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Abstract—In the last decade Reinforcement Learning (RL) 

has significantly changed the conventional control paradigm 

in many fields. RL approach is spreading with many 

applications such as autonomous driving and industry 

automation. Markov Decision Process (MDP) forms a 

mathematical idealized basis for RL if the explicit model is 

available.  Dynamic programming allows to find an optimal 

policy for sequential decision making in a MDP. In this study 

we consider the elevator control as a sequential decision 

making problem, describe it as a MDP with finite state space 

and solve it using dynamic programming. At each decision 

making time step we aim to take the optimal action to 

minimize the total of hall call waiting times in the episodic 

task. We consider a sample 6-floor building and simulate the 

proposed method in comparison with the conventional 

Nearest Car Method (NCM).  

 

Keywords—elevator control, Markov decision process, 

dynamic programming, optimal policy, sequential decision 

making 

 

I. INTRODUCTION 

Elevators have been considered as indispensable parts 

of urban life since the high-rise buildings became wide-

spread. Meanwhile developing efficient control methods 

for elevators has been a research field. High-rise buildings 

require installation of multiple elevators and elevator 

group control systems. Today most common form of 

elevator control is collective control in which hall calls and 

car calls are registered by push-buttons and responded in 

floor sequence [1]. In collective control systems single 

buttons or directional two push-buttons are used at each 

floor for hall call registration. Collective control with 

directional two push-buttons are called full collective 

control so-called as directional collective control.  

A major concern in elevator control is minimizing 

average waiting time of passengers to improve quality of 

service. To deal with this problem conventional rule based 

methods and stochastic optimization based methods were 

proposed. Classical control algorithms such as nearest car, 

fixed sectoring, bidirectional sectors, fixed sectoring, 

priority timed unidirectional sectors, and dynamic 

sectoring rely on rule-based approach [1]. Since each set 

of rules cannot perform generalization, in different cases, 

particular algorithms can be used in a hybrid way. Another 

approach is evolutionary optimization based elevator 

dispatching which aim to optimize a cost function [2–5]. 

In this approach metaheuristic algorithms such as Genetic 

Algorithm is used to minimize a metric, usually average 

passenger waiting time. 

In the last decade a great jump has been witnessed on 

Machine Learning (ML). With the availability of big data, 

computing resources and new algorithms, training deeper 

neural networks became feasible and Deep Learning 

concept emerged. Today ML applications are widely used 

in daily life as well as in various engineering problems. 

ML approaches can be considered under three main groups 

as supervised, unsupervised and reinforcement learning. 

Supervised learning techniques can be applied in problems 

like classification or regression if a set of inputs and 

corresponding labels are available. On the other hand, if 

labels are not available and extracting insights on data is 

aimed such as finding clusters or dimensionality reduction, 

then unsupervised learning approach can be followed. 

Reinforcement learning differs from other approaches as 

learning is performed through interaction of an agent with 

environment. In Reinforcement Learning (RL) problems, 

the agent takes action and receives a response from the 

environment. The response is called as reward and the goal 

is to maximize the total of expected rewards. Markov 

Decision Process (MDP) frames this problem on a more 

solid, idealized basis. Particularly, MDP forms a 

mathematically idealized base for reinforcement learning 

problem.  

In this study we regard the elevator control problem as 

a reinforcement learning problem and investigate it in a 

MDP framework specifically. Unlike dispatching 

approach, which allocates elevators to hall calls, our 

sequential decision making approach relies on choices of 

optimal actions based on the instant states. Previously, 

elevator system was represented as MDP model and 

dynamic programming was used to find optimal parking 

policy [6]. In another study decision making for elevator 

scheduling based on Markov Chains was presented [7]. 

However, an immediate assignment policy was assumed 

which prevents changing previous assignments and state 

space was limited to 84 states. We cover all possible 

actions including reversal of the car is possible if the car is 

empty. Consequently, size of state space reaches to 

122,880 for a six-floor building with single elevator. Since 

the state space grow exponentially as the number of 

elevators increases, we considered a single elevator setting. 
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Even for a single elevator, planning problem in elevator 

control is a NP-hard problem [7]. We believe that solving 

this problem by framing it as MDP and using dynamic 

programming, can form basis for future studies on control 

of complex elevator group systems by means of more 

advanced RL methods. 

