
Improving Autonomous Vehicle Performance

through Integration of an Image Deraining and a

Deep Learning-Based Network for Lane

Following

Hoang Tran Ngoc *, Phuc Phan Hong, Anh Nguyen Quoc, and Luyl-Da Quach

Software Engineering Department, FPT University, Can Tho, VietNam; Email: PhucPHCE171166@fpt.edu.vn

(P.P.H.), AnhNQCE170483@fpt.edu.vn (A.N.Q.), Luyldaquach@gmail.com (L.-D.Q.)

*Correspondence: Hoang2531992@gmail.com (H.T.N.)

Abstract—Lane-keeping is a vital component of autonomous

driving that requires multiple artificial intelligence

technologies and vision systems. However, maintaining a

vehicle’s position within the lane is challenging when there is

low visibility due to rain. In this research, a combination of

image deraining and a deep learning-based network is

proposed to improve the performance of the autonomous

vehicle. First, a robust progressive Residual Network

(ResNet) is used for rain removal. Second, a deep learning-

based network architecture of the Convolutional Neural

Networks (CNNs) is applied for lane-following on roads. To

assess its accuracy and rain-removal capabilities, the

network was evaluated on both synthetic and natural Rainy

Datasets (RainSP), and its performance was compared to that

of earlier research networks. Furthermore, the effectiveness

of using both deraining and non-deraining networks in CNNs

is evaluated by analyzing the predicted steering angle output.

The experimental results show that the proposed model

generates safe and accurate motion planning for lane-keeping

in autonomous vehicles.

Keywords—autonomous vehicle, image processing, rain

removal, convolutional neural networks, autoencoder,

residual network

I. INTRODUCTION

Driver error is the most common cause of about 1.3

million road traffic deaths annually as reported by the

World Health Organization (WHO) [1]. Therefore, the

field of autonomous vehicles is rapidly growing, and the

development of reliable perception systems is critical for

the success of autonomous vehicles. In real-world

scenarios, the data taken by the sensors (ex: camera,

LiDAR, etc.) during rainy weather are affected by rain

streaks, which can negatively impact certain advanced

perception tasks [2, 3], such as pedestrian detection [4],

object tracking [5], and semantic segmentation [6]. Among

them, lane-keeping is an essential aspect of autonomous

driving, and numerous survey papers have explored

different algorithms for this purpose [7–9]. However, rain

is a common environmental factor that can significantly

impact self-driving cars’ ability to maintain their lane. As

a result, the development and testing of lane-keeping

algorithms should take into account the effect of

challenging weather conditions on their performance.

Recently, numerous methods have been proposed for

rain removal in images and videos [10–19]. The majority

of techniques for rain removal can be classified as either

model-driven or data-driven, and there are more

specialized subdivisions within each of these categories.

Addressing this issue has become an increasingly popular

area of research in algorithm design. Generally, the

existing removal rain methods can be divided into four

categories: Single-image Deraining [11–13], Video and

Multi-image Deraining [14, 15]. Filtering-based Image

Restoration [16, 17], and Data Augmentation

Techniques [18, 19]. However, these methods are often

complex and computationally expensive, making them

unsuitable for real-time applications. On the other hand,

data-driven methods, such as deep learning-based

methods [20], are more computationally efficient and can

produce high-quality results. These methods still face

challenges in terms of scalability, generalization ability,

and computational cost.

In addition, methods of using camera images to predict

steering angle and control the vehicle to follow the lane are

constantly evolving. In conventional methodologies, the

task is commonly broken down into multiple components,

including lane detection [21, 22], path planning [23, 24],

and control logic [25, 26], which are typically studied in

isolation. However, these traditional approaches to self-

driving cars have several limitations. One major limitation

is that they require significant human engineering and

domain expertise to design and tune the perception,

planning, and control modules. Moreover, they may not

generalize well to new environments or scenarios that were

not encountered during the development process.

This research presents a robust progressive ResNet

called Progressive Recurrent Network (PReNet) [30] for

image deraining combined with CNNs steering controller Manuscript received April 4, 2023; revised May 25, 2023; accepted June

27, 2023; published November 3, 2023.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1159doi: 10.12720/jait.14.6.1159-1168

for lane-keeping in rain conditions. Rain removal before

inputting data to train and predict steering angle gives

more accurate results than using rain data directly to train

CNNs to predict steering angle. Both methods are

improved methods that overcome the disadvantages of

conventional methods. The main contributions are:

• PReNet model is lightweight, fast, and effective

for rain removal. This model is trained and

evaluated by the RainSP dataset of vehicle images

running in the rain.

• Auto steering control uses end-to-end learning

with CNNs architecture and provides greater

accuracy in lane-keeping than conventional image

processing methods.

