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Abstract—Lung cancer causes death with delayed diagnosis 
and inadequate treatment. Hence there is a need for a 
computer-aided detection method that can identify the 
nodule category whether it is benign or malignant to avoid 
delays in diagnosis with the help of Computerized 
Tomography (CT) scans. This study proposed a novel 
architecture Deep Alternate Kernel Fused Self-Attention 
Model (DAKFSAM) which utilizes the characteristics of the 
residual network in different forms as well as incorporates 
the efficiency of the attention model. This model fuses the 
features extracted from different alternate kernel models in 
three levels of process with three kinds of alternate kernel 
models. The self-attention model takes multiple kernel flows’ 
visual attention features and merges them into a form to 
improve nodule classification efficiency. The performance 
assessment utilizes the Lung Image Database Consortium-
Image Database Resource Initiative (LIDC-IDRI) dataset, 
and the DAKFSAM mode, as proposed, achieves an 
F1−Score of 94.85%. 
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I. INTRODUCTION 

Lung cancer persists as the most widespread form of 
cancer, resulting in approximately 1.80 million annual 
deaths and standing as the leading cause of global 
fatalities [1, 2]. In 2020, the World Health Organization 
(WHO) projected nearly 2.21 million new cases of lung 
cancer, anticipating over 1.80 million fatalities [2]. 
Looking ahead to 2023, the American Cancer Society 
estimated that 238,340 individuals would receive a lung 
cancer diagnosis. Furthermore, WHO forecasts that by 
2030, approximately 17 million people worldwide will 
be diagnosed with various forms of cancer. This 
estimation for the United States is based on 
considerations of factors such as population growth, 
demographic aging, lifestyle changes, and advancements 
in cancer detection and treatment [3]. Ciggy smoking is 
the key contributor to lung cancer and the major cause of 
death (80%). The second leading factor in lung cancer is 
radon gas exposure [4]. Conversely, a patient’s life 

quality and chance of survival can be considerably 
increased by an early identification and precise treatment 
of lung carcinoma. Specifically, the detection of 
pulmonary tumors in the initial phases of an automated 
system is significant and indispensable. 

Lung cancer is a serious condition caused by abnormal 
or unnatural cells that multiply and eventually form a 
lung tumor, and are classified as benign and malignant. 
Malignant tissues grow quickly and can develop 
throughout the body, creating a health danger, whereas 
benign tissues do not grow quickly and are non-
cancerous. There are several techniques for diagnosing 
lung cancer, including Computerized Tomography (CT), 
isotope, X-ray, and the non-invasive Magnetic 
Resonance Imaging (MRI) [4]. Two commonly used 
modalities for anatomical imaging in the identification of 
diverse lung diseases are chest radiography, X-ray, and 
Computerized Tomography (CT) [4]. Computed 
tomography is recognized as one of the best techniques 
to identify lung cancer early among them [5]. With the 
advancement in CT tools high-resolution CT scans have 
become the imaging method of choice for the detection 
and analysis of lung illnesses [6]. Even though it 
suggests examining lung images with the increasingly 
better-automated resolution, manually assessing such 
images may be inefficient and extremely reliant on the 
skill and expertise of radiologists. Therefore, there is a 
great demand for Computer-Aided detection (CAD) 
systems for lung cancer classification [6].  

Recently deep learning has made the tremendous 
capacity to enhance the performance of medical image 
analysis like segmentation, feature extraction, and 
classification. It may assist physicians in diagnosing the 
disease at the early or initial stage. So many researchers 
have developed automated lung cancer classification 
algorithms using deep learning. This present study 
employed a deep learning scheme to automatically 
classify images of lung nodules. 

In this work, the performance of the deep 
Convolutional Neural Network (CNN) model is 
enchanted via the deep residual concept. It solves the 
degradation problem as well as improves the efficiency 
of the model. Normally, malignant nodules vary in this 
dimension. So, we need to extract features from the 
small-scale nodules as well as large-size nodules. There 
is a contradiction in the size of nodules and filters. This 
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problem is solved with the fusion of different scale 
residual self-attention layers [6]. 

