
A Simple and Effective Evaluation Method for

Fault-Tolerant Routing Methods in Network-on-

Chips

Yota Kurokawa * and Masaru Fukushi

Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 755-8611, Japan;

Email: mfukushi@yamaguchi-u.ac.jp (M.F.)

*Correspondence: ykurokawa@yamaguchi-u.ac.jp (Y.K.)

Abstract—This paper proposes a simple and effective

evaluation method for fault-tolerant routing methods

developed for Network-on-Chip (NoC)-based many-core

processors. To cope with faults which significantly degrade

the reliability of communication among cores, a variety of

fault-tolerant routing methods have been studied. Those

methods have been mainly evaluated in terms of

communication performance such as latency and

throughput by computer simulations of packet routing.

However, such evaluations are not practical in that they

cannot reveal the performance difference in executing

parallel applications with the fault-tolerant routing methods.

The proposed method obtains the information of the target

parallel application such as task execution time,

communication pattern, and communication amount and

incorporates it in the conventional packet routing

simulations. With the proposed evaluation method,

computer simulations have been conducted to evaluate the

performance of four famous fault-tolerant routing methods,

i.e., Fcube4, Position Route, Passage-Y, and Passage-XY,

using NAS Parallel Benchmarks and the performance

difference is revealed in executing parallel programs named

Integer Sort (IS) and Fast Fourier Transform (FFT). The

results show that, Passage-XY outperforms other methods

in both IS and FT, and for the case of IS, Passage-XY can

reduce the program execution time by up to about 39%,

56%, and 26% compared with Fcube4, Position Route, and

Passage-Y, respectively.

Keywords—Network-on-Chip (NoC), fault-tolerant routing,

evaluation method, NAS parallel benchmarks

I. INTRODUCTION

In recent years, multi-core and many-core systems

have become a mainstream for high-speed processing of

wide range of parallel applications, such as multimedia,

robotics, machine learning, cloud computing, and edge

computing, as well as scientific computing. In these

systems, there are two types of methods for connecting

cores: a common bus method and a Network-on-Chip

(NoC). The common bus, which is the current

mainstream, enables data transfer by directly connecting

Manuscript received March 31, 2023; revised April 5, 2023; accepted

April 19, 2023; published September 6, 2023.

cores to bus lines. However, as the number of cores

increases, longer bus lines are required, and transmission

delay increases and operating frequency reduces in the

systems. In addition, basically, only one-to-one data

communication is allowed using bus lines. On the other

hand, the NoC, which is a novel connection method for

large-scale systems, connects each core to a router

configuring a node and communicates each other by

sending packets on the network of nodes. Compared to

the common bus, the NoC has the advantages of high

communication bandwidth, low communication delay,

and high scalability for the number of nodes.

In Very Large Scale Integration (VLSI) chips on which

the NoC is implemented, the occurrence of faults is

inevitable during the system fabrication and run time.

Even if only one fault occurs in the network, packets will

be dropped or corrupted when passing the faulty node.

This significantly degrades the reliability of

communication among nodes and eventually results in the

malfunction of the whole system. Therefore, fault-

tolerant routing methods are essential for avoiding faulty

nodes in packet routing.

A variety of fault-tolerant routing methods have been

studied for NoCs, e.g., [1–21]. Among various network

topologies, a 2D mesh has attracted attention because of

ease of implementation. Depending on the approach of

designing routing rules, those methods devised for 2D

mesh NoCs can be classified into the following five

categories: region-based methods [1–3], Virtual Channel

(VC)-based methods [4–6], table-based methods [7–10],

buffer-less methods [11, 12], and passage-based

methods [13, 14]. Despite of the difference of approaches,

those methods have been mainly evaluated in terms of

communication performance such as latency and

throughput by computer simulations of packet routing.

Uniform communication patterns are widely employed in

the simulations where the source and destination nodes of

each packet are decided randomly. Application specific

patterns are also employed such as bit-reversal, matrix

transpose, hot-spot, and the ones from parallel application

benchmarks. However, such evaluations are not practical

in that they cannot reveal the performance difference in

executing parallel applications with the fault-tolerant

876

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

doi: 10.12720/jait.14.5.876-882

routing methods. Such practical evaluation will require

hardware design of not only the developed fault-tolerant

routing method but the cores and routers, and also require

the development of an operating system to execute

parallel applications, i.e., implementation of the prototype

entire system [22, 23]. However, as can be easily

understood, such prototype implementation is beyond the

scope of routing research and thus it is hardly employed

in the literature.

