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Abstract—With the growing adaptation of Wi-Fi and the 

increased possibilities of complementing it with 5G, there is a 

need to exploit the fullest potential of the IEEE 802.11ac/ax 

and higher Wireless Local Area Network (WLAN) standards, 

especially in densely deployed scenarios. Machine learning 

techniques can be used to predict the performance of WLANs 

with the vast training data obtained through contemporary 

network simulators. They are quite useful to predict the 

throughput in crowded and dynamic deployments of WLANs 

where hand-crafted solutions may not be feasible. This paper 

presents a novel, data-driven approach that can contribute to 

improving the performance of next-generation WLANs. In 

particular, we employ a Graph Neural Network (GNN) 

model to predict the performance of Wi-Fi deployments by 

exploiting topology information and capturing complex 

wireless interactions. The network simulator, Komondor, is 

used to simulate different real-life scenarios for generating 

comprehensive datasets for training the model. Our 

approach addresses challenges related to energy efficiency, 

latency, and data rate in WLANs, and the regression model 

can be used to predict the throughput of a Basic Service Set 

(BSS) before it is deployed, allowing for better network 

design and optimization. The findings of this study 

demonstrated that GNNs can accurately forecast the 

throughput of BSSs in WLAN deployments in a given region 

with minimal information. Overall, our proposed approach 

can significantly influence the choice of topology for 

deployment, leading to optimal performance in crowded and 

dynamic WLAN scenarios. 

 

Keywords—IEEE 802.11ac/ax, Overlapping Basic Service Set 

(OBSS), Komondor, performance prediction, throughput, 

next-generation Wireless Local Area Networks (WLANs), 

Graph Neural Network (GNN), International 

Telecommunication Union (ITU) challenge 

 

I. INTRODUCTION 

Wireless Local Area Networks (WLANs), popularly 

known as Wi-Fi, are one of the essential elements of the 

next generation of wireless communication technologies, 

of which IEEE 802.11, is the most commonly adopted 

standard [1, 2]. The demand for WLANs has increased in 

tandem with the rapid growth of mobile devices like 

laptops, tablets, and smartphones. Furthermore, WLAN 

systems can provide faster data rates in important areas 

(hotspots) and are more cost-effective as compared to 

other forms of broadband, which contributes to their 

appeal. A significant level of complexity is caused by the 

limited availability of frequency spectrum in fields like the 

industrial, medical, and scientific radio bands, as well as 

the rising throughput demands imposed by new 

applications with a voracious appetite for bandwidth and 

the variety of wireless network deployments currently in 

use [3, 4]. 

Although wireless communication networks have 

significantly improved our ability to communicate with 

one another, they also present a number of challenges that 

must be addressed and resolved. Such issues grow more 

significantly in dense environments, resulting in a 

considerable number of networks that overlap and have 

coexistence issues [5]. 

 

 

Figure 1. Overlapping BSS. 

When two or more BSS can hear one another and are 

physically close enough to hear one another while using 

the same channels, they are said to be “overlapping”. This 

is known as the Overlapping Basic Service Set (OBSS) 

problem (Fig. 1). Such situations result in interference 

issues and a drop in throughput (performance). [5] outlines 

the need for intelligent systems in place for OBSS 

operations where there may not be much coordination 

among the neighboring APs. This paper focuses on 

predicting and analyzing the throughput of WLANs [6] 
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using Graph Neural Networks (GNNs) [7]. To showcase 

the effectiveness of our solution, we focus on a synthetic 

dataset with measurements from multiple dense IEEE 

802.11ax WLAN deployments, generated using the 

Komondor simulator [7–10]. The primary goal of this 

paper is to accurately predict the throughput of WLANs 

based on various network parameters, such as the number 

of access points, the configuration of the network, and the 

number of users. One of the major works done in this 

research was data augmentation to increase the size of the 

dataset, reduce overfitting, and improve the prediction 

accuracy. 

The remainder of the paper is structured as follows: 

Section II comprises the relevant works in this field. In 

Section III, we will present the methodology and 

experimental setup used in this study, such as the dataset 

generated by the Komondor network simulator and the 

workings of the GNN model, and explain how they can be 

used for throughput prediction. We will discuss the 

performance of the GNN model and present the findings 

from our trials in Section IV. Finally, in Section V, we will 

conclude the paper and discuss future work. Through this 

paper, we hope to demonstrate the potential of GNNs for 

predicting and analyzing the performance of WLANs. We 

believe that the results of this study can provide valuable 

insights into the behavior of these networks and can be 

used to improve their design and management [2, 4, 6]. 

