flexible testing procedure
e Maintain accuracy through verification steps

This presents the first quantitative evaluation of timing
metrics in automated VA testing, addressing a critical gap
in prior works.

D. User Feedback

A usability survey was conducted with 20 participants
after completing the VA tests. All of them expressed their
confidence in the VA result. Qualitatively, 16 participants
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found the speech recognition interface intuitive and easy
to use. However, four participants reported initial
difficulties in pronouncing letters clearly for recognition,
attributing this to unfamiliarity with the testing procedure.
They noted that their performance could be improved with
more practice.

Additionally, feedback was gathered from 10 volunteers
who installed the system at home for family use. These
tests achieved a success rate of over 80% with speech
recognition. Challenges were observed with young
children (aged 6—12) and older adults (aged >70), who
occasionally spoke unclearly or did not adhere to testing
protocols. In such cases, an alternative method was
employed: the participant spoke the letters, and a family
member provided keyboard input, ensuring test
completion. Volunteers reported that the system was
user-friendly for home setups, with clear instructions and
robust performance in typical household environments
(40-50 dB ambient noise).

E. Generalization to Multi-Languages

In future work, extending the system to languages such
as English would significantly broaden its applicability. To
achieve it, we propose an approach in three phases:

(1) Data collection of spoken letters: We need to
recruit native speakers pronouncing isolated
alphabet letters multiple times via microphone in
the target language (e.g., English). Alternatively,
we will search and download an online dataset of
spoken English letters. This phase ensures
coverage of diverse accents and pronunciations.

(2) Construction of a  Language-Specific
Correction Dictionary: Using the collected audio
data, we would process the recordings through the
Azure Speech API to generate transcription
variants for each letter. A correction dictionary
would then be built following the three criteria
outlined in our study: phonetic similarity,
frequency across participants, and uniqueness to
each letter. This dictionary would map wrong
transcriptions to the correct letters, enhancing
recognition accuracy for the target language.

(3) Validation with Native Speakers: The system
would be validated through VA tests conducted
with a diverse group of native speakers to ensure
robust performance across various accents and
speaking styles. While recruiting sufficient native
English speakers in Vietnam may have logistical
challenges, collaboration with international
research partners could facilitate this process.

This approach inherits the existing framework of our
system, particularly the Azure Speech API’s
multi-language support and our correction function
methodology, making it adaptable to other languages with
minimal structural changes. Future work will implement
and validate this process for English and other widely
spoken languages to maximize the system’s global impact.

F.  Comparison with Prior Work in Summary

Tables III, IV, and V indicate the comparison of our
study and three prior works in 10 criteria: VA scoring,
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speech language, ASR engine, correction function, noise
classification, auditory feedback, VA difference metrics,
WER metrics, TpO metrics, and error analysis.

TABLE III. COMPARISON OF METHODOLOGY IN FOUR VA TEST

SYSTEMS
System Vé Speech ASR engine
scoring language
Ganesan and Line-by- Enclish Microsoft Speech SDK within
Shalini [14] line g the LabView platform
Taufik and Line-by- Enelish Custom Convolutional Neural
Hanafiah [15] line g network (CNN)
Nisar et al. Line-by- i Adaptive Mel ﬁlter bank for
[16] line English feature extraction and three
classifiers (HMM, SVM, KNN)
Our work Letter- Vietnamese Microsoft Speech API
by-letter

TABLE IV. COMPARISON OF FEATURES IN FOUR VA TEST SYSTEMS

Correction Noise

System function classification Auditory feedback
Ganesan and
Shalini [14] No No No
Taufik and Only binary
Hanafiah [15] No No Correct/Wrong
Nisar et al. [16] No No No
i +
Our work Yes Yes Recognized letter

Correct/Wrong

TABLE V. COMPARISON OF DATA ANALYSIS IN FOUR TEST VA

SYSTEMS
VA difference WER TpO Error
System R . . .
metrics metrics  metrics _ analysis
Ganesan and
Shalini [14] No No No No
Taufik and Mean 0.19 row 91.4% No No
Hanafiah difference accuracy
1 0, 0,
Nisar et al. 83.8% to 91.9% No No No
[16] concordance
95.6% measurements 93.1%
Our work  have difference < 0.1 T 46+09s Yes

LogMAR accuracy

V. CONCLUSION

This study presents an automated Visual Acuity (VA)
test system implemented as a Human-Computer
Interaction (HCI) platform incorporating speech
recognition technology. While speech recognition has
become ubiquitous in consumer devices, no commercial
VA testing system has successfully integrated this
technology, due to the significant challenges in isolated
letter recognition.

Key innovations compared to prior works:

(1) Accuracy enhancements:

e Improved Azure Speech APl performance
from 58% to 93.1% accuracy for Vietnamese
letters through our novel correction algorithm

e Maintained robust performance in moderate noise
environments (40-50 dB) via  adaptive
noise/speech classification

e Comprehensive auditory feedback for verification

(2) Established three quantitative performance
metrics:
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e VA score validity based on ETDRS chart, offering
more accuracy than Snellen test in prior
works [14-16].

e Recognition reliability (mean WER = 6.9%)

e Operational efficiency (mean TpO = 4.6 s)

(3) Provided detailed error analysis for
improvements

While the system demonstrates strong reliability, it has
two notable constraints:

e Relatively slow speed than conventional method,
primarily due to cloud-based speech processing
latency (500-1200 ms), and auditory verification
steps (800—1200 ms)

e Requires reliable Internet connection for Azure
Speech and Google text-to-speech service

While this research implemented speech recognition
exclusively in Vietnamese, future versions of the system
will aim to support English and other languages,
expanding its applicability worldwide. As Azure API
supports multi-language, and almost program features are
reusable, the main challenge remains in constructing a
correction function dictionary for each language
implemented in this system.

In summary, this system represents a significant
advancement in applied Al in medical screening, offering
a reliable and flexible automated solution for conducting
the VA test outside clinical environments.

future
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