Motivated by the need for the practical evaluation, this

paper proposes a simple and effective evaluation method

for fault-tolerant routing methods developed for NoC-

based many-core processors. In contrast to the

conventional evaluation methods which at most consider

the communication pattern of parallel applications, the

proposed method obtains the information of the target

parallel application such as task execution time,

communication pattern, and communication amount and

incorporates it in the conventional packet routing

simulations. This method will provide

researchers/designers of routing methods with a way of

practical evaluation without implementing the prototype

system with the routing method.

The remainder of this paper is organized as follows.

Section II presents the architecture of an NoC and

conventional fault-tolerant routing methods. Section III

describes the proposed evaluation method. Section IV

evaluates the execution time of parallel programs. Finally,

Section V concludes this paper.

II. ARCHITECTURE OF NOC AND FAULT-TOLERANT

ROUTING METHODS

A. Architecture of NoC

In NoCs, each core is connected to an on-chip network

through a router. The pair of a core and a router is called

a node. Various topologies have been studied for the on-

chip network, such as 2D mesh/torus, 3D mesh/torus, fat-

tree, and hypercubes, as in the basic topology of parallel

computers. Among them, 2D mesh is the most popular

topology which is suitable for a planar implementation on

a VLSI chip.

Fig. 1 shows the architecture of 2D mesh NoC which

has nodes of m rows and n columns. Each node consists

of a Central Processing Unit (CPU) core and a router. The

CPU core carries out instructions of an assigned

computation task, which can be either independent or a

part of a parallel program.

Figure 1. The architeure of 2D mesh NoC.

The configuration of a router used in a 2D mesh NoC

is shown in Fig. 2. The router consists of input/output

units that store flits (i.e., a small fraction of a packet) for

forwarding packets to neighbor routers in the north, south,

east, and west; a crossbar switch that connects

input/output units; routing circuits that determine output

ports; a switch allocator that controls the crossbar switch;

and a VC allocator that controls the VC.

Figure 2. The architecture of router.

B. Packet Routing

Wormhole routing is basically used in NoCs, where

each packet is divided into smaller units called flits. Flits

are forwarded in a pipeline fashion. There are three types

of flits: head flit, which stores destination information,

body flit, which divides the data part, and tail flit, which

indicates the end of the packet.

When a flit is stored in the buffer of the router’s input

unit, the following processes are performed [24].

(1) An output port is decided by the routing circuit.

(2) A VC to be used is decided by the VC allocator.

(3) The corresponding input and output units are

connected via the crossbar switch with the control of the

switch allocator.

(4) The flit in the input unit is sent to the output unit.

(5) The flit is sent to the neighbor node.

These processes in each router are simulated precisely

on a cycle basis in conventional simulators.

C. Conventional Fault-Tolerant Routing Methods

In this section, we introduce target fault-tolerant

routing methods adopted in performance evaluation. All

those methods guarantee packet arrival rate of 100%, thus

providing perfect fault-tolerant routing.

1) Fcube4

This study targets the method of Boppana et al. [6].

This method creates rectangular faulty regions including

faulty nodes and makes packets detour around the faulty

regions with VCs.

In this method, detour paths are defined around faulty

regions. When a faulty region is created, non-faulty nodes

included in the region become unused nodes which are

treated similar to faulty nodes. This method defines a

clockwise or counterclockwise detour rule for the detour

route, depending on the direction of the destination.

Fig. 3 (a) shows a routing example. A source node of a

packet is denoted as S and the destination as D. In this

example, there are six unused nodes. To select a route

closer to the destination, the packet is sent to

877

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

counterclockwise around the faulty region and takes the

shortest route to the D.

Figure 3. Routing examples of conventional methods.

2) Position route

This method of Fukushima et al. [3] creates

rectangular faulty regions in the same way as Fcube4.

Packets with a message detour around the regions without

using VCs.

In this method, detour paths are created. There are

three types of detour paths: those for the faulty region on

the south edge of the network, those for the fautly region

on the west edge, and those for the faulty regions not on

the south or west edges. In addition, there are also three

types of messages depending on the movement phase:

westward, northward or southward, and eastward. This

method defines a rule that selects a unique route

according to the detour path, the message, and the

destination location.

Fig. 3 (b) shows a routing example. In the same way as

Fcube4, six unused nodes are generated. When the packet

faces the faulty region, it moves clockwise around the

region.