The article is divided into several parts. Section I 
outlines the background and significance of this research 
study. Section II works section crucially examines the 
existing research on the topic, highlighting key theories, 
methodologies, and findings relevant to the current study. 
Section III defines the methodology used for lung-nodule 
segmentation and distinguishes whether the nodules are 
malignant or benign. It also describes the dataset used for 
analyzing the nodules. Section IV defines the 
performance metrics used for analyzing the results and 
performance of the developed model. Section V is the 
conclusion part, in which the findings and significance of 
this research are briefed. 

II. RELATED WORKS 

The Lung Nodule classification has to be done by 
segmentation and classification stage; hence the related 
works are given in that order. 

A. Lung Nodules Segmentation 
The accurate and precise segmentation of lung tumors 

from CT pictures is a crucial step in the identification of 
lung nodules. Numerous approaches for effective lung 
segmentation have been developed for this purpose. 
Rakesh and Shanthi [7] developed the cuckoo search 
optimization approach for optimizing the segmentation 
of the lung, and subsequently the Active Contour (AC) 
technique for segmenting the lumps from the segmented 
lung picture. After performing the nodule segmentation 
operation, the post-processing was fine-tuned using the 
Markov Random Field (MRF) method. A region-
growing method is used by Cascio et al. [8] to segment 
the lung nodule. They utilize the slice’s central pixel as a 
seed. 

Usman et al. [9] suggested a unique technique for the 
segmentation of lung nodules. Initially, a deep residual 
U-Net architecture-based adaptive Region of Interest 
(ROI) method is used to change the ROI’s shape and 
position. Following that, two residual U-Nets are used to 
execute further patch-wise segmentations through the 
sagittal and coronal axes. Lastly, the axial, sagittal, and 
coronal axes’ segmentation outputs are combined to 
create the absolute segmentation mask. To achieve lung 
nodule segmentation, Dehmeshki et al. [10] introduced a 
framework that utilized two-region growing strategies 
like contrast-based region growing and fuzzy 
connectivity. 

Gong et al. [11] enhanced the U-Net design to 
segment lung nodules by using residual blocks with a 
squeeze-and-excitation module. To enhance the 
capability of network representation, SE-ResNet has 
incorporated both the encoding and decoding paths of the 
U-Net method. Savic et al. [12] developed a rapid 
marching method-based segmentation technique, which 
divides the picture into sections of related characteristics, 
and then fused by joining sections that expand with k-
means. A resource-conserving design called U-Det was 
proposed by Keetha et al. [13] utilized a Bi-FPN between 

the encoder and the decoder (bidirectional feature 
network) as a solution for segmentation. To increase 
segmentation effectiveness, it additionally uses the Mish 
activation function and mask class weights. To increase 
diagnostic performance, Kaviarasu and Sakthivel [14] 
suggested a novel strategy for lung segmentation that 
combined the Fuzzy C-means and K-means Clustering 
Technique (K-CT).  

B. Lung Nodules Classification 
The classification of lung nodules proposed by Mousa 

and Khan [15] used histogram equalization with 
homomorphic filtering for image enhancement using 
Specific Domain High-Frequency Emphasis Filtering 
(SPDHFEF). And then, several features are extracted like 
circularity, mean, and variance. After normalizing the 
results, the variances and means of a threshold nodule 
and non-nodule regions were selected as features for 
classification. A Support Vector Machine (SVM) 
classifier was utilized for lung-nodule classification. 
Narayanan et al. [16] introduced a new cluster-based 
classifier architecture for computer-aided identification 
of lung lumps. They created a unique optimal feature 
choice strategy for both classifier and cluster modules.  

Orozco et al. [17] utilized GLCM features for lung 
nodule detection. The wavelet transform technique is 
used for segmentation. Support Vector Machine (SVM) 
classifier with Radial Basis Kernel is applied for lung 
nodule detection. The structures in the lung were 
segmented using Gaussian mixture models by  
Santos et al. [18]. Then, using texture descriptors such as 
Shannon’s and Tsallis’s Q entropy, distinguish nodules 
from non-nodules. In addition, the Hessian matrix was 
utilized to distinguish between blood and bronchi arteries, 
and SVM was employed to decrease false positives. 

