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Abstract—Lane-keeping is a vital component of autonomous 

driving that requires multiple artificial intelligence 

technologies and vision systems. However, maintaining a 

vehicle’s position within the lane is challenging when there is 

low visibility due to rain. In this research, a combination of 

image deraining and a deep learning-based network is 

proposed to improve the performance of the autonomous 

vehicle. First, a robust progressive Residual Network 

(ResNet) is used for rain removal. Second, a deep learning-

based network architecture of the Convolutional Neural 

Networks (CNNs) is applied for lane-following on roads. To 

assess its accuracy and rain-removal capabilities, the 

network was evaluated on both synthetic and natural Rainy 

Datasets (RainSP), and its performance was compared to that 

of earlier research networks. Furthermore, the effectiveness 

of using both deraining and non-deraining networks in CNNs 

is evaluated by analyzing the predicted steering angle output. 

The experimental results show that the proposed model 

generates safe and accurate motion planning for lane-keeping 

in autonomous vehicles.  

Keywords—autonomous vehicle, image processing, rain 

removal, convolutional neural networks, autoencoder, 

residual network  

I. INTRODUCTION

Driver error is the most common cause of about 1.3 

million road traffic deaths annually as reported by the 

World Health Organization (WHO) [1]. Therefore, the 

field of autonomous vehicles is rapidly growing, and the 

development of reliable perception systems is critical for 

the success of autonomous vehicles. In real-world 

scenarios, the data taken by the sensors (ex: camera, 

LiDAR, etc.) during rainy weather are affected by rain 

streaks, which can negatively impact certain advanced 

perception tasks [2, 3], such as pedestrian detection [4], 

object tracking [5], and semantic segmentation [6]. Among 

them, lane-keeping is an essential aspect of autonomous 

driving, and numerous survey papers have explored 

different algorithms for this purpose [7–9]. However, rain 

is a common environmental factor that can significantly 

impact self-driving cars’ ability to maintain their lane. As 

a result, the development and testing of lane-keeping 

algorithms should take into account the effect of 

challenging weather conditions on their performance. 

Recently, numerous methods have been proposed for 

rain removal in images and videos [10–19]. The majority 

of techniques for rain removal can be classified as either 

model-driven or data-driven, and there are more 

specialized subdivisions within each of these categories. 

Addressing this issue has become an increasingly popular 

area of research in algorithm design. Generally, the 

existing removal rain methods can be divided into four 

categories: Single-image Deraining [11–13], Video and 

Multi-image Deraining [14, 15]. Filtering-based Image 

Restoration [16, 17], and Data Augmentation 

Techniques  [18, 19]. However, these methods are often 

complex and computationally expensive, making them 

unsuitable for real-time applications. On the other hand, 

data-driven methods, such as deep learning-based 

methods  [20], are more computationally efficient and can 

produce high-quality results. These methods still face 

challenges in terms of scalability, generalization ability, 

and computational cost. 

In addition, methods of using camera images to predict 

steering angle and control the vehicle to follow the lane are 

constantly evolving. In conventional methodologies, the 

task is commonly broken down into multiple components, 

including lane detection [21, 22], path planning [23, 24], 

and control logic [25, 26], which are typically studied in 

isolation. However, these traditional approaches to self-

driving cars have several limitations. One major limitation 

is that they require significant human engineering and 

domain expertise to design and tune the perception, 

planning, and control modules. Moreover, they may not 

generalize well to new environments or scenarios that were 

not encountered during the development process. 

This research presents a robust progressive ResNet 

called Progressive Recurrent Network (PReNet) [30] for 

image deraining combined with CNNs steering controller Manuscript received April 4, 2023; revised May 25, 2023; accepted June 

27, 2023; published November 3, 2023. 
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for lane-keeping in rain conditions. Rain removal before 

inputting data to train and predict steering angle gives 

more accurate results than using rain data directly to train 

CNNs to predict steering angle. Both methods are  

improved methods that overcome the disadvantages of 

conventional methods. The main contributions are: 

• PReNet model is lightweight, fast, and effective 

for rain removal. This model is trained and 

evaluated by the RainSP dataset of vehicle images 

running in the rain. 