3) Passage-Y

Kurokawa et al. [13] proposed a method called

Passage-Y that detours or passes through faulty nodes

without using VCs and creating faulty regions.

The architecture to enable passage of faulty nodes is

shown in Fig. 4. It consists of four switches, links, and

registers. The possible three states for each switch is

shown in Fig. 4. The state of each switch is uniquely

decided by a fault flag of the node, and if the node is

faulty, packets pass through the faulty nodes vertically

and horizontally.

Figure 4. The architecture to allow passage of faulty nodes.

In this method, the neighbors of a faulty node are given

information to detour and pass through the faulty node;

whether it is on the south edge or not. In this method,

when a packet faces a faulty node during the movement

of X direction, it detours the north direction if the faulty

node is on the south edge. Otherwise, it is detoured in the

south direction. If a packet faces a faulty node while

moving in the Y direction, it always passes through the

faulty node.

Fig. 3 (c) shows a routing example. In this method, no

unused nodes are generated. The packet detours the faulty

nodes when moving in the X direction and passes through

them when moving in the Y direction to proceed to the D.

4) Passage-XY

The method proposed by Kurokawa et al. [14], called

Passage-XY, is an extension of Passage-Y with two VCs.

In this method, the VC to be used is determined by the

location of the D. Similar to Passage-Y, it also chooses

whether to detour or pass through faulty nodes based on

the information of the faulty node. In addition, this

method defines rules that allow passage of faulty nodes in

both the X and Y directions.

Fig. 3 (d) shows a routing example. This method also

does not generate unused nodes. The packet passes

through the faulty node when moving in the X and Y

directions, taking the shortest path.

III. PROPOSED EVALUATION METHOD

A. Basic Approach

As presented in the previous section, a fault-tolerant

routing method is employed to realize reliable

communication on an on-chip network with faulty nodes.

In conventional evaluation methods commonly used in

the literature, the developed fault-tolerant routing method

is simulated generating packets at random or following a

predetermined pattern and compared the communication

performance such as latency and throughput with existing

methods. Because NoC is a platform for executing

parallel applications which generally involve

communication among nodes, such conventional

evaluations are not practical in that they cannot reveal the

performance difference in an practical case where the

routing methods are employed.

This paper proposes a simple but effective method for

evaluating fault-tolerant routing methods. It takes an

approach of utilizing the information of the target parallel

application such as task execution time, communication

pattern, and communication amount and incorporates it in

the conventional packet routing simulations.

First, we explain how to define a model of a parallel

program and obtain information from a parallel program.

Next, we explain how to reflect the information to the

conventional simulations.

B. Getting Information from Parallel Programs

In the proposed method, by acquiring the processing

time and communication information of a parallel

program P and incorporating this information into a

conventional routing simulator, it enables to easily

878

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

evaluate the target routing methods using an actual

parallel program.

Parallel programs are executed with Np parallelism.

First, task processing is performed on a CPU core in an

NoC. If a communication process is requested after task

processing, the task transfers data to a specific process. In

general, parallel programs are executed by repeating

these steps. Fig. 5 shows the model of P assumed in this

paper. There are N processing blocks (PBs) between N-1

communication blocks (CBs). To descrie the model, some

definitions are given below.

• PBi: i-th process block (i = 0, 1, …, N)

• CBi: i-th communication block (i = 0, 1, …, N-1)

• Ti(PBj): execution time of PBj in process i

• CIi(CBj): communication information CIi of CBj

in process i, i.e., a pair of a destination process

number and communication amount

• Ci(PBj): the number of cycles for executing PBj in

process i

• Ci(CIi(CBj)): the number of cycles for performing

communication using CIi(CBj) in process i

• Np: the number of processes for executing P

Figure 5. A program mod.

The flow of the proposed method is shown below.

(1) Acquisition of Ti(PBj)

To aquire Ti(PBj), timer functions are inserted just

before and after all PBs in the source code of P.

(2) Acquisiton of CIi(CBj)

To aquire CIi(CBj), a function that outputs the

destination process number and data size is inserted just

before each CB in the source code. This function obtains

CIi(CBj) from the arguments of the communication

function in the parallel program. In this paper, MPI,

which is commonly used in parallel programs, is assumed.

(3) Execution of P

P is executed with Np processes to obtain Ti(PBj) and

CIi(CBj).