II. LITERATURE REVIEW 

In order to enhance the optimization of next-generation 

WLANs, the use of machine learning has emerged as a 

promising solution [2, 3]. Although its adoption in 

networks was still in its nascent stage, a great deal of work 

was required. In response to this, the International 

Telecommunication Union (ITU) made considerable 

efforts towards realizing and establishing the groundwork 

for this study [11]. In these circumstances, the ITU AI/ML 

in 5G Challenge [12] was launched, and enthusiastic 

academic scholars and researchers from around the world 

were called upon to come up with machine learning 

models to forecast the performance of next-generation 

WLAN deployments, amongst many others. To support 

the challenge, an open dataset from a network simulator 

was obtained and provided [9]. Increasingly, network 

simulators are used as ML sandboxes to enable future ML-

aware communications. The use of network simulators in 

the field of WLANs has been growing in recent years, with 

the aim of improving their performance and efficiency. 

Network simulators can be used for training, testing, and 

validating machine learning models prior to deployment 

on live networks [13]. 

One such simulator is Komondor [8], which is designed 

to simulate IEEE 802.11ax features in densely deployed 

environments. The key attributes of the Komondor 

simulator where it has been shown to have validated 

performance include its ability to simulate transmissions 

in real-time, packet by packet, its high event processing 

rate, dependability, and beginner-friendly interface [8]. 

The estimation of the throughput of multiple active 

WLANs in a given location is a complex task that requires 

accounting for the interactions between these networks and 

the negative effects of collisions. The technique used by 

the Komondor simulator to perform this estimation is 

based on the distinction between “micro” and “macro” 

interactions, where micro interactions are caused by two or 

more nodes’ back-off timers expiring at the same time, and 

macro interactions refer to larger-scale network effects that 

are caused by factors such as interference and 

congestion  [6]. While these techniques are promising 

individually, it will take a considerable amount of research 

to assess the actual performance benefits that result from 

the integration and application of multiple strategies [1]. 

With the advancement of technology and the increasing 

availability of computing power, deep learning methods 

such as reinforcement learning and supervised learning 

may help reduce training time and distribute learning 

tasks  [3]. 

Several learning models have been proposed for Wi-Fi 

performance prediction so far. In Ref. [14–16], various 

machine learning techniques such as K-Nearest Neighbor 

(KNN), Feed Forward Neural Network (FNN), Random 

Forest (RF), Artificial Neural Network (ANN), and 

Gradient Boost (GB), among others, have been used to 

predict the throughput in Wi-Fi networks under varying 

network and environmental conditions [3]. Another such 

model is the Graph Neural Network (GNN), Soto et al. [7] 

took part in the challenge [12], which showcased its 

abilities. Soto et al. [7] suggest the use of the Graph Neural 

Network (GNN) as a novel neural network model that 

outperforms existing techniques and has a reasonable 

computing cost [17]. As may be seen, various approaches 

to modeling Wi-Fi performance have been put forth. The 

majority of them are mathematical models built on 

straightforward and simplifying assumptions, which 

reduces their complexity and leaves out important wireless 

interactions. GNNs utilize graph-based representations of 

data to analyze and understand complicated, non-

Euclidean data and the relationships within it [7]. They are 

extremely useful as network topologies, their interactions, 

and data flow can be easily characterized in the form of a 

graph. This paper is an extension of the work carried out 

by Soto et al. [7]. 

Our contribution in this paper includes the following: 

• A comprehensive and realistic dataset in meaningful 

deployment space with matching density of nodes, 

which can be used for further research and comparisons. 

• Variation of features was introduced in the dataset in 

order to diversify the data so as to be representative of 

realistic scenarios, allowing the GNN model to adapt 

to these variations. 