The paper is structured as follows: First, we describe 

Markov Decision Process, then present elements of 

reinforcement learning. In the next part, we explain 

solving Bellman Optimality Equation using dynamic 

programming. Then, we model elevator control problem as 

MDP defining action / state spaces and rewards. Finally, 

we discuss simulation results and give conclusion.  

II. MARKOV DECISION PROCESS 

The Markov chain, which was introduced by A. Markov 

in the early 20th century, is a stochastic model that 

describes a sequence of possible events in which the 

probability of each event depends only on the previous 

state [8]. The Markov process, a broad term often used for 

Markov chains, is an extension of Markov chain, which 

also covers continuous state space. The history of the 

Markov process in control dates back to the 1950s. The 

term “optimal control” was first considered in the 1950s as 

a problem of designing a controller to minimize a system 

criterion for a dynamic system [9]. One of the approaches 

to this problem was developed in the mid-1950s by 

Bellman based on the theory of Hamilton and Jacobi in the 

19th century [9]. This approach uses the concepts of the 

state of a dynamic system and a value function or “optimal 

return function” to define an equation known as the 

Bellman equation [10]. Bellman presented the stochastic 

version of the optimal control problem using the Bellman 

equation as the Markov Decision Process [10]. The 

methods used to solve Bellman equation in a recursive 

manner are also introduced by Bellman and named as 

dynamic programming [11, 12]. Ronald Howard designed 

the policy iteration method for the optimal solution in 

MDPs [13]. The resulting theoretical foundation has 

formed the basis for one of the approaches in the field of 

artificial intelligence called Reinforcement Learning. 

Many problems in RL can be addressed within the MDP 

framework [14]. 

Markov processes are processes in which the 

probabilities of future possible states can be predicted 

based on the current state, rather than states in the past. The 

property of this lack of memory or the need for past in 

modeling transitions between states in the system is called 

the Markov property. For the state st at time t, Eq. (1) gives 

the probability of transition to the next time step: 

 1 1 1[ | ] [ | , , ]t t t tP s s P s s s+ +=  (1) 

In a discrete-time Markov process, at each time step, 

there is a probability distribution for the states that the 

stochastic process will progress to. This distribution gives 

the probabilities of transitions to different states depending 

on the choice of an action within the current state. A 

Markov process in which it is assumed that a reward is 

gained upon transition to the state according to the chosen 

action and in which the goal is to achieve the highest total 

reward throughout the process is referred to as a Markov 

Decision Process. MDPs provide a general framework for 

sequential decision making. Classic full collective elevator 

control systems are dynamic systems in which information 

about the destination floors of passengers is not available 

at the controller. The control of this dynamic system can 

be considered as a Reinforcement Learning problem and 

can be solved using dynamic programming in an MDP 

framework. 

III. ELEMENTS OF REINFORCEMENT LEARNING 

Reinforcement learning, in general, refers to the process 

of an agent learning which actions to take in which 

situations, in order to achieve a goal while interacting with 

its environment [9]. The fundamental elements of 

reinforcement learning are the agent, environment, states 

actions, reward signal, value function, policy, and the 

model.  

A. Agent 

Agent is the decision maker and has a goal in the 

reinforcement learning problem. Agent, interacts with the 

environment through its actions, can transition to different 

states in the environment as a result of its actions, and 

receives feedback from the environment based on its 

actions. Examples of agents include a robot with the goal 

of collecting trash and a player in the game of Go with the 

goal of defeating their opponent [15]. In elevator control 

problem, the agent is the controller of the elevator(s). 

B. Environment 

The environment is the medium in which the agent 

interacts. The agent cannot change the environment, but it 

can change the state within the environment through its 

actions. For example, in the elevator problem, the number 

of elevators and the number of floors in the building are 

elements related to the environment and cannot be changed. 

However, the elevator controller (agent) can change its 

current state by deciding to go down or up.   

C. State 

The state is the representation of the agent in the 

environment. For example, in the example of the trash 

collecting robot, the state could be represented by the 

robot’s position and battery status. Different state 

definitions may be given depending on the information 

available to the agent and the definition of the environment. 

A state at time t, st, is an element of the set of possible 

states St in the problem.  

D. Action 

An action is a choice that the agent can make from the 

set of possible actions it can take in its current state, 

causing an interaction with the environment. At, the action 

at time t is selected from A(st), the set of possible actions 

at state st. For example, in the Go game, every move the 

player can make is an action. In the considered elevator 

control problem actions can be moving up, moving down, 

waiting and picking up actions for up/down calls. 
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E. Reward and Return 

A reward signal serves to representing the goal of a 

reinforcement learning problem. The environment 

provides feedback to the agent in the form of a numerical 

reward signal after each of its actions. This allows the 

agent to measure whether an action is good, bad, or neutral. 