• Auto steering control uses end-to-end learning 

with CNNs architecture and provides greater 

accuracy in lane-keeping than conventional image 

processing methods. 

• To evaluate the effectiveness of the proposed 

method for rain removal and lane-keeping, the 

RainSP dataset is collected by driving a donkey car 

around a track and adding different rain intensities, 

orientations, and haziness levels to create pairs of 

ground-truth and rainy images for training and 

evaluation. Comparisons with previous methods 

are also presented with the same data set. 

The remainder of this paper is structured as follows: In 

Section II, a thorough analysis of previous deraining and 

lane-keeping studies is presented. Sections III and IV 

outline the de-raining network and end-to-end learning 

network, detailing the data collection process, evaluation 

metrics, and network architecture. Section V illustrates the 

experimental results and provides a discussion. Finally, in 

Section VI, the paper concludes and suggests areas for 

future research. 

II. RELATED WORK 

A. Image Deraining 

Rain removal from images has been a persistent 

challenge in computer vision, and over the years, a variety 

of techniques have been proposed to tackle this problem. 

Early methods typically relied on manually engineered 

features and physical models to separate rain streaks or 

noise from the underlying scene. Several proposed 

methods include: 

• Denoising Autoencoders (DAE) [27]: DAE is an 

unsupervised approach for robust feature learning 

that utilizes an encoder and a decoder network. It 

is effective in learning invariant features but may 

not be as good at learning high-level features. 

• Deep Detail Network (DDN) [28]: DDN is a deep 

learning-based method that applies a low-pass 

filter to decompose the input image into a base and 

detail layer, but may struggle with heavy rain and 

generate artifacts. 

• DerainNet [29]: DerainNet is a deep CNN-based 

method for removing rain from single images. It 

learns the nonlinear mapping function between 

clean and rainy images and incorporates domain 

knowledge to improve restoration quality. 

However, it may not work well for heavy rain, 

generate artifacts, and require a large amount of 

training data. 

• Progressive ResNet (PRN) [30]: PRN is a deep-

learning rain removal method with state-of-the-art 

performance, but may generate artifacts and is not 

effective for heavy rain/irregular shapes. 

• The majority of the methods proposed for AVs fail 

to consider their system requirements, resulting in 

deficiencies that include inadequate precision, 

lengthy computation periods, inappropriateness 

for real-time situations, and restricted applicability 

to certain types of degradation elements. These 

approaches have been compared and summarized 

in Table I. 

TABLE I. RAIN REMOVAL APPROACHES 

 

Approach 

(Variables or Priors) 
Method Limitation 

Vincent et al. (DAE) [27] 

(Clean image) 

The network consists of an encoder and a decoder network, with the 

encoder network used to extract features from the input data and the 

decoder network used to reconstruct the original data from the extracted 

features. 

It may not be as effective in learning 

high-level features as other deep learning 

methods. 

Fu et al. (DDN) [28] 

(Residual) 

To enhance the extraction of rain streaks from detail layers, a deeper 

residual network (ResNet) [31] is utilized in place of a CNN. The network 

solely receives high-frequency details as input and predicts the difference 

between the rain and clean images. 

The method still cannot handle large and 

sharp rain streaks and it may also remove 

some non-rain textures. 

Fu et al. (DerainNet) [29] 

(Residual) 

The process involves breaking down a rainy image into two parts: a 

foundational structure layer and a high-frequency detail layer. From there, 

a 3-layer Convolutional Neural Network (CNN) is used to extract the rain 

streaks from the high-frequency detail layer. 

Can generate artifacts or distortions in the 

output image, especially in regions with 

complex textures or patterns. 

