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Abstract—Opinion mining or Sentiment Analysis (SA) is an 

essential component of e-commerce applications where 

consumers generate a large number of reviews. Opinions 

conveyed about a particular feature of a product have a 

significant impact on consumer decisions and companies’ 

reputations. Aspect-based Sentiment Analysis (ABSA), is the 

process of classifying text according to different aspects and 

identifying the sentiment associated with each category. In 

this article, a method is suggested for enhancing the Support 

Vector Machines (SVM) model to improve its noise tolerance 

when dealing with the Implicit Aspect Identification (IAI) 

task which is a subtask of Aspect Based Sentiment Analysis. 

Using WordNet (WN) semantic relations, modification to the 

SVM kernel computation is proposed. This study evaluates 

SVM noise robustness using its classification performance 

with noisy datasets and multiple kernels. Experiments are 

conducted on three benchmark datasets of laptops, 

restaurants, and product reviews. Results are evaluated and 

analyzed based on the impact of the proposed approach on 

the performance of SVM for two types of noise (class noise 

and attribute noise) and two types of kernels (linear kernel 

and nonlinear kernels). According to the empirical results, 

the suggested method is shown to increase the noise tolerance 

of SVM for IAI. 

Keywords—implicit aspect-based sentiment analysis, support 

vector machines, wordnet, Lesk algorithm, equalized loss of 

accuracy, noise robustness, label noise, class noise 

I. INTRODUCTION

In recent years, Sentiment Analysis (SA) has grown in 

importance as a task in Natural Language Processing (NLP), 

particularly for data from online social media platforms, 

blogs, forums, and microblogs. The goal of SA is to 

determine the aspect, sentence, or document’s sentiment 

rating or sentiment polarity [1]. SA is regarded as the 

crucial technology for achieving powerful artificial 

intelligence and creating machines that can fully 

comprehend human languages. Sentiment Analysis (SA) is 

also useful in a variety of application contexts, including 

financial, political, e-health, e-tourism, user profiles, user 

influence, community detection, and dialogue systems. 

Aspect Sentiment Analysis is a fine-grained form of 

Sentiment Analysis and a subtask of NLP [2] that involves 

analyzing text to identify the aspects of a given entity and 

the sentiment expressed towards each aspect. Aspect-

based Sentiment Analysis (ABSA) can be divided into two 

subtasks: Aspect Identification (AI) and Aspect Sentiment 

Classification (ASC). There are two types of aspects: 

explicit aspects and implicit aspects. Explicit aspects are 

directly mentioned in the text and can be easily identified. 

They are usually nouns or noun phrases that refer to 

specific features or attributes of the product, service, or 

entity. However, implicit aspects are not directly 

mentioned in the text and are usually inferred from the 

context. They can be adjectives, verbs, or other parts of 

speech that describe the product, service, or entity.  

The existing Aspect-based Sentiment Analysis (ABSA) 

techniques have several limitations that need to be 

addressed, namely performance limitations, imbalanced 

data, lack of large annotated Datasets, and noisy data. 

Current ABSA mechanisms may not perform well on 

challenging tasks and robustness issues, which could 

restrict research on ABSA models. Unbalanced data [3], 

where sentiment labels are unevenly distributed, can lead 

to biased models that favor over-represented classes, 

lowering accuracy and performance. Moreover, the 

absence of large-scale and high-quality ABSA datasets 

restricts the development of accurate ABSA models, as 

they rely on well-annotated data for evaluation and 

training. Small-scale ABSA datasets may not adequately 

represent the complexity and diversity of real-world data. 

Finally, and more importantly, noisy datasets represent a 

major weakness for ABSA systems as they negatively 

affect their performances and make them face challenges 

in finding relevant aspects and accurately categorizing 

aspects and sentiments [4]. Therefore, handling noisy 

datasets is crucial for reliable and precise sentiment 

analysis, especially for machine learning techniques that 

are fundamentally very sensitive to noise like SVM 

classifier.  
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In this work, the topic of interest is AI which refers to 

the process of automatically identifying the specific 

aspects or features of a given entity that are being 

discussed in a text. This process is a crucial part of 

ABSA  [5], which involves analyzing text to identify the 

aspects of a given entity and the sentiment expressed 

towards each aspect. The AI task can be divided into two 

subtasks: Aspect Term Extraction (ATE) and Aspect 

Category Detection (ACD). ATE involves identifying the 

specific aspect terms, which are the words or phrases that 

refer to the aspects of an entity. However, ACD which is 

the main focus of this paper, looks to detect the aspect 

categories, which are broader groups of aspect terms that 

share similar meanings. 

AI is a challenging task due to the complexity of natural 

language. Various AI techniques have been proposed to 

address this task, including rule-based methods, machine 

learning, and deep learning models. These techniques have 

shown promising results in identifying aspects and 

categories from various domains, such as product reviews, 

social media, and news articles. 

With machine learning, AI is treated as a classification 

task that is a supervised model that learns from the training 

data to classify new data instances [6]. Since training data 

quality can severely suffer from noise, AI performance 

may be significantly impacted. A thorough analysis of the 

impact of noise in machine learning algorithms for ABSA 

categorizes noise into two groups: attribute noise and class 

noise. Noise in the input data points is known as ’attribute 

noise’, and noise in the labels is known as ’class noise’. 

Attribute noise refers to corruption in the values of one or 

more attributes. Examples of attribute noise are erroneous 

attribute values, conflicting or contradictory data, and 

errors in data entry. Class noise refers to corruptions in the 

labels of one or more samples. Class noise has several 

sources, including subjectivity during the labeling process, 

data entry errors, or insufficient information used for 

labeling each sample. 

Being one of the most popular learning classifiers, SVM 

has received increased interest and has been used in 

considerable studies addressing ABSA with its two 

subtasks [7−12]. Due to its sensitivity to noise, SVM may 

not appropriately function with noisy datasets. Noise could 

appear in the labels or the input data points during SVM 

classification. In this research, SVM tolerance to noise 

(class and attribute) is investigated using Linear, Gaussian, 

ANOVA, and Bessel kernels. 

In this paper, an approach is proposed for enhancing the 

SVM algorithm by merging its fundamental kernel 

functions with similarity functions derived from the Lesk 

algorithm [13], to improve its noise tolerance when dealing 

with Implicit Aspect Identification (IAI). Lesk algorithm 

is applied to Word Sense Disambiguation (WSD) [14]. 

According to [15−17], WSD is the process of 

automatically giving ambiguous words meaning in a 

particular context. A word’s acceptable meaning in a given 

context has the greatest amount of overlap between the 

given context and its definition. 

In this work, the principle of the Lesk Algorithm for 

WSD is applied. However, the work’s originality is 

demonstrated on two different levels: 

• The theoretical foundation behind the idea: To create 

a Lesk algorithm-based similarity function between 

terms WordNet dictionary (WN), created in [18], is 

needed. Using this function, a novel SVM kernel is 

developed to assign semantically similar words 

greater weights in terms of their level of impact on 

categorizing new observations. 

• Model creation: The proposed similarity function 

amplifies the similarity score between terms. For 

terms with similar semantic features, this new 

formulation provides a noticeably higher similarity 

rating. However, it keeps the same fundamental 

kernel value for terms with different meanings. 

The structure of the paper is as follows. Section II 

highlights related works on ABSA. Section III describes 

our suggested method. Section IV provides the 

experimental setup followed by a section on the findings 

and discussion. Section V presents the conclusion. 

II. RELATED WORKS 

ABSA is a fine-grained sentiment analysis problem that 

seeks to evaluate and comprehend people’s opinions at the 

aspect level. ABSA has attracted a lot of interest over the 

last decade due to the need for recognizing more fine-grained 

aspect-level opinions and sentiments. It involves analyzing 

different sentiment elements and their relations, including the 

aspect term, aspect category, opinion term, and sentiment 

polarity [19]. Numerous techniques are presented 

supporting and evaluating various sentiment components and 

their relationships to handle ABSA in various scenarios. 

