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Abstract—Pneumonia commonly results from a lung ailment 
that leads to irritation and harm to the lungs. A chest X-ray 
is one of the most effective imaging techniques for detecting 
pneumonia, but diagnosing and treating it can be difficult due 
to its similarity to other lung conditions. To improve the 
accuracy of classifying X-ray images, we suggest using an 
ensemble model in our research that combines deep 
Convolutional Neural Network (CNN) architectures. The 
suggested approach classifies the input image as having 
pneumonia or not by extracting data features using an 
ensemble of three CNN models. The comparison involves 
using a single CNN model and a combination of CNN models 
to evaluate the ensemble architecture. This work evaluates 
the InceptionResNetV2, DenseNet201, and VGG16 ensemble. 
The suggested ensemble algorithm provides comparatively 
positive classification results with an accuracy of almost 95%, 
outperforming previous ensemble models and improving the 
average F1-Score by 3% compared to the single model 
approach. 

Keywords—pneumonia, chest X-ray, ensemble learning, deep 
learning, convolutional neural network 

I. INTRODUCTION

Pneumonia can present with mild to life-threatening 
symptoms, posing significant risks, particularly to 
individuals who are over 65, have pre-existing health 
conditions or weakened immune systems, newborns, or 
young toddlers. In 2019, over 700,000 kids who are 
younger than five years old lost their lives due to 
pneumonia, making it the leading cause of death for 
children. Pneumonia contributes to 14% of all child deaths; 
the highest number of cases is found in South Asia and 
West and Central Africa [1]. Vietnam ranks among the top 
15 countries with a significant number of children 
impacted by pneumonia, seeing around 4,000 annual 
deaths out of 2.9 million cases [2]. At the end of 2019, the 
World Health Organization (WHO) determined that the 
COVID-19 pandemic was caused by a novel coronavirus 
strain leading to characteristic pneumonia. By May 2023, 
the pandemic had resulted in approximately 6.8 million 
deaths and 676 million infections worldwide. In Vietnam, 

there have been 11,624,000 confirmed COVID-19 cases 
and 43,206 deaths, making Vietnam the country with the 
highest number of confirmed cases in Southeast Asia and 
the 13th highest globally. Hanoi is the hardest hit, with 
1,649,654 cases and 1,238 deaths, followed by Ho Chi 
Minh City, with 628,736 cases and 20,476 deaths.  

The pandemic has significantly affected significant 
sectors such as manufacturing, economics, medicine, and 
education. Viral diseases like COVID-19 pose a severe 
threat to public health, and the virus’s rapid, widespread, 
and frequent mutations make prevention, detection, 
control, and treatment more complex. One of the best ways 
to diagnose pneumonia and COVID-19 is by using a chest 
X-ray. An electromagnetic radiation type called an X-ray
has a shorter wavelength, more incredible energy than
ultraviolet light, and the ability to pass through solid
materials. Using a chest X-ray, radiologists can locate and
gauge the severity of an infection by examining the lungs
for white patches known as infiltrates. The X-ray scans
displayed in Fig. 1 illustrate the difference between a
normal lung and a lung infected with pneumonia. White
patches on the lung X-ray are indicative of a pneumonia
case, setting it apart from a typical case. Such a diagnosis
necessitates X-ray reading expertise and understanding.
Diagnosing pneumonia using X-rays can be a laborious
and less precise process because several other illnesses,
including lung cancer or an infection, can produce
comparable picture opacities. Radiologists and doctors
urgently need computer-aided diagnosis methods to assist
in reducing pneumonia mortality, especially in children.

A. Background and Motivation
The pandemic has seen technology play a crucial role in

battling COVID-19. In the age of 5G, Beyond 5G (B5G), 
and 6G, along with medical cloud services, mobile 
applications, and Artificial Intelligence (AI), 
advancements in bioinformatics have created unique 
opportunities for virus informatics research. These 
developments are essential for comprehensively modeling 
virus biology at a systems level. Deep learning methods to 
treat medical conditions have become increasingly popular. 
Deep learning methods to treat medical conditions have 
become increasingly popular. Most current approaches in 
these areas rely on deep learning methods that mimic how 
people learn and acquire specific types of information. Manuscript received January 15, 2024; revised April 24, 2024; accepted 