Ren et al. (PRN) [30] 

(Residual) 

Based on a progressive training strategy can learn robust features that are 

invariant to various types of input perturbations while requiring fewer 

parameters and computational resources compared to other methods. 

May still generate artifacts or distortions 

in the output image, especially in regions 

with complex textures or patterns. 
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B. Auto Steering Controller 

In recent years, End-to-end learning has emerged as a 

promising approach to address the limitations of 

conventional lane-keeping approaches. In end-to-end 

learning, the entire system is learned directly from data, 

without the need for handcrafted modules. The system 

takes raw sensor inputs, such as images or LiDAR data, 

and outputs the vehicle’s control commands, such as 

steering angle or throttle. The system is trained using 

supervised learning, where the training data consists of 

pairs of sensor inputs and corresponding control 

commands. 

• End-to-End Learning for Self-Driving Cars” by 

Nvidia [7]: They introduced an end-to-end deep 

learning approach for self-driving cars using a 

convolutional neural network to map raw pixels 

from a front-facing camera to steering commands. 

• “End-to-End Learning for Lane Keeping of Self-

Driving Cars” by Cheng et al. [8]: They present an 

end-to-end learning approach for lane keeping 

using input from a front-facing camera and a 

convolutional neural network. 

• “An End-to-End Deep Neural Network for 

Autonomous Driving Designed for Embedded 

Automotive Platforms” by Kosic et al. [9]: They 

present a light deep neural network for 

autonomous driving that is suitable for deployment 

on embedded automotive platforms. 

However, the above methods do not consider the impact 

of rain when performing train and running the 

experimental model. 

C. Proposed Method 

To eliminate the disadvantages of the above analysis 

methods, the PReNet is applied in combination with CNNs. 

The images extracted from the camera will undergo rain 

removal before being fed into CNNs to predict the steering 

angle for lane-keeping. The PReNet model is designed to 

be lightweight, fast, and effective, making it a promising 

solution for rain removal in autonomous driving. This will 

ensure that the CNNs are trained on high-quality images 

and thus, enhance their performance in detecting and 

tracking the lane markings accurately. The architecture of 

our proposal is shown in Fig. 1. 

 

 

Figure 1. Our proposal integrates rain removal with lane-keeping model architecture. 

III. DERAINING NETWORK 

A. Dataset 

To evaluate the effectiveness of PReNet in autonomous 

driving, experiments are conducted using a synthetic 

dataset named RainSP-1 dataset and a real-world dataset 

named RainSP-2 dataset. 

The RainSP-1 dataset was gathered by navigating a 

donkey car on a track. Then, OpenCV is used to add 

different rain intensities, orientations, and haziness levels 

to the collected images to create pairs of ground-truth and 

rainy images for training and evaluation. The dataset 

consists of 6,000 image pairs. Each image has a resolution 

of 120×160 pixels. Fig. 2 shows some examples of the 

RainSP-1 dataset with five rows: Ground Truth, Level 1, 

Level 2, Level 3, and Level 4. The Ground Truth row 

shows the original image without any rain. The Level 1 

row shows the image with low-intensity rain, while the 

Level 4 row shows the image with high-intensity rain. 

To evaluate the generalization ability of the model, we 

also collected a real-world dataset named RainSP-2 from 

Kaggle and the Internet. The RainSP-2 dataset is a 

synthetic dataset that contains 7,200 pairs of rainy and 

corresponding ground truth images. Fig. 2 shows some 

examples of the RainSP-2 dataset with two columns: 

Ground Truth and Rainy Image. The Ground Truth column 

shows the original image without any rain, while the Rainy 

Image column shows the same image with rain added. 