However, ABSA faces several challenges such as noisy and 

ambiguous aspect terms, which affect the accuracy of 

ABSA models. In this section, we present related works in 

ABSA for IAI some of which focus on ABSA performance 

enhancement, while others on noise tolerance 

improvement for ABSA tasks. To provide a clear 

landscape of existing literature, related works are 

organized into two major groups. The first group concerns 

those focusing on ABSA performance enhancement 

without treating noise, and the second contains works 

dealing with noise tolerance improvement for ABSA 

models.  Works in each group are classified according to 

two aspects of their approaches (i) the operating level and 

(ii) the use of semantic information. These latter are two 

key criteria that help better situate this present paper within 

existing related literature.  In this section, the first group of 

studies is introduced then followed by the second one.  

Several studies in the first group have suggested methods 

to improve ABSA tasks without coping with noise.  

Benarafa et al. [20, 21] operated on the model level to 

bring enhancements to their underlying models using 

semantic information to boost ABSA tasks. 

To deal with the IAI task in sentiment analysis, 

Benarafa et al. [20] proposed in suggests a method to 

enhance the K-Nearest Neighbors (KNN) algorithm. To 

support the IAI task, the proposed method enhances KNN 

distance computation using WordNet semantic relations. 
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Benarafa et al. [21] suggest a technique to enhance SVM 

algorithm kernel computation using WordNet semantic 

relations for IAI tasks. Pathak et al. [22], Datta and 

Chakrabarti [23], and Tubishat et al. [24] operated on 

model levels to improve their ABSA tasks without 

semantic calculations. In Ref. [22], A topic-level model for 

SA based on the LSTM network is suggested to conduct 

ACD and sentiment categorization. Datta and 

Chakrabarti  [23] improved the Recurrent Neural Network 

(RNN) for ASC on demonetization tweets by creating a 

novel method called Fire Fly-oriented Multi-Verse 

Optimizer (FF-MVO) that optimizes polarity 

measurements used by RNN to categorize the extracted 

features. Tubishat et al. [24] suggested an approach to 

perform explicit ATE in SA using optimal rules 

combination. They combine 126 aspect extraction rules to 

extract explicit aspects from the input text and propose a 

novel technique for combining the aspect extraction rules 

to optimize the technique’s performance. Soni and 

Rambola [25], Sivakumar and Reddy [26], and  

Khan et al. [27] operated on data level via data 

augmentation and used semantic calculations through 

similarities in their underlying models.  

In a recent paper, a hybrid method, combining RNN with 

a spaCy-based similarity function and WordNet-based 

similarity metrics, is presented for identifying implicit 

aspects [25]. Sivakumar and Reddy [26] exploited the 

semantic similarity between the aspect term and the opinion 

sentence to enhance several machine-learning techniques for the 

sentiment classification task. Khan et al. [27] suggested a 

method for performing lifelong aspect extraction from big data 

via knowledge engineering. It extracts features from big 

data using rule-based and machine-learning-based 

methods. Different works, in the second group, have 

proposed methods to improve noise tolerance for ABSA 

tasks. 

On the one hand, Ref. [28] is the only work that operates 

on model level and does not use any semantic information. 

Its authors put forward a novel neural network framework, 

namely the Gated Alternate Neural Network (GANN), for 

ABSA. Using Gate Truncation Layer (GTR) to handle 

noisy input data and learn useful sentiment clue 

representations, the proposed framework is designed to 

enhance the capability of ABSA models by incorporating 

gating mechanisms and alternate connections between the 

input and output layers. On the other hand, six other 

works  [29−34] function on the data level without utilizing 

semantic computations.  

Fei et al. [29] suggested enhancing ABSA robustness 

through the simultaneous integration of rich external 

syntactic dependencies and aspect labels with a universal-

syntax graph convolutional network, inducing high-quality 

synthetic training data with various types to increase the 

diversity of the training set and therefore improving the 

model’s ability to handle noise. Chen et al. [30] proposed 

a noise-aware BERT re-ranking algorithm to properly 

filter out noisy data. Their approach is founded on a novel 

loss function that can effectively handle textual noise in 

the input data and hence increase the robustness of BERT 

re-ranking. A three-step semi-supervised hybrid technique 

is put forth by Kumar et al. [31] for ABSA tasks in 

consumer reviews. The authors propose a noise-resistant 

loss function applied to the three phases (pre-processing, 

aspect prediction, and sentiment prediction) of a method 

called CASC performance is enhanced by lessening the 

effect of label noise in the training dataset. Wang et al. [32] 

introduced a Contrastive Cross-Channel Data 

Augmentation (CCDA), which incorporates contrastive 

learning into the data augmentation process.  This 

approach aids in training the model to be more resilient to 

noisy data. Shi et al. [33] proposed a hybrid model for 

ABSA, integrating Local Position-POS Awareness 

(LPPA) and Global Dense Connection (GDC), to fuse the 

dependency features between the aspect terms and 

associated opinion words to obtain the final sentiment 

classification decision. Even if the study does not 

explicitly focus on noise tolerance, the proposed hybrid 

model integrates several features to enhance the robustness 

of the models to input variations, including noise in the 

dataset. Finally, Li et al. [34] introduced data 

augmentation strategies for ABSA to enhance the 

classification performance. The researchers investigate the 

effect of data augmentation on a hybrid approach for 

ABSA. They focus on techniques such as Easy Data 

Augmentation (EDA), back translation, and word mixup. 

While the noise tolerance of the models may vary 

depending on the specific implementation and dataset, data 

augmentation techniques (used in this study) help improve 

the noise tolerance of ABSA models by introducing 

additional variations and generating more diverse training 

samples.  

Previously presented related works cope with noisy data 

for ABSA as it is done in this paper. However, it is worth 

mentioning that this article differs from related works in 

many regards:  

• Approach principle: this work operates on the SVM 

model level by enhancing underlying kernel 

functions using semantic knowledge. Many related 

works (from the second group) operate on the data 

level by data augmentation, and no one of those 

operating on the model level brings changes to its 

underlying core model and uses semantic information 

for its approach. In this research, the SVM 

classification model is improved using semantic 

relations from WN so that it can better handle the 

classification of noisy datasets. To fulfill this purpose, 

a technique is proposed to suitably capture similarity 

information between two aspect terms and leverage 

this similarity to boost the degree of influence that 

these two aspect terms have on each other’s 

classification. This method modifies the SVM kernel 

which is a fundamental component of the SVM 

model as it manages the degree of influence on 

classification between two aspect terms and therefore 

controls how each term in the training data affects the 

final SVM’s classification results. 

• Empirical validation: this work uses different 

experimental validation setups. Firstly, it uses two 

commonly used noise generation techniques (class 

and attribute noise) with different noise levels while 
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other works employ either context perturbation or 

artificially created noisy training data without using 

different noise quantities. Secondly, it uses SVM as 

the learning text classifier which is very popular in 

the sentiment analysis area and well known for its 

high sensitivity to noisy data, while other works use 

mainly deep learning models. Thirdly, besides the 

F1-score measure, it uses an Equalized Loss of 

Accuracy (ELA) metric that measures how noise 

robust a classifier is whereas other works mainly use 

accuracy and F1−Score measures.  

• This work does not aim to do better than existing 

research nor complement it, but it intends to show 

how existing knowledge is exploited to provide 

additional understandings and insights into research 

problems in the large study space offered by the 

ABSA area. Even if it shares the same global goal 

with other works, it mainly seeks to propose a novel 

approach based on external semantic knowledge to 

change the SVM core model so that it becomes more 

performant and particularly more noise tolerant than 

the baseline SVM model. 

III. PROPOSED APPROACH 

Before presenting the proposed approach, the 

background notions are first introduced and their purpose 

is explained in this section. 

