
Sequential Decision Making for Elevator Control

Emre Oner Tartan 1,* and Cebrail Ciflikli 2

1 Vocational School of Technical Sciences, Baskent University, Ankara, Turkey
2 Vocational School of Technical Sciences, Kayseri University, Kayseri, Turkey;

Email: cebrailciflikli@gmail.com (C.C.)

*Correspondence: onertartan@gmail.com (C.O.T.)

Abstract—In the last decade Reinforcement Learning (RL)

has significantly changed the conventional control paradigm

in many fields. RL approach is spreading with many

applications such as autonomous driving and industry

automation. Markov Decision Process (MDP) forms a

mathematical idealized basis for RL if the explicit model is

available. Dynamic programming allows to find an optimal

policy for sequential decision making in a MDP. In this study

we consider the elevator control as a sequential decision

making problem, describe it as a MDP with finite state space

and solve it using dynamic programming. At each decision

making time step we aim to take the optimal action to

minimize the total of hall call waiting times in the episodic

task. We consider a sample 6-floor building and simulate the

proposed method in comparison with the conventional

Nearest Car Method (NCM).

Keywords—elevator control, Markov decision process,

dynamic programming, optimal policy, sequential decision

making

I. INTRODUCTION

Elevators have been considered as indispensable parts

of urban life since the high-rise buildings became wide-

spread. Meanwhile developing efficient control methods

for elevators has been a research field. High-rise buildings

require installation of multiple elevators and elevator

group control systems. Today most common form of

elevator control is collective control in which hall calls and

car calls are registered by push-buttons and responded in

floor sequence [1]. In collective control systems single

buttons or directional two push-buttons are used at each

floor for hall call registration. Collective control with

directional two push-buttons are called full collective

control so-called as directional collective control.

A major concern in elevator control is minimizing

average waiting time of passengers to improve quality of

service. To deal with this problem conventional rule based

methods and stochastic optimization based methods were

proposed. Classical control algorithms such as nearest car,

fixed sectoring, bidirectional sectors, fixed sectoring,

priority timed unidirectional sectors, and dynamic

sectoring rely on rule-based approach [1]. Since each set

of rules cannot perform generalization, in different cases,

particular algorithms can be used in a hybrid way. Another

approach is evolutionary optimization based elevator

dispatching which aim to optimize a cost function [2–5].

In this approach metaheuristic algorithms such as Genetic

Algorithm is used to minimize a metric, usually average

passenger waiting time.

In the last decade a great jump has been witnessed on

Machine Learning (ML). With the availability of big data,

computing resources and new algorithms, training deeper

neural networks became feasible and Deep Learning

concept emerged. Today ML applications are widely used

in daily life as well as in various engineering problems.

ML approaches can be considered under three main groups

as supervised, unsupervised and reinforcement learning.

Supervised learning techniques can be applied in problems

like classification or regression if a set of inputs and

corresponding labels are available. On the other hand, if

labels are not available and extracting insights on data is

aimed such as finding clusters or dimensionality reduction,

then unsupervised learning approach can be followed.

Reinforcement learning differs from other approaches as

learning is performed through interaction of an agent with

environment. In Reinforcement Learning (RL) problems,

the agent takes action and receives a response from the

environment. The response is called as reward and the goal

is to maximize the total of expected rewards. Markov

Decision Process (MDP) frames this problem on a more

solid, idealized basis. Particularly, MDP forms a

mathematically idealized base for reinforcement learning

problem.

In this study we regard the elevator control problem as

a reinforcement learning problem and investigate it in a

MDP framework specifically. Unlike dispatching

approach, which allocates elevators to hall calls, our

sequential decision making approach relies on choices of

optimal actions based on the instant states. Previously,

elevator system was represented as MDP model and

dynamic programming was used to find optimal parking

policy [6]. In another study decision making for elevator

scheduling based on Markov Chains was presented [7].

However, an immediate assignment policy was assumed

which prevents changing previous assignments and state

space was limited to 84 states. We cover all possible

actions including reversal of the car is possible if the car is

empty. Consequently, size of state space reaches to

122,880 for a six-floor building with single elevator. Since

the state space grow exponentially as the number of

elevators increases, we considered a single elevator setting.

Manuscript received January 20, 2023; revised February 25, 2023;

accepted March 31, 2023; published October 26, 2023.

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1124doi: 10.12720/jait.14.5.1124-1131

Even for a single elevator, planning problem in elevator

control is a NP-hard problem [7]. We believe that solving

this problem by framing it as MDP and using dynamic

programming, can form basis for future studies on control

of complex elevator group systems by means of more

advanced RL methods.