Both RainSP-1 and RainSP-2 datasets were used to train 

and test the PReNet model for rain removal in autonomous 

driving. The variety of datasets enabled us to enhance the 

model’s resilience and capacity for generalization. 
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RainSP-1 

Ground Truth Level 1 Level 2 Level 3 Level 4 

 
    

     

RainSP-2 

 
Ground Truth 

 
Ground Truth 

 
Ground Truth 

 
Ground Truth 

 
Ground Truth 

 
Rainy Image 

 
Rainy Image 

 
Rainy Image 

 
Rainy Image 

 
Rainy Image 

Figure 2. Example images of the RainSP-1 and RainSP-2 datasets. 

B. Evaluation Metrics 

The performance of the Progressive Image Deraining 

Networks (PReNet) for rain removal was assessed using 

two main evaluation criteria based on reference rain-free 

images: Peak-Signal-to-Noise Ratio (PSNR) and 

Structural Similarity Index (SSIM) [32]. 

PSNR is a commonly used metric for image quality 

assessment that measures the maximum pixel value ratio 

to the root mean squared error between the predicted de-

rained image and the reference rain-free image. A higher 

PSNR value indicates better image quality, while a small 

PSNR value implies significant numerical differences 

between images. The PSNR formula is: 

 𝑃𝑆𝑁𝑅(𝑥, 𝑦) = 10 log10 (
2552

𝑀𝑆𝐸(𝑥,𝑦)
) (1) 

where 𝑥 and 𝑦 are the two compared images, and MSE is 

the mean squared error between the original and 

reconstructed images. The Mean Squared Error (MSE) [36] 

is defined as: 

 𝑀𝑆𝐸(𝑥, 𝑦) =  
1

𝑀𝑁
 ∑ ∑ (𝑥𝑖𝑗 − 𝑦𝑖𝑗)

2𝑁
𝑖=1

𝑀
𝑖=1  (2) 

where M and N are the column and row pixels of images.  

On the other hand, SSIM [33] measures the similarity 

between two images and is modeled in terms of three 

factors: loss of correlation, luminance distortion, and 

contrast distortion. The SSIM metric varies between 0 and 

1, with a score of 1 indicating complete similarity and a 

score of 0 indicating no similarity. An increased SSIM 

value indicates better quality of the image. The formula for 

SSIM is: 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝐿(𝑥, 𝑦)]𝛼 · [𝐶(𝑥, 𝑦)]𝛽 · [𝑆(𝑥, 𝑦)]𝛾 (3) 

where [𝐿(𝑥, 𝑦)]𝛼 , [𝐶(𝑥, 𝑦)]𝛽 , and [𝑆(𝑥, 𝑦)]𝛾  are the 

luminance, contrast, and structure comparíon. 𝛼, 𝛽, and 𝛾 

are positive parameters, the magnitude of which depends 

on the requirement to compare which factor is more 

prominent. 

For training PReNet with 𝑡 stages, a single loss function 

(either MSE loss or negative SSIM loss) was used, and 

only the final output 𝑥𝑡 was supervised. In terms of both 

PSNR and SSIM, the negative SSIM loss demonstrated 

superior performance when compared to the MSE loss, and 

it was employed to assess the effectiveness of PReNet. The 

specifics of PReNet’s architecture will be discussed in the 

subsequent section. 

C. Network Architecture for Deraining 

Recently, numerous networks raining from simple to the 

complex have been researched using residual networks 

(ResNets) [31] for eliminating rain streaks. In this section, 

the network architecture of PReNet is described, as well as 

compared to two other rain removal networks, the DDN 

and PRN.  

Through a deep detail network, Fu et al. [28] introduced 

the DDN technique to eliminate rain from individual 

images, as shown in Fig. 3(a). A low-pass filter 

decomposition technique is used to separate the detail 

layer before putting it into the negative ResNet (Neg-

ResNet). However, this approach is still insufficient in 

processing large and distinct types of rain, such as our 

diverse RainSP-1 dataset with varying levels of rainfall, 

and there is a possibility that it might eliminate some 

structures that are not related to rain. 

Ren et al. [30] compared two networks PRN and 

PReNet. PReNet is a proposed network that uses a 

combination of ResBlocks and Long Short-Term Memory 

(LSTM) [34] cells to effectively remove rain from images. 