SVM Classifier: Support Vector Machines (SVM) are a 

class of supervised learning methods for regression and 

classification [35]. Focusing on the classification task, SVM 

aims to build a hyperplane that separates examples into 

different classes while maximizing the margin with the nearest 

data points (i.e., support vectors). The following function 

must be minimized as part of SVM training: 

min
𝑤

1

2
 𝑤2 + 𝐶 ∑ 𝜉𝑖

𝑁
1  (1) 

where 𝑦𝑖 (𝑤𝑇𝜙(𝐴𝑖) + 𝑏) ≥ 1 − 𝜉𝑖  and 𝜉𝑖 ≥ 0 

With C being the error penalty, w the normal vector to 

the hyperplane, N the number of training cases, b a 

constant, and 𝜉𝑖 is the slack variable measuring the degree 

of misclassification of aspect terms Ai. 𝜙, also called K, 

represents the mapping function that transforms data from 

the input into the feature space. For simpler computations, 

the following equation represents how the minimization of 

Eq. (1) corresponds to the maximization of its dual problem 

through the use of Lagrange multipliers 𝛼𝑖:  

max
   𝛼

∑ 𝛼𝑖𝑖 −
1

2
 ∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑗 𝑦𝑗𝐾(𝐴𝑖𝐴𝑗)𝑖   (2) 

where ∑ 𝑦𝑖𝛼𝑖 = 0𝑖  and 0 ≤  𝛼𝑖 ≤  𝐶 

K is defined as a mathematical trick that transforms data 

from a low-dimensional to a higher-dimensional 

space  [36,  37]. When SVM cannot calculate its 

hyperplane for nonlinear classification problems, it uses 

the kernel that helps to transform the training data so that 

a non-linear decision surface can transform into a linear 

equation in a higher dimension. Thus, SVM succeeds in 

forming its hyperplane in the higher dimension and 

therefore creates its decision boundary. 

Four kernels are employed in the proposed method:   

Linear kernel [38]: Often referred to as “Non-kernel”, 

the Linear kernel is the simplest and most basic kind of 

kernel. When there are many features, it is considered to be 

the best kernel. For binary text classification tasks, the linear 

kernel is often chosen because the majority of these tasks are 

linearly separable. The equation of Linear kernel is 

presented as follows: 

𝑘(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 (3) 

where x and y are two data points. 

Gaussian RBF kernel [38]: One of the most popular 

kernels used by SVM is the Gaussian RBF kernel. This 

kernel is preferred in the case where no prior information on 

the data is available. The equation of Gaussian RBF is 

formulated as: 

𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝛾 ∥ 𝑥 − 𝑦 ∥2) (4) 

where ∥ 𝑥 − 𝑦 ∥2 is the Euclidean distance between the two 

data points, x and y. The shape of the Gaussian curve is 

controlled by the parameter 𝛾  , which also governs how 

each training sample influences the classification output. 

Anova kernel [38]: Kernel-based algorithms like SVM 

commonly employ the ANOVA kernel [38], which is a 

radial basis function. The equation of the  ANOVA 

kernel is given by:  

  𝐾(𝑥, 𝑦) = ∑ 𝑒𝑛
𝑘=1 𝑥𝑝(−𝜎(𝑥𝑘 − 𝑦𝑘)2)𝑑            (5)   

where d stands for the degree of the ANOVA kernel and x 

and y are two data points. The classification problem’s border 

and the ANOVA kernel’s shape are both influenced by the 

parameter σ. 

Bessel kernel [38]: The Bessel kernel is a radial basis 

function [38]. The radial basis function kernel, or RBF kernel, 

is a commonly used kernel function in machine learning 

that is employed in many kernelized learning techniques, 

especially in SVM classification. The equation of the 

Bessel kernel is presented as follows: 

𝐾(𝑥, 𝑦) = 𝐽0(𝜎 ∥ 𝑥 − 𝑦 ∥)            (6) 

where ∥ 𝑥 − 𝑦 ∥ is the Euclidean distance between the two 

data points x and y, and J0 is the Bessel function of the first 

kind. 

After introducing the key background notions of the 

approach, this latter will be outlined in this section. The 

main purpose of the proposed method, which is defined in 

Fig. 1, is to incorporate pertinent external knowledge, 

specifically semantic information from the WN lexical 

database, into the SVM Kernel calculation to improve its 

noise tolerance when dealing with IAI tasks. To attain this 

goal, a WN semantic information-based similarity for four 

SVM kernel functions is suggested. 

Let Ai and Aj be two Implicit Aspect Terms (IAT) in the 

dataset, DefAi and DefAj are their corresponding WN 

definition sets. Following is a definition for DefAi and DefAj: 
 

𝐷𝑒𝑓𝐴𝑖 = {𝑠𝑢𝑏𝑑𝑒𝑓𝐴𝑖1, . . . , 𝑠𝑢𝑏𝑑𝑒𝑓𝐴𝑖𝑠, . . . , 𝑠𝑢𝑏𝑑𝑒𝑓𝐴𝑖𝑁}, 𝑠 ∈ [1, 𝑁]      (7) 

 

𝐷𝑒𝑓𝐴𝑗 = {𝑠𝑢𝑏𝑑𝑒𝑓𝐴𝑗1, … , 𝑠𝑢𝑏𝑑𝑒𝑓𝐴𝑗𝑡, … , 𝑠𝑢𝑏𝑑𝑒𝑓𝐴𝑗𝑀}, 𝑡 ∈ [1, 𝑀]       (8) 
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where N and M are the number of definitions in DefAi and 

DefAj, respectively. subdefAis and subdefAjt are sets of words 
that correspond to the sth and the definitions, respectively, 

in DefAi and DefAj. 

 
Fig. 1. Summary of our approach. 

 

For calculating the new SVM kernels, the new semantic 

similarity between Aspects Ai and Aj is defined as follows: 

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑆𝑖𝑚(𝐴𝑖 , 𝐴𝑗) = 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛2(𝐷𝑒𝑓𝐴𝑖 , 𝐷𝑒𝑓𝐴𝑗) + 1 (9) 

where: 

 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝐷𝑒𝑓𝐴𝑖 , 𝐷𝑒𝑓𝐴𝑗) = max𝑁𝑏𝐶𝑇𝐴𝑖𝐴𝑗(𝑠, 𝑡), 

𝑠 ∈ [1, 𝑁], 𝑡 ∈ [1, 𝑀]                               (10)  
   

And NbCTAiAj (s, t) is the number of common words 

between subdefAis ∈ DefAi and subdefAjt ∈ DefAj. 

The new similarity between Ai and Aj is calculated by 

comparing word meanings extracted from the WN lexical 

database since the definitions of similar words frequently 

employ the same terms. The more similar terms two words 

have in their definitions, the more similar we might assume 

they are to one another. This assumption is inspired by our 

previous work which takes its inspiration from the Lesk 

algorithm to compute similarities between words. The 

Lesk algorithm proposes comparing concepts using the 

number of common terms that appear in their glosses [21]. 

As shown in Eq. (10), the intersection is computed as 

the maximum of all NbCTAiAj (s, t). The semantic similarity 

between Ai and Aj shown in Eq. (9) is then obtained by 

adding 1 to the square of the intersection’s result. 

The new SVM kernels are therefore defined as follows: 
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𝑁𝑒𝑤𝐿𝑖𝑛𝑒𝑎𝑟(𝐴𝑖 , 𝐴𝑗) = 𝐴𝑖𝐴𝑗 + 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑆𝑖𝑚(𝐴𝑖, 𝐴𝑗)(11)   

𝑁𝑒𝑤𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝐴𝑖 , 𝐴𝑗) = 𝑒𝑥𝑝 (−𝛾 (∥ 𝐴𝑖 − 𝐴𝑗 ∥2  /

 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑆𝑖𝑚(𝐴𝑖, 𝐴𝑗)))                         (12) 

𝑁𝑒𝑤𝐴𝑛𝑜𝑣𝑎(𝐴𝑖 , 𝐴𝑗) = ∑ 𝑒𝑛
𝑘=1 𝑥𝑝 (−𝜎 ((𝐴𝑖𝑘 − 𝐴𝑗𝑘)/

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑆𝑖𝑚(𝐴𝑖 , 𝐴𝑗))
2

)
𝑑

                    (13) 

𝑁𝑒𝑤𝐵𝑒𝑠𝑠𝑒𝑙(𝐴𝑖 , 𝐴𝑗) = 𝐽0(𝜎 ∥ 𝐴𝑖 − 𝐴𝑗 ∥)   

𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑆𝑖𝑚(𝐴𝑖 , 𝐴𝑗)                           (14) 

 

If Ai and Aj are not similar (Intersection (DefAi, DefAj) = 0), 

then the kernel between them is calculated as follows: 

• Since the resulting value of SemanticSim (Ai, Aj) is 

equal to 1, the dot product between Ai and Aj for Linear 

is set to its basic value. 