Zhou et al. [19] extracted 42-dimensional features 
from a CT image. And then the extracted features are 
reduced five times by using feature-level fusion based on 
rough set theory. Finally, optimize the kernel function of 
SVM by grid optimization approach. SVM is utilized for 
classifying lung nodules. To identify lung nodules, 
Asuntha and Srinivasan [20] suggested a novel deep-
learning technique. Scale Invariant Feature Transform 
(SIFT), Wavelet-based features, Histogram of Oriented 
Gradients (HoG), Local Binary Pattern (LBP), and 
Zernike Moment are some of the feature descriptors that 
are used to extract features. To identify the optimal 
feature, the Fuzzy Particle Swarm Optimization (FPSO) 
method is applied. Deep learning algorithms are used to 
classify the data. The network’s computational 
complexity is reduced using a unique FPSOCNN.  
Zhou et al. [21] developed a 3D faster R-CNN with a U-
net-like structure to effectively learn the characteristics 
of nodules. It is suggested to classify nodules using a 
Gradient Boosting Machine (GBM) and 3D Dual Path 
Network (DPN) characteristics. 

George et al. [22] suggested a YOLO-based 
architecture in which a single CNN forecasts several 
bounding boxes and their class probabilities from 
specified grids concurrently. To predict lung nodule 
malignancy, Baldwin et al. [23] introduced a Lung 
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cancer prediction CNN (LCP-CNN) model, which is 
used to assess and compare regions under the curve of 
the receiver operating features with the ground truth. 
Ding et al. [24] suggested a lung nodule identification 
approach that included 2D candidate generation as well 
as 3D False Positive Reduction (FPR). A faster RCNN 
and deconvolution structure is used to find candidates on 
axial slices, and more slices from the adjacent slices are 
included in the input. A technique for identifying 
pulmonary nodules based on multi-group patches derived 
from lung images was proposed by Jiang et al. [25]. 
Initially, Frangi-filters were employed to remove vessel-
like structures, also a slope analysis approach was 
developed to repair the juxta pleural nodules and 
eradicate the nodule outside the lung. Finally, using 
original CT images and binarization, a CNN model with 
a Multi-Crop (MC) pooling operation was built to 
acquire the expertise of physicians. 

Zhang et al. [26] suggested lung nodule recognition 
based on several patches clipped from input images and 
enhanced the images by Frangifilter. Another key 
preprocessing step used in this study was vascular 
removal, which can emphasize nodules while weakening 
arteries. Four types of CNN models based on four lump 
levels are designed to precisely and rapidly find the sites 
of nodules. Furthermore, the CNN model was fed two 
sets of Lump candidates that designed pairs of pictures 
(Group 1 and 2). 

To utilize segmentation as well as their uncertainty, 
Ozdemir et al. [27] suggested a two-stage Bayesian CNN 
model. Initially, Segmentation networks were trained 
with 2D axial CT slices. The original picture is then 
combined with segmentation-predicted mean and 
standard deviation maps to generate a 3-channel 
composite picture that is used as an input for 3D 
Bayesian CNN to identify nodules. Schultheiss et al. [28] 
developed RetinaNet architecture based on CNN for lung 
nodule detection. U-Net algorithm is adopted to segment 
the input image. The prospect of foreign bodies leading 
to incorrect choices in CNN-based nodule identification 
schemes was a significant component of this work.  
Zhou et al. [29] introduced a multi-crop CNN which can 
extract salient module features automatically by 
collecting different areas by using feature maps, as well 
as max-pooling operations, which are done at different 
periods. 

III. EXPERIMENT AND METHOD 

A. Lung Nodule Segmentation with Attention Gate- U- 
Net 

In this work, lung nodule segmentation is processed 
with the help of U-Net with an attention gate. On 
publicly available benchmark datasets, Convolutional 
Neural Networks (CNNs) beat conventional methods like 
multi-atlas and graph-cut segmentation techniques [30] 
for medical image processing. The fundamental reason 
for this is that (i) Stochastic Gradient Descent (SGD) 
optimization is used to discover domain-specific picture 
characteristics, (ii) Kernels that have been learned are 
shared by every pixel, and (iii) Convolution techniques 
effectively use the structural data in medicinal pictures. 

In particular, it has been shown that Fully 
Convolutional Networks (FCN), such as DeepMedic, U-
Net, and holistically nested networks, exhibit strong and 
accurate performance in several tasks, including image 
segmentation, brain tumors, and cardiac Cardiac 
Magnetic Resonance Imaging [31−39]. 