The results proved that PReNet is better than PRN and 

simpler baseline than DDN. Therefore, in this paper, 

PreNet is applied and trained on the self-driving car dataset 

under rainy conditions before combining it with the CNNs 

steering controller to overcome the disadvantages of 

previous methods.  
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(a)                            (b)                           (c) 

Figure 3. The three network architectures of DDN, PRN and PReNet for 

the rain removal problem. (a) DDN network, (b) PRN network, and (c) 

PReNet network. 

The architecture of PReNet and PRN are shown in 

Fig.  1 and Figs. 3(b)–(c). The PReNet architecture 

consists of 𝑓𝑖𝑛  as a convolutional layer with ReLU 

(Rectified Linear Unit) activation [35], 𝑓𝑟𝑒𝑐 as an LSTM 

module, 𝑓𝑟𝑒𝑠  as five residual blocks, and 𝑓𝑜𝑢𝑡  as a 

convolutional layer. 

• The input to the network is a rainy image with 

three channels, and the output is the corresponding 

derained image with the same dimensions. 

• At each iteration, the network takes a concatenated 

input of the rainy image 𝑥𝑡−1  and the previous 

output 𝑦, which is fed into 𝑓𝑖𝑛  that consists of a 2D 

convolutional layer with a kernel size of 3×3 and 

ReLU activation. 

• The output is then concatenated with the hidden 

state of the LSTM ( 𝑓𝑟𝑒𝑐) . The LSTM module 

consists of four 2D convolutional layers, each with 

a kernel size of 3×3, followed by a Sigmoid 

activation for input gate 𝑖, forget gate 𝑓, and output 

gate 𝑜 , and a Tanh activation for the input 

modulation gate 𝑔. The output of the gates is used 

to control the flow of information within the 

recurrent loop. 

• The output of the LSTM module is then passed 

through 𝑓𝑟𝑒𝑠  which includes five residual blocks, 

each consisting of two convolutional layers with 

32 filters of size 3×3, ReLU activation functions. 

The output of the last residual block is passed 

through 𝑓𝑜𝑢𝑡 , which is a 2D convolutional layer 

with a kernel size of 3×3 to obtain the initial 

estimate of the rain-free image. 

• To ensure that the dimensions of the input and 

output images remain the same throughout the 

network, padding is applied to the convolutional 

layers with a kernel size of 3×3 and a stride of 1. 

Specifically, zero padding is added to the input 

image so that the output has the same dimensions 

as the input. 

Once the rain is eliminated from the image, it will be 

inputted into the CNN model to predict the steering angle 

for the vehicle to follow the lane.   

IV. END-TO-END STEERING CONTROLLER NETWORK 

A. Data Collection 

In order to train and evaluate the performance of our 

end-to-end learning network, we utilized the original 

RainSP-1 dataset which includes images with the 

corresponding steering angles. During the data collection 

process, we used the Raspberry Pi-based donkey car to 

drive around the track for approximately 30 laps. The car’s 

camera captured images of the road, which were then used 

to train the network. To obtain the corresponding steering 

angle for each image, the car’s built-in motor control 

system is used to record the steering angle during the 

driving session. During the data collection process, it was 

also made sure by us to vary the steering angle to ensure 

that the dataset was diverse and representative of real-

world driving scenarios. The dataset was divided into 

training and testing sets, where 80% of the data was 

allocated to training and the remaining 20% was allocated 

to testing. 

B. Evaluation Metrics 

In order to train and evaluate the performance of our 

end-to-end learning network, we utilized the original 

RainSP-1 dataset which includes images with the 

corresponding steering angles. In order to evaluate the 

performance of the end-to-end steering prediction network, 

the MSE loss function is used for training the model as it 

is a regression problem. The MSE is another commonly 

used metric for regression tasks that measures the average 

of the squared differences between the predicted values 

and the ground-truth values. The MSE is defined as: 

 𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑔𝑡)

2𝑛
𝑖=1  (4) 

where 𝑦𝑝𝑟𝑒𝑑  is the predicted steering angle, 𝑦𝑔𝑡  is the 

ground-truth steering angle, and 𝑛 is the total number of 

data samples. A lower MSE value indicates better 

performance. 