July 30, 2024; published November 8, 2024. 
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Computer-assisted diagnostic systems utilizing 
Convolutional Neural Networks (CNNs) are increasingly 
prevalent and significantly advance image processing. A 
Convolutional Neural Network (CNN) is designed to 
mimic biological processes’ receptive fields. A 
Convolutional Neural Network (CNN) is designed to 
mimic biological processes’ receptive fields. Well-known 
CNN architectures include ResNet [3], DenseNet [4], 
AlexNet [5], GoogLeNet [6], and others. For X-ray image 
processing, researchers have proposed several computer 
algorithms, including image segmentation tasks with U-
Net [7], image classification tasks with VGG16 [8],  
and image detection tasks with Faster R-CNN [9],  
YOLOv3 [10], and Mask R-CNN [11]. 

B. Proposed Work  
This research mainly focuses on automatically 

classifying X-ray pictures as pneumonia using an 
ensemble model. This strategy, which combines several 
conventional CNN techniques, not only performs better in 
accuracy but also in processing efficiency. The stacking 
method involves creating, training, and evaluating a meta-
model compared to other models. This meta-model 
consists of three CNN models: DenseNet201 [12], VGG16, 
and InceptionResNetV2 [13]. These tests illustrate that a 
layered approach outperforms a single CNN-based model 
when applied to the Chest X-ray dataset, reassuring the 
audience about its practicality. 

 

 
Fig. 1. Examples of images from the dataset provided by Kermany [21] are shown. The images in (a) represent normal cases, while the images in (b) 

represent pneumonia cases. 

C. Contribution  
The work we have done has made important 

contributions that can be summarized as follows: 
• We present a deep learning function integration 

technique to classify pneumonia images. This 
approach combines the benefits of ensemble 
learning and deep learning, potentially increasing 
the entire model’s performance by leveraging 
multiple CNN models. (R1) 

• The model’s accuracy depends on the number of 
deep learning models assembled to create 
ensembles. (R2) 

• Compared to a single novel methodology such as 
ViT-B16 in the pneumonia picture dataset, the 
combined deep learning CNN models yield better 
classification results. (R3) 

The following paper is organized in the following 
manner: Section II recaps the different networks important 
to this study. Section III explains a detailed description of 
the proposed ensemble network. Section IV displays the 
experimental findings on performance and assesses each 
situation. In Section V, the conclusion and the direction of 
future development are explored. 

II. RELATED WORK 

Because deep learning is developing quickly and large 
datasets are available, radiologists now have easier access 
to artificial intelligence alternatives. As a result, numerous 
research studies focusing on X-ray imaging have produced 
positive outcomes when compared to the general 
performance of CNN models. Deep learning models in the 
modern era have been improved to specifically categorize 
pneumonia based on chest X-ray images. Another crucial 

strategy to enhance pneumonia prediction performance is 
by employing ensemble techniques. The dataset for the 
RSNA challenge includes 30,000 frontal view chest X-
rays and was utilized by Shih et al. [14] from a pool of 
112,000 open images in the CXR-8 dataset [15].  
Kundu et al. [16] used decision scores from three CNN 
models to develop an ensemble framework that generates 
a weighted average ensemble: ResNet-18, GoogLeNet, 
and DenseNet-121. This framework’s results on the RSNA 
challenge dataset were 86.86%, 87.02%, 86.89%, and 
86.95%, respectively, for accuracy, sensitivity, precision, 
and F1-Score. The two pneumonia X-ray datasets used to 
obtain these results are accessible to the public. Harsh, 
Bhatt, and colleagues [17] investigated an ensemble 
network of three CNN models. The computational expense 
was kept low while maintaining accuracy and other 
metrics by utilizing three models with different kernel 
sizes. Convolutional neural networks served as the 
inspiration for all these algorithms. We can enhance 
performance by modifying the architecture versions of 
most single CNN models. An effective approach is to 
employ an ensemble, which amalgamates the strengths of 
multiple high-performing models to tackle a regression or 
classification problem, yielding results superior to any 
individual model. An et al. [18] suggested creating an 
attention ensemble using deep CNN models such as 
EfficientNetB0, and DenseNet121. Li et al. [19] proposed 
an ensemble learning strategy for the radiographic 
categorization of pneumonia. The VGG16 algorithm is 
used along with layered generalization ensemble learning 
to create a cascade classifier. The study focused on 
classifying individuals with newly diagnosed coronavirus 
pneumonia, those with recurrent pneumonia, and healthy 
individuals. Gaur et al. [20] proposes a combination of 
VGG16, InceptionV3, and EfficientNetB0. The dataset 
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used in the study was created by compiling X-ray images 
from various public sources. It included images of viral 
pneumonia, coronavirus-related pneumonia, and normal 
pneumonia. The outcomes indicate that the suggested 
method yielded a top-notch model, achieving an overall 
accuracy of 92.93% and a sensitivity of 94.79%, 
specifically for COVID-19.  