• Since the resulting value of SemanticSim (Ai, Aj) is 

equal to 1, the distance between Ai and Aj for Anova 

and Gaussian is set to the standard distance. 

• Since the resulting value of SemanticSim (Ai, Aj) is 

equal to 1, the Bessel function of the first kind, J0, is set 

to its basic value for the Bessel kernel. 

The result of the intersection is squared to offer 

increased similarity of terms having more words in 

common between subsets of their definitions. 

IV. EXPERIMENTS AND RESULTS 

The experiments conducted to evaluate the suggested 

approach are presented in this section. Below is a 

description of the pre-processing methods used, the 

classifier employed, the datasets utilized, the performance 

measures adopted, the implementation of the proposed 

SVM algorithm, and the experimental protocols executed. 

A. Experimental Setup and Protocols 

• Pre-processing: The first step in pre-processing is 

corpus parsing, which uses Part of Speech Tagger (POS) 

to extract a list of adjectives and verbs. The final list is 

then created by eliminating every stop word from the 

initial one. 

• Classifier used: The SVM algorithm described in 

Section III is used to conduct experiments. SVM is 

used with four distinct kernels to evaluate the 

proposed method: Linear Kernel, Gaussian RBF 

Kernel, Anova Kernel, and Bessel Kernel.  

• Datasets: Three well-known benchmark datasets in 

ABSA, Restaurant dataset, Products dataset, and Laptop 

dataset, are used to evaluate the proposed approach. 

The first corpus is the Restaurant 1  dataset which is 

distributed for SemEval-2014 ABSA task 4 [39]. It 

 
1 Restaurant: http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-
absa-restaurant-reviews-train-
data/479d18c0625011e38685842b2b6a04d72cb57ba6c07743b9879d1a04e
72185b8/ 

2Product: http://www.gelbukh.com/resources/implicit-aspect-extraction-
corpus 

contains 3044 sentences from the English restaurant 

reviews of Ganu et al. [40]. The corpus uses the 

following preset implicit aspects: price, food, 

ambiance, service, and anecdotes/miscellaneous.  

Cruz-Garcia et al. [41] created the Products2 dataset by 

individually labeling each IAT. It was created using the 

customer review corpus from [42]. This dataset contains 

five corpora for various electronic products namely Apex 

AD2600, Progressive-scan DVD player, Canon G3, 

Creative Jukebox, Nikon Coolpix 4300, and Nokia 6610. 

The implicit aspects considered in this dataset are size, 

weight, quality, appearance, price, performance, and 

functionality.  

The Laptop3 corpus is a modified form of the SemEval-

2015 ABSA dataset for the laptop domain provided by 

who updated the SemEval-2015 ABSA dataset with some 

corrections [43]. This corpus is utilized for ABSA 

SemEval-2016 task 5 [44]. This dataset contains reviews 

about laptops. The corpus uses the following preset 

implicit aspects: connectivity, portability, design features, 

quality, price, usability, and operation performance.  

In every experiment, 10-fold cross-validation is 

performed to reduce the degree of uncertainty associated 

with data splitting between training and testing data. The 

k-fold cross-validation is a technique that involves 

randomly partitioning the dataset into k parts of equal size 

(where K can be any integer but 10 is a common value) and 

each partition is used for test and other k−1 partition are 

used for training the model.  

• Evaluation measures: The following measures are 

used to evaluate the proposed model: 

• F1−Score: the most frequently utilized evaluation metrics 

that measure the performance of the model are accuracy, 

precision, recall, and F1−Score. The percentage of 

successfully predicted samples is called accuracy. When 

the dataset is unbalanced, precision, recall, and F1−Score 

are used instead of accuracy because accuracy alone is 

insufficient. F1−Score is defined as the harmonic mean of 

recall and precision [45]. 

   𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                   (15) 

• Equalized Loss of Accuracy (ELA): It was developed by 

Sáez et al. [46]. It is a metric that measures how noise-

robust a classifier is. It calculates the accuracy loss by 

comparing the noise-free performance A0% with the 

performance after adding noise Al%. It is mathematically 

represented as follows: 

𝐸𝐿𝐴𝑙% =
100−𝐴𝑙%

𝐴0%
                        (16) 

where Al% is the classifier’s accuracy at the noise level 

l%. A small ELA value is better than a large ELA value. 

The higher the ELA value is the more important the 

3 Laptop: http://metashare.ilsp.gr:8080/repository/browse/semeval-2016-

absa-laptop-reviews-english-train-data-subtask 

1/0ec1d3b0563211e58a25842b2b6a04d77d2f0983ccfa4936a25ddb821d

46e220/ 
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accuracy loss is at the concerned noise level. Thus, small 

ELA values are better than large ELA values. 

• Implementation of the proposed SVM algorithm: The 

following figure presents the core of the proposed 

NewSVM algorithm that is implemented using Scikit-

learn machine learning library in Python language. 

• Noise tolerance experimental protocol: Experimental 

protocol is prepared to evaluate the suggested method 

according to SVM noise tolerance. 

It is described in the two subsections that follow, with a 

focus on each protocol’s goal and how it is created to 

accomplish it (see Algorithm 1). 

 

Algorithm 1: The core of the New_SVM implementation 

Input:  

     CV = KFold(n_splits=10) 

     X_train, y_train, X_test, y_test from CrossValidation CV 

     X_train_i X_train_j two training samples from X_train 

     A_i,A_j the String form of X_train_i and X_train_j 

     Extract definitions from Wordnet: 

     Function get_defs(string): 

        definitions = [] 

        for syn from wordnet.synsets(string): 

          definitions. append (syn. definition()) 

        return definitions 

     Compute the intersection between definitions: 

     Function compare_defs (srting1, string2): 

        return np.square(len(set(string1).Intersection(string2)))

   

     Calculate the new similarity: 

     Function Similarity(srting1, string2): 

        Scores = [] 

        defs_1=getdefs (string1) 

        defs_2=getdefs(string2) 

        for d1 in defs_1: 

          for d2 in defs_2: 

             Scores.append(compare_defs(d1, d2)) 

        return max (Scores) 

     Define the new kernel K: 

     Function New Kernel (X_train_i, X_train_j): 

        A_i=inverse_transform(X_train_i) 

        A_j=inverse_transform(X_train_j) 

        sim = Similarity(A_i,A_j)+1 

        return the new K formula using sim (Kernel formulas 

are  presented in the section Proposed Approach) 

     Create the NewSVM model using K: 

     NewSVM = SVC(kernel=‘K’) 

     Train the NewSVM model: 

     NewSVM = NewSVM.fit(X_train,y_train) 

 

SVM relies on support vectors, which are determined by 

considering every single instance, to derive the model. 

Consequently, by including or excluding a single noisy 

instance, the hyperplanes of SVM can be readily changed. 

Additionally, due to the implicit interdependence of input 

attributes, SVM performance may be impacted when noise 

is included in training data because relationships between 

attributes are compromised. 

A protocol is developed to evaluate and compare the 

impact of noisy data on the performance of NewSVM and 

BasicSVM with four kernels: Linear, Gaussian RBF, 

Anova, and Bessel. To achieve this goal, the proposed 

protocol should: 

• Be based on a noisy data generation mechanism which 

is significant in terms of (1) where introducing 

generated noisy data and (2) how much noisy data 

should be generated. The quality of data heavily 

depends on one hand on the attributes that are supposed 

to efficiently characterize instances for classification 

purposes, and on the other hand on class labels that must 

reflect the right assignment of class to instances. 