• To evaluate the effectiveness of the proposed

method for rain removal and lane-keeping, the

RainSP dataset is collected by driving a donkey car

around a track and adding different rain intensities,

orientations, and haziness levels to create pairs of

ground-truth and rainy images for training and

evaluation. Comparisons with previous methods

are also presented with the same data set.

The remainder of this paper is structured as follows: In

Section II, a thorough analysis of previous deraining and

lane-keeping studies is presented. Sections III and IV

outline the de-raining network and end-to-end learning

network, detailing the data collection process, evaluation

metrics, and network architecture. Section V illustrates the

experimental results and provides a discussion. Finally, in

Section VI, the paper concludes and suggests areas for

future research.

II. RELATED WORK

A. Image Deraining

Rain removal from images has been a persistent

challenge in computer vision, and over the years, a variety

of techniques have been proposed to tackle this problem.

Early methods typically relied on manually engineered

features and physical models to separate rain streaks or

noise from the underlying scene. Several proposed

methods include:

• Denoising Autoencoders (DAE) [27]: DAE is an

unsupervised approach for robust feature learning

that utilizes an encoder and a decoder network. It

is effective in learning invariant features but may

not be as good at learning high-level features.

• Deep Detail Network (DDN) [28]: DDN is a deep

learning-based method that applies a low-pass

filter to decompose the input image into a base and

detail layer, but may struggle with heavy rain and

generate artifacts.

• DerainNet [29]: DerainNet is a deep CNN-based

method for removing rain from single images. It

learns the nonlinear mapping function between

clean and rainy images and incorporates domain

knowledge to improve restoration quality.

However, it may not work well for heavy rain,

generate artifacts, and require a large amount of

training data.

• Progressive ResNet (PRN) [30]: PRN is a deep-

learning rain removal method with state-of-the-art

performance, but may generate artifacts and is not

effective for heavy rain/irregular shapes.

• The majority of the methods proposed for AVs fail

to consider their system requirements, resulting in

deficiencies that include inadequate precision,

lengthy computation periods, inappropriateness

for real-time situations, and restricted applicability

to certain types of degradation elements. These

approaches have been compared and summarized

in Table I.

TABLE I. RAIN REMOVAL APPROACHES

Approach

(Variables or Priors)
Method Limitation

Vincent et al. (DAE) [27]

(Clean image)

The network consists of an encoder and a decoder network, with the

encoder network used to extract features from the input data and the

decoder network used to reconstruct the original data from the extracted

features.

It may not be as effective in learning

high-level features as other deep learning

methods.

Fu et al. (DDN) [28]

(Residual)

To enhance the extraction of rain streaks from detail layers, a deeper

residual network (ResNet) [31] is utilized in place of a CNN. The network

solely receives high-frequency details as input and predicts the difference

between the rain and clean images.

The method still cannot handle large and

sharp rain streaks and it may also remove

some non-rain textures.

Fu et al. (DerainNet) [29]

(Residual)

The process involves breaking down a rainy image into two parts: a

foundational structure layer and a high-frequency detail layer. From there,

a 3-layer Convolutional Neural Network (CNN) is used to extract the rain

streaks from the high-frequency detail layer.

Can generate artifacts or distortions in the

output image, especially in regions with

complex textures or patterns.

Ren et al. (PRN) [30]

(Residual)

Based on a progressive training strategy can learn robust features that are

invariant to various types of input perturbations while requiring fewer

parameters and computational resources compared to other methods.

May still generate artifacts or distortions

in the output image, especially in regions

with complex textures or patterns.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1160

B. Auto Steering Controller

In recent years, End-to-end learning has emerged as a

promising approach to address the limitations of

conventional lane-keeping approaches. In end-to-end

learning, the entire system is learned directly from data,

without the need for handcrafted modules. The system

takes raw sensor inputs, such as images or LiDAR data,

and outputs the vehicle’s control commands, such as

steering angle or throttle. The system is trained using

supervised learning, where the training data consists of

pairs of sensor inputs and corresponding control

commands.

• End-to-End Learning for Self-Driving Cars” by

Nvidia [7]: They introduced an end-to-end deep

learning approach for self-driving cars using a

convolutional neural network to map raw pixels

from a front-facing camera to steering commands.

• “End-to-End Learning for Lane Keeping of Self-

Driving Cars” by Cheng et al. [8]: They present an

end-to-end learning approach for lane keeping

using input from a front-facing camera and a

convolutional neural network.

• “An End-to-End Deep Neural Network for

Autonomous Driving Designed for Embedded

Automotive Platforms” by Kosic et al. [9]: They

present a light deep neural network for

autonomous driving that is suitable for deployment

on embedded automotive platforms.

However, the above methods do not consider the impact

of rain when performing train and running the

experimental model.

C. Proposed Method

To eliminate the disadvantages of the above analysis

methods, the PReNet is applied in combination with CNNs.