Previous studies demonstrate that ensemble models 
outperform individual models in both machine learning 
and deep learning contexts. Moreover, the research 
highlights that data augmentation improves performance 
and mitigates the risk of overfitting. Using a pre-trained 
model for pneumonia has achieved high accuracy through 
transfer learning. This study utilizes pre-trained models to 
form an ensemble by employing the CNN model, building 
upon these discoveries. 

III. MATERIALS AND METHODS 

A. Dataset 
The chest X-ray dataset from Kermany et al. [21] was 

utilized in this research study. The research used anterior-
posterior chest X-ray images from the Guangzhou Women 
and Children’s Medical Center, Guangzhou. The X-rays 
were taken as part of routine clinical care. For the analysis, 
all radiographs underwent quality control screening, with 
low-quality or unreadable scans being excluded. Two 
experienced doctors assessed the diagnoses in the images, 
and these assessments were confirmed to train the AI 
system. A third experienced doctor also examined the 
evaluation set to rectify any possible grading mistakes. The 
dataset consists of three directories: train, test, and val, and 
contains 5,856 JPEG X-ray images divided into two 
groups (Pneumonia/Normal), with 5,216 allocated for 
training and 624 designated for testing. During 
preprocessing, the images are resized from their original 
dimensions, which vary (e.g., 1,344×600, 1,272×1144), to 
a standardized size for consistency in model 
implementation and computation. The dimensions of each 
image are adjusted to 224×224 pixels with three color 
channels (red, green, and blue). Following resizing, data 
augmentation techniques are applied to expand the dataset.  

The number of samples used for training and testing is 
detailed in Table I. Our objective is to create a validation 
set. We accomplish this by taking the original training 
dataset and performing a simple stratified split, allocating 
75% for actual training, 15% for validation, and 10% for 
testing. 

TABLE I. NUMBER OF SAMPLES TRAINING AND TESTING  

Class Training Set Testing Set Validation Set Total 
Normal 1,341 234 8 1,583 

Pneumonia 3,875 390 8 4,273 
Total 5,216 624 16 5,856 

 

B. Preprocessing Image 
Resizing the X-ray images was a critical step in data 

preprocessing, as it was necessary to accommodate the 
varying image input sizes required by different algorithms. 
For the base models, images were resized to 224 by 224 

pixels. All images were normalized according to the norms 
established by the trained model. Additionally, we 
employed data augmentation techniques to expand a 
relatively small dataset, as our working database was not 
extensive. Improving the available data can enhance the 
performance of deep learning models rather than collecting 
new ones. Table II presents the augmentation parameters 
used for picture preprocessing in the study. 

TABLE II. AUGMENTATION PARAMETERS 

Parameters Values 
Rescale 1/255 

Shear range 10 
Zoom_range 0.1 

Horizontal_flip True 
Brightness_range (0.5, 1.0) 
Width_shift_range 0.1 

Rotation_range 20 
 

C. Hyperparameters 
To improve the models’ capability to extract features, 

we began by selecting the top-performing deep CNN 
architecture from existing ones. The process of selecting 
involved training each architecture with the Adam 
optimizer, and a learning rate of 0.001 was implemented, 
then choosing the model that performed best. For this 
binary classification task, we used the Sigmoid activation 
function. Hyperparameter tuning was essential for 
improving model performance. In our study, we fine-tuned 
the models with various combinations of optimizers, 
learning rates, and other hyperparameters, as detailed in 
Table III, to determine the optimal configuration for 
achieving the highest validation accuracy. 