(4) Estimation of Ci(PBj)

To run the simulation with the setting of the assumed

NoC, the obtained Ti(PBj) is converted to Ci(PBj). Let

T(PBj) = T0(PBj) and C(PBj) = C0(PBj) for simplicity.

C(PBj) is calculated by the following equation.

 C(PBj) = T(PBj)×FCPU×Frouter/Fcore. (1)

FCPU is the operating frequency of the CPU in the

actual PC that executed the P, and Fcore and Frouter are the

operating frequencies of the CPU core and router in the

assumed NoC, respectively. The C(PBj) represents the

processing time of the assumed CPU core in the NoC,

which corresponds to a waiting time in the simulation.

Note that one cycle is equivalent to 1 Hz.

(5) Measurement of Ci(CIi(CBj))

Ci(CIi(CBj)) is measured by simulating packet routing

using CIi(CBj). In this simulation, blocking

communication is realized such that the next process does

not start until it receives a reply packet from the

destination node, which is close to the execution on a real

computer.

(6) Calculation of the execution time T

Let Ti be the execution time of process i. Ti is given by

the following equation.

 Ti = Σ0 ≤ j ≤ N C(PBj) +Σ0 ≤ j < N Ci(CIi(CBj)). (2)

Then, T is calculated by the following equation.

 T = max Ti. (3)

From above, the execution time T when P is executed

on an assumed NoC can be estimated easily in the

conventional simulation.

C. Reflecting Obtained Information in Simulation

This section describes a method to reflect the obtained

information in packet routing simulation.

General simulators simulate packet routing generating

packets with randomely decided or predetermiend

destination nodes in every cycles. Therefore, even if

information is acquired by the method in Section III.B, it

cannot be directly reflected in the simulator. Therefore, it

is necessary to modify a part of the simulator so that it

can read the aquired information from a file.

In the proposed method, the execution time of PB is

also reflected in the simulation by creating a simple task

in each process. Each process has the information of

Ti(PBj) and CBi. Since CBi contains communication

information CIi(CBj), the destination and communication

amount are stored in each process. If CBi performs

blocking communication, it does not proceed to the next

PBi+1 until communication of all CBi has been completed.

Fig. 6 shows an example of how the simulation works.

This figure describes the example of running a parallel

program P having three PBs and two CBs in four

processes P0, P1, P2 and P3. The simulation is performed

using C(PBi) and CIi(CBj) obtained by running P. First,

each process is assigned to a node in ascending order as

shown in Fig. 6. When the simulation starts, the node to

which each process is assigned waits until C(PB0) cycles

have elapsed. Then, it generates packets based on CIi(CB0)

and routes them until communication of CB0 is completed.

Then, each node waits until C(PB1) cycles have elapsed.

This operation is repeated until PB2, and the number of

cycles to finish all last processes is output as the

execution time. Note that the cycle at the end of CBi is

not the same for each process, although each process

moves to PBi+1 when CBi communication is completed.

879

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

Figure 6. An example of simulation.

IV. PERFORMANCE EVALUATION

To reveal the performance difference of fault-tolerant

routing methods with the proposed method, the execution

time of NAS Parallel Benchmarks (NPB) is measured for

four fault-tolerant routing methods, i.e., Fcube4, Position

Route, Passage-Y, and Passage-XY. In this evaluation,

two parallel programs are used from NPB: Integer Sort

(IS) and Fast Fourier Transform (FFT). Those programs

are executed with the setting of class D and 64

parallelism. The environment in which the benchmarks

were run is shown in Table I.

TABLE I. EXECUTION ENVIRONMENT

OS Ubuntu 20.04 (64bit)

CPU Xeon siliver (2.1GHz)

CPU cores 32

Threads 64

memory 126 GB

A cycle-accurate custom simulator developed in C

language was used to simulate packet routing and

measure the execution time of the benchmarks for each

method. In the simulations, flits are basically transferred

to neighbor nodes in the fifth cycle with VCs and the

fourth cycle without VCs, as shown in Section II.B.

Faulty nodes are randomly generated with a failure rate of

f = 2–10%. Other simulation parameters are shown in

Table II. Each process was assigned in ascending order

by node number, avoiding faulty nodes. The operating

frequencies of CPU cores and routers assumed in the

simulations are 2 GHz and 200 MHz.