The paper is structured as follows: First, we describe

Markov Decision Process, then present elements of

reinforcement learning. In the next part, we explain

solving Bellman Optimality Equation using dynamic

programming. Then, we model elevator control problem as

MDP defining action / state spaces and rewards. Finally,

we discuss simulation results and give conclusion.

II. MARKOV DECISION PROCESS

The Markov chain, which was introduced by A. Markov

in the early 20th century, is a stochastic model that

describes a sequence of possible events in which the

probability of each event depends only on the previous

state [8]. The Markov process, a broad term often used for

Markov chains, is an extension of Markov chain, which

also covers continuous state space. The history of the

Markov process in control dates back to the 1950s. The

term “optimal control” was first considered in the 1950s as

a problem of designing a controller to minimize a system

criterion for a dynamic system [9]. One of the approaches

to this problem was developed in the mid-1950s by

Bellman based on the theory of Hamilton and Jacobi in the

19th century [9]. This approach uses the concepts of the

state of a dynamic system and a value function or “optimal

return function” to define an equation known as the

Bellman equation [10]. Bellman presented the stochastic

version of the optimal control problem using the Bellman

equation as the Markov Decision Process [10]. The

methods used to solve Bellman equation in a recursive

manner are also introduced by Bellman and named as

dynamic programming [11, 12]. Ronald Howard designed

the policy iteration method for the optimal solution in

MDPs [13]. The resulting theoretical foundation has

formed the basis for one of the approaches in the field of

artificial intelligence called Reinforcement Learning.

Many problems in RL can be addressed within the MDP

framework [14].

Markov processes are processes in which the

probabilities of future possible states can be predicted

based on the current state, rather than states in the past. The

property of this lack of memory or the need for past in

modeling transitions between states in the system is called

the Markov property. For the state st at time t, Eq. (1) gives

the probability of transition to the next time step:

 1 1 1[|] [| , ,]t t t tP s s P s s s+ += (1)

In a discrete-time Markov process, at each time step,

there is a probability distribution for the states that the

stochastic process will progress to. This distribution gives

the probabilities of transitions to different states depending

on the choice of an action within the current state. A

Markov process in which it is assumed that a reward is

gained upon transition to the state according to the chosen

action and in which the goal is to achieve the highest total

reward throughout the process is referred to as a Markov

Decision Process. MDPs provide a general framework for

sequential decision making. Classic full collective elevator

control systems are dynamic systems in which information

about the destination floors of passengers is not available

at the controller. The control of this dynamic system can

be considered as a Reinforcement Learning problem and

can be solved using dynamic programming in an MDP

framework.

III. ELEMENTS OF REINFORCEMENT LEARNING

Reinforcement learning, in general, refers to the process

of an agent learning which actions to take in which

situations, in order to achieve a goal while interacting with

its environment [9]. The fundamental elements of

reinforcement learning are the agent, environment, states

actions, reward signal, value function, policy, and the

model.

A. Agent

Agent is the decision maker and has a goal in the

reinforcement learning problem. Agent, interacts with the

environment through its actions, can transition to different

states in the environment as a result of its actions, and

receives feedback from the environment based on its

actions. Examples of agents include a robot with the goal

of collecting trash and a player in the game of Go with the

goal of defeating their opponent [15]. In elevator control

problem, the agent is the controller of the elevator(s).

B. Environment

The environment is the medium in which the agent

interacts. The agent cannot change the environment, but it

can change the state within the environment through its

actions. For example, in the elevator problem, the number

of elevators and the number of floors in the building are

elements related to the environment and cannot be changed.

However, the elevator controller (agent) can change its

current state by deciding to go down or up.

C. State

The state is the representation of the agent in the

environment. For example, in the example of the trash

collecting robot, the state could be represented by the

robot’s position and battery status. Different state

definitions may be given depending on the information

available to the agent and the definition of the environment.

A state at time t, st, is an element of the set of possible

states St in the problem.

D. Action

An action is a choice that the agent can make from the

set of possible actions it can take in its current state,

causing an interaction with the environment. At, the action

at time t is selected from A(st), the set of possible actions

at state st. For example, in the Go game, every move the

player can make is an action. In the considered elevator

control problem actions can be moving up, moving down,

waiting and picking up actions for up/down calls.

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1125

E. Reward and Return

A reward signal serves to representing the goal of a

reinforcement learning problem. The environment

provides feedback to the agent in the form of a numerical

reward signal after each of its actions. This allows the

agent to measure whether an action is good, bad, or neutral.