A reward signal can be positive, zero or negative. For 

example, in the game of Super Mario, moving to the right 

is a positive reward, while falling into a pit is a negative 

reward [16]. The agent aims to maximize the total of the 

reward signals, from the time current time step and 

onwards. Negative reward can be referred to as 

punishment. In a game consisting only of punishments 

(negative rewards), the goal is to receive the least total 

punishment. 

In applications with an end state, the agent-environment 

interaction is divided into sub-sections called episodes. 

These applications are called episodic tasks, while 

applications that cannot be divided into sub-sections are 

called continuous tasks [9]. The total amount of reward the 

agent will receive in tasks is called return and is given by 

Eq. (2).  
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In Eq. (2), γ is the discount factor 0 ≤ γ ≤ 1. If it is 

considered that importance of rewards decrease over time, 

γ is set to less than 1. A discount factor less than 1 can also 

guarantee convergence of G to a finite value in continuous 

tasks.  

F. Policy 

Policy represented by π is the probability matchings 

between the current state and the possible actions that can 

be taken in that state at each time step. In other words, it is 

the mechanism that determines which action will be 

chosen with what probability in the current state.  

An agent and environment interact in a series of discrete 

time steps t = 0, 1, 2, 3, … At each time step t, the agent 

receives a representation of the state, st ∈ St. Based on its 

policy π, the agent selects an action at from the set of 

possible actions A(st) with probability π(at|st). As a result 

of this action, the agent receives a numerical reward rt ∈ 

R(st) and state transition to the next state st+1 occurs. This 

process is shown in Fig. 1. 

Under a stochastic π policy, the expected reward in the 

state st can be given by Eq. (3) if the rewards for state 

transitions are constant. 

  1

'

| ( | ) ( ' | , ) ( ', , )t t t

a s

r s s a s p s s a r s a s + = =   (3) 

The probability p(s',r|s,a) is the probability of receiving 

the reward r in the possible s' state, after the action a is 

selected in the state st. r(s',a,s) is the reward for transition 

from the state st to the state s.  

 

 

Figure 1. Agent—environment interaction in reinforcement learning. 

G. Model 

In reinforcement learning, the model imitates the 

behavior of the environment and includes probability 

distributions of actions, states, and rewards. A model 

enables making inferences about how the agent-

environment interaction will go on. Using the model, given 

a state and action, the model can predict the next state and 

next reward. The model enables decision-making about 

actions by considering the possible future states before the 

actions referred to as planning are carried out [9]. 

Reinforcement learning methods without a model, are 

called model-free learning. In model free learning, 

exploration is needed through trial and error. 

H. State and Action Value Functions 

While the reward signal is an immediate feedback 

resulting from an action, the value function indicates the 

return that can be obtained from being in a particular state 

or from taking a particular action in a state while following 

a specific policy over consecutive time steps. The function 

that represents the value of the state is called the state value 

function, and the function that represents the value of the 

action is called the action value function. A particular 

action in a particular state may have a low instant reward, 

but it can have a high value if it leads to states with high 

rewards [9].  

The state value function in the case of following policy 

π is shown as vπ(s) and is defined by Eq. (4). 
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The state value function in Eq. (4) indicates the 

expected return if a π policy is followed at any time t in the 

state s. The action value function under a π policy is shown 

as qπ(s,a) and is expressed by Eq. (5). 
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The action value function qπ(s,a) indicates the expected 

return if the action a is taken at any time t in the state s, 

and then  policy π is followed. Using action value function, 

state value function vπ(s) can be given in Eq. (6) as: 

 ( | ) ,) )( (
a

sv a q ss a =  (6) 
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The action value function qπ(s,a) can be represented 

using probability function p as follows: 

 

'

' (( , ) ( ' | , )[ ( ) ', ), ]
s

q s a s vp s s a r a s s = +   (7) 

IV. OPTIMAL POLICY AND BELLMAN OPTIMALITY 

EQUATION 

In a Markov Decision Process, a policy π equal to or 

better than policy π' in all states, indicates that policy π 

results in equal or more return than policy π'. There is at 

least one policy that is equal to or better than all other 

policies and this policy is called as the optimal policy. An 

optimal policy is represented by π* and there may be more 

than one optimal policy. All optimal policies have the 

same optimal state-value function [9] as given in Eq. (8). 