Therefore, the adopted noisy data generation considers 

introducing noise in input attributes (attribute noise) and 

output class (class noise). For each of these two types of 

noise, different noise levels are generated (0%, 10%, 

20%, 30%, 40%, 50%, 60%) where each one represents 

the quantity (in percentage) of corrupted data generated 

in each dataset: 

• Attribute noise: As used in [47], this type of noise is 

introduced in the training dataset only, in the test 

dataset, and in both training and test datasets. For each 

dataset considered and depending on the desired noise 

percentage level the corresponding number of 

examples is modified for each attribute concerning 

the complete considered dataset. The noise is 

generated and introduced in the chosen dataset as 

follows: For a noise level l, l% attributes from the 

chosen dataset are randomly selected and replaced 

with a random value from the whole chosen dataset. 

• Class noise: As used in [48], for this type of noise, a 

pairwise class noise is generated because only 

specific classes are likely to be mislabeled in real-

world scenarios. The proportion of the entire training 

set that is corrupted will therefore be smaller than l% 

which is the theoretical level. This type of noise is 

generated in the training dataset as follows: to corrupt 

the class labels under a noise level l, l% of the 

instances class labels of the training dataset’s 

majority class are randomly replaced with the second 

majority class’s label. This way of generating noise 

induces not only mislabeled but also contradictory 

instances [49]. 

• Supplies a measure of the impact of noisy data on 

SVM performance for comparing performances of 

NewSVM and BasicSVM concerning how they 

behave towards noisy data classification. F1−Score, 

Improvement rate, and ELA-score measures are used to 

compare the noise tolerance of both techniques. 

To experimentally study the impact of different types of 

noise on the performance of SVM, the protocol presented 

in Algorithm 2 is adopted. 

 

Algorithm 2: Attribute Noise and Class noise generation 

algorithms 

Input: 

nb_samples is the number of samples in the dataset 

noise level the selected quantity of noise 

DS={Laptop, Products, Restaurant}  

K={Linear, Gaussian RBF, Anova, Bessel} 

Model={NewSVM, BasicSVM} 

Attribute Noise: 

For each dataset DS : 

   For each Kernel K : 

     For each Model : 
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       If NoiseLocation = Noise in train or Noise in test: 

         for i = 0 to (nb_samples−1) * noise level : 

           Randomly choose a data value Vi from the set of 

attributes in training or test data depending on 

NoiseLocation. 

           Randomly generate an instance number J from 0 to 

nb_samples−1. 

           Replace the value of instance number J with Vi. 

       If NoiseLocation = Noise in both: 

         for i=0 to (nb_samples−1) * noise level/2: 

           Randomly choose a data value Vi_test and Vi_train 

respectively from the set of attributes in test data and train 

data. 

           Randomly generate two instance numbers J_test and 

J_train from 0 to nb_samples−1. 

           Replace the value of instance numbers J_test and 

J_train with Vi_test and Vi_train. 

Class Noise: 

For each dataset DS : 

   For each Kernel K : 

       For each Model : 

           Identify the two first majority classes C1 and C2 

           for i = 0 to (nb_samples−1) * noise level:  

               Randomly generate an instance number J from C1 

instances. 

               Replace the class label of instance number J with C2. 

 

B. Results and discussion 

In this section, the experimental findings are presented 

and discussed considering SVM Noise tolerance. 

To study the impact of different types of noise on the 

behavior and performance of SVM, Experiments are 

carried out according to the following noise generation 

schemas: 

• Attribute noise in test data. 

• Attribute noise in train data. 

• Attribute noise in both train and test data. 

• Class noise. 

Experimental results are provided in Figs. 2−5. These 

figures summarize F1−Score performance results obtained 

by NewSVM and BasicSVM for: i) the three datasets 

(Restaurant, Products Laptop), (ii) the four noise 

generation schemas (attribute noise in test data, attribute 

noise in train data, attribute noise in both train and test data 

and class noise) and (iii) the different noise levels (0%, 

10%, 20%, 30%, 40%, 50%, 60%). 

From Figs. 2−5, it is noted that in general NewSVM 

model outperforms BasicSVM for almost the three 

datasets, the four kernels, and all noise levels. This is due 

to the new proposed kernel function that helps SVM to 

improve its noise tolerance. Indeed, the value of the kernel 

determines how much influence each term in the training 

data has on classifying new terms. Thus, semantic 

information (brought by the proposed similarity) is added 

to the kernel function, the new kernel value is amplified 

and this increases the degree of influence each term of 

training data has on its neighbors. This is what explains the 

performance improvement of NewSVM over BasicSVM. 

 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

Fig. 2. Attribute noise in the test data, (a) F1−Score performance under 

attribute noise in test data for BasicSVM and NewSVM with Gaussian 

Kernel and for all datasets, (b) F1−Score performance under attribute 

noise in test data for BasicSVM and NewSVM with Anova Kernel and 

for all datasets, (c)  F1−Score performance under attribute noise in test 

data for BasicSVM and NewSVM with Bessel Kernel and for all 

datasets, (d) F1−Score performance under Attribute noise in the test for 

BasicSVM and NewSVM with Linear Kernel and all datasets. 
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(a) 

 
(b)  

 
(c)  

 
(d)  

Fig. 3. Attribute noise in train data, (a) F1−Score performance under 

attribute noise in train data for BasicSVM and NewSVM with Gaussian 

Kernel and for all datasets, (b) F1−Score performance under attribute 

noise in train data for BasicSVM and NewSVM with Anova Kernel 

and for all datasets, (c) F1−Score performance under attribute noise in 

train data for BasicSVM and NewSVM with Bessel Kernel and for 

all datasets, (d) F1−Score performance under Attribute noise in train for 

BasicSVM and NewSVM with Linear Kernel and all datasets. 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

Fig. 4. Attribute noise in both train and test data, (a) F1−Score performance 

under attribute noise in both train and test data for BasicSVM and 

NewSVM with Gaussian Kernel and for all datasets, (b) F1−Score 

performance under attribute noise in both train and test data for BasicSVM 

and NewSVM with Anova Kernel and for all datasets, (c) F1−Score 

performance under attribute noise in both train and test data for BasicSVM 

and NewSVM with Bessel Kernel and for all datasets, (d) F1−Score 

performance under attribute noise in both train and test data for BasicSVM 
and NewSVM with Linear Kernel and for all datasets. 
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(a)  

 
(b)  

  
(c)  

 
(d)  

Fig. 5. class noise, F1−Score performance under class noise for 

BasicSVM and NewSVM with Gaussian Kernel and all datasets, (b) 

F1−Score performance under class noise for BasicSVM and 

NewSVM with Anova Kernel and all datasets, (d) F1−Score 

performance under class noise for BasicSVM and NewSVM with 

Linear Kernel and all datasets, (c) F1−Score performance under class 

noise for BasicSVM and NewSVM with Bessel Kernel and all datasets. 

For deeper analysis, a closer look is taken, from 

different views, at the initial results represented by the 

above figures. Tuned results are summarized in Tables I−V 

where the NewSVM noise tolerance superiority measure is 

introduced. The definition of this superiority is prepared in 

such a way as to fulfill two conditions. First, taking a 

positive value means higher noise tolerance of NewSVM 

over BasicSVM whereas a negative value signifies the 

opposite. Second, having values that should be 

proportional to NewSVM superiority. The NewSVM noise 

tolerance superiority is assigned two definitions. It is 

defined on the one hand as the average over all noise levels 

of the F1-score improvement rates of NewSVM over 

BasicSVM in Tables I and II (∑ IRll /nbnoiselevels, where 

IRl =
F1−scoreNewSVM−F1_scoreBasicSVM 

F1_scoreBasicSVM  
, nbnoiselevels = 6 

and l represents the noise levels) and on the other hand as 

the difference between BasicSVM Mean of ELA-scores 

and NewSVM Mean of ELA-scores in Tables III and V 

(Mean_ELA_ScoresBasicSVM − Mean_ELA_ScoresNewSVM). 