The images extracted from the camera will undergo rain

removal before being fed into CNNs to predict the steering

angle for lane-keeping. The PReNet model is designed to

be lightweight, fast, and effective, making it a promising

solution for rain removal in autonomous driving. This will

ensure that the CNNs are trained on high-quality images

and thus, enhance their performance in detecting and

tracking the lane markings accurately. The architecture of

our proposal is shown in Fig. 1.

Figure 1. Our proposal integrates rain removal with lane-keeping model architecture.

III. DERAINING NETWORK

A. Dataset

To evaluate the effectiveness of PReNet in autonomous

driving, experiments are conducted using a synthetic

dataset named RainSP-1 dataset and a real-world dataset

named RainSP-2 dataset.

The RainSP-1 dataset was gathered by navigating a

donkey car on a track. Then, OpenCV is used to add

different rain intensities, orientations, and haziness levels

to the collected images to create pairs of ground-truth and

rainy images for training and evaluation. The dataset

consists of 6,000 image pairs. Each image has a resolution

of 120×160 pixels. Fig. 2 shows some examples of the

RainSP-1 dataset with five rows: Ground Truth, Level 1,

Level 2, Level 3, and Level 4. The Ground Truth row

shows the original image without any rain. The Level 1

row shows the image with low-intensity rain, while the

Level 4 row shows the image with high-intensity rain.

To evaluate the generalization ability of the model, we

also collected a real-world dataset named RainSP-2 from

Kaggle and the Internet. The RainSP-2 dataset is a

synthetic dataset that contains 7,200 pairs of rainy and

corresponding ground truth images. Fig. 2 shows some

examples of the RainSP-2 dataset with two columns:

Ground Truth and Rainy Image. The Ground Truth column

shows the original image without any rain, while the Rainy

Image column shows the same image with rain added.

Both RainSP-1 and RainSP-2 datasets were used to train

and test the PReNet model for rain removal in autonomous

driving. The variety of datasets enabled us to enhance the

model’s resilience and capacity for generalization.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1161

RainSP-1

Ground Truth Level 1 Level 2 Level 3 Level 4

RainSP-2

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Rainy Image

Rainy Image

Rainy Image

Rainy Image

Rainy Image

Figure 2. Example images of the RainSP-1 and RainSP-2 datasets.

B. Evaluation Metrics

The performance of the Progressive Image Deraining

Networks (PReNet) for rain removal was assessed using

two main evaluation criteria based on reference rain-free

images: Peak-Signal-to-Noise Ratio (PSNR) and

Structural Similarity Index (SSIM) [32].

PSNR is a commonly used metric for image quality

assessment that measures the maximum pixel value ratio

to the root mean squared error between the predicted de-

rained image and the reference rain-free image. A higher

PSNR value indicates better image quality, while a small

PSNR value implies significant numerical differences

between images. The PSNR formula is:

 𝑃𝑆𝑁𝑅(𝑥, 𝑦) = 10 log10 (
2552

𝑀𝑆𝐸(𝑥,𝑦)
) (1)

where 𝑥 and 𝑦 are the two compared images, and MSE is

the mean squared error between the original and

reconstructed images. The Mean Squared Error (MSE) [36]

is defined as:

 𝑀𝑆𝐸(𝑥, 𝑦) =
1

𝑀𝑁
 ∑ ∑ (𝑥𝑖𝑗 − 𝑦𝑖𝑗)

2𝑁
𝑖=1

𝑀
𝑖=1 (2)

where M and N are the column and row pixels of images.

On the other hand, SSIM [33] measures the similarity

between two images and is modeled in terms of three

factors: loss of correlation, luminance distortion, and

contrast distortion. The SSIM metric varies between 0 and

1, with a score of 1 indicating complete similarity and a

score of 0 indicating no similarity. An increased SSIM

value indicates better quality of the image. The formula for

SSIM is:

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝐿(𝑥, 𝑦)]𝛼 · [𝐶(𝑥, 𝑦)]𝛽 · [𝑆(𝑥, 𝑦)]𝛾 (3)

where [𝐿(𝑥, 𝑦)]𝛼 , [𝐶(𝑥, 𝑦)]𝛽 , and [𝑆(𝑥, 𝑦)]𝛾 are the

luminance, contrast, and structure comparíon. 𝛼, 𝛽, and 𝛾

are positive parameters, the magnitude of which depends

on the requirement to compare which factor is more

prominent.

For training PReNet with 𝑡 stages, a single loss function

(either MSE loss or negative SSIM loss) was used, and

only the final output 𝑥𝑡 was supervised. In terms of both

PSNR and SSIM, the negative SSIM loss demonstrated

superior performance when compared to the MSE loss, and

it was employed to assess the effectiveness of PReNet. The

specifics of PReNet’s architecture will be discussed in the

subsequent section.