TABLE III. HYPERPARAMETER VALUES FOR TRAINING 

Hyperparameters Values 
Input activation function ReLU 

Output activation function Sigmoid 
Optimizer ADAM 

Initial learning rate 0.001 
Learning rate decay 0.2 
Number of epochs 50 

Batch size 32 
 

The loss function, binary cross-entropy, compares the 
predicted and actual outputs to measure the discrepancy. 
Its value ranges from 0 to 1 and is determined by Eq. (1). 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ∑ 𝑦𝑦𝑖𝑖 × log(𝑦𝑦𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) × log (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=0 1 − 𝑦𝑦𝑖𝑖) (1) 

D. Evaluation Metrics 
In this work, we employ a confusion matrix, a common 

table that illustrates the low-level classification model’s 
performance at a basic level on a test set. This matrix 
shows the percentage of positively predicted cases that 
were observed (True Positive, TP), the percentage of 
negatively predicted cases that were observed (True 
Negative, TN), and the percentage of cases that were 
incorrectly classified as positively or negatively (False 
Positive, FP, and False Negative, FN). 
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 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (2) 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (3) 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  (4) 

 𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (5) 

E. Overview of Ensemble Learning 
In this work, we combine various models based on the 

reasonable assumption that different models have varying 
capacities and can efficiently carry out subtasks. 
Consequently, when these models are utilized properly, 
they can create a strong ensemble model that outperforms 
the individual models alone. Generally speaking, there are 
two kinds of ensemble techniques characterized by 
gathering professional judgment to improve prediction 
accuracy and dependability during problem resolution. 
The initial instance consists of obtaining characteristics 
from images utilizing different CNN models. Utilizing a 
variety of machine learning algorithms, the retrieved 
features are integrated and applied to classification tasks. 
However, to pursue this method, we must meet certain 
requirements, such as undergoing two separate training 
processes and using complex algorithms. In the second 
approach, a mathematical model is utilized to combine the 
predictions made by the model. Examining how the 
ensemble system achieves accurate data classification 
through the aggregation of other models’ precise 
predictions serves as an illustration of this approach. It is 
also feasible to employ ensemble learning for other 
purposes, such as data fusion and feature selection. 

Ensemble approaches fall into three primary categories: 
stacking, boosting, and bagging. Bagging, also known as 
Bootstrap aggregating, involves training multiple base 
models independently and in parallel on various subsets of 
the training data in ensemble learning. The bagging 
classifier makes the final prediction by combining the 
predictions of all base models through majority voting. In 
regression models, the final prediction is generated by 
averaging the predictions from all base models, which is 
referred to as bagging regression. Boosting’s training 
procedure is identical to bagging’s; however, it takes place 
in a different order. By following along in this order, each 
model in this series will learn how to correct the errors in 
the model that came before it (i.e., the data that the prior 
model predicted incorrectly). 

F. Stacked Convolutional Neural Network  
Stacked generalization [22] is an ensemble method 

where a new model is trained to integrate optimal 
predictions from various existing models. The basic 
stacking model is usually separated into two levels: level-
0 models and level-1 models. Level-0 models, also called 
Base-Models, derive their predictions for the level-1 
model directly from the dataset, while level-1 models, also 
called Meta-Models, derive their predictions from the 
level-0 base models. Algorithm 1 presents a brief overview 

of Stacked generalization [22]. The stacking ensemble’s 
primary advantage lies in its potential to harness the 
capabilities of numerous effective models for addressing 
both regression and classification challenges. Additionally, 
it aids in the development of a superior model with 
predictions that surpass the performance of each model. 
 