C. Network Architecture 

The proposed network architecture used an end-to-end 

neural network called PilotNet, which takes in input RGB 

images of size 120×160×3 after deraining and outputs 

steering angles for self-driving cars. It is implemented 

using the Keras library in Python. As shown in Fig. 4, the 

PilotNet model consists of five convolutional layers 

followed by five fully connected layers: 

• The input to the model is an image of size 

120×160×3, where 120 is the height, 160 is the 

width, and 3 is the number of color channels. 

• The model comprises of five convolutional layers, 

with the first three having a kernel size of 5×5 and 

a stride of 2, and the final two having a kernel size 

of 3×3 and a stride of 1. The convolutional layers 

contain 24, 36, 48, 64, and 64 kernels, respectively, 

and implement the ReLU activation function. 

Padding is not utilized in this instance. 

• After the last convolutional layer, the output is 

flattened and fed into the first fully connected layer, 
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which has 6656 neurons. The output of this layer 

is then passed through a ReLU activation function 

and dropout regularization before being fed into 

the second fully connected layer with 100 neurons. 

The same process is repeated for the third fully 

connected layer with 50 neurons and the fourth 

fully connected layer with 10 neurons. Finally, the 

output of the fourth fully connected layer is passed 

through and the output layer contains a single 

neuron, which predicts the steering angle. 

 

 

Figure 4. The network architecture of Nvidia PilotNet. 

V. EXPERIMENTAL RESULT 

A. Experimental Setting 

A Raspberry Pi-based Donkey Car is built to collect data 

and evaluate the proposed models. As shown in Fig. 5, the 

car is equipped with three components, including a 

Raspberry Pi4 for processing, a Creative BlasterX® 

Senz3D® camera for image capturing, and a servo motor 

for steering angle control. The car was used in two modes: 

data collection and autonomous driving. During data 

collection mode, frames and steering angles were recorded 

while driving the car around a map using a joystick. In 

autonomous driving mode, the car was equipped with the 

trained model and assessed for accuracy and performance 

during the autonomous driving mode. 

 

 

Figure 5. Experimental vehicle and block diagram of the proposed 

method. 

The image deraining and end-to-end learning networks 

were trained using the Pytorch 1.4.0 and Tensorflow 2.2.0 

frameworks on a computer with an Intel Core I3-10105F 

CPU and an Nvidia GeForce GTX 1660 GPU. Both 

networks are trained using the Adam optimizer with a 

learning rate of 1  10−3. For image deraining, the learning 

rate is reduced by a factor of 10 after 30, 50, and 80 epochs. 

The deraining network is trained for a total of 100 epochs 

with a batch size of 18. For the end-to-end learning 

network, the training is performed with a checkpoint 

callback function that saves the best model based on 

validation loss. 

B. Experimental Results 

1) Evaluation of rain removal performance 

This section presents a comparison of all competing 

methods on the proposed datasets, RainSP-1 and RainSP-

2, in a quantitative manner. RainSP-1 contains 6,000 

synthesized clean/rainy image pairs in four different rain 

levels, while RainSP-2 contains 7,200 synthesized 

clean/rainy image pairs. The competing methods include 

DAE [27], DerainNet [29], DDN [28], PRN [30], and 

PReNet [30]. For all datasets, PSNR and SSIM serve as the 

quantitative evaluation metrics, whereby higher PSNR and 

SSIM scores correspond to better deraining outcomes. 

Table II presents the quantitative comparison of all 

competing methods on RainSP-1 and RainSP-2. It can be 

seen that PReNet achieves the best deraining performance 

among all competing methods on each dataset. 