C. Network Architecture for Deraining

Recently, numerous networks raining from simple to the

complex have been researched using residual networks

(ResNets) [31] for eliminating rain streaks. In this section,

the network architecture of PReNet is described, as well as

compared to two other rain removal networks, the DDN

and PRN.

Through a deep detail network, Fu et al. [28] introduced

the DDN technique to eliminate rain from individual

images, as shown in Fig. 3(a). A low-pass filter

decomposition technique is used to separate the detail

layer before putting it into the negative ResNet (Neg-

ResNet). However, this approach is still insufficient in

processing large and distinct types of rain, such as our

diverse RainSP-1 dataset with varying levels of rainfall,

and there is a possibility that it might eliminate some

structures that are not related to rain.

Ren et al. [30] compared two networks PRN and

PReNet. PReNet is a proposed network that uses a

combination of ResBlocks and Long Short-Term Memory

(LSTM) [34] cells to effectively remove rain from images.

The results proved that PReNet is better than PRN and

simpler baseline than DDN. Therefore, in this paper,

PreNet is applied and trained on the self-driving car dataset

under rainy conditions before combining it with the CNNs

steering controller to overcome the disadvantages of

previous methods.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1162

(a) (b) (c)

Figure 3. The three network architectures of DDN, PRN and PReNet for

the rain removal problem. (a) DDN network, (b) PRN network, and (c)

PReNet network.

The architecture of PReNet and PRN are shown in

Fig. 1 and Figs. 3(b)–(c). The PReNet architecture

consists of 𝑓𝑖𝑛 as a convolutional layer with ReLU

(Rectified Linear Unit) activation [35], 𝑓𝑟𝑒𝑐 as an LSTM

module, 𝑓𝑟𝑒𝑠 as five residual blocks, and 𝑓𝑜𝑢𝑡 as a

convolutional layer.

• The input to the network is a rainy image with

three channels, and the output is the corresponding

derained image with the same dimensions.

• At each iteration, the network takes a concatenated

input of the rainy image 𝑥𝑡−1 and the previous

output 𝑦, which is fed into 𝑓𝑖𝑛 that consists of a 2D

convolutional layer with a kernel size of 3×3 and

ReLU activation.

• The output is then concatenated with the hidden

state of the LSTM (𝑓𝑟𝑒𝑐) . The LSTM module

consists of four 2D convolutional layers, each with

a kernel size of 3×3, followed by a Sigmoid

activation for input gate 𝑖, forget gate 𝑓, and output

gate 𝑜 , and a Tanh activation for the input

modulation gate 𝑔. The output of the gates is used

to control the flow of information within the

recurrent loop.

• The output of the LSTM module is then passed

through 𝑓𝑟𝑒𝑠 which includes five residual blocks,

each consisting of two convolutional layers with

32 filters of size 3×3, ReLU activation functions.

The output of the last residual block is passed

through 𝑓𝑜𝑢𝑡 , which is a 2D convolutional layer

with a kernel size of 3×3 to obtain the initial

estimate of the rain-free image.

• To ensure that the dimensions of the input and

output images remain the same throughout the

network, padding is applied to the convolutional

layers with a kernel size of 3×3 and a stride of 1.

Specifically, zero padding is added to the input

image so that the output has the same dimensions

as the input.

Once the rain is eliminated from the image, it will be

inputted into the CNN model to predict the steering angle

for the vehicle to follow the lane.

IV. END-TO-END STEERING CONTROLLER NETWORK

A. Data Collection

In order to train and evaluate the performance of our

end-to-end learning network, we utilized the original

RainSP-1 dataset which includes images with the

corresponding steering angles. During the data collection

process, we used the Raspberry Pi-based donkey car to

drive around the track for approximately 30 laps. The car’s

camera captured images of the road, which were then used

to train the network. To obtain the corresponding steering

angle for each image, the car’s built-in motor control

system is used to record the steering angle during the

driving session. During the data collection process, it was

also made sure by us to vary the steering angle to ensure

that the dataset was diverse and representative of real-

world driving scenarios. The dataset was divided into

training and testing sets, where 80% of the data was

allocated to training and the remaining 20% was allocated

to testing.

B. Evaluation Metrics

In order to train and evaluate the performance of our

end-to-end learning network, we utilized the original

RainSP-1 dataset which includes images with the

corresponding steering angles. In order to evaluate the

performance of the end-to-end steering prediction network,

the MSE loss function is used for training the model as it

is a regression problem. The MSE is another commonly

used metric for regression tasks that measures the average

of the squared differences between the predicted values

and the ground-truth values. The MSE is defined as:

 𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑔𝑡)

2𝑛
𝑖=1 (4)

where 𝑦𝑝𝑟𝑒𝑑 is the predicted steering angle, 𝑦𝑔𝑡 is the

ground-truth steering angle, and 𝑛 is the total number of

data samples. A lower MSE value indicates better

performance.