A reward signal can be positive, zero or negative. For

example, in the game of Super Mario, moving to the right

is a positive reward, while falling into a pit is a negative

reward [16]. The agent aims to maximize the total of the

reward signals, from the time current time step and

onwards. Negative reward can be referred to as

punishment. In a game consisting only of punishments

(negative rewards), the goal is to receive the least total

punishment.

In applications with an end state, the agent-environment

interaction is divided into sub-sections called episodes.

These applications are called episodic tasks, while

applications that cannot be divided into sub-sections are

called continuous tasks [9]. The total amount of reward the

agent will receive in tasks is called return and is given by

Eq. (2).

2 3 1

1 2 3 4

1

1

0

... T

t t t t t T

T
k

t k

k

G r r r r r

r

−

+ + + +

−

+ +

=

= + + + + +

=
 (2)

In Eq. (2), γ is the discount factor 0 ≤ γ ≤ 1. If it is

considered that importance of rewards decrease over time,

γ is set to less than 1. A discount factor less than 1 can also

guarantee convergence of G to a finite value in continuous

tasks.

F. Policy

Policy represented by π is the probability matchings

between the current state and the possible actions that can

be taken in that state at each time step. In other words, it is

the mechanism that determines which action will be

chosen with what probability in the current state.

An agent and environment interact in a series of discrete

time steps t = 0, 1, 2, 3, … At each time step t, the agent

receives a representation of the state, st ∈ St. Based on its

policy π, the agent selects an action at from the set of

possible actions A(st) with probability π(at|st). As a result

of this action, the agent receives a numerical reward rt ∈

R(st) and state transition to the next state st+1 occurs. This

process is shown in Fig. 1.

Under a stochastic π policy, the expected reward in the

state st can be given by Eq. (3) if the rewards for state

transitions are constant.

 1

'

| (|) (' | ,) (', ,)t t t

a s

r s s a s p s s a r s a s + = = (3)

The probability p(s',r|s,a) is the probability of receiving

the reward r in the possible s' state, after the action a is

selected in the state st. r(s',a,s) is the reward for transition

from the state st to the state s.

Figure 1. Agent—environment interaction in reinforcement learning.

G. Model

In reinforcement learning, the model imitates the

behavior of the environment and includes probability

distributions of actions, states, and rewards. A model

enables making inferences about how the agent-

environment interaction will go on. Using the model, given

a state and action, the model can predict the next state and

next reward. The model enables decision-making about

actions by considering the possible future states before the

actions referred to as planning are carried out [9].

Reinforcement learning methods without a model, are

called model-free learning. In model free learning,

exploration is needed through trial and error.

H. State and Action Value Functions

While the reward signal is an immediate feedback

resulting from an action, the value function indicates the

return that can be obtained from being in a particular state

or from taking a particular action in a state while following

a specific policy over consecutive time steps. The function

that represents the value of the state is called the state value

function, and the function that represents the value of the

action is called the action value function. A particular

action in a particular state may have a low instant reward,

but it can have a high value if it leads to states with high

rewards [9].

The state value function in the case of following policy

π is shown as vπ(s) and is defined by Eq. (4).

1

1

0

|() |
T

k

tt k

k

t tv ss G s ss r
−

+ +

=

= =

= =

 (4)

The state value function in Eq. (4) indicates the

expected return if a π policy is followed at any time t in the

state s. The action value function under a π policy is shown

as qπ(s,a) and is expressed by Eq. (5).

1

1

0

(,) | ,

| ,k

t

T

t t

tt k

k

t

q

r

s a G s s a a

s s a a

−

+ +

=

= = =

=

= =

 (5)

The action value function qπ(s,a) indicates the expected

return if the action a is taken at any time t in the state s,

and then policy π is followed. Using action value function,

state value function vπ(s) can be given in Eq. (6) as:

 (|) ,))((
a

sv a q ss a = (6)

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1126

The action value function qπ(s,a) can be represented

using probability function p as follows:

'

' ((,) (' | ,)[() ',),]
s

q s a s vp s s a r a s s = + (7)

IV. OPTIMAL POLICY AND BELLMAN OPTIMALITY

EQUATION

In a Markov Decision Process, a policy π equal to or

better than policy π' in all states, indicates that policy π

results in equal or more return than policy π'. There is at

least one policy that is equal to or better than all other

policies and this policy is called as the optimal policy. An

optimal policy is represented by π* and there may be more

than one optimal policy. All optimal policies have the

same optimal state-value function [9] as given in Eq. (8).

 * (m)ax()), , (v s v s s S a A s

= (8)

The optimal action value function is obtained by

following the optimal policy after selecting an action a in

a state s as follows:

 ** 1 1() | ,(,) tt t tv s s s a aq s a r ++ = == + (9)

It can be expressed in the form of Bellman’s optimality

equation in Eq. (10) by utilizing the recursive correlation

relationship of the state value function.