Algorithm 1. Stacking Algorithm 
Input: 𝐷𝐷 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)| 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋, 𝑦𝑦𝑖𝑖 ∈ 𝑌𝑌} 
Output: An ensemble classifier H  
1: Step1: Learn first-level classifiers 
2: for 𝑡𝑡 ← 1 to 𝑇𝑇 do 
3:    Learn a base classifier ℎ𝑡𝑡 based on 𝐷𝐷  
4: Step 2: Construct new data set from 𝐷𝐷 
5: for 𝑖𝑖 ← 1 to 𝑚𝑚 do 
6:    Construct a new data set that contains {𝑥𝑥𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛, 𝑦𝑦𝑖𝑖}, where 
      𝑥𝑥𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = {ℎ𝑗𝑗(𝑥𝑥𝑖𝑖) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1 𝑡𝑡𝑡𝑡 𝑇𝑇}  
7: Step 3: Learn a second-level classifier 
8:    Learn a new classifier ℎ𝑛𝑛𝑛𝑛𝑛𝑛 based on the newly 
constructed data set 
9: Return  𝐻𝐻(𝑥𝑥) = ℎ𝑛𝑛𝑛𝑛𝑛𝑛(ℎ1(𝑥𝑥),ℎ2(𝑥𝑥), … , ℎ𝑇𝑇(𝑥𝑥)) 
 
The stacking method proposes that different CNN sub-

models capture nonlinear discriminative features and 
semantic image representations at varying levels. 
Therefore, a stacked ensemble CNN model is expected to 
be highly generalized and accurate. 

Fig. 2 illustrates this stacked convolutional neural 
network. Bagging decreases the variance of weak learners 
while boosting lowers their bias. Using an ensemble 
learning technique called stacking can greatly improve the 
predictive performance of machine learning models. 
Through the combination of the forecasts made by several 
fundamental models, stacking can reduce bias and 
variance, increase model diversity, and improve the 
interpretability of the final prediction. 

 

 
Fig. 2. Representing stacking is the method of classification of 

pneumonia images. 

G. Methodology 
The stacked CNN approach integrates multiple CNN 

models to maximize performance. The core idea involves 
feeding the output of one CNN model into another in a 
stacked formation. Each CNN model extracts features 
from the images, and by combining these models, the 
overall system can learn more complex and abstract 
features compared to using a single CNN model alone. An 
overview of our proposed framework is given in Figs. 3 
and 4, which enhances the performance of pneumonia 
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image classification by the ensemble of three CNN models 
with diverse architectures, following the ensemble 
principles. Combining three different models, we propose 
an ensemble deep learning strategy that, compared to 
earlier approaches, helps boost deep learning prediction 
accuracy for pneumonia and reduces the misclassification 
error rate. The three CNN models are selected from 
InceptionResNetV2, MobileNetV2, DenseNet169, 
ResNet50V2, DenseNet201, and VGG16 models. These 
CNN architectures are trained with various image features; 
for example, one model might be trained to recognize 
edges, while another focuses on textures. Each model uses 
the Adam optimizer and focal loss function. The stacked 

model, which includes InceptionResNetV2, MobileNetV2, 
DenseNet169, ResNet50V2, DenseNet201, and VGG16, 
learns a complex and diverse set of image features by 
employing different architectures and hyperparameters. In 
the end, the CNNs in the stack process the image, and their 
results are combined before being input into a fully 
connected layer for the ultimate classification or regression 
task. The specific method of combining the CNN results 
depends on the unique approach of the CNN stacking 
algorithm. This approach allows for the development of a 
more accurate model by eschewing the use of a single 
model. 

 

 
Fig. 3. The architecture of our proposed system consists of three main stages: step 1) preprocessing, step 2) model training, and step 3) model 

ensemble to get the best result. 

 
Fig. 4. The image shows the overall stacking strategy with the three effective models. 

 

IV. RESULT AND DISCUSSION 

A. Implementation Details 
We applied the suggested technique in our environment 

on Debian GNU/Linux 12 with PyTorch 1.1.3 on Python 
3.7 and CUDA 12.1 for GPU acceleration. The deep 
learning, machine learning, and image processing 

toolboxes were used to train the CNN-based models. The 
computational setup, which is a local server, consists of an 
Intel Xeon 2620v3 (6 cores, 12 threads @ 2.4GHz), 64GB 
of DDR4 memory, and an NVIDIA GeForce RTX 3090 
with 12GB of memory. After initializing with weights for 
training images, each ensemble model underwent 50 
training epochs. Test reports were recorded at the 20th, 
30th, and 50th epochs, measuring accuracy, loss, precision, 
recall, and F1-Score. In the final stage, the results of the 
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meta-model classifying pneumonia images were compared 
to identify the top-performing ensemble model, as shown 
in Fig. 4. 