III. METHODOLOGY 

This section provides a comprehensive description of 

the methods used to conduct the research and obtain the 

results. The processes and techniques employed to achieve 

the goals of our study are outlined. This information will 

enable other researchers to replicate our results and 

validate our findings. The methodology adopted for this 

study is based on prior research in the field, and with the 

intention of forecasting the numerical value of throughput 
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for comparable or any arbitrary deployment, regression 

techniques were deemed more appropriate than a 

classification model [14]. The use of GNN as the machine 

learning technique was selected to ensure that the results 

accurately demonstrate its potential in predicting 

throughput in WLANs and stimulate further research in 

this area [7]. The process depicted in Fig. 2 encompasses a 

series of steps that are implemented in the following 

manner: 

• Dataset generation: The dataset for this research is 

generated using the Komondor network simulator, 

which simulates the behavior of WLANs. The 

simulator was configured to simulate various 

scenarios, such as different network topologies, 

traffic loads, and channel conditions. 

• Data pre-processing: The dataset generated is pre-

processed to prepare it for the machine learning 

model. This involves cleaning the data, removing 

any redundant or irrelevant data, and normalizing 

the data to ensure that it is suitable for the model. 

• Training the GNN model: We utilized the ML 

model from [7] and trained it on the preprocessed 

dataset. When the model’s performance was not 

satisfactory, hyper parameters were tuned to 

optimize the model’s performance. 

• Model testing and evaluation: The model’s 

performance is evaluated using various 

performance metrics and tested on unseen data to 

evaluate its generalization performance using the 

testing set. The results of the model’s performance 

are analyzed to understand the factors that affect 

the throughput of a WLAN and to identify any 

potential areas for improvement. 

 

 

Figure 2. ML model creation workflow. 

A. Dataset 

The dataset for the model was generated using a 

network simulator called Komondor. Komondor is a tool 

that allows a user to simulate different wireless networks, 

including WLANs, for machine learning research and is 

capable of simulating various physical layer and Medium 

Access Control (MAC) layer protocols, as well as different 

network topologies [8]. It uses a set of algorithms to 

generate random graphs with specific properties, such as 

the number of nodes and edges, the distribution of node 

degrees, and the presence of specific structural 

patterns  [10]. It generates data by simulating 

transmissions in real time, packet by packet, with the goal 

of correctly representing WLAN operations in a virtual 

environment. The virtual environment allows for the 

creation of different scenarios and interactions, which can 

make the dataset more representative of real-world data. 

This can lead to more robust and accurate models. 

The simulator can be used to evaluate the performance 

of wireless networks, test new wireless protocols, and 

design and optimize wireless systems [13]. Additionally, 

the data can be visualized using tools such as heat maps 

and topology diagrams to gain a better understanding of 

the behavior of wireless devices and networks in the 

simulated environment. One advantage of using 

Komondor software is that it allows for the generation of 

large and diverse datasets, which can be used to train and 

test machine learning models. It also performs better than 

most commercial simulators in terms of high event 

processing rates, dependability, and beginner 

friendliness [8]. Overall, the use of Komondor software 

can help to improve the reproducibility and comparability 

of machine learning research on graph data. 

In 2020, the ITU’s AI/ML in 5G Challenge [12] 

presented an open dataset consisting of WLAN 

measurements obtained from Komondor for the invited 

participants to develop machine learning models that could 

predict the performance of future WLAN deployments. 

The dataset [9], as shown in Table I, consisted of six 

scenarios, each with 100 deployments, totaling 600 

deployments in all. Despite the size of the dataset, it lacked 

diversity, was limited in its scope, and did not accurately 

reflect real-world deployments. Previous research 

suggested data augmentation [18] as a solution to the 

overfitting problem in models. The proposal was that 

generating a larger dataset with varied parameters could 

increase diversity and provide a more representative 

sample. Consequently, the creation of a more 

comprehensive dataset was deemed critical for advancing 

research in this field. 

TABLE I. DEPLOYMENT CHARACTERISTICS OF THE ORIGINAL DATASET 

Scenario 
ID 

No. of 
APs 

No. of 
STAs 

Central 
Frequency 

(GHz) 

Channel 
Bonding 
Model 

Map Size 
(m2) 

sce 1a 

12 [10–20] 

5 4 

8060 

sce 1b 7050 

sce 1c 6040 

sce 2a 

8 [5–10] 

6040 

sce 2b 5030 

sce 2c 4020 

Adapted from [7, 9]. 