 1 * 1

*

'

* max () | ,

max (' | ,)[(', ,) (')]

() t t t t

s

a

a

r v s s s a a

p s s a r s a s v s

v s

+ +=

=

+ = =

+
 (10)

Similarly, Bellman’s optimality equation for the action

value function is expressed as in Eq. (11).

 **

'

(,) (' | ,)[(', ,) ']()
s

q s a p s s a r s a v ss = + (11)

Value iteration is a method in dynamic programming to

evaluate optimal value functions and find optimal policy.

In value iteration Bellman optimality equations are

transformed to update rules as follows:

 1

'

max (' | ,) (', ,) (')() kk
a

s

p s sv a r s a ss v s+ = + (12)

1
'

'

(' | ,) (', ,(,) max ('))k
s

k

s

q sp s s a r a s v ss a +
 +

= (13)

For arbitrary v0 and q0, as k→∞ value functions

converge to v* and q*. Using Eq. (13) state value function

can be represented as in Eq. (14).

 1 1)max() (,k k
a

v s q s a+ += (14)

Pseudo code of value iteration is given as in

Algorithm 1. As the termination condition either a

threshold for maximum difference of state values between

consecutive iterations or maximum number of iterations

can be used. After value iteration, assuming that value

function v converged to v*, one more iteration over all

states is needed to calculate q* again to find and record

optimal actions in π(s). In other words, one policy update

is needed to extract deterministic optimal policy from the

optimal value function as given in Algorithm 2. A Matlab

implementation of this process for sample GridWorld

example is given in [17].

Algorithm 1: Value Iteration Algorithm - Finding v ≈ v*

Initialize θ, V, S, A

Set ∆ as θ

while ∆ is greater than or equal to θ, do

 for each state s in the set S, do

 record last state value V(s) in v

 for each action a in the set A(s), do

 calculate q(s,a)

 end

 update V(s) as the maximum q value

 update ∆ as the greater one of ∆ and |v-V(s)|

 end

end

Algorithm 2: Policy Extraction Algorithm - Finding π ≈ π*

Initialize π

for each state s in S, do

 update v as V(s)

 for each action a in the set A(s), do

 calculate q(s,a)

 end

 update π(s) as the action a giving the maximum q value

end

V. STATE AND ACTION SPACE IN ELEVATOR CONTROL

In this study we consider single elevator control in a

MDP framework. This is a finite MDP, as the sets of states,

actions, and rewards all have a finite number of elements.

In a simplified setting, environment includes building,

elevator and arriving passengers based on the traffic. In

conventional directional collective elevator control

systems passengers register a hall call using direction

push-buttons. After the passenger enters the car, a car call

is registered by the passenger which indicates the

destination floor. We define a state in MDP using car floor,

car direction, up car calls, down car calls, up hall calls and

down hall calls. For a 3-floor building, sample state

representations are given in Table I. Car direction is

represented as 1 if the direction is up, −1 if the directions

is down and 0 otherwise. For a building with NF floors, a

state will be represented by 4 (NF − 1) + 2 vector.

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1127

TABLE I. STATE REPRESENTATION

Car

floor

Car

dir.

Up

Car

Calls

Down

Car

Calls

Up

Hall

Calls S▲

Down

Hall

Calls S▼

F2 F3 F1 F2 F1 F2 F2 F3

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 1

.

.

.

An up hall call cannot be registered at the highest floor

and a down hall call cannot be registered at the lowest

(entrance) floor. Therefore, in Table I, there is no column

for F3 under up hall calls and there is no down column for

F1 under down hall calls. Similarly, lowest floor (F1)

cannot be an up destination floor, since there is no floor

below it. Similarly, highest floor (F3) cannot be a down

destination floor because there is no floor above it. Hence,

there is no column for F1 under up car calls and there is no

column for F3 under down car calls. Besides car direction

cannot be 0 if there is at least one car call.

Other constraints taken into account in creating state

and action space, are based on the following common rules

in directional elevator control [18]:

• A car may not pass a floor at which a passenger

wishes to exit.

• The car calls are sequentially served in accordance

with the car trip direction.

• A car carrying passengers cannot change the trip

direction if at least one passenger is inside.

According to the rules above, there cannot be car call

below the car floor, if the car is moving up, and there

cannot be car call above the car floor, if the car is moving

down. Considering these constraints, we create state space

using four groups as S□, S∆, S▽, and Send. Here, car direction

is represented as ∆ if the direction is up, ▽ if the direction

is down and □ otherwise. Send includes states at terminal

floors (first and last floor). Hall call direction is

represented as ▲ if the direction is up and ▼ if the

direction is down.