B. Experimental Results of Single Models 
As can be seen in the following section, the precision, 

recall, and F1-Score metrics were used to assess each 
model’s performance. The performance of individual 
CNN models during training, in terms of loss and accuracy, 
is displayed in Fig. 5. 

C. Experimental Results of Ensemble Models 
In Step 3, we attempt to ensemble two or three CNN 

models during training. Figs. 6 and 7, which show the 
ensembles of three CNN models, present the ensemble 
models’ loss, accuracy, and confusion matrix results. 
Using the chest X-ray dataset (Kermany [23]) for training, 
each model’s performance was evaluated based on 
performance metrics, to identify the best-performing 
ensemble model (Fig. 7).  

In our research, we investigated the use of both 
individual and combined learning models for the 
categorization of multiple classes of X-ray images to 
determine the most effective approach based on various 
criteria. We observed that the F1-Score is used in cases 
where False Negatives (FN) and False Positives (FP) have 
a significant impact, while accuracy is valued when True 
Positives (TP) and True Negatives (TN) are more crucial. 
When classes are evenly distributed, accuracy is suitable, 
but the F1-Score is more appropriate for imbalanced 
classes.  

 
(a)                                                (b) 

 
(c)                                                (d) 

 
(e)                                                (f) 

Fig. 5. The ROC curve of single CNN methods. a) MobilenetV2 model; 
b) VGG16 model; c) InceptionResNetV2 model; d) DenseNet201 model; 
e) ResNet50 model; and f) ViT-B16.model. 

 

  
(a) 

  
(b) 
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(c) 

  
(d) 

Fig. 6. The ROC curve, Precision-Recall curve, and confusion matrix of combining three CNN methods. (a) DenseNet201, VGG16, and ResNet50V2; 
(b) InceptionResNetV2, DenseNet201, and ResNet50V2; (c) DenseNet201, MobilenetV2, and ResNet50V2; (d) InceptionResNetV2, MobilenetV2, and 
VGG16. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. The ROC curve (a), Precision-Recall curve (b), and confusion 
matrix (c) of combining the InceptionResNetV2, DenseNet201, and 
VGG16 models. 

Our method demonstrated high sensitivity, allowing us 
to accurately classify pneumonia-positive cases. To further 
analyze the performance of our proposed method, we 
evaluated the confusion matrix and Receiver Operating 
Characteristic (ROC) curve (including the AUC’s 
confidence interval) for each fold, as shown in Figs. 6–8. 
Illustrated in Fig. 8 are the ROC and Precision-Recall 
curves compared for ensemble CNN models 
(InceptionResNetV2, MobileNetV2, DenseNet169, 
ResNet50V2, DenseNet201, and VGG16). The graph 
reveals that the ensemble model from InceptionResNetV2, 
DenseNet201, and VGG16 achieved the highest Area 
under the ROC Curve (AUC) among the classifiers. 
Additionally, all the models have an AUC greater than 0.9, 
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indicating they all perform satisfactorily in classifying 
emotional identification.  

 

 
(a) 

 
(b) 

Fig. 8. Comparison the ROC (a) and Precision-Recall (b) curves of 
stacking three CNN methods: Model_01 (InceptionResNetV2, 
DenseNet201, ResNet50V2 modes); Model_02 (DenseNet201, 
MobilenetV2, ResnetV2 modes); Model_03 (InceptionResNetV2, 
MobilenetV2, VGG16 modes); Model_04 (DenseNet201, VGG16, 
ResnetV2 modes); Model_05 (InceptionResNetV2, DenseNet201, 
VGG16 modes). 

TABLE IV. COMPARISON OF TRAINING TIME FOR DIFFERENT MODELS 

Models Total 
params 

Training 
time (s) 

Training 
time (s) 

MobilenetV2 2,422,081 8,245 24 
VGG16 14,780,481 20,145 116 

InceptionResNetV2 54,533,601 21,496 130 
DenseNet201 18,568,001 20,707 112 
ResNet50V2 23,827,201 15,515 65 

InceptionResNetV2 & VGG16 69,618,209 35,200 202 
MobilenetV2 & ResNet50V2 26,722,369 15,757 63 

InceptionResNetV2&ResNet50V2 78,867,681 28,875 262 
DenseNet169 & MobilenetV2 15,700,609 18,322 82 