Hence, in our work, we increased the size of the dataset 

fourfold, i.e., to 2400 deployments spread across 24 widely 

varied realistic scenarios, each of which represents an 
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OBSS environment made up of specified access points and 

stations associated with them. Each scenario is unique with 

respect to the parameters, including the number of APs, 

central frequency, and channel bonding schemes. The 

deployments themselves are unique, as across the 

deployments the number of STAs per AP is varied, as is 

the position of the APs and STAs too. Komondor takes 

input features such as node code, node type, (x, y, z) 

positions of all the APs and STAs in the deployment, 

central frequency, channel configurations, channel 

bonding model, and other features pertaining to the 

simulations in the virtual network. It then constructs this 

OBSS, simulates it, and gives us output files containing 

Throughput, Airtime, Received Signal Strength Indicator 

(RSSI), Interference, and Signal to Interference plus Noise 

Ratio (SINR) for each of the APs and STAs [10]. The 

summary of the characteristics of the resulting dataset is 

depicted in Table II. 

TABLE II. PROPOSED OBSS DEPLOYMENT STRUCTURE 

Scenario ID No. of 
APs* 

Central 
Frequency 

(GHz) 

Channel 
Bonding 
Model** 

OBSS 

Space (m3) 

sce 3a 

12 

5 

4 

605010 

sce 3b 5 
sce 3c 6 
sce 3d 6 
sce 4a 

2.4 

4 
sce 4b 5 
sce 4c 6 
sce 4d 6 

sce 5a 

10 

5 

4 

504010 

sce 5b 5 
sce 5c 6 
sce 5d 6 
sce 6a 

2.4 

4 
sce 6b 5 
sce 6c 6 
sce 6d 6 

sce 7a 

8 

5 

4 

403010 

sce 7b 5 
sce 7c 6 
sce 7d 6 
sce 8a 

2.4 

4 
sce 8b 5 
sce 8c 6 
sce 8d 6 

*The number of STAs per AP varies in the range [10–20]. **Refer 

Table V. 

The dataset is divided into two parts, with 80% allocated 

for training and 20% for testing purposes. The training set 

is then divided into two subsets, with 80% utilized for 

training and 20% reserved for validation, as shown in 

Table III. 

TABLE III. SPLIT UP OF THE PROPOSED DATASET 

Dataset Values 
Total No. of Deployments 2400 
Training split 1536 
Validation split 384 
Testing split 480 

 

The Komondor simulator provides numerous features at 

our disposal, but for training our model, we have only 

considered those that have an impact on the throughput of 

APs and STAs. Table IV shows all the simulation settings 

involved in Komondor [10]. 

TABLE IV. KOMONDOR SIMULATION SETTINGS 

Parameters Definition Values 

Tx pwr 
Transmit power that a transmitter antenna 

produces at its output 
20 dBm 

CCA Clear channel assessment value −82 dBm 

CE Capture effect threshold 10 dB 

Traffic load Data traffic generation rate 
Full buffer 

traffic 

L Length of the data payload in packets 12000 bits 

CW Contention window 16 

N agg 
Number of packets aggregated 

per transmission 
64 

CE model Capture effect model 0 

PIFS PCF Interframe Space (PIFS) 0 

Traffic model 

Stochastic model of the traffic flows 
or data sources in a communication 

network 
99 

Adapted from [10]. 

B. Graph Neural Network 

Graph Neural Networks (GNNs) are a type of neural 

network model designed to handle data that is structured 

as graphs [17]. They are used for a range of tasks, such as 

node classification, link prediction [19], and graph 

classification. GNNs excel at analyzing complex, non-

Euclidean data [19] by utilizing graph-based 

representations of the information, making them ideal for 

analyzing networks such as WLANs. This is because they 

can capture the complex relationships present in the graph 

structure and the spatial information inherent in WLAN 

deployments [7]. The graph-based representations of the 

data allow for more accurate and efficient analysis 

compared to traditional neural networks, which are only 

equipped to handle vector or matrix inputs [17]. GNN is 

an optimizable transformation on all attributes of the graph 

(nodes, edges, global-context) that preserves graph 

symmetries (permutation invariances) [20]. It can learn 

these attributes and predict the output based on the input 

graph structure [7]. 