Convolutional layers analyze local information one 
layer at a time to gradually extract higher dimensional 
picture representations. Finally, pixels in a high-
dimensional space are separated based on their semantics. 
Model predictions are therefore dependent on data 
gathered from a wide receptive field through this 
sequential procedure and a non-linear activation function. 
As a result, the feature map is created using the output of 
Layer 1 and is initially generated by utilizing a linear 
transformation. It is frequently selected as a rectified 
linear unit where c and I represent channel and spatial 
dimensions correspondingly. Feature activations can be 
expressed as follows: where the spatial subscript (i) is 
eliminated in the formulation for notational clarity, and 
the asterisk (∗) stands for the convolutional process. The 
trainable kernel parameters define the characteristics of 
the function used in convolution Layer l. 

Fig. 1 represents the U-Net with the Attention Gate 
(AG) architecture of the segmentation process. Fig. 2 
demonstrates the use of attention coefficients to identify 
salient visual areas and trim feature responses to preserve 
just the activations relevant to the current task. The 
output of AGs is obtained by multiplying the attention 
coefficients and input features one at a time. 

 
Fig. 1. Architecture of U-Net with Attention Gate (AG). 
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By default, a single scalar attention value is assigned 
to each pixel vector, which represents the number of 
feature maps in Layer l. This work suggests learning 
multi-dimensional attention coefficients when there are 
several semantic classes. This was motivated by  
Shen et al. [40], in which phrase embeddings were 
learned using multidimensional attention coefficients. 

Hence, every AG acquires the knowledge to concentrate 
on a portion of the target structures. According to Fig. 2, 
focus zones are determined for every pixel i using a 
gating vector. When using AGs for natural picture 
categorization as recommended in [41], the gating vector 
incorporates contextual information to filter lower-level 
feature responses. 

 
Fig. 2. Attention gate workflow [41]. 

The gating coefficient is calculated using additive 
attention [42]. Empirical evidence supports the assertion 
that, despite demanding increased computational 
resources, this approach consistently yields more precise 
results compared to multiplicative attention [43]. The 
following formula describes additive attention: 

 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 = 𝜓𝜓𝑇𝑇 �𝜎𝜎1�𝑊𝑊𝑥𝑥
𝑇𝑇𝑥𝑥𝑖𝑖𝑙𝑙+𝑊𝑊𝑔𝑔𝑇𝑇𝑔𝑔𝑖𝑖 + 𝑏𝑏𝑔𝑔�� + 𝑏𝑏𝜓𝜓      (1) 

𝛼𝛼𝑖𝑖𝑙𝑙 = 𝜎𝜎2 �𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 �𝑥𝑥𝑖𝑖𝑙𝑙 ,𝑔𝑔𝑖𝑖;𝛩𝛩𝑎𝑎𝑎𝑎𝑎𝑎��                  (2) 

where the sigmoid activation function is represented 
by 𝜎𝜎2�𝑥𝑥𝑖𝑖,𝑐𝑐� = 1

1+exp (−𝑥𝑥𝑖𝑖,𝑐𝑐)
 and AG is defined by a number 

of factors 𝛩𝛩𝑎𝑎𝑎𝑎𝑎𝑎  comprising: bias terms  𝑏𝑏𝜓𝜓 ∈ ℝ  , 𝑏𝑏𝑔𝑔 ∈
ℝ𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊  and linear transformations,  𝑊𝑊𝑥𝑥 ∈ ℝ𝐹𝐹1𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 ,  𝑊𝑊𝑔𝑔 ∈
ℝ𝐹𝐹𝑔𝑔𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 , 𝜓𝜓 ∈ ℝ𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥1 , Using channel-wise 1×1×1 
convolutions the linear transformations are calculated for 
input tensors. When the incorporated features g and are 
linearly translated to an intermediate space with a 
dimension of ℝ𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 , this is denoted as vector 
concatenation-based attention, on other occasions [44]. 

B. Deep Alternate Kernel Fused Self-Self-Attention 
Model (DAKFSAM) for Lung Nodule Classification 

This work designed a novel architecture Deep 
Alternate Kernel Fused Self-Attention Model 
(DAKFSAM) for lung nodule classification with 
integration of different scales of residual network with 
self-attention module. 