DenseNet201, VGG16, ResNet50V2 57,800,577 26,800 127 
nceptionResNetV2, DenseNet201, 

ResNet50V2 97,688,865 36,886 262 

DenseNet201, MobilenetV2, 
ResNet50V2 45,543,553 27,264 186 

InceptionResNetV2, MobilenetV2, 
VGG16 72,208,993 36,893 161 

InceptionResNetV2, DenseNet201, 
VGG16 88,439,393 26,012 135 

Table IV highlights the differences in training and 
testing durations between single CNN models and stacking 
learning methods. Training single CNN models is usually 
quicker because only one model is involved. In contrast, 
ensemble CNN models take much longer to train, we must 
train each model separately. The complexity and depth of 
each model further extend the training time. Despite the 
longer training times and higher resource consumption, 
ensemble CNN models deliver superior performance 
compared to single CNN models. Our proposed method is 
more cost-effective than similarly complex ensemble 
models. 

D. Discussion 
The confusion matrix reveals that our model generates 

very few false negatives and false positives, especially for 
pneumonia cases compared to the normal dataset. 
Reducing incorrect diagnoses is crucial for pneumonia 
cases. Fig. 8 illustrates the diagnostic effectiveness of the 
proposed model, demonstrating its strong capability to 
distinguish pneumonia from chest X-ray images. The ROC 
curve illustrates the stability of the stacked CNN models, 
with our current proposed model achieving an AUC of 
0.98, an average sensitivity of 92.73%, and a specificity of 
96.41% in classifying the images into normal and 
pneumonia categories.  

Table V compares the training and validation 
performance of MobileNetV2, VGG16, ResNet50V2, 
DenseNet169, DenseNet201, InceptionResNetV2, ViT-
B16, and the stacking learning approaches. The 
quantitative findings show a clear upward trend. The 
lowest-performing model, MobileNetV2, achieved a 
training accuracy of 87.50% and an F1-Score of 90.46%. 
The highest-performing model, an ensemble of 
InceptionResNetV2, DenseNet201, and VGG16, achieved 
a training accuracy of 95.03% and an F1-Score of 96.04%. 
Fig. 9 displays the accuracy achieved for individual and 
group CNN models throughout this investigation. The 
results’ accuracy was enhanced by the suggested approach. 

TABLE V. THE OVERALL TESTING ACCURACY AND THE AVERAGES OF 
PRECISION, RECALL, AND F1-SCORE 

Models Accuracy Precision Recall F1-Score 
MobilenetV2 87.50% 86.45% 94.87% 90.46% 

VGG16 88.94% 93.73% 88.21% 90.89% 
InceptionResNetV2 90.87% 89.18% 97.18% 93.01% 

DenseNet201 91.19% 92.58% 92.82% 92.70% 
ResNet50V2 91.19% 93.51% 92.31% 92.90% 

ViT-B16 93.75% 95.24% 92.31% 93.75% 
InceptionResNetV2, VGG16 92.36% 93.88% 94.46% 94.12% 
MobilenetV2, ResNet50V2 92.47% 93.86% 94.10% 93.98% 

InceptionResNetV2, ResNet50V2 92.47% 94.32% 93.59% 94.95% 
DenseNet169, MobilenetV2 92.79% 91.97% 96.92% 94.38% 

DenseNet201, VGG16, 
ResNet50V2 93.27% 94.85% 94.36% 94.60% 

InceptionResNetV2, DenseNet201, 
ResNet50V2 93.75% 94.88% 95.13% 95.01% 

DenseNet201, MobilenetV2, 
ResNet50V2 94.39% 94.49% 96.67% 95.56% 

InceptionResNetV2, MobilenetV2, 
VGG16 94.87% 94.97% 96.92% 95.94% 

InceptionResNetV2, 
DenseNet201, VGG16 95.03% 95.67% 96.41% 96.04% 
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Fig. 9. The overall performance of single and stacking CNN models. 

The studies conducted on images of pneumonia are 
listed in Table VI. Li et al. [19] classified pneumonia 
images with 93.57% accuracy by combining ensemble 
learning and VGG16, while Gaur et al. [20] offered a 
customized EfficientNetB0 with test accuracies of 92.93 %. 
H. Sharma et al. [24] presented a tailored CNN pneumonia 
classification model with an accuracy of 90.07%. A 
DenseNet-121-based pneumonia detection technique with 
93.4% accuracy was presented by Salehi et al. [25].  