C. Network Architecture

The proposed network architecture used an end-to-end

neural network called PilotNet, which takes in input RGB

images of size 120×160×3 after deraining and outputs

steering angles for self-driving cars. It is implemented

using the Keras library in Python. As shown in Fig. 4, the

PilotNet model consists of five convolutional layers

followed by five fully connected layers:

• The input to the model is an image of size

120×160×3, where 120 is the height, 160 is the

width, and 3 is the number of color channels.

• The model comprises of five convolutional layers,

with the first three having a kernel size of 5×5 and

a stride of 2, and the final two having a kernel size

of 3×3 and a stride of 1. The convolutional layers

contain 24, 36, 48, 64, and 64 kernels, respectively,

and implement the ReLU activation function.

Padding is not utilized in this instance.

• After the last convolutional layer, the output is

flattened and fed into the first fully connected layer,

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1163

which has 6656 neurons. The output of this layer

is then passed through a ReLU activation function

and dropout regularization before being fed into

the second fully connected layer with 100 neurons.

The same process is repeated for the third fully

connected layer with 50 neurons and the fourth

fully connected layer with 10 neurons. Finally, the

output of the fourth fully connected layer is passed

through and the output layer contains a single

neuron, which predicts the steering angle.

Figure 4. The network architecture of Nvidia PilotNet.

V. EXPERIMENTAL RESULT

A. Experimental Setting

A Raspberry Pi-based Donkey Car is built to collect data

and evaluate the proposed models. As shown in Fig. 5, the

car is equipped with three components, including a

Raspberry Pi4 for processing, a Creative BlasterX®

Senz3D® camera for image capturing, and a servo motor

for steering angle control. The car was used in two modes:

data collection and autonomous driving. During data

collection mode, frames and steering angles were recorded

while driving the car around a map using a joystick. In

autonomous driving mode, the car was equipped with the

trained model and assessed for accuracy and performance

during the autonomous driving mode.

Figure 5. Experimental vehicle and block diagram of the proposed

method.

The image deraining and end-to-end learning networks

were trained using the Pytorch 1.4.0 and Tensorflow 2.2.0

frameworks on a computer with an Intel Core I3-10105F

CPU and an Nvidia GeForce GTX 1660 GPU. Both

networks are trained using the Adam optimizer with a

learning rate of 1 10−3. For image deraining, the learning

rate is reduced by a factor of 10 after 30, 50, and 80 epochs.

The deraining network is trained for a total of 100 epochs

with a batch size of 18. For the end-to-end learning

network, the training is performed with a checkpoint

callback function that saves the best model based on

validation loss.

B. Experimental Results

1) Evaluation of rain removal performance

This section presents a comparison of all competing

methods on the proposed datasets, RainSP-1 and RainSP-

2, in a quantitative manner. RainSP-1 contains 6,000

synthesized clean/rainy image pairs in four different rain

levels, while RainSP-2 contains 7,200 synthesized

clean/rainy image pairs. The competing methods include

DAE [27], DerainNet [29], DDN [28], PRN [30], and

PReNet [30]. For all datasets, PSNR and SSIM serve as the

quantitative evaluation metrics, whereby higher PSNR and

SSIM scores correspond to better deraining outcomes.

Table II presents the quantitative comparison of all

competing methods on RainSP-1 and RainSP-2. It can be

seen that PReNet achieves the best deraining performance

among all competing methods on each dataset.

Specifically, on the RainSP-1 dataset, PReNet achieves an

average PSNR of 32.17 dB and an average SSIM of 0.941.

while the second-best method achieves an average PSNR

of 31.81 dB and an average SSIM of 0.932. On the

RainPS-2 dataset, the average PSNR improvement of

PReNet over the second-best method PRN is 2.64 dB, and

the average SSIM improvement is 0.017.

TABLE II. AVERAGE PSNR AND SSIM COMPARISON ON RAINSP-1 AND

RAINSP-2 SYNTHETIC DATASETS

Method
RainSP-1 RainSP-2

PSNR SSIM PSNR SSIM

DAE 19.38 0.583 20.48 0.705

DDN 21.61 0.656 24.3 0.81

DerainNet 19.42 0.687 20.4 0.772

PRN 31.81 0.932 33.45 0.959

PReNet 32.17 0.941 36.09 0.976

In addition, Figs. 6 and 7 visualize the output of all

competing methods in RainSP-1 and RainSP-2,

respectively. PReNet exhibits better restoration

performance, especially on RainSP-1, which includes

diverse rain levels. In Fig. 6, DAE tends to over-smooth

the images, while DerainNet and DDN lose background

textures, especially the lane lines. In contrast, PRN and

PReNet perform better in removing the rain streaks and

preserving image details. However, in level 4 of rain, lane

lines from PRN are not as clear and sharp as PReNet. This

proves that PReNet can address different rain patterns

effectively. Overall, PReNet not only effectively addresses

different rain patterns but also preserves background

details better than other competing methods. Fig. 7

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1164

illustrates that the output images from other methods tend

to blur the texture of the image or leave some rain streaks

visible, while PReNet can effectively remove the rain

without leaving any noticeable rain streaks.