The workflow of the proposed model is shown in 
Fig.  3. Fig. 4 shows the overall framework of the 
proposed deep architecture. The attention was used to 
mix every input sequence in a weighted manner, with the 
best suitable vectors acquiring the largest weights, to 
provide the decoder flexibility to employ the input 
vectors’ most pertinent components [45−48]. Since, 
which completely replaced recurrence with self-attention, 
deep learning has adopted using attention as the major 
method for representation learning [49]. 

Focusing on one scenario as opposed to numerous 
settings is the definition of self-attention. Using the same 

context for the keys, query, and values provides an 
additional choice. Modern models have been developed 
for a variety of activities as a result of the ability to 
directly replicate long-distance interactions, which  
makes use of the advantages of contemporary  
technology [50−56]. Adding self-attention to convolution 
models has resulted in improvements in a variety of 
applications.  

 

 
Fig. 3. Workflow of Deep Alternate Kernel Fused Self-Attention Model 

(DAKFSAM). 

A complete attention model may be created by using 
the independent self-attention layer in place of spatial 
convolutions. Similar to convolution, self-attention 
independent models initially remove a small area for a 
given pixel 𝑥𝑥𝑖𝑖𝑗𝑗 ∈ 𝑅𝑅(𝑑𝑑𝑖𝑖𝑛𝑛)  in locations 𝑎𝑎𝑎𝑎 ∈ 𝑁𝑁𝑘𝑘(𝑖𝑖, 𝑗𝑗)  with 
spatial size k cantered around 𝑥𝑥𝑖𝑖𝑗𝑗, known as the memory 
block. As opposed to past studies on attention in vision, 
which concentrated on global attention among all pixels, 
this sort of local attention is different [57, 58]. A 
complete attention model cannot apply global attention at 
all layers; instead, it can only be used once the input has 
undergone considerable spatial downsampling. 

Journal of Advances in Information Technology, Vol. 15, No. 11, 2024

1245



 
Fig. 4. Proposed Deep Alternate Kernel Fused Self-Attention Model (DAKFSAM). 

 
Then, employing single-headed attention, the pixel 

result 𝑦𝑦𝑖𝑖𝑗𝑗 ∈ 𝑅𝑅�𝑑𝑑(𝑜𝑜𝑜𝑜𝑜𝑜)� is determined as given in the Eq. (3). 

𝑦𝑦𝑖𝑖𝑖𝑖 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 �𝑞𝑞𝑖𝑖𝑖𝑖𝑇𝑇𝑘𝑘𝑎𝑎𝑎𝑎� 𝑣𝑣𝑎𝑎𝑎𝑎      𝑎𝑎,𝑏𝑏∈𝒩𝒩𝑘𝑘 (𝑖𝑖,𝑗𝑗)      (3) 

where the queries 𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑄𝑄𝑥𝑥𝑖𝑖𝑖𝑖 ,   𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑘𝑘𝑎𝑎𝑎𝑎 = 𝑊𝑊𝐾𝐾𝑥𝑥𝑎𝑎𝑎𝑎 , and 
values 𝑣𝑣𝑎𝑎𝑎𝑎 = 𝑊𝑊𝑉𝑉𝑥𝑥𝑎𝑎𝑎𝑎  are linear-transformations of both 
pixels in location [ij] and its surrounding pixels. The 
term 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 refers to a softmax that was applied to 
each logit that was estimated close to ij.  𝑤𝑤𝑄𝑄 ,  𝑊𝑊𝐾𝐾 ,
𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊𝑉𝑉 ∈ ℝ

𝑑𝑑
𝑜𝑜𝑜𝑜𝑜𝑜𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖are all learned transforms. Similar to 

convolutions (Eq. (1), local self-attention collects spatial 
data over neighbourhoods, but it does so by combining 
weights from different value vectors into a convex 
combination (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎(. )) parameterized by content 
interactions. This calculation is carried out once for each 
pixel ij. 

The concept of residual block is done in a different 
form than the existing residual model. Here the output 
from the Self-attention model of different scales is added 
to the output feature map of different scales. The input 
image undergoes convolution through multiple layers (1 
to 6) to extract hierarchical features with varying 
resolutions. Employing 2D convolutional operations, 
these layers use different kernel sizes and strides, as 
depicted in Fig. 4. In the initial stage, the segmented lung 
nodule undergoes processing with three types of kernels 
(1×3, 3×3, 3×1) in the first level. Each kernel, applied 
twice with 16 filters, is succeeded by an additional 
convolution with the same kernel size but 32 filters. This 
is followed by a self-attention layer, and the output is 
subjected to two more convolutions with the same kernel 
in its flow with a filter size of 16 and one more with a 
filter size of 32. The output from the intermediate self-
attention of one kernel flow is then added to the final 
output of another kernel flow.  