TABLE VI. THE OVERVIEW OF OTHER METHODS AND ACCURACY 
RESULTS TOWARD PNEUMONIA CLASSIFICATION 

Author Methods Accuracy 
Gaur et al. [20] EfficientNetB0 92.93 % 

Sharma et al. [24] CNN model_1 90.70 % 
Sharma and Guleria [27] VGG16 with Neural Networks 92.15 % 

Salehi et al. [25] DenseNet-121 93.40 % 
Li et al. [19] Ensemble learning with VGG16 93.57 % 

Mabrouk et al. [26] DenseNet169, MobileNetV2, 
and ViT 93.91 % 

Saraiva et al. [28] Customize CNN 94.40 % 

The proposed method 
InceptionResNetV2, 

DenseNet201, 
and VGG16 

95.03% 

 
Mabrouk et al. [26] used an ensemble of deep CNN and 

ViT, which produced good results with a score of 93.91%. 
Sharma et al. [27] and Saraiva [28] proposed customized 
CNNs, which had test accuracies of 92.15% and 94.4%, 
respectively. These findings, however, demonstrate worse 
performance than the proposed approach, which has an 
accuracy of 95.03%. 

V. CONCLUSION AND FUTURE WORK  

We utilize ensemble learning models in this study that 
are built upon finely adjusted stacking models 
(InceptionResNetV2, DenseNet201, and VGG16) to 
classify chest X-ray images into normal and pneumonia. 
Consequently, we discovered that for a single CNN model, 
InceptionResNetV2 yields the highest recall and F1-Score 
(97.18% and 93.01%, respectively), whereas 
DenseNet201 and ResNet50V2 yield the highest 
accuracies (91.19%). The accuracy of CNN model 

ensembles with 92.36%, 92.47%, 92.79%, 93.27%, 
93.75%, 94.39%, 94.87%, and 95.05%, respectively, 
outperforms DenseNet201 and ResNet50V2 in this regard. 
Ensembles comprising two and three CNN models also 
produced F1-Scores of 94.12%, 93.98%, 94.95%, 94.38%, 
94.60%, 95.01%, 95.56%, 95.94%, and 96.04%, 
surpassing the performance of individual models.  This 
outcome demonstrates how we can enhance the 
performance of the overall model by integrating the 
benefits of several CNN models (R1). Additionally, 
ensembles of three CNN models (from 
InceptionResNetV2, MobilenetV2, DenseNet169, 
ResNet50V2, DenseNet201, and VGG16) outperform 
ensembles of two models (from InceptionResNetV2, 
MobilenetV2, DenseNet169, ResNet50V2, DenseNet201, 
and VGG16), with accuracies over 93% compared to less 
than 92.8%, respectively.  Training accuracy and the F1-
Score were both higher for ensembles of two CNN models 
compared to individual models. The ensembles achieved 
over 92.3% accuracy and over 94% F1-Score, while the 
single models achieved less than 91.2% accuracy and less 
than 93% F1-Score, respectively. Evidence supports the 
claim that the total number of deep learning models 
impacts the accuracy of the model used to build the 
ensembles (R2). The proposed method outperforms the 
Vision Transformer, as three combined models achieve 
training accuracy of 94.39%, 94.87%, and 95.03% 
compared to an accuracy of 93.75%. This indicates that the 
collective CNN models generate superior classification 
outcomes compared to modern technologies like Vision 
Transformer (R3). 

For future work, we suggest a hybrid model named 
Pneu-Conv-ViT that enhances the performance of 
pneumonia image classification by combining a Vision 
Transformer with a backbone model. This backbone model 
is an ensemble of four CNN models with various 
architectures. Unlike earlier approaches, we propose a 
hybrid solution that can help reduce the misclassification 
error rate and improve deep learning prediction accuracy 
for pneumonia. The backbone model, consisting of the 
four CNN models, functions as a meta-model following 
ensemble principles. Furthermore, we could improve 
performance using larger datasets and more sophisticated 
feature extraction methods. 
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