The dataset generated with Komondor first undergoes 

pre-processing, which involves replacing any anomalous 

values, such as Inf and NaN, with 0. We then generate a 

graph representation of the dataset that can be processed 

by the GNN model. The graph structure can be used to 

depict wireless networks: G = (V, E) [19, 20], where nodes 

such as APs and STAs are represented by V and wireless 

links are represented by E. This involves transforming 

each node and edge into a vector representation that 

includes features such as node attributes, edge attributes, 

and topological information [7] (Table V). The model then 

processes the data through a series of layers, each of which 

performs a set of operations on the input vectors. These 

operations typically include convolutional filters, 

pooling  [19], and non-linear activation functions. The aim 

of these layers is to extract useful features from the input 

data and facilitate the propagation of information between 

nodes in the graph [20]. The flow of information between 

nodes occurs through the use of edges. After this process, 

the updated node representations are utilized to make 

predictions or classify data. This updating of node 
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representations is accomplished through a sequence of 

layers (Fig. 3), each of which is trained using a supervised 

learning algorithm [21]. 

 

 

Figure 3. Graph neural network [20]. 

TABLE V. NODE AND EDGE FEATURES 

Node Features 

Feature Definition Values 

Node Type Defines the given node AP:0; STA:1 

Node Code Alphabetic code given to AP and STA - 

(x,y,z) 
Coordinates of APs and STAs in 

3-dimensions 
- 

CF Band used for central frequency 2.4 / 5 GHz 

CB Model 

Channel bonding model (4: Log2 

always-max (DCB): 

TX in the larger channel range allowed 

by the log2 mapping, 5: Log2 Always-

max (DCB) with optimal MCS: picks the 

channel range + MCS providing max 

throughput, 6: Log2 probabilistic 

uniform: pick with same probability any 

available channel range) 

- 

C p 
The index of the primary channel 

for transmission 
[1–7] 

C min 
The index of the lowest channel used 

for transmission 
[1–7] 

C max 
The index of the highest channel used 

for transmission 
[1–7] 

SINR Signal to Interference plus Noise Ratio - 

Airtime 
Percentage of time each AP occupies 

each of the assigned channels 
- 

Edge Features 

Edge Type Defines edge between APs and STAs AP:1; STA:0 

Distance 
Euclidean distance between source 

and destination 
- 

RSSI Received Signal Strength Indicator - 

Interference 
Inter-AP interference sensed from 

every AP 
- 

Adapted from [18]. 

The operations of GNNs can be broken down into two 

main steps: message passing and updating. In the message 

passing stage [19], each node in the graph communicates a 

“feature vector” to its neighboring nodes, which is a 

combination of the node’s original feature vector and the 

feature vectors of its neighbors. The purpose of this step is 

to gather information from the node’s surroundings. The 

model starts with an initial representation for each node 

and then updates the representation of subsequent nodes 

incrementally based on the representations of its 

neighboring nodes [19–21]. This repetition continues for 

multiple iterations until a final representation of each node 

is achieved, which is then utilized for the intended task. In 

the updating stage, the feature vectors of all nodes are 

updated based on the messages they received (Fig. 4). This 

process is repeated until the feature vectors converge [20]. 

To obtain the output of a GNN, a readout function is 

applied to the final feature vectors of the nodes. 

 

 

Figure 4. A single layer of a GNN model [20]. 

The GNN model operates on the MetaLayer architecture 

(Fig. 5) [22]. To accurately update the features of the input 

graphs, the model utilizes a node model and an edge model. 

The input graph is first fed into the input layer of the model. 

From there, the data is then processed by the edge model, 

which performs the necessary updates on the edges, such 

as changes in position coordinates and interference 

between nodes from one layer to the next. The edge model 

is configured with a Multilayer Perceptron [20] that 

applies a linear transformation to the incoming data, 

followed by a ReLU activation layer. 

The edge model is designed to gather all the edge 

features along the connected edges. This is achieved by 

utilizing two dense layers. The edge model then passes on 

the aggregated data to the node model, which is composed 

of two MLPs (Multilayer Perceptrons). Each MLP in the 

node model has two dense layers, which act as linear layers 

that transform input features into output features by 

utilizing weight matrices and biases. The node model has 

two blocks. The first block, the aggregate function block, 

calculates the average of the embeddings for all 

neighboring nodes and combines the edge features into the 

node features. The second block, known as the update 

function, takes the aggregated values from the aggregate 

function and updates the state of the nodes within the graph 

layer by layer. In our model, the mean is used as the 

aggregation method. 

 

 

Figure 5. Metalayer architecture [7]. 