Specifically, on the RainSP-1 dataset, PReNet achieves an 

average PSNR of 32.17 dB and an average SSIM of 0.941. 

while the second-best method achieves an average PSNR 

of 31.81 dB and an average SSIM of 0.932. On the 

RainPS-2 dataset, the average PSNR improvement of 

PReNet over the second-best method PRN is 2.64 dB, and 

the average SSIM improvement is 0.017. 

TABLE II. AVERAGE PSNR AND SSIM COMPARISON ON RAINSP-1 AND 

RAINSP-2 SYNTHETIC DATASETS 

Method 
RainSP-1 RainSP-2 

PSNR SSIM PSNR SSIM 

DAE 19.38 0.583 20.48 0.705 

DDN 21.61 0.656 24.3 0.81 

DerainNet 19.42 0.687 20.4 0.772 

PRN 31.81 0.932 33.45 0.959 

PReNet 32.17 0.941 36.09 0.976 

 

In addition, Figs. 6 and 7 visualize the output of all 

competing methods in RainSP-1 and RainSP-2, 

respectively. PReNet exhibits better restoration 

performance, especially on RainSP-1, which includes 

diverse rain levels. In Fig. 6, DAE tends to over-smooth 

the images, while DerainNet and DDN lose background 

textures, especially the lane lines. In contrast, PRN and 

PReNet perform better in removing the rain streaks and 

preserving image details. However, in level 4 of rain, lane 

lines from PRN are not as clear and sharp as PReNet. This 

proves that PReNet can address different rain patterns 

effectively. Overall, PReNet not only effectively addresses 

different rain patterns but also preserves background 

details better than other competing methods. Fig. 7 
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illustrates that the output images from other methods tend 

to blur the texture of the image or leave some rain streaks 

visible, while PReNet can effectively remove the rain 

without leaving any noticeable rain streaks. 

  
     Level 1 Level 2          Level 3           Level 4 

Rainy 

Images 

  

  

DAE 

 

 

 

 

DerainNet 

    

DDN 

  

  

PRN 

    

PReNet 

  

 

 

Figure 6. Qualitative results on RainSP-1 dataset. There are 4 columns with each column being a rainy image and the results of competing methods in 

one rain level. 

 
18.49/0.483 

 
17.19/0.418 

Rainy Image 

 
19.34/0.565 

 
17.97/0.532 

DAE 

 
20.17/0.677 

 
18.99/0.684 

DerainNet 

 
23.89/0.692 

 
23.89/0.682 

DDN 

 

 

 
28.33/0.916 

 
34.01/0.956 

PRN 

 
29.94/0.972 

 
37.89/0.984 

PReNet 

 
PSNR / SSIM 

 
PSNR / SSIM 

Ground Truth 

 

Figure 7. Rain removal performance on a rainy image from RainSP-2. PSNR/SSIM values are provided below each derained image to facilitate easy 

comparison. The best results are underlined. 
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The demanding real-time requirements of autonomous 

vehicle tasks, in this case - steering prediction, necessitate 

that any additional processing does not add high 

computational complexity that could potentially hinder 

real-time performance. Hence, as computational efficiency 

is crucial for autonomous driving, the comparison of 

parameters and processing time of PReNet with other 

competing methods is necessary. Table III presents the 

model complexity (in parameters) and processing time (in 

seconds) of all methods based on a computer equipped 

with an NVIDIA GTX 1660 GPU. The processing time of 

each method is an average time, which is calculated on 535 

images of 120×160 size from the RainSP-1 dataset. The 

results show that PReNet achieves remarkable 

improvements over other methods. Specifically, PReNet 

has 168,963 parameters, which is smaller than DerainNet, 

and it takes only 0.008 seconds per image on average, 

which is about 266.3 times faster than DAE and 1.9 times 

faster than DerainNet. These results demonstrate the 

effectiveness of PReNet as a lightweight and efficient 

method for rain removal in the context of autonomous 

driving, where real-time performance is crucial. 