These tuned results are used to highlight and discuss 

SVM noise tolerance superiority according to the 

following aspects:  

A. In General Terms 

The initial results show that NewSVM generally 

outperforms BasicSVM with noisy data. Even with the 

presence of two special cases (As shown in Table I, 

negative NewSVM superiority for Gaussian kernel, 

Restaurant and Laptop datasets, and train and test data 

noise generation) where NewSVM shows poorer 

performance than BasicSVM, Table I reveals that 

NewSVM has higher F1−Score performance than 

BasicSVM for all noise levels, all noise generation 

schemas, all datasets, and all kernels. 

B. Noise Generation Mode 

From initial F1−Score-based figures, NewSVM is 

shown to be generally more noise tolerant than BasicSVM. 

However, its noise tolerance superiority level changes with 

the noise generation schema. Table I shows that: 

• For attribute noise generation and all datasets and 

kernels, the NewSVM noise tolerance superiority 

level reaches its maximum level with attribute noise 

in train data (shown in Table I by the Mean column 

representing NewSVM average noise tolerance 

superiority by noise generation schema). When 

attribute noise is introduced in train data only the 

train SVM model is corrupted which penalizes the 

BasicSVM (by impacting SVM support vectors and 

margins) where this penalization reaches its 

maximum. The proposed new similarity helps reduce 

the penalization for NewSVM. Thus, this latter 

shows higher noise tolerance superiority than 

BasicSVM. When test data is corrupted with fewer 

train data or without train data, BasicSVM 

penalization decreases which makes NewSVM noise 

tolerance superiority decrease too. 

• For class noise generation and all datasets and kernels, 

NewSVM maintains higher noise tolerance 

superiority than BasicSVM. The class noise 

superiority is globally lower than attribute noise 

superiority (shown in Table I by Mean column). In 

fact, in class noise generation noise is injected in 

class labels without corrupting train data values. 

847

Journal of Advances in Information Technology, Vol. 15, No. 7, 2024



 

When only class labels are corrupted and attribute 

values remain clean, the SVM train model is less 

penalized than when attribute values are corrupted. 

Thus, NewSVM noise tolerance superiority is lower 

in class noise generation than in attribute noise 

generation. 

• According to ELA-score-based results, as noted 

earlier for F1−Score based results, ELA−Based 

average superiority of NewSVM reaches its highest 

level for train data noise generation mode as can be 

deduced from Tables III−V (NewSVM average 

superiority values for test data generation mode, train 

data generation mode, and test and train data 

generation mode are respectively: 0.33, 0.41, and 0.33, 

given by the formula: 
∑ (∑ (𝐾𝑒𝑟𝑛𝑒𝑙𝐷𝑎𝑡𝑎𝑠𝑒𝑡 Mean_ELA_ScoresBasicSVM −
Mean_ELA_ScoresNewSVM)/4)/3 . Indeed, when 

we corrupt test data with fewer train data or without 

train data, BasicSVM penalization decreases which 

makes NewSVM superiority decreases too. 

TABLE I. AVERAGE F1−SCORE PERFORMANCES BASED SUPERIORITY OVER ALL NOISE LEVELS OF NEWSVM OVER BASICSVM FOR ALL NOISE 

GENERATION SCHEMAS FOR ALL KERNELS AND ALL DATASETS 

Kernel 
Noise-

Generation 

Restaurant  Products  Laptop  
Mean3 

BasicSVM NewSVM Superirority2  BasicSVM NewSVM Superirority2  BasicSVM NewSVM Superirority2  

Gaussian 

Train 78.16 85.09 9.28%  68.89 76.19 10.79%  78.87 86.47 9.99%  10.02% 
Train & Test 83.12 82.90 −0.37%  67.86 71.70 5.82%  78.85 76.88 −2.93%  0.84% 

Test 77.43 77.77 0.23%  63.41 65.41 3.23%  72.21 78.97 10.30%  5.58% 

Class 67.98 70.68 4.08%  75.19 79.16 5.28%  79.12 82.09 3.81%  4.39% 

Average1 76.67 79.11 3.31%  68.84 73.87 6.28%  77.26 81.10 5.29%  − 

Anova 

Train 80.97 85.86 6.39%  71.77 75.72 5.65%  84.21 89.51 6.42%  6.15% 

Train & Test 83.38 84.80 1.66%  68.48 70.77 3.45%  78.35 86.52 10.90%  5.33% 

Test 78.24 79.19 1.77%  63.82 64.19 0.35%  72.73 81.84 13.46%  5.19% 

Class 66.91 70.23 5.14%  75.70 77.82 2.81%  80.10 84.27 5.28%  4.41% 

Average1 77.37 80.02 3.74%  69.94 72.13 3.07%  78.85 85.54 9.02%  − 

Bessel 

Train 74.44 84.41 13.45%  64.44 76.68 19.40%  76.77 89.76 17.47%  16.77% 

Train & Test 75.00 84.55 12.77%  62.77 72.98 16.64%  73.91 87.72 19.30%  16.23% 
Test 73.71 81.45 11.07%  59.67 66.11 10.56%  69.44 82.43 19.87%  13.83% 

Class 62.17 70.28 13.58%  70.55 79.75 13.04%  76.84 83.48 8.81%  11.81% 

Average1 71.33 80.17 12.72%  64.36 73.88 14.91%  74.24 85.85 16.36%  − 

Linear 

Train 81.88 82.92 1.24%  72.32 77.08 6.7%  83.65 90.28 8.04%  5.33% 
Train & Test 81.66 83.64 2.45%  68.21 73.71 8.47%  79.09 83.5 5.8%  5.57% 

Test 78.18 80.25 2.53%  64.06 67.05 4.96%  72.87 76.22 4.62%  4.04% 

Class 67.04 70.74 5.76%  75.74 79.6 5.1%  79.28 84.58 6.77%  5.88% 

Average1 77.19 79.39 3%  70.08 74.36 6.31%  78.72 83.65 6.31%  − 
1 Average is defined, for each dataset and each kernel, as either (The average F1−Score) or (The average NewSVM superiority) overall noise 

generation schemas and all noise levels. 
2 Superiority is defined (for each dataset, each kernel, and each noise generation schema) as the average improvement rate of NewSVM over 
BasicSVM for all noise levels. 
3 Mean is defined, for each noise generation schema and each kernel, as the average NewSVM superiority over all datasets and all noise levels. 

TABLE II. COMPARISON OF F1−SCORE AVERAGE IMPROVEMENT RATES OF NEWSVM AND BASICSVM FOR SMALL NOISE LEVELS, LARGE NOISE 

LEVELS, THE THREE DATASETS, AND THE THREE KERNELS USED 

Noise-

Generation 

Superiority/ 

Kernel 

Restaurant Products  Laptop 

Gaussian Anova Bessel linear  Gaussian Anova Bessel linear  Gaussian Anova Bessel linear 

Attribute-noise-

Train 

Superiority 

Rsmall1: 
5.42% 4.49% 12.58% 0.71%  7.97% 3.11% 11.74% 5.19%  7.02% 4.37% 10.63% 6.05% 

Superiority 

Rlarge2: 
9.92% 6.39% 16.94% 0.75%  8.01% 5.71% 13.55% 4.64%  10.48% 6.94% 17.08% 7.94% 

Attribute-noise-

Test 

Superiority 

Rsmall1: 
1.80% 0.47% 9.34% 5.39%  1.01% 0.65% 6.93% 1.78%  5.35% 8.06% 11.37% 3.26% 

Superiority 

Rlarge2: 
1.84% 1.23% 6.58% −1.51%  2.59% −0.27% 7.84% 3.92%  10.19% 12.14% 16.36% 3.09% 

Attribute-noise-

Both 

Superiority 

Rsmall1: 
0.73% 2.76% 10.19% 2.93%  3.09% 2.55% 9.21% 3.22%  4.21% 6.59% 12.40% 3.40% 

Superiority 
Rlarge2: 

2.06% 0.05% 9.02% 0.72%  4.79% 2.31% 11.36% 8.35%  9.04% 11.40% 17.25% 5.41% 

Class-noise 

Superiority 

Rsmall1: 
2.35% 4.84% 8.01% 5.31%  3.43% 2.05% 8.17% 3.63%  3.51% 2.71% 11.89% 5.16% 