The process initiates with the first convolutional layer, 
where a series of 2D convolutional operations with a 3×1 
kernel size is applied, followed by subsequent layers. 
The second layer is constructed based on features 
extracted by the first layer. Layer 3, designed to process 
the input image directly, utilizes 3×3 kernel sizes. The 
spatial attention mechanism (SA Layer 3) enhances 
discriminative features. Building upon these Layers, 
layer 4 continues feature extraction using 3×3 

convolutional operations on the output of Layer 3. 
Additionally, Layers 5 and 6 employ 1×3 kernel sizes for 
further feature refinement. 

Spatial attention mechanisms (SA Layer 1, SA Layer 3, 
SA Layer 5) are strategically integrated after specific 
convolutional layers to emphasize crucial regions in the 
feature maps. Fig. 4 visually represents the connectivity 
and flow of information through the convolutional layers 
and spatial attention mechanisms, showcasing the 
intricate architecture designed for effective lung nodule 
detection and classification. Alternate kernel integration 
involves adding the attention feature map from one 
kernel flow to the output from the first-level process of 
another kernel flow. Addition operations occur between 
the output feature maps of specific convolutional layers 
(2, 4, and 6 layers) and their corresponding spatial 
attention layers (SA Layer 3, SA Layer 5, SA Layer 1). 
These added features are fed into the next level of 
processing with three types of kernels (5×1, 5×5, 1×5) 
for the second level. The same process repeats for one 
more level with kernel sizes (1×3, 3×3, and 3×1). 
Ultimately, features from the three flows are 
concatenated, redundant features are removed with a 
dropout layer and adaptive average pooling is performed 
to represent the final feature vector. This vector is then 
classified with a SoftMax layer to determine whether the 
given nodule is benign or malignant (see Fig. 5). 

 

 
Fig. 5. Local attention layer with spatial extent k = 3 [59]. 

C. Dataset Descriptions 
The dataset descriptions section thoroughly depicts the 

dataset. In the proposed study, the segmentation and 
classification processing are carried out on a database 
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from Lung Image Database Consortium-Image Database 
Resource Initiative (LIDC-IDRI) that is freely accessible. 
Computer-aided methods in the identification, 
classification, and assessment of pulmonary knobs are 
allowed in the biggest archive of CT images from LIDC-
IDRI. It consists of 1,018 thoracic CT scan pictures of 
cancer cases with properly annotated lesions of 1,010 
patients. The data were gathered from various medical 
imaging companies across the world. Four radiologists 
from LIDC completed the annotations. A total of 7,371 
annotated lesions are present in the database, of which 
2,669 have a diameter greater than or equal to 3 mm and 
4,702 have a diameter less than 3 mm. 

The experiment is also carried out on the nodules 
directly without the segmentation; the necessary dataset 
is accessible at (https://github.com/mundher/local-
global). The authors have made available a dataset from 
LIDC-IDRI that contains a total 848 nodules of which 
442 benign nodules and 406 malignant nodules, 
processed in 17 different methods. Furthermore, by 
splitting the original dataset into training and testing sets, 
cross-validation is used to assess predictions. The 
original dataset is split into K-fold cross-validation with 
k as 10 and with 14,416 enhanced nodules each for the 
tenfold cross-validation. 

IV. RESULTS AND DISCUSSION 

A. Performance Matrics 
In evaluating the performance of the lung image 

classification models, various performance metrics are 
employed to provide a comprehensive understanding of 
their effectiveness. One of the primary metrics is 
accuracy, which offers an overall assessment of the 
classified images. It is expressed as the ratio of accurate 
predictions to the total number of instances. Precision, 
another vital metric, focuses on the proportion of truly 
positive patterns labeled as positive among all correctly 
or incorrectly classified positive samples. Recall, a 
complementary metric, gauges the model’s ability to 
correctly classify positive patterns. F1−Score, a harmonic 
mean between recall and precision [60−62]. The Dice 
coefficient, an alternative measure, assesses the 
agreement between predicted and actual positive 
instances. Sensitivity evaluates the model’s ability to 
predict true positives for each available category. On the 
other hand, specificity assesses the model’s capacity to 
predict true negatives for each category. Lastly, the 
Intersection over Union (IoU) is employed in object 
detection algorithms to differentiate between correct and 
incorrect detections [63, 64].  