 * (m )ax( ) ), , (v s v s s S a A s


=     (8) 

The optimal action value function is obtained by 

following the optimal policy after selecting an action a in 

a state s as follows: 

  ** 1 1( ) | ,( , ) tt t tv s s s a aq s a r  ++ = == +  (9) 

It can be expressed in the form of Bellman’s optimality 

equation in Eq. (10) by utilizing the recursive correlation 

relationship of the state value function. 
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Similarly, Bellman’s optimality equation for the action 

value function is expressed as in Eq. (11). 

 **

'

( , ) ( ' | , )[ ( ', , ) ' ]( )
s

q s a p s s a r s a v ss = +  (11) 

Value iteration is a method in dynamic programming to 

evaluate optimal value functions and find optimal policy. 

In value iteration Bellman optimality equations are 

transformed to update rules as follows:  

 1

'

max ( ' | , ) ( ', , ) ( ')( ) kk
a

s

p s sv a r s a ss v s+ = + (12) 

1
'

'

( ' | , ) ( ', ,( , ) max ( '))k
s

k

s

q sp s s a r a s v ss a +
 +
 

=  (13) 

For arbitrary v0 and q0, as k→∞ value functions 

converge to v* and q*. Using Eq. (13) state value function 

can be represented as in Eq. (14).  

 1 1 )max( ) ( ,k k
a

v s q s a+ +=  (14) 

Pseudo code of value iteration is given as in 

Algorithm  1. As the termination condition either a 

threshold for maximum difference of state values between 

consecutive iterations or maximum number of iterations 

can be used. After value iteration, assuming that value 

function v converged to v*, one more iteration over all 

states is needed to calculate q* again to find and record 

optimal actions in π(s). In other words, one policy update 

is needed to extract deterministic optimal policy from the 

optimal value function as given in Algorithm 2. A Matlab 

implementation of this process for sample GridWorld 

example is given in [17]. 
 

Algorithm 1: Value Iteration Algorithm - Finding v ≈ v* 

Initialize θ, V, S, A 

Set ∆ as θ 

while ∆ is greater than or equal to θ, do 

        for each state s in the set S, do 

               record last state value V(s) in v 

               for each action a in the set A(s), do 

                     calculate  q(s,a)  

               end 

               update V(s) as the maximum q value  

               update ∆ as the greater one of  ∆ and |v-V(s)|  

        end 

end 

 
Algorithm 2: Policy Extraction Algorithm - Finding π ≈ π* 

Initialize π 

for each state s in S, do 

     update v as V(s) 

     for each action a in the set A(s), do 

         calculate q(s,a) 

     end 

     update π(s) as the action a giving the maximum q value 

end 

 

V. STATE AND ACTION SPACE IN ELEVATOR CONTROL 

In this study we consider single elevator control in a 

MDP framework. This is a finite MDP, as the sets of states, 

actions, and rewards all have a finite number of elements. 

In a simplified setting, environment includes building, 

elevator and arriving passengers based on the traffic. In 

conventional directional collective elevator control 

systems passengers register a hall call using direction 

push-buttons. After the passenger enters the car, a car call 

is registered by the passenger which indicates the 

destination floor. We define a state in MDP using car floor, 

car direction, up car calls, down car calls, up hall calls and 

down hall calls. For a 3-floor building, sample state 

representations are given in Table I. Car direction is 

represented as 1 if the direction is up, −1 if the directions 

is down and 0 otherwise. For a building with NF floors, a 

state will be represented by 4  (NF − 1) + 2 vector. 
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TABLE I. STATE REPRESENTATION  

Car 

floor 

Car 

dir. 

Up  

Car 

Calls 

Down 

Car 

Calls 

Up  

Hall 

Calls S▲ 

Down  

Hall 

Calls S▼ 

F2 F3 F1 F2 F1 F2 F2 F3 

1 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 1 

1 0 0 0 0 0 0 0 1 0 

1 0 0 0 0 0 0 0 1 1 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

 

An up hall call cannot be registered at the highest floor 

and a down hall call cannot be registered at the lowest 

(entrance) floor. Therefore, in Table I, there is no column 

for F3 under up hall calls and there is no down column for 

F1 under down hall calls. Similarly, lowest floor (F1) 

cannot be an up destination floor, since there is no floor 

below it. Similarly, highest floor (F3) cannot be a down 

destination floor because there is no floor above it. Hence, 

there is no column for F1 under up car calls and there is no 

column for F3 under down car calls. Besides car direction 

cannot be 0 if there is at least one car call.  