TABLE II. SIMULATION PARAMETERS

Parameter Value

Network size 10 10

Fault rate (f) 2, 4, 6, 8, 10 %

Input buffer length 8 flits
Output buffer length 1 flit

Packet length 16 flits

Figs. 7–11 show the simulation results for f = 2–10%,

respectively. In all cases, execution time of Passage-XY

is the shortest, followed by Passage-Y, Fcube4, and

Position Route. When f = 2%, Passage-XY reduces

execution time for IS by up to about 19%, 42%, and 10%

compared with Fcube4, Position Route, and Passage-Y,

respectively. For FT, it reduces execution time by up to

about 3%, 8%, and 2%, respectively. When f = 10%, it

reduces execution time by up to about 39%, 56%, and

26% for IS, and about 7%, 12%, and 3% for FT,

respectively. The reduction ratios of IS are larger than

those of FT because communication sizes are largely

different (IS: several thousand bytes, FT: a few bytes).

Figure 7. Execution time (f = 2%).

Figure 8. Execution time (f = 4%).

Figure 9. Execution time (f = 6%).

880

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

Figure 10. Execution time (f = 8%).

Figure 11. Execution time (f = 10%).

In conventional evaluation methods, communication

latency and network throughput are mainly evaluated by

changing the packet generation rate. It can only evaluate

performance at a specific packet generation rate.

However, when an actual parallel program is running on

an NoC, the packet generation rate changes dynamically

due to various factors, e.g., network congestion, routing

method, data size, and program processing time. Fig. 12

shows the packet generation rate for every 10,000 cycles

when f = 10% and IS is executed. As shown in this figure,

it can be seen that the packet generation rate changes

every cycles. In addition, due to the difference in routing

methods, the packet generation rate for Passage-XY

becomes high and execution time is short, while Position

Route has a low packet generation rate and long

execution time. Therefore, the proposed method

considers the above factors and is a useful method

because it can easily evaluate the execution time.

Figure 12. Packet generation rate for IS (f = 10%).

Note that, in the proposed method, the communication

time of a parallel program can be obtained with a high

accuracy; however, the processing time of the program is

converted into cycles from the measured execution time.

Hence, the cycle counts may change slightly under an

NoC system (CPU, OS, etc.) actually implemented in

hardware.

V. CONCLUSION

This paper proposed a simple and effective evaluation

method for fault-tolerant routing methods developed for

NoC-based many-core processors. The proposed method

obtains the information of a target parallel application

such as task execution time, communication pattern, and

communication amount and incorporates it in the

conventional packet routing simulations. The results

show that, for IS, Passage-XY can reduce the program

execution time by up to about 39%, 56%, and 26%

compared with Fcube4, Position Route, and Passage-Y,

respectively.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest

in this work.

AUTHOR CONTRIBUTIONS

All authors conceived the idea of the study. Y.K.

developed the simulator and measured simulation results.

M.F. analyzed the results. Y.K. drafted the original

manuscript. M.F. reviewed and revised the manuscript

draft. All authors had approved the final version.

FUNDING

This work was supported by JSPS KAKENHI Grant

Number JP21K11810.

REFERENCES

[1] K. H. Chen and G. M. Chiu, “Fault-tolerant routing algorithm for

meshes without using virtual channels,” J. Inf. Sci. Eng., vol. 14,

pp. 765–783, Feb. 1998.
[2] R. Holsmark and S. Kumar, “Corrections to Chen and Chiu’s fault

tolerant routing algorithm,” J. Inf. Sci. Eng., vol 23, pp. 1649–

1662, May 2007.
[3] Y. Fukushima, M. Fukushi, and I. E. Yairi, “A region-based fault-

tolerant routing algorithm for 2D irregular mesh network-on-

chip,” J. Electron. Test, vol. 29, no. 3, pp. 415–429, May 2013.
[4] V. Janfaza and E. Baharlouei, “A new fault-tolerant deadlock-free

fully adaptive routing in NoC,” in Proc. IEEE East-West Design

& Test Symposium (EWDTS), Sebia, 2017, pp. 1–6.
[5] D. Sinha, A. Roy, K. V. Kumar et al., “Dn-FTR: Fault-tolerant

routing algorithm for mesh based network-on-chip,” in Proc. 4th

International Conference on Recent Advances in Information
Technology (RAIT), India, 2018, pp. 1–5.

[6] R. V. Boppana and S. Chalasani, “Fault-tolerant wormhole routing

algorithms for mesh networks,” IEEE Trans. Comput., vol. 44, no.
7, pp. 848–864, July 1995.