A. S□ State Sub-space and A□ Action Sub-space

S□ state sub-space defined as in Eq. (15) includes states

in which elevator does not have a direction, scar_floor≠1 and

scar_floor≠NF.

_ _ _ _

_ _ _

_ _ _

_ _

0, [] 0, [1] 0

0, [] 0, [1] 1

0, [] 1, [1] 0

0, [

no hall call dir car floor car floor

hall call dir car floor car floor

hall call dir car floor car floor

hall call dir car

S s s s s s

S s s s s s
S

S s s s s s

S s s s

= = = − =

= = = − =
=

= = = − =

= = _] 1, [1] 1floor car floors s

= − =

 (15)

Corresponding action space A□ is given follows:

_ _

_

_

_

{ , , }

{ , , , }

{ , , , }

{ , , ,

,

},

no hall call

hall call

hall call

hall call

A

A
A

A

A

 = •

= •
=

= •

= •

 (16)

Actions are represented by symbols in Eq. (16). Action

symbols and meanings are as follows: ↑ move up, ↓ move

down, pick up up-passenger, pick up down-passenger

and • wait. State transition probabilities due to the actions

depend on traffic components and destination probability

distributions [19]. For instance, the action moving up

results in deterministic state transition which will change

the elevator floor increasing it by 1. However, state

transition due to the picking up passenger is stochastic in

many cases and depend on the traffic components. For

example, in pure incoming traffic, passenger can intend to

travel to one of above floors according to uniform

probability. This is shown in Fig. 2 for the sample case.

Car direction is 1(up) and the incoming passenger at F1 is

picked up. However, car call in the next state can be F2 or

F3 for uniform destination distribution. On the other hand,

in pure outgoing traffic, picking up a passenger will result

in a car call for exit floor F1, which is deterministic state

transition.

Figure 2. A possible state transition due to the action .

B. S∆ State Sub-space and A∆ Action Sub-space

S∆ state sub-space defined as in Eq. (17) includes states

where scar_floor ≠ NF and elevator direction is up.

Corresponding action space A∆ is given in Eq. (18).

_ _ _

_ _

1, [] 0

1, [] 1

no hall call dir car floor

hall call dir car floor

S s s s
S

S s s s

 = = =
=

= = =

 (17)

_ _

_

{ }

{ , }

no hall call

hall call

A
A

A

 =
=

=

 (18)

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1128

C. S▽ State Sub-space and A▽ Action Sub-space

S▽ state sub-space defined as in Eq. (19) includes states

where scar_floor≠1 and elevator direction is down. Eq. (20)

gives the corresponding action space A▽.

_ _ _

_ _

{ 1, [1] 0}

{ 1, [1] 1}

no hall call dir car floor

hall call dir car floor

S s s s
S

S s s s

 = = − − =
=

= = − − =

 (19)

_ _

_

{ }

{ , }

no hall call

hall call

A
A

A

 =
=

=

 (20)

D. Send State Sub-space and Aend Action Sub-space

Send state sub-space defined as in Eq. (21) includes states

where scar_floor=1 or scar_floor=NF.

_ _ _ _

_

_ _ _

_

_ _ _ _

_

_

_

{ [] 0, 1}

{ [] 1, 1}

{ [1] 0, }

{

no hall call car floor car floor

first floor

hall call car floor car floor

first floor

end no hall call car floor car floor

last floor

hall call

last floor

S s s s

S s s s
S

S s s s NF

S s

= = =

= = =
=

= − = =

= _ _[1] 1, }car floor car floors s NF

− = =

(21)

_ _

_

_

_

_ _

_

_

_

},{

{ }

{ , }

{ , }

,

no hall call

first floor

hall call

first floor

end no hall call

last floor

hall call

last floor

A

A
A

A

A

 = •

=
=

= •

=

 (22)

VI. REWARD DEFINITION IN ELEVATOR CONTROL

Reward signals can be positive, zero or negative based

on the goal of the problem. In elevator control, a major

concern is to serve whereas minimizing average passenger

waiting time. In conventional directional elevator control,

a hall call represents at least one passenger, however there

may be a passenger queue for the same call. Therefore,

number of passengers is equal to or greater than number of

hall calls. Nevertheless, reducing the average waiting time

of hall calls can help reducing average waiting time of

passengers, especially in a balanced arrival distribution.