TABLE III. THE PARAMETER AND PROCESSING TIME OF COMPETING 

Method Time Param 

DAE 2.13 112.001 

DDN 0.006 58.175 

DerainNet 0.015 754.691 

PRN 0.007 95.107 

PReNet 0.008 168.963 

 

 

 
Real Rainy Image                            PReNet 

Figure 8. Rain removal performance on real rain image that we colect 

on the internet. 

Fig. 8 showcases the effectiveness of PReNet in 

deraining real rain images through a pair-wise comparison. 

The first column exhibits original rain images, while the 

second column presents the same images after applying 

PReNet for deraining. PReNet demonstrates remarkable 

performance by reducing rain-induced distortions and 

enhancing image quality. The side-by-side evaluation 

emphasizes the practical applicability and effectiveness of 

PReNet in removing rain artifacts. The visual evidence 

provided by Fig. 8 solidifies PReNet’s efficacy as a 

reliable solution for deraining real rain images. 

2) Evaluation of steering angle prediction 

This section presents a comparison of all competing 

methods on the proposed datasets, RainSP-1 and RainSP-

2, in a quantitative manner. RainSP-1 contains 6,000 

synthesized clean/rainy image pairs in four different rain 

levels, while RainSP-2 contains 7,200 synthesized 

clean/rainy image pairs. The competing methods include 

DAE [27], DerainNet [29], DDN [28], PRN [30], and 

PReNet [30]. PSNR and SSIM are used as the quantitative 

evaluation metric for all datasets, with larger PSNR and 

SSIM values indicating better deraining results. 

This section describes the testing of the trained models 

on real autonomous driving scenarios using the Raspberry 

Pi-based donkey car. Two models have been transferred to 

the car: the PReNet model for pre-processing frames and a 

PilotNet model for predicting steering angles in real-time. 

As shown in Fig. 5, the models were evaluated by driving 

the car on an unknown second track, where the input image 

from the camera was modified by adding different levels 

of rain intensity. The modified image was then fed into the 

PReNet model for deraining and the PilotNet model for 

steering angle prediction. The results show that the 

proposed method was effective in enabling the car to drive 

autonomously under simulated adverse weather conditions. 

The car remained stable and drove accurately under rainy 

conditions. The same setup was also used to test other 

competing methods, where only DDN was able to keep the 

car in its lane while DAE, DerainNet, and DDN caused the 

car to go straight ahead all the time. 

For better visualization, Fig. 9 illustrates the Mean 

Squared Error (MSE) between the angle predicted by the 

PilotNet and the actual angle in some RainSP-1 dataset 

images for each competing method. It can be observed that 

PReNet produces the smallest MSE value among all the 

compared methods, which indicates that PReNet can 

effectively remove rain streaks and retain more image 

details. Specifically, in the last case, PReNet achieves 

MSE values of 1×10−5, which are five times lower than the 

second-best method PRN. From these results, the proposed 

method can be used for real-world autonomous driving 

applications, especially in areas with heavy rainfall. 
 

Rainy Images DAE DerainNet DDN PRN PReNet 
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Figure 9. The MSE values between predicted angles of PilotNet from deraining results of the competing methods on the RainSP-1 dataset. 

VI. CONCLUSIONS 

In this paper, the deraining method (PReNet) was 

combined with auto-steering controllers (CNNs) for rain 

removal and lane-keeping in autonomous driving. A 

comprehensive review of previous studies on rain removal 

methods was conducted, and PReNet was found to be one 

of the most efficient methods due to its lightweight 

architecture, fast processing time, and excellent deraining 

performance. The method was evaluated using the 

synthetic RainSP dataset and showed improvements in 

end-to-end steering prediction accuracy in the rain. The 

results of this study demonstrate that PReNet can improve 

and enhance the performance of autonomous driving 

systems in rain and contribute to the development of safer 

and more advanced systems. 
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