 Level 1 Level 2 Level 3 Level 4

Rainy

Images

DAE

DerainNet

DDN

PRN

PReNet

Figure 6. Qualitative results on RainSP-1 dataset. There are 4 columns with each column being a rainy image and the results of competing methods in

one rain level.

18.49/0.483

17.19/0.418

Rainy Image

19.34/0.565

17.97/0.532

DAE

20.17/0.677

18.99/0.684

DerainNet

23.89/0.692

23.89/0.682

DDN

28.33/0.916

34.01/0.956

PRN

29.94/0.972

37.89/0.984

PReNet

PSNR / SSIM

PSNR / SSIM

Ground Truth

Figure 7. Rain removal performance on a rainy image from RainSP-2. PSNR/SSIM values are provided below each derained image to facilitate easy

comparison. The best results are underlined.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1165

The demanding real-time requirements of autonomous

vehicle tasks, in this case - steering prediction, necessitate

that any additional processing does not add high

computational complexity that could potentially hinder

real-time performance. Hence, as computational efficiency

is crucial for autonomous driving, the comparison of

parameters and processing time of PReNet with other

competing methods is necessary. Table III presents the

model complexity (in parameters) and processing time (in

seconds) of all methods based on a computer equipped

with an NVIDIA GTX 1660 GPU. The processing time of

each method is an average time, which is calculated on 535

images of 120×160 size from the RainSP-1 dataset. The

results show that PReNet achieves remarkable

improvements over other methods. Specifically, PReNet

has 168,963 parameters, which is smaller than DerainNet,

and it takes only 0.008 seconds per image on average,

which is about 266.3 times faster than DAE and 1.9 times

faster than DerainNet. These results demonstrate the

effectiveness of PReNet as a lightweight and efficient

method for rain removal in the context of autonomous

driving, where real-time performance is crucial.

TABLE III. THE PARAMETER AND PROCESSING TIME OF COMPETING

Method Time Param

DAE 2.13 112.001

DDN 0.006 58.175

DerainNet 0.015 754.691

PRN 0.007 95.107

PReNet 0.008 168.963

Real Rainy Image PReNet

Figure 8. Rain removal performance on real rain image that we colect

on the internet.

Fig. 8 showcases the effectiveness of PReNet in

deraining real rain images through a pair-wise comparison.

The first column exhibits original rain images, while the

second column presents the same images after applying

PReNet for deraining. PReNet demonstrates remarkable

performance by reducing rain-induced distortions and

enhancing image quality. The side-by-side evaluation

emphasizes the practical applicability and effectiveness of

PReNet in removing rain artifacts. The visual evidence

provided by Fig. 8 solidifies PReNet’s efficacy as a

reliable solution for deraining real rain images.

2) Evaluation of steering angle prediction

This section presents a comparison of all competing

methods on the proposed datasets, RainSP-1 and RainSP-

2, in a quantitative manner. RainSP-1 contains 6,000

synthesized clean/rainy image pairs in four different rain

levels, while RainSP-2 contains 7,200 synthesized

clean/rainy image pairs. The competing methods include

DAE [27], DerainNet [29], DDN [28], PRN [30], and

PReNet [30]. PSNR and SSIM are used as the quantitative

evaluation metric for all datasets, with larger PSNR and

SSIM values indicating better deraining results.

This section describes the testing of the trained models

on real autonomous driving scenarios using the Raspberry

Pi-based donkey car. Two models have been transferred to

the car: the PReNet model for pre-processing frames and a

PilotNet model for predicting steering angles in real-time.

As shown in Fig. 5, the models were evaluated by driving

the car on an unknown second track, where the input image

from the camera was modified by adding different levels

of rain intensity. The modified image was then fed into the

PReNet model for deraining and the PilotNet model for

steering angle prediction. The results show that the

proposed method was effective in enabling the car to drive

autonomously under simulated adverse weather conditions.

The car remained stable and drove accurately under rainy

conditions. The same setup was also used to test other

competing methods, where only DDN was able to keep the

car in its lane while DAE, DerainNet, and DDN caused the

car to go straight ahead all the time.

For better visualization, Fig. 9 illustrates the Mean

Squared Error (MSE) between the angle predicted by the

PilotNet and the actual angle in some RainSP-1 dataset

images for each competing method. It can be observed that

PReNet produces the smallest MSE value among all the

compared methods, which indicates that PReNet can

effectively remove rain streaks and retain more image

details. Specifically, in the last case, PReNet achieves

MSE values of 1×10−5, which are five times lower than the

second-best method PRN. From these results, the proposed

method can be used for real-world autonomous driving

applications, especially in areas with heavy rainfall.