Other constraints taken into account in creating state 

and action space, are based on the following common rules 

in directional elevator control [18]: 

• A car may not pass a floor at which a passenger 

wishes to exit.  

• The car calls are sequentially served in accordance 

with the car trip direction.  

• A car carrying passengers cannot change the trip 

direction if at least one passenger is inside.  

According to the rules above, there cannot be car call 

below the car floor, if the car is moving up, and there 

cannot be car call above the car floor, if the car is moving 

down. Considering these constraints, we create state space 

using four groups as S□, S∆, S▽, and Send. Here, car direction 

is represented as ∆ if the direction is up, ▽ if the direction 

is down and □ otherwise. Send includes states at terminal 

floors (first and last floor). Hall call direction is 

represented as ▲ if the direction is up and ▼ if the 

direction is down. 

A. S□ State Sub-space and A□ Action Sub-space 

S□ state sub-space defined as in Eq. (15) includes states 

in which elevator does not have a direction, scar_floor≠1 and 

scar_floor≠NF.  
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Corresponding action space A□ is given follows: 
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Actions are represented by symbols in Eq. (16). Action 

symbols and meanings are as follows: ↑ move up, ↓ move 

down,  pick up up-passenger,  pick up down-passenger 

and • wait. State transition probabilities due to the actions 

depend on traffic components and destination probability 

distributions [19]. For instance, the action moving up 

results in deterministic state transition which will change 

the elevator floor increasing it by 1. However, state 

transition due to the picking up passenger is stochastic in 

many cases and depend on the traffic components. For 

example, in pure incoming traffic, passenger can intend to 

travel to one of above floors according to uniform 

probability. This is shown in Fig. 2 for the sample case. 

Car direction is 1(up) and the incoming passenger at F1 is 

picked up. However, car call in the next state can be F2 or 

F3 for uniform destination distribution. On the other hand, 

in pure outgoing traffic, picking up a passenger will result 

in a car call for exit floor F1, which is deterministic state 

transition. 

 

 

Figure 2. A possible state transition due to the action . 

B. S∆ State Sub-space and A∆ Action Sub-space 

S∆ state sub-space defined as in Eq. (17) includes states 

where scar_floor ≠ NF and elevator direction is up. 

Corresponding action space A∆ is given in Eq. (18). 
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C. S▽  State Sub-space and A▽  Action Sub-space 

S▽ state sub-space defined as in Eq. (19) includes states 

where scar_floor≠1 and elevator direction is down. Eq. (20) 

gives the corresponding action space A▽. 
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D. Send State Sub-space and Aend  Action Sub-space 

Send state sub-space defined as in Eq. (21) includes states 

where scar_floor=1 or scar_floor=NF.  
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VI. REWARD DEFINITION IN ELEVATOR CONTROL 

Reward signals can be positive, zero or negative based 

on the goal of the problem. In elevator control, a major 

concern is to serve whereas minimizing average passenger 

waiting time. In conventional directional elevator control, 

a hall call represents at least one passenger, however there 

may be a passenger queue for the same call. Therefore, 

number of passengers is equal to or greater than number of 

hall calls. Nevertheless, reducing the average waiting time 

of hall calls can help reducing average waiting time of 

passengers, especially in a balanced arrival distribution. 

Consequently, at first we defined reward signal as the 

negative of sum of waiting times of hall calls. However, in 

experiments this definition resulted in interesting, 

undesired outcomes in certain states. For instance, if the 

car is idle and if there is not any hall call, it is observed that 

optimal policy gave the moving action. This is due to the 

fact that moving and waiting actions yields the same 

reward which is zero. Similarly, another effect of solely 

relying on waiting times, was observed in state where there 

is not any hall call, but car call. In this case since the 

reward is zero, waiting and moving actions yield the same 

zero reward. As a result, if waiting action is selected 

travelling passengers in the car also wait. Considering 

these two consequences, we add two terms to the sum of 

waiting hall calls which are waiting penalty and moving 

penalty. Accordingly, reward of action a in state s is 

defined as follows: 

( , ) . . .hc waiting cc moveR s a N t penalty N t penalty= −  −  −  (23) 

where Nhc is the number of hall calls, Ncc is the number of 

car calls and ∆t is the period of taking action. Waiting 

penalty prevents the idle car from movement and moving 

penalty prevents the car with passengers from waiting. 