Superiority 
Rlarge2: 

3.15% 2.37% 7.84% 2.37%  4.77% 2.42% 10.05% 4.10%  3.18% 5.95% 1.03% 5.75% 

1

 the difference between the average F1−Score of NewSVM and the average F1−Score of BasicSVM in low noise area represented by noise levels 

[10%,20%,30%]. 
2

 the difference between the average F1−Score of NewSVM and the average F1−Score of BasicSVM in high noise area represented by noise levels 

[40%,50%,60%]. 
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TABLE III. ELA−SCORES ACROSS ALL MODELS AND ALL NOISE LEVELS FOR RESTAURANT DATASET 

Noise 

generation 

schema 

ELA−Score 

with noise 

level/Model 

ELA0% ELA10% ELA20% ELA30% ELA40% ELA50% ELA60% Mean 

Class-noise 

BasicGaussian 0.17 0.21 0.33 0.44 0.57 0.63 0.61 0.42 
NewGaussian 0.13 0.14 0.22 0.47 0.6 0.64 0.62 0.40 

BasicAnova 0.15 0.23 0.38 0.48 0.61 0.61 0.65 0.44 

NewAnova 0.14 0.16 0.27 0.4 0.52 0.6 0.58 0.38 
BasicBessel 0.30 0.36 0.55 0.71 0.77 0.83 0.85 0.62 

NewBessel 0.13 0.19 0.29 0.38 0.43 0.51 0.52 0.35 

BasicLinear 0.15 0.21 0.35 0.48 0.55 0.60 0.61 0.42 
NewLinear 0.13 0.19 0.24 0.38 0.50 0.51 0.48 0.35 

Attribute-

noise-Train 

BasicGaussian 0.17 0.18 0.21 0.25 0.25 0.27 0.33 0.24 

NewGaussian 0.13 0.13 0.14 0.15 0.22 0.18 0.23 0.17 
BasicAnova 0.15 0.17 0.19 0.29 0.23 0.30 0.29 0.23 

NewAnova 0.14 0.15 0.15 0.14 0.19 0.20 0.22 0.17 

BasicBessel 0.3 0.34 0.33 0.43 0.39 0.42 0.46 0.38 
NewBessel 0.13 0.13 0.13 0.15 0.21 0.31 0.23 0.18 

BasicLinear 0.15 0.15 0.15 0.21 0.25 0.28 0.32 0.21 

NewLinear 0.13 0.15 0.16 0.18 0.2 0.27 0.29 0.20 

Attribute-

noise-Test 

BasicGaussian 0.17 0.17 0.24 0.24 0.33 0.37 0.41 0.27 

NewGaussian 0.13 0.13 0.19 0.24 0.32 0.38 0.36 0.25 

BasicAnova 0.15 0.15 0.19 0.25 0.31 0.27 0.45 0.25 
NewAnova 0.14 0.14 0.19 0.26 0.29 0.32 0.36 0.24 

BasicBessel 0.3 0.3 0.36 0.41 0.41 0.5 0.51 0.40 

NewBessel 0.13 0.13 0.19 0.21 0.24 0.32 0.35 0.22 
BasicLinear 0.15 0.15 0.2 0.29 0.31 0.33 0.37 0.26 

NewLinear 0.13 0.13 0.18 0.19 0.29 0.38 0.36 0.24 

Attribute-

noise-Both 

BasicGaussian 0.17 0.17 0.19 0.17 0.22 0.26 0.29 0.21 

NewGaussian 0.13 0.13 0.16 0.14 0.19 0.27 0.28 0.18 
BasicAnova 0.15 0.16 0.15 0.18 0.24 0.25 0.3 0.20 

NewAnova 0.14 0.13 0.13 0.12 0.24 0.25 0.24 0.18 

BasicBessel 0.3 0.3 0.32 0.37 0.41 0.47 0.46 0.37 

NewBessel 0.13 0.14 0.13 0.17 0.21 0.24 0.27 0.18 

BasicLinear 0.15 0.15 0.17 0.18 0.28 0.26 0.28 0.21 

NewLinear 0.13 0.13 0.14 0.14 0.24 0.27 0.24 0.18 

ELAl%: is defined as the ELA−Score value for noise level l. 
Mean: represents NewSVM average ELA−Score values over all noise levels. 

TABLE IV. ELA−SCORES ACROSS ALL MODELS AND ALL NOISE LEVELS FOR PRODUCTS DATASET 

Noise 

generation 

schema 

ELA−Score 

with noise 

level / Model 

ELA0% ELA10% ELA20% ELA30% ELA40% ELA50% ELA60% Mean 

Class-noise 

BasicGaussian 0.34 0.41 0.46 0.47 0.47 0.47 0.47 0.44 

NewGaussian 0.26 0.3 0.34 0.35 0.35 0.35 0.35 0.33 

BasicAnova 0.33 0.36 0.42 0.43 0.43 0.44 0.44 0.41 
NewAnova 0.28 0.31 0.34 0.36 0.37 0.37 0.38 0.34 

BasicBessel 0.5 0.59 0.62 0.62 0.62 0.62 0.62 0.60 

NewBessel 0.28 0.32 0.34 0.37 0.36 0.38 0.38 0.35 
BasicLinear 0.33 0.42 0.43 0.43 0.44 0.44 0.44 0.42 

NewLinear 0.27 0.3 0.32 0.36 0.35 0.36 0.37 0.33 

Attribute-

noise-Train 

BasicGaussian 0.34 0.35 0.41 0.39 0.44 0.48 0.47 0.41 

NewGaussian 0.26 0.27 0.27 0.3 0.32 0.36 0.35 0.30 
BasicAnova 0.33 0.34 0.4 0.39 0.43 0.48 0.51 0.41 

NewAnova 0.28 0.29 0.31 0.31 0.31 0.34 0.38 0.32 

BasicBessel 0.5 0.53 0.57 0.57 0.61 0.74 0.73 0.61 
NewBessel 0.28 0.31 0.31 0.31 0.35 0.37 0.43 0.34 

BasicLinear 0.33 0.35 0.37 0.41 0.4 0.43 0.51 0.40 

NewLinear 0.27 0.28 0.28 0.34 0.36 0.36 0.36 0.32 

Attribute-

noise-Test 

BasicGaussian 0.34 0.4 0.46 0.49 0.58 0.6 0.66 0.50 

NewGaussian 0.26 0.32 0.4 0.45 0.47 0.55 0.56 0.43 

BasicAnova 0.33 0.38 0.44 0.48 0.55 0.61 0.62 0.49 
NewAnova 0.28 0.33 0.39 0.47 0.5 0.55 0.64 0.45 

BasicBessel 0.5 0.54 0.61 0.67 0.72 0.75 0.75 0.65 

NewBessel 0.28 0.34 0.41 0.48 0.51 0.54 0.62 0.45 
BasicLinear 0.33 0.38 0.43 0.49 0.55 0.6 0.64 0.49 

NewLinear 0.27 0.32 0.4 0.44 0.51 0.53 0.58 0.43 

Attribute-

noise-Both 

BasicGaussian 0.34 0.35 0.42 0.46 0.51 0.5 0.54 0.44 

NewGaussian 0.26 0.29 0.32 0.35 0.41 0.43 0.46 0.36 

BasicAnova 0.33 0.36 0.37 0.44 0.46 0.54 0.55 0.43 

NewAnova 0.28 0.3 0.34 0.38 0.42 0.47 0.48 0.38 
BasicBessel 0.5 0.52 0.56 0.59 0.62 0.72 0.73 0.60 

NewBessel 0.28 0.28 0.34 0.39 0.41 0.47 0.47 0.38 
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BasicLinear 0.33 0.36 0.39 0.45 0.49 0.53 0.56 0.44 
NewLinear 0.27 0.29 0.33 0.39 0.37 0.41 0.45 0.36 

ELAl%: is defined as the ELA−Score value for noise level l. 
Mean: represents NewSVM average ELA−Score values over all noise levels. 