Rainy Images DAE DerainNet DDN PRN PReNet

MSE (Ground Truth Angle = −0.20045)

Pred angle

−0.55942

Pred angle

−0.45201

Pred angle

0.19824

Pred angle

0.08973

Pred angle

−0.25932

Pred angle

−0.20632

MSE

0.12886

MSE

0.06328

MSE

0.15895

MSE

0.08420

MSE

0.00347

MSE

0.00003

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1166

MSE (Ground Truth Angle = 0.10326)

Pred angle

0.49571

Pred angle

0.32264

Pred angle

0.00122

Pred angle

−0.04895

Pred angle

0.11009

Pred angle

0.10602

MSE

0.15402

MSE

0.04813

MSE

0.01041

MSE

0.02317

MSE

0.00005

MSE

0.00001

Figure 9. The MSE values between predicted angles of PilotNet from deraining results of the competing methods on the RainSP-1 dataset.

VI. CONCLUSIONS

In this paper, the deraining method (PReNet) was

combined with auto-steering controllers (CNNs) for rain

removal and lane-keeping in autonomous driving. A

comprehensive review of previous studies on rain removal

methods was conducted, and PReNet was found to be one

of the most efficient methods due to its lightweight

architecture, fast processing time, and excellent deraining

performance. The method was evaluated using the

synthetic RainSP dataset and showed improvements in

end-to-end steering prediction accuracy in the rain. The

results of this study demonstrate that PReNet can improve

and enhance the performance of autonomous driving

systems in rain and contribute to the development of safer

and more advanced systems.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Hoang Tran Ngoc and Luyl-Da Quach had the idea for

the research and provided support for Phuc Phan Hong and

Anh Nguyen Quoc. Phuc Phan Hong conducted the

research, while Anh Nguyen Quoc wrote the paper and

prepared the dataset; all authors approved the final version.

REFERENCES

[1] Road Traffic Injuries. [Online]. Available:

https://www.who.int/news-room/fact-sheets/detail/road-traffic-

injuries

[2] K. Garg and S. K. Nayar, “When does a camera see rain?” in Proc.

Tenth IEEE International Conference on Computer Vision, October

2005, vol. 2, pp. 1067–1074.

[3] G. Kshitiz and S. K. Nayar, “Vision and rain,” International

Journal of Computer Vision, vol. 75, pp. 3–27, October 2007.

[4] X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun, and C. Shen,

“Repulsion loss: Detecting pedestrians in a crowd,” in Proc.

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 7774–7783, June 2018.

[5] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang, “Learning

spatial-temporal regularized correlation filters for visual tracking,”

in Proc. CVPR, December 2018, pp. 4904–4913.

[6] Y.-C. Chen, Y.-Y. Lin, M.-H. Yang, and J.-B. Huang, “Show,

match and segment: Joint weakly supervised learning of semantic

matching and object cosegmentation,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 43, pp. 3632–3647,

April 2020.

[7] B. Mariusz, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P.

Goyal, L. D. Jackel et al., “End to end learning for self-driving cars”,

arXiv preprint, arXiv:1604.07316, April 2016.

[8] Z. Chen and X. Huang, “End-to-end learning for lane keeping of

self-driving cars,” in Proc. 2017 IEEE Intelligent Vehicles

Symposium (IV), June 2017, pp. 1856–1860.

[9] K. Jelena, N. Jovičić, and V. Drndarević, “An end-to-end deep

neural network for autonomous driving designed for embedded

automotive platforms,” Sensors, vol. 19, May 2019.

[10] H. Wang, Y. Wu, M. Li, Q. Zhao, and D. Meng, “A survey on rain

removal from video and single image”, arXiv preprint,

arXiv:1909.08326, October 2019.

[11] Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y.

Li, “Maxim: multi-axis MLP for image processing,” in Proc.

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, June 2022, pp. 5769–5780.

[12] T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang, and R. W. Lau,

“Spatial attentive single-image deraining with a high quality real

rain dataset,” in Proc. IEEE/CVF Conference on Computer Vision

and Pattern Recognition, August 2019, pp. 12262–12271.

[13] Q. Guo, J. Sun, F. J. Xu, L., Ma, X. Xie, W. Feng, Y. Liu, and J.

Zhao, “Efficientderain: Learning pixel-wise dilation filtering for

high-efficiency single-image deraining,” in Proc. AAAI Conference

on Artificial Intelligence, February 2021, vol. 35, pp. 1487–1495.