Consequently, at first we defined reward signal as the

negative of sum of waiting times of hall calls. However, in

experiments this definition resulted in interesting,

undesired outcomes in certain states. For instance, if the

car is idle and if there is not any hall call, it is observed that

optimal policy gave the moving action. This is due to the

fact that moving and waiting actions yields the same

reward which is zero. Similarly, another effect of solely

relying on waiting times, was observed in state where there

is not any hall call, but car call. In this case since the

reward is zero, waiting and moving actions yield the same

zero reward. As a result, if waiting action is selected

travelling passengers in the car also wait. Considering

these two consequences, we add two terms to the sum of

waiting hall calls which are waiting penalty and moving

penalty. Accordingly, reward of action a in state s is

defined as follows:

(,) . . .hc waiting cc moveR s a N t penalty N t penalty= − − − (23)

where Nhc is the number of hall calls, Ncc is the number of

car calls and ∆t is the period of taking action. Waiting

penalty prevents the idle car from movement and moving

penalty prevents the car with passengers from waiting.

VII. SIMULATION RESULTS

Elevator traffic is composed of three components which

are named as incoming, inter-floor and outgoing. These

components are specified as ratios with regard to overall

traffic and sum up to 1. In other words, traffic components

represent probability distribution of passengers according

to their destination intentions. To simulate elevator traffic

we used the simulator shown in Fig. 3 and described

in [20]. This simulator allows initially specifying

configuration ranges to try different combinations of

traffic components, cars and floors.

In simulations, a sample building and elevator are set up

with the parameters given in Table II. Due to the state

space’s memory constraints the proposed control method

is applied for single elevator. Using a step size of 0.1 we

tried 66 possible combinations. Initial number of waiting

passengers is chosen as 2, 3, and 4. As the reference

method for comparison Nearest Car Method is used [1]. In

each simulation total waiting time of passengers and hall

calls are recorded. Waiting time of hall call is also named

as system response time. For a single waiting passenger,

passenger waiting time and system response time of call is

equal. For each combination, simulation is run for 1000

times and mean of total times (Mean_Total) are calculated.

Results are given as differences (∆Mean_Total) between

Mean_Total of the reference method’s outputs and

Mean_Total of the proposed method’s output sums.

Figure 3. Elevator traffic simulator.

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1129

TABLE II. BUILDING AND ELEVATOR CONFIGURATION

Number

of

Floors

Elevator

Speed

Floor

Height

Door

Opening

Time

Door

Closing

Time

Transfer

Time

6 1.5 m/s 3 m 2 s 2 s 3 s

TABLE III. ∆MEAN_TOTAL OF PASSENGER WAITING TIME AND HALL

CALL WAITING TIME FOR NP = 2

Inc Inter-floor

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 5.8 4.8 4.4 3.7 3.3 2.9 2.6 2.2 1.9 1.4 1.3

0.1 4.9 3.8 3.9 3.1 2.8 2.6 1.9 1.5 1.1 0.9 -

0.2 4.1 3.3 2.9 2.7 2.0 1.9 1.7 1.1 0.6 0.0 -

0.3 3.6 3.0 2.3 2.1 1.7 1.3 0.7 0.6 - - -

0.4 3.1 2.2 1.7 1.6 1.1 0.7 0.5 - - - -

0.5 2.3 1.7 1.8 1.1 0.7 0.4 - - - - -

0.6 1.9 1.5 1.0 0.5 0.1 - - - - - -

0.7 1.4 1.0 0.6 0.1 - - - - - - -

0.8 0.9 0.5 0.1 - - - - - - - -

0.9 0.6 0.0 - - - - - - - - -

1 0.0 - - - - - - - - - -

Since ∆Mean_Total values of waiting times and hall call

times are same for 2 passengers, results for 2 passengers

are given as a single table, in Table III. For 3 and 4 initial

passengers ∆Mean_Total results of passenger and hall

waiting times are given through Tables IV–VII. In each

condition MDP based control resulted in waiting times less

than or equal to the reference method’s. Especially in

heavy outgoing traffic reference method operates poorly

due to the undesired bunching elevators. To handle this, a

solution is to collect passengers starting from the highest

floor. This explicit rule based method is used only under

heavy outgoing traffic in directional collective control or

used in single push button systems where inter-floor traffic

is not expected [1]. This type of control is named as down

collective control (so-called up-distributive, down

collective) where all hall calls are regarded as down calls.

The proposed method finds out this strategy by framing the

problem as MDP and using dynamic programming. In

general terms, rule based approaches try to find different

set of rules for different conditions which is not always

feasible. On the other hand, in the proposed approach,

optimal policy includes optimal actions for different states.