TABLE V. ELA−SCORES ACROSS ALL MODELS AND ALL NOISE LEVELS FOR LAPTOP DATASET 

Noise generation 

schema 

ELA-score with noise 

level / Model 
ELA0% ELA10% ELA20% ELA30% ELA40% ELA50% ELA60% Mean% 

Class-noise 

BasicGaussian 0.12 0.18 0.28 0.38 0.46 0.48 0.48 0.34 

NewGaussian 0.1 0.11 0.21 0.39 0.45 0.45 0.45 0.31 
BasicAnova 0.11 0.13 0.24 0.37 0.43 0.44 0.45 0.31 

NewAnova 0.08 0.08 0.17 0.36 0.41 0.43 0.42 0.28 

BasicBessel 0.17 0.22 0.34 0.5 0.55 0.54 0.55 0.41 
NewBessel 0.06 0.1 0.17 0.32 0.39 0.4 0.4 0.26 

BasicLinear 0.11 0.15 0.26 0.39 0.42 0.44 0.46 0.32 

NewLinear 0.06 0.08 0.15 0.34 0.39 0.4 0.41 0.26 

Attribute-noise-Train 

BasicGaussian 0.12 0.13 0.15 0.16 0.2 0.22 0.23 0.17 

NewGaussian 0.1 0.1 0.11 0.12 0.13 0.17 0.2 0.13 

BasicAnova 0.11 0.13 0.13 0.16 0.17 0.22 0.24 0.16 
NewAnova 0.08 0.08 0.09 0.1 0.13 0.14 0.16 0.11 

BasicBessel 0.17 0.2 0.21 0.25 0.27 0.29 0.34 0.25 

NewBessel 0.06 0.07 0.07 0.09 0.09 0.12 0.14 0.09 
BasicLinear 0.11 0.12 0.13 0.18 0.2 0.2 0.24 0.17 

NewLinear 0.06 0.06 0.08 0.09 0.09 0.11 0.15 0.09 

Attribute-noise-Test 

BasicGaussian 0.12 0.18 0.24 0.3 0.35 0.38 0.45 0.29 
NewGaussian 0.1 0.13 0.18 0.21 0.26 0.27 0.3 0.21 

BasicAnova 0.11 0.17 0.23 0.28 0.34 0.39 0.44 0.28 

NewAnova 0.08 0.11 0.15 0.18 0.23 0.26 0.29 0.18 
BasicBessel 0.17 0.23 0.29 0.35 0.39 0.43 0.47 0.33 

NewBessel 0.06 0.09 0.15 0.18 0.2 0.24 0.27 0.17 

BasicLinear 0.11 0.16 0.22 0.29 0.34 0.37 0.45 0.28 
NewLinear 0.06 0.12 0.18 0.25 0.27 0.34 0.4 0.23 

Attribute-noise-Both 

BasicGaussian 0.12 0.15 0.2 0.23 0.27 0.29 0.33 0.227 

NewGaussian 0.1 0.1 0.13 0.16 0.36 0.38 0.41 0.234 

BasicAnova 0.11 0.14 0.18 0.21 0.24 0.29 0.33 0.21 
NewAnova 0.08 0.07 0.12 0.14 0.16 0.17 0.23 0.14 

BasicBessel 0.17 0.21 0.26 0.28 0.33 0.37 0.37 0.28 

NewBessel 0.06 0.07 0.09 0.13 0.14 0.16 0.18 0.12 
BasicLinear 0.11 0.15 0.18 0.21 0.26 0.29 0.35 0.22 

NewLinear 0.06 0.08 0.13 0.16 0.2 0.22 0.26 0.16 

ELAl%: is defined as the ELA−Score value for noise level l. 

Mean: represents NewSVM average ELA−Score values overall noise levels 

 

C. Used Kernels 

Concerning used kernels, NewSVM noise tolerance 

superiority (over all datasets and all noise generation 

schemas) reaches its maximum level with Bessel kernel for 

both F1−Score based and ELA−Score based evaluations. 

This is shown by the Mean column in Table I and by the 

difference between BasicSVM Mean of ELA-scores d 

NewSVM Mean of ELA-scores 

( Mean_ELA_ScoresBasicSVM  −  Mean_ELA_ScoresNewSVM ) in 

Tables III−V. This is mainly due to the fact that BasicSVM 

performs very poorly with Bessel kernel which makes 

NewSVM’s superiority much higher.  

According to ELA−Based results, NewSVM shows 

smaller ELA−Scores and higher superiority than 

BasicSVM for all noise levels, all noise generation 

schemas, all datasets, and all kernels. This means that 

NewSVM presents less accuracy loss with noisy data and 

therefore shows higher noise tolerance than BasicSVM.  

D. Noise Quantity 

Table II is derived, from initial F1−Score-based figures, 

to show the change of NewSVM noise tolerance 

superiority level concerning the quantity of noise 

introduced in data. Table II shows that NewSVM is 

generally more performant than BasicSVM for both 

Rsmall and Rlarge noise quantity ranges. However, the 

average Improvement Rate is generally higher in high 

noise areas (shown by Superiority Rlarge in Table II) than 

in low noise areas (shown by Superiority Rsmall in Table 

II). Low noise area is represented by the noise levels (10%, 

20%, 30%), whereas high noise area is represented by the 

noise levels (40%, 50%, 60%). This implies that NewSVM 

noise tolerance superiority concerning BasicSVM is 

higher for big noise quantity than for small noise quantity. 

Tables III−V are introduced to show the change of 

NewSVM noise tolerance (measured by ELA−Score) with 

respect to the level of noise introduced in data. They show 

that NewSVM is generally less affected with noise for all 

noise levels. When closer look is taken at ELA−score 

values for all noise generation schemas and models, it is 

noted that ELA-score increases as noise levels get higher.  

This means that for all kernels, all noise generation 

schemas, and all datasets both BasicSVM and NewSVM 

models are less tolerant to noise for higher noise levels 

than for smaller noise levels. There are two special cases 

where NewSVM is less noise tolerant than BasicSVM 

(shown by higher ELA−score of NewSVM, on one hand 
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for Gaussian kernel and noise levels [30%, 60%] for class 

noise generation schema in Restaurant dataset and on the 

other hand for Anova kernel and noise level 60% for test 

data generation schema in Product dataset). Even with the 

presence of these two special cases, ELA−score mean 

values over all noise levels are generally smaller for 

NewSVM than for BasicSVM which proves the higher 

noise tolerance of NewSVM over all noise levels, all noise 

generation schemas, all datasets, and all kernels. 

V. CONCLUSION 

In this article a technique is proposed to improve SVM’s 

ability to handle noise in Implicit Aspect Identification. By 

the use of WordNet semantic relations namely ’definition 

relation’, SVM kernel computation is improved to better 

deal with noisy data when addressing the IAI task. The 

experiments are performed on three benchmark datasets, 

Restaurant, Products, and Laptop. The results of the 

proposed approach are evaluated and analyzed based on its 

impact on the performance of SVM for two types of noise 

(class noise and attribute noise) and two types of kernels 

(one linear kernel and three nonlinear kernels). The 

following is a summary of the main findings of our study: 

• The suggested technique helps SVM better deal 

with various types of noise, by reducing noise 

impacts on SVM and therefore enhancing its noise 

tolerance for all kernels used. 

• In general, SVM noise tolerance and NewSVM 

noise tolerance superiority level reach their 

maximum with train data noise generation schema.  

• SVM noise tolerance decreases proportionally with 

the quantity of noise included in data, and NewSVM 

noise tolerance superiority is higher for large noise 

quantity than for small noise quantity. 

Future work will consider investigating other Wordnet 

semantic relations, namely synonym and antonym 

relations, to improve SVM for IAI task. In fact, synonyms 

and antonyms are pertinent knowledge that can be 

exploited to enrich either machine learning models or their 

training data for IAI tasks. Additionally, the proposed 

method will be also considered to enhance other classifiers 

for ABSA, especially supervised learning classifiers. 
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