Accuracym =
𝑇𝑇_𝑃𝑃 + 𝑇𝑇_𝑁𝑁

𝑇𝑇_𝑃𝑃 + 𝑇𝑇_𝑁𝑁 + 𝐹𝐹_𝑃𝑃 + 𝐹𝐹_𝑁𝑁
 (4) 

Precisionm =
𝑇𝑇_𝑃𝑃

𝑇𝑇_𝑃𝑃 + 𝐹𝐹_𝑃𝑃
 (5) 

Recallm =
𝑇𝑇_𝑃𝑃

𝑇𝑇_𝑃𝑃 + 𝐹𝐹_𝑁𝑁
 (6) 

F1−Score =
2×𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚

 (7) 

Dicem =
2×𝑇𝑇_𝑃𝑃

(𝑇𝑇_𝑃𝑃 + 𝐹𝐹_𝑃𝑃) + (𝑇𝑇_𝑃𝑃 + 𝐹𝐹_𝑁𝑁)
  (8) 

Sensitivitym =
𝑇𝑇_𝑃𝑃

(𝑇𝑇_𝑃𝑃 + 𝐹𝐹_𝑁𝑁) (9) 

Specificitym =
𝑇𝑇_𝑁𝑁

(𝑇𝑇_𝑁𝑁 + 𝐹𝐹_𝑃𝑃)   (10) 

IoUm =
Area of Overlap
Area of Union

  (11) 

B. Performance Analysis on Segmentation 
Fig. 6 shows the sample CT slices of the dataset and 

Fig. 7 shows the segmentation of nodules with the help 
of U-net with attention gate model. 

 

 
Fig. 6. Sample CT images. 

Groundtruth image Segmented image 

  

  

  

  

Fig. 7. Segmented nodule images sample. 
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Fig. 7 visually represents the identification of the knob 
presence in both the ground truth and segmented nodule 

images. Performance metrics for various algorithms in 
lung-nodule segmentation are presented in Table I.  

TABLE I. PERFORMANCE METRIC OF SEGMENTATION ALGORITHMS 

Models Accuracy Sensitivity Specificity Dicem IoUm 
PSPNet [1] 0.931 0.851 0.962 0.868 0.778 

PAN [2] 0.927 0.837 0.960 0.858 0.765 
2D U-Net [3] − 0.890 (-) 0.830 − 

2D Seg U-Det [4] − 0.850 (-) 0.820 − 
3D FCN [5] − − (-) 0.690 − 

3D Nodule R-CNN [6] − − (-) 0.640 − 
2D CNN [7] − − (-) 0.610 − 

Attention U-Net 0.943 0.905 0.973 0.876 0.783 
 
Table I illustrates the algorithmic performance in the 

segmentation of lung nodules. The table distinctly 
indicates that the Attention U-Net algorithm yields 
superior accuracy, sensitivity, specificity, dice, and IoU 
compared to alternative techniques. 

The Attention U-Net Segmentation method 
demonstrates a superior Dice coefficient, surpassing the 
2D CNN [7] approach by 0.2659 and outperforming the 
3D Nodule R-CNN [6] method by 0.2359. Additionally, 
it exhibits a 0.1859 improvement over the 3D FCN [5] 
method and a 0.0559 advantage over the 2D Seg U-
Det  [4] method. Furthermore, it outshines the 2D U-
Net  [3] method by 0.0459 in terms of the dice 
coefficient. In Fig. 8, the Attention U-Net method 
exhibits an improvement of 0.0182 over Pan [2] methods 
and is 0.0075 superior to PSPNet [1]. Fig. 8 underscores 
the high Dice Similarity Coefficient (DSC) achieved by 
Attention U-Net segmentation in comparison to other 

segmentation approaches. Table II provides a 
comprehensive outline of the DAKFSAM method 
performance compared to existing methods for lung 
nodule classification using the dataset-1 nodule images 
with a visual representation presented in Fig. 9.  