Overall, GNN is a remarkable tool that can be leveraged 

to analyze and comprehend datasets created by the 

Komondor software. With the utilization of node attributes 

and connectivity structures as its features, GNNs have the 

ability to identify crucial patterns and connections within 

the data. This makes them highly efficient at resolving a 

vast array of tasks that are based on graphs. GNNs offer an 

optimal solution for processing graph-structured data, and 

their capability to grasp complex relationships is what 

makes them an ideal choice for examining networks such 

as WLANs. 
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IV. RESULT AND DISCUSSION 

With the datasets generated using Komondor for the 

varied and realistic scenarios, the GNN model was trained 

with an 80:20 ratio between train-test datasets. The 

comprehensive and exhaustive dataset of 2400 

deployments with the critical parameters varying was used 

to train the GNN model and enable it to capture the 

complex inter-relationships between the stations and the 

access points. The results obtained with respect to the 

performance metrics to evaluate the model are tabulated 

for different combinations of testing in Tables VI and VII. 

The GNN model, having been trained with different 

deployment space sizes and parameters, has been able to 

generalize well. The effective throughput of the OBSS (i.e., 

the throughputs of the APs) predicted with reference to the 

expected values (obtained through Komondor) falls within 

the band of accuracy between 72 and 81% over 480 of a 

variety of test cases. It is imperative to observe here that 

the GNN model proposed by Soto et al. [7, 18] had the best 

RMSE score of 8.73 Mbps as compared to the proposed 

work’s best RMSE score of 4.45 Mbps. With the help of 

the enhanced datasets and the selection of the critical 

parameters, the model was able to mimic the behavior of 

the OBSS deployment of the network elements far better 

than others. The improved results give renewed confidence 

to pursue further tweaking of the model’s configuration 

parameters to achieve better results for much more diverse 

deployments while factoring in other related concerns [3]. 

Following the training of the GNN model, we 

administer the test data in the form of a graph consisting of 

nodes and edges along with their attributes. The model 

then predicts the target values for each node, which in our 

case is the throughput for each AP and STA. The results of 

the throughput prediction using GNN on the dataset 

generated by Komondor were analyzed using the 

following evaluation metrics to assess the performance of 

the model. 

• RMSE: Root Mean Square Error measures the 

average difference between values predicted by the 

model and the actual values. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
{∑(𝑦 − 𝑦′)2

𝑛

𝑖=1

}                    (1) 

 

y—observations, y’—predicted values and i—No. 

of observations 

• MAE: Mean Absolute Error measures the average 

of the absolute error values, i.e., the difference 

between predicted and the actual values. 

 

𝑀𝐴𝐸 =  
1

𝑛 
∑|𝑦 − 𝑦′|

𝑛

𝑖=1

                     (2)  

 

• MAPE: Mean Absolute Percentage Error gives a 

measure of the relative error between predicted 

values and actual values expressed in terms of a 

percentage. 

𝑀𝐴𝑃𝐸 =
100%

𝑛 
∑

|𝑦 − 𝑦′|

𝑦

𝑛

𝑖=1

                       (3)  

 

• Prediction Accuracy: It tells us how close the 

predicted value is to the simulated value. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 − 𝑀𝐴𝑃𝐸  (4) 

 

From Table II, it is observed that there is a decreasing 

trend in the number of APs as the space constraints 

increase, while the network density shows an increasing 

trend. Analysis of Figs. 6 and 7 reveals that the prediction 

performance of the proposed model improves as the 

network scenarios become denser. Specifically, Fig. 6 

shows a general decreasing trend in the average Mean 

Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) scores, while Fig. 7 shows a decreasing trend in 

the average Mean Absolute Percentage Error (MAPE) 

scores and an increasing trend in the predicted accuracy 

with increasing network density. The minimum and 

maximum values of MAE, RMSE, MAPE, and prediction 

accuracy are indicated in Tables VI and VII, respectively. 

These trends indicate that the model can accurately predict 

network performance in scenarios with higher network 

densities and more limited deployment space constraints. 

It can be concluded that the proposed model is effective 

for predicting network performance in dense network 

scenarios. 