[7] H. K. Hsin, E. J. Chang, C. A. Lin et al., “Ant colony

optimization-based fault-aware routing in mesh-based network-on-
chip systems,” IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, vol. 33, no. 11, pp. 1693–1705, Nov. 2014.

[8] J. Liu, J. Harkin, Y. Li, and L. P. Maguire, “Fault-tolerant
networks-on-chip routing with coarse and fine-grained look-

ahead,” IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, vol. 35, no. 2, pp. 260–273, Feb. 2016.
[9] H. Zhao, N. Bagherzadeh, and J. Wu, “A general fault-tolerant

minimal routing for mesh architectures,” IEEE Trans. on
Computers, vol. 66, no. 7, pp. 1240–1246, July 2017.

881

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

[10] R. G. Mota, J. Silveira, J. Silveira et al., “Efficient routing table

minimization for fault-tolerant irregular network-on-chip,” in Proc.

IEEE International Conference on Electronics, Circuits and
Systems (ICECS), Monaco, 2016, pp. 632–635.

[11] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-

chip networks,” in Proc. 36th annual international symposium on
Computer architecture, New York, 2009, pp. 196–207.

[12] Z. Yao, X. Sui, T. Xu et al., “QBLESS: A case for QoS-aware

bufferless NoCs,” in Proc. IEEE 22nd International Symposium of
Quality of Service (IWQoS), China, 2014, pp. 93–98.

[13] Y. Kurokawa and M. Fukushi, “Passage of faulty nodes: A novel

approach for fault-tolerant routing on NoCs,” IEICE Trans.
Fundamentals, vol. E102-A, no. 12, pp. 1702–1710, Dec. 2019.

[14] Y. Kurokawa and M. Fukushi, “Deterministic/adaptive fault-

tolerant routing methods for 2D mesh NoCs based on the passage
of faulty nodes,” IEICE Trans. on Information and Systems

(Japanese Edition), vol. J104-D, no.7, pp. 574–585, July 2021.

[15] Y. Ouyang, Q. Wang, M. Ru et al., “A novel low-latency regional
fault-aware fault-tolerant routing algorithm for wireless NoC,”

IEEE Access, vol. 8, pp. 22650–22663, Jan. 2020.

[16] S. Jagadheesh, P. V. Bhanu, J. Soumya et al., “Reinforcement

learning based fault-tolerant routing algorithm for mesh based

NoC and its FPGA implementation,” IEEE Access, vol. 10, pp.

44724–44737, April 2022.
[17] J. Samala, H. Takawale, Y. Chokhani et al., “Fault-tolerant

routing algorithm for mesh based NoC using reinforcement

learning,” in Proc. 2020 24th International Symposium on VLSI
Design and Test (VDAT), India, 2020, pp. 1–6.

[18] Z. Nain, R. Ali, S. Anjum et al., “A network adaptive fault-

tolerant routing algorithm for demanding latency and throughput

applications of network-on-a-chip designs,” Electronics, vol. 9, no

7, pp. 1–18, 1076, July 2020.

[19] Z. M. Rad and E. Yaghoubi, “ADFT: An adaptive, distributed,
fault-tolerant routing algorithm for 3D mesh-based networks-on-

chip,” Int. J. Internet Technology and Secured Transactions, vol.

10, no. 4, pp. 481–490, April 2020.
[20] C. Nehnouh and M. Senouci, “A new fault tolerant routing

algorithm for networks on chip,” International Journal of

Embedded and Real-Time Communication Systems, vol. 10, no. 3,
pp. 65–85, July 2019.

[21] M. Shah, M. Upadhyay, P. V. Bhanu et al., “A novel fault-tolerant

routing algorithm for mesh-of-tree based network-on-chips,” in
Proc. International Symposium on VLSI Design and Test,

Singapore, 2019, pp. 446–459.

[22] S. R. Vangal, J. Howard, G. Ruhl et al., “An 80-Tile Sub-100-W
TeraFLOPS processor in 65-nm CMOS,” IEEE Journal of Solid-

State Circuits, vol. 43, no. 1, pp. 29–41, Jan. 2008.

[23] B. Bohnenstiehl, A. Stillmaker, J. J. Pimentel et al., “KiloCore: A
32-nm 1000-processor computational array,” IEEE Journal of

Solid-State Circuits, vol. 52, no. 4, April 2017.

[24] W. J. Dally and B. P. Towles, Principles and Practices of

Interconnection Networks, Morgan Kaufman Publishers, 2004.

Copyright © 2023 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

882

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N5-876