TABLE IV. ∆MEAN_TOTAL OF HALL CALL WAITING TIME FOR NP = 3

Inc Inter-floor

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 14.9 13.4 12.4 10.6 9.5 7.9 5.8 4.7 4.2 2.9 2.2

0.1 13.1 11.0 9.9 8.7 6.8 6.2 4.6 3.7 1.9 1.6 -

0.2 10.6 9.2 7.4 6.6 5.2 4.4 2.7 2.0 1.5 - -

0.3 8.1 6.7 5.6 4.6 4.1 2.9 1.8 0.9 - - -

0.4 6.7 5.5 4.4 3.3 2.6 1.5 0.7 - - - -

0.5 5.6 4.5 3.7 2.5 1.3 0.4 - - - - -

0.6 4.2 2.9 2.4 1.3 0.3 - - - - - -

0.7 3.2 2.1 1.2 0.2 - - - - - - -

0.8 2.3 0.9 0.1 - - - - - - - -

0.9 1.2 0.0 - - - - - - - - -

1 0.0 - - - - - - - - - -

TABLE V. ∆MEAN_TOTAL OF PASSENGER WAITING TIME FOR NP = 3

Inc Inter-floor

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 16.1 15.0 13.7 11.8 10.4 9.3 6.7 5.2 4.4 2.8 2.4

0.1 14.6 12.4 10.8 9.5 7.7 6.5 4.9 4.1 2.2 1.8 -

0.2 11.4 9.7 8.3 7.2 5.6 4.8 2.9 2.1 1.5 - -

0.3 8.6 7.0 5.6 5.0 4.4 3.1 1.8 1.0 - - -

0.4 6.8 5.4 4.4 3.3 2.5 1.6 0.8 - - - -

0.5 5.7 4.3 3.2 2.3 1.2 0.4 - - - - -

0.6 3.6 2.4 1.9 1.0 0.3 - - - - - -

0.7 2.3 1.5 1.0 0.2 - - - - - - -

0.8 1.4 0.5 0.1 - - - - - - - -

0.9 0.7 0.0 - - - - - - - - -

1 0.0 - - - - - - - - - -

TABLE VI. ∆MEAN_TOTAL OF HALL CALL WAITING TIME FOR NP = 4

Inc Inter-floor

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 26.9 23.1 20.2 17.4 13.8 11.1 8.9 6.8 5.9 3.6 2.8

0.1 20.3 17.1 13.7 12.3 10.3 8.2 6.6 4.8 2.9 2.3 -

0.2 15.0 12.5 11.5 9.9 8.1 5.8 4.5 2.4 1.6 - -

0.3 12.7 10.1 8.4 6.7 5.2 3.6 2.4 0.8 - - -

0.4 10.1 7.9 6.0 5.2 3.5 2.0 0.7 - - - -

0.5 8.0 5.9 4.9 3.3 2.1 0.5 - - - - -

0.6 6.3 4.4 3.4 1.7 0.2 - - - - - -

0.7 4.7 3.8 2.2 0.1 - - - - - - -

0.8 4.1 1.9 0.1 - - - - - - - -

0.9 2.1 0.0 - - - - - - - - -

1 0.0 - - - - - - - - - -

TABLE VII. ∆MEAN_TOTAL OF PASSENGER WAITING TIME FOR NP= 4

Inc Inter-floor

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 32.7 28.0 25.3 21.8 17.9 14.4 11.5 8.8 7.7 5.0 3.4

0.1 24.9 20.9 17.5 15.1 12.7 9.7 8.0 5.6 3.7 2.9 -

0.2 17.8 15.0 15.0 12.6 9.0 6.9 5.8 3.1 1.9 - -

0.3 14.3 11.5 8.5 6.9 5.4 3.9 2.6 0.8 - - -

0.4 10.3 8.2 6.0 4.9 3.0 1.8 0.8 - - - -

0.5 6.6 5.0 3.7 2.7 1.6 0.6 - - - - -

0.6 4.7 2.8 2.1 1.3 0.3 - - - - - -

0.7 2.7 2.2 1.0 0.2 - - - - - - -

0.8 1.5 0.7 0.1 - - - - - - - -

0.9 0.5 0.0 - - - - - - - - -

1 0.0 - - - - - - - - - -

VIII. CONCLUSION

In this study we considered sequential decision making

for elevator control as a reinforcement learning problem

and modeled it as a finite MDP. We described state space,

action space and dynamics of the model based on the

elevator traffic components and solved the MDP using

dynamic programming. We used elevator traffic simulator

to simulate and verify the theoretically proposed model.

For comparison we involved a conventional elevator

control method which is known as Nearest Car Method.