[14] Z. Yue, J. Xie, Q. Zhao, and D. Meng, “Semi-supervised video

deraining with dynamical rain generator,” in Proc. IEEE/CVF

Conference on Computer Vision and Pattern Recognition, June

2021, pp. 642–652.

[15] W. Yan, R. T. Tan, W. Yang, and D. Dai, “Self-aligned video

deraining with transmission-depth consistency,” in Proc.

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2021, pp. 11961–11971.

[16] S. P. Awate and R. T. Whitaker, “Unsupervised, information-

theoretic, adaptive image filtering for image restoration,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 28,

pp. 364–376, January 2006.

[17] D. Kundur and D. Hatzinakos, “A novel blind deconvolution

scheme for image restoration using recursive filtering,” IEEE

Transactions on Signal Processing, vol. 46, pp. 375–390, February

1998.

[18] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix:

Regularization strategy to train strong classifiers with localizable

features,” in Proc. International Conference on Computer Vision

(ICCV), May 2019, pp. 6022–6031.

[19] T. DeVries and G. W. Taylor, “Improved regularization of

convolutional neural networks with cutout,” arXiv preprint,

arXiv:1708.04552, August 2017.

[20] X. Wang, Z. Li, H. Shan, Z. Tian, Y. Ren, and W. Zhou,

“FastDerainNet: A deep learning algorithm for single image

deraining,” IEEE Access, vol. 8, pp. 127622–127630, July 2020.

[21] J. Zhao, B. Xie, and X. Huang, “Real-time lane departure and front

collision warning system on an FPGA,” in Proc. IEEE High

Performance Extreme Computing Conference (HPEC), September

2014, pp. 1–5.

[22] A. J. Humaidi and M. A. Fadhel, “Performance comparison for lane

detection and tracking with two different techniques,” in Proc. Al-

Sadeq International Conference on Multidisciplinary in IT and

Communication Science and Applications (AIC-MITCSA), May

2016, pp. 1–6.

[23] C. Li, J. Wang, X. Wang, and Y. Zhang, “A model based path

planning algorithm for self-driving cars in dynamic environment,”

in Proc. Chinese Automation Congress (CAC), November 2015, pp.

1123–1128.

[24] S. Yoon, S. E. Yoon, U. Lee, and D. H. Shim, “Recursive path

planning using reduced states for car-like vehicles on grid maps,”

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1167

IEEE Transactions on Intelligent Transportation Systems, vol. 16,

pp. 2797–2813, May 2015.

[25] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and

dynamic vehicle models for autonomous driving control design,” in

Proc. IEEE Intelligent Vehicles Symposium (IV), July 2015, pp.

1094–1099.

[26] D. Wang and F. Qi, “Trajectory planning for a four-wheel-steering

vehicle,” in Proc. IEEE International Conference on Robotics and

Automation, May 2001, vol. 4, pp. 3320–3325.

[27] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol,

“Extracting and composing robust features with denoising

autoencoders,” Association for Computing Machinery, pp. 1096–

1103, July 2008.

[28] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley,

“Removing rain from single images via a deep detail network,” in

Proc. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017, pp. 1715–1723.

[29] X. Fu, J. Huang, X Ding, Y. Liao, and J. Paisley, “Clearing the skies:

A deep network architecture for single-image rain removal,” IEEE

Transactions on Image Processing, vol. 26, pp. 2944–2956, April

2017.

[30] D. Ren, W. Zuo, Q. Hu, P. Zhu, and D. Meng, “Progressive image

deraining networks: A better and simpler baseline,” in Proc.

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, June 2019, pp. 3937–3946.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proc. IEEE Conference on Computer Vision

and Pattern Recognition, June 2016, pp. 770–778.

[32] E. Khatab, A. Onsy, M. Varley, and A. Abouelfarag, “A lightweight

network for real-time rain streaks and rain accumulation removal

from single images captured by AVS,” Applied Sciences, vol. 13,

December 2022.

[33] K. Wang, L. Chen, T. Wang, Q. Meng, H. Jiang, and L. Chang,

“Image deraining and denoising convolutional neural network for

autonomous driving,” in Proc. 2021 International Conference on

High Performance Big Data and Intelligent Systems (HPBD&IS),

December 2021, pp. 241–245.

[34] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C.

Woo, Convolutional LSTM Network: A Machine Learning

Approach for Precipitation Nowcasting, MIT Press, September

2015.

[35] A. L. Maas, A. Y. Hannun, and A. Y. Ng. “Rectifier nonlinearities

improve neural network acoustic models,” in Proc. International

Conference on Machine Learning (ICML), 2013.

[36] J. Qi, J. Du, S. M. Siniscalchi, X. Ma, and C.-H. Lee, “On mean

absolute error for deep neural network based vector-to-vector

regression,” IEEE Signal Processing Letters, vol. 27, pp. 1485–

1489, August 2020.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1168

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N6-1159