TABLE VI. TEST RESULTS I 

Scenario 
Avg. MAE [Mbps] 

(min–max) 
Avg. RMSE [Mbps] 

(min–max) 

Sce 3 
5.55  

(2.09–15.24) 
7.85  

(3.25–20.21) 

Sce 4 
3.96  

(1.63–10.09) 
6.13  

(2.69–15.45) 

Sce 5 
3.86  

(1.70–9.82) 
5.45  

(2.65–13.24) 

Sce 6 
3.07  

(1.44–7.19) 
4.45  

(2.40–9.69) 

Sce 7 
3.62  

(1.19–10.45) 
4.96  

(1.99–13.22) 

Sce 8 
3.20  

(1.24–8.49) 
4.62  

(1.94–11.41) 

 

 

Figure 6. MAE and RMSE across different test scenarios. 
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TABLE VII. TEST RESULTS II 

Scenario 
Avg. MAPE (%) 

(min–max) 
Avg. Predicted Accuracy (%) 

(min–max) 

Sce 3 
26.85 

(22.62–39.48) 
73.15 

(60.52–79.77) 

Sce 4 
27.74 

(18.84–43.96) 
72.26 

(56.04–81.16) 

Sce 5 
25.62 

(19.60–38.14) 
74.38 

(61.86–80.40) 

Sce 6 
23.73 

(14.47–41.49) 
76.27 

(58.51–85.53) 

Sce 7 
19.72 

(12.55–36.12 
80.28 

(63.88–87.45) 

Sce 8 
19.80 

(12.65–38.02) 
80.20 

(61.97–87.35) 

 

 

Fig. 7. MAPE and Predicted Accuracy across different test scenarios. 

Fig. 8 depicts the average or mean RMSE values by 

Soto et al. [7] for various other important techniques, viz., 

CNN, FNN, GB, GNN, and Random Forest, for data 

generated using Komondor. The best five experiments (E1, 

E2, E7, E9, and E11), i.e., an extract of the 16 experiments 

conducted, are used here for comparison. It is observed 

that the proposed approach in this paper for building the 

datasets and choosing the configuration parameters far 

outweighs the previous approaches, as the best mean 

RMSE score is brought down to as low as 4.45 Mbps. 

 

 

*E1, E2, E7, E9, E11 refer to the study [7] 

Figure 8. Mean RMSE across experiments comparing different ML 

models [7]. 

Besides, about 17 different configurations used by the 

authors in their earlier work [23], as shown in Fig. 9, 

indicate that the performance of the current work exhibits 

consistent and superior RMSE values, thereby 

substantiating the improvement of the results for such 

dense deployments of WLANs. 

 

 

Figure 9. RMSE comparison of different trials [23]. 

V. CONCLUSION 

WLANs are now densely deployed in a variety of real-

world settings, like homes, offices, airports, and 

universities, and, as they continue to grow exponentially, 

there will be a demand to optimize their throughput before 

they are deployed in a setting. By employing ML 

techniques, a network designer can potentially enhance the 

network by dynamically adjusting transmit power, channel 

selection, resource allocation, and modulation schemes to 

optimize and improve the performance of networks in 

these scenarios. In this context, network simulators like 

Komondor can be of great utility and contribute to 

evaluating possible situations in a real network. Using 

simulators, we can test, validate, and anticipate possible 

use cases and configurations (even ML optimizations) 

before they occur in the network, thus providing 

confidence. However, the cost of simulations may become 

a big issue since, typically, the more reliable a simulator is, 

the more expensive it is to run. In this paper, we investigate 

the utilization of machine learning in the compact and 

efficient characterization of wireless networks. In 

particular, we have used an ML model that can abstract all 

the complexity behind a simulator and replace it with a 

single model that can be more efficient than a simulator 

when executed. The final goal is to apply ML techniques 

to wireless communication networks, and if we can find 

ML models with high accuracy for reproducing simulated 

data, then it is very likely that we can do the same in real 

networks. We can use this knowledge to make the 

necessary configuration changes in the event of a drop in 

performance. 

In future work, incorporating more sophisticated Graph 

Neural Network (GNN) architectures, such as Graph 

Attention Networks (GATs) or Graph Convolutional 

Networks (GCNs) [21], which have been found to perform 

better in graph-based tasks, could be one way to enhance 
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the model employed in the study. We would also 

recommend taking a look at Graph-Sage for possible 

improvements [19, 21]. Another possible improvement 

would be to introduce the model to real-world data [16], 

which will enable it to make better predictions and learn 

more about real-world circumstances. Finally, we can 

work on scaling the model to handle larger datasets and 

more complex wireless networks, which would enable the 

model to be used in a wider range of real-world 

applications. 
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