The proposed method outperformed in most of conditions

and in some conditions gave the same result. Since NCM

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1130

is not suitable for outgoing traffic, we also tried down

collective control and obtained the same results by the

proposed method in pure outgoing traffic. As the optimal

policy includes optimal actions for each state, it presents

generalization capability. However, due to the curse of

dimensionality, as the number of floors and elevators

increase, the state space will grow exponentially.

Therefore, regarding memory and computation concerns,

more advanced RL methods which approximates MDP can

be tried for more complex cases. In conclusion, in future

studies we regard this study as a basis and aim to extend

the framework to other model-free RL methods such as Q-

learning which do not rely on explicit state-transition

probabilities and rewards. A such approach could deal with

the complex control problem of elevator group systems

and make autonomous driving elevators possible.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

E. O. Tartan conducted software development,

experimental design and contributed in writing the paper.

C. Ciflikli analyzed the results, supervised paper writing

and prepared the final draft. Both authors had approved the

final version.

REFERENCES

[1] G. C. Barney and L. Al-Sharif, Elevator Traffic Handbook, New

York: Taylor and Francis, 2016.

[2] E. O. Tartan and C. Ciflikli, “A genetic algorithm based elevator

dispatching method for waiting time,” IFAC-PapersOnLine, vol. 49,

no. 3, pp. 424–429, 2016.

[3] P. Cortés, J. Muñuzuri, A. Vázquez-Ledesma, and L. Onieva,

“Double deck elevator group control systems using evolutionary

algorithms: Interfloor and lunchpeak traffic analysis,” Computers

& Industrial Engineering, vol. 155, 2021.

[4] M. Beamurgia, R. Basagoiti, I. Rodríguez and V. Rodríguez,

“Improving waiting time and energy consumption performance of

a bi-objective genetic algorithm embedded in an elevator group

control,” Soft Computing, vol. 26, p. 13673–13692, 2022.

[5] A. Vodopija, J. Stork, T. Bartz-Beielstein, and B. Filipič, “Elevator

group control as a constrained multiobjective optimization problem,”

Applied Soft Computing, vol. 10, pp. 1568–4946, 2022.

[6] D. Nikovski and M. Brand, “Optimal parking in group elevator

control,” in Proc. IEEE International Conference on Robotics and

Automation, 2004, vol. 1, pp. 1002–1008.

[7] D. Nikovski and M. Brand, “Decision-theoretic group elevator

scheduling,” in Proc. the Thirteenth International Conference on

International Conference on Automated Planning and Scheduling,

2003, pp. 133–142.

[8] P. A. Gagniuc, Markov Chains: From Theory to Implementation

and Experimentation, USA, NJ: John Wiley & Sons, 2017.

[9] R. S. Sutton and A. G. Barto, Introduction to Reinforcement

Learning, Cambridge, MA.: MIT Press/Bradford Books, 2018, p.

14.

[10] R. E. Bellman, “A Markov decision process,” Journal of

Mathematical Mechanics, no. 6, pp. 679–688, 1957.

[11] R. E. Bellman, Dynamic Programming, Princeton: Princeton

University Press, 1957.

[12] R. E. Bellman and S. E. Dreyfus, “Functional approximations and

dynamic programming,” Mathematical Tables and Other Aids to

Computation, vol. 13, pp. 247–251, 1959.

[13] R. Howard, Dynamic Programming and Markov Processes, John

Wiley, 1960.

[14] L. N. Steimle, D. L. Kaufman and B. T. Denton, “Multi-model

Markov decision processes,” IISE Transactions, vol. 53, no. 10, pp.

1124–1139, 2021.

[15] D. Silver, A. Huang, and C. Maddison, “Mastering the game of Go

with deep neural networks and tree search,” Nature, no. 529, pp.

484–489, 2016.

[16] S. Karakovskiy and J. Togelius, “The mario ai benchmark and

competitions,” IEEE Transactions on Computational Intelligence

and AI in Games, vol. 4, no. 1, pp. 55–67, 2012.

[17] O. Tartan. (2023). MDP_GridWorld. [Online]. Available:

https://github.com/onertartan/RL-

GridWorld/blob/main/GridWorld5x5.m

[18] G. D. Closs, “The computer control of passenger traffic in large lift

systems,” Ph.D. Thesis, University of Manchester, Institute of

Science and Technology, Manchester, 1970.

[19] E. O. Tartan and C. Ciflikli, “A model for the visualization and

analysis of elevator traffic,” Transportation Planning and

Technology, vol. 42, no. 8, pp. 868–880, 2019.

[20] E. O. Tartan and C. Ciflikli. (2023). ESRA (elevator simulation,

research & analysis): An open source software tool for elevator

traffic simulation, research and analysis. [Online]. Available:

https://github.com/onertartan/elevator-simulator.git

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1131

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N5-1124