 

 
Fig. 8. Analysis of segmentation algorithms based on dice. 

TABLE II. CLASSIFICATION PERFORMANCES OF PROPOSED METHOD VS EXISTING METHOD (USING DATASET 1) 

Methodology AUC Accuracy Precision Sensitivity/Recall 
ResNet50 [2] 86.82% 77.62% 0.80 0.71 
ResNet18 [2] 86.41% 78.21% 0.79 0.75 

Densenet121 [1] 92.50% 84.57% 0.87 0.80 
Deep residual network [3] 88.36% 80.26% 0.81 0.78 

DAKFSAM (Proposed Method) 93.26% 85.14% 0.8563 0.8488 

 

 
Fig. 9. Analyses of precision, recall, accuracy and F1−Score using Dataset-1. 
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The DAKFSAM method demonstrates a precision 
improvement of 0.0463 over the Deep residual 
network  [3] method, surpassing ResNet18 [2] by 0.07 
and Resnet50 [2] method by 0.05. Fig. 9 visually 
highlights the heightened precision achieved by the 
DAKFSAM method compared to alternative approaches. 
In terms of recall, the DAKFSAM method outperforms 
Deep residual network [3] by 0.0688, DenseNet121 [1] 
method by 0.05, ResNet18 [2] by 0.10, and ResNet50 [2] 
by 0.14, all percentage values. Furthermore, the 
DAKFSAM method attains a higher F1−Score exceeding 
the Deep residual network [3] method by 0.05782%. 
Similarly, it outperforms DenseNet121 [1] by 0.019%, 
ResNet18 [2] by 0.08305%, and ResNet50 [2] method by 
0.10022%. Table III presents a detailed outline of the 
classification performance achieved by employing the 

attention gate U-Net segmentation. The analysis is 
specifically focused on dataset-2 CT images. 

The DAKFSAM method achieves 1.98% higher 
accuracy compared to the Deep Residual Network [3] 
method. It also outperforms the DenseNet121 [1] method 
by 8% and the ResNet18 [2] method by 11.67%. 
Additionally, it is 14% more accurate than the 
ResNet50  [2] method.  

According to Fig. 10, the DAKFSAM method 
achieves higher accuracy compared to other methods. 
Specifically, Fig. 11 offers a 2.71% higher F1−Score 
than the Deep Residual Network [3] method. The 
proposed method also outperforms the DenseNet121 [1], 
ResNet18 [2] and ResNet50 [2] methods by 8.29%, 
12.49%, and 14.29%, respectively. 

TABLE III. CLASSIFICATION PERFORMANCES OF PROPOSED METHOD VS EXISTING METHOD [USING DATASET 2] 

Methods Accuracy (%) Precision (%) Recall (%) Specificity (%) F1−Score (%) 
ResNet50 [2] 80.23 81.26 81.26 80.23 80.56 
ResNet18 [2] 82.56 73.69 83.56 84.56 82.36 

DenseNet121 [1] 86.23 85.78 86.23 86.58 86.56 
Deep residual network [3] 92.25 92.66 91.25 92.47 92.14 

DAKFSAM (Proposed Method) 94.23 94.57 93.56 94.78 94.85 

 
Fig. 10. Analysis of accuracy. 

 
Fig. 11. Analysis of precision, recall, and F1−Score (using dataset 2). 
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V. CONCLUSION 

This paper introduces an effective deep residual 
network incorporating various forms of kernel fusion for 
the classification of lung nodules. To segment the 
nodules from the CT-slices, the U-Net with an attention 
gate model is employed in this work. The segmented 
nodules undergo further classification using the proposed 
DAKFSAM. The utilization of alternate kernel fused 
model and self-attention concept enhances the 
classification performance. The three-level process of 
deep fused model extracts all discriminative features to 
accurately represent whether a nodule is noncancerous or 
cancerous. Experimental results on the LIDC-IDRI 
dataset demonstrate the efficiency of the DAKFSAM 
design. The proposed DAKFSAM method achieves a 2% 
increase in accuracy compared to the Deep Residual 
network, and the F1−Score of the D3DR_MKCA method 
surpasses the Deep Residual Network model by 2.71% 
higher than the Deep residual network model. This study 
underscores the superior performance of the suggested 
method in lung nodule classification, offering potential 
benefits for clinical diagnosis. 
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