VII. SIMULATION RESULTS 

Elevator traffic is composed of three components which 

are named as incoming, inter-floor and outgoing. These 

components are specified as ratios with regard to overall 

traffic and sum up to 1. In other words, traffic components 

represent probability distribution of passengers according 

to their destination intentions. To simulate elevator traffic 

we used the simulator shown in Fig. 3 and described 

in [20]. This simulator allows initially specifying 

configuration ranges to try different combinations of 

traffic components, cars and floors.  

In simulations, a sample building and elevator are set up 

with the parameters given in Table II. Due to the state 

space’s memory constraints the proposed control method 

is applied for single elevator. Using a step size of 0.1 we 

tried 66 possible combinations. Initial number of waiting 

passengers is chosen as 2, 3, and 4. As the reference 

method for comparison Nearest Car Method is used [1]. In 

each simulation total waiting time of passengers and hall 

calls are recorded. Waiting time of hall call is also named 

as system response time. For a single waiting passenger, 

passenger waiting time and system response time of call is 

equal. For each combination, simulation is run for 1000 

times and mean of total times (Mean_Total) are calculated. 

Results are given as differences (∆Mean_Total) between 

Mean_Total of the reference method’s outputs and 

Mean_Total of the proposed method’s output sums.  

 

 

Figure 3. Elevator traffic simulator. 
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TABLE II. BUILDING AND ELEVATOR CONFIGURATION 

Number 

of 

Floors 

Elevator 

Speed 

Floor 

Height 

Door 

Opening 

Time 

Door 

Closing 

Time 

Transfer 

Time 

6 1.5 m/s 3 m 2 s 2 s 3 s 

TABLE III. ∆MEAN_TOTAL OF PASSENGER WAITING TIME AND HALL 

CALL WAITING TIME FOR NP = 2 

Inc Inter-floor 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 5.8 4.8 4.4 3.7 3.3 2.9 2.6 2.2 1.9 1.4 1.3 

0.1 4.9 3.8 3.9 3.1 2.8 2.6 1.9 1.5 1.1 0.9 - 

0.2 4.1 3.3 2.9 2.7 2.0 1.9 1.7 1.1 0.6 0.0 - 

0.3 3.6 3.0 2.3 2.1 1.7 1.3 0.7 0.6 - - - 

0.4 3.1 2.2 1.7 1.6 1.1 0.7 0.5 - - - - 

0.5 2.3 1.7 1.8 1.1 0.7 0.4 - - - - - 

0.6 1.9 1.5 1.0 0.5 0.1 - - - - - - 

0.7 1.4 1.0 0.6 0.1 - - - - - - - 

0.8 0.9 0.5 0.1 - - - - - - - - 

0.9 0.6 0.0 - - - - - - - - - 

1 0.0 - - - - - - - - - - 

 

Since ∆Mean_Total values of waiting times and hall call 

times are same for 2 passengers, results for 2 passengers 

are given as a single table, in Table III. For 3 and 4 initial 

passengers ∆Mean_Total results of passenger and hall 

waiting times are given through Tables IV–VII. In each 

condition MDP based control resulted in waiting times less 

than or equal to the reference method’s. Especially in 

heavy outgoing traffic reference method operates poorly 

due to the undesired bunching elevators. To handle this, a 

solution is to collect passengers starting from the highest 

floor. This explicit rule based method is used only under 

heavy outgoing traffic in directional collective control or 

used in single push button systems where inter-floor traffic 

is not expected [1]. This type of control is named as down 

collective control (so-called up-distributive, down 

collective) where all hall calls are regarded as down calls. 

The proposed method finds out this strategy by framing the 

problem as MDP and using dynamic programming. In 

general terms, rule based approaches try to find different 

set of rules for different conditions which is not always 

feasible. On the other hand, in the proposed approach, 

optimal policy includes optimal actions for different states. 

TABLE IV. ∆MEAN_TOTAL OF HALL CALL WAITING TIME FOR NP = 3 

Inc Inter-floor 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 14.9 13.4 12.4 10.6 9.5 7.9 5.8 4.7 4.2 2.9 2.2 

0.1 13.1 11.0 9.9 8.7 6.8 6.2 4.6 3.7 1.9 1.6 - 

0.2 10.6 9.2 7.4 6.6 5.2 4.4 2.7 2.0 1.5 - - 

0.3 8.1 6.7 5.6 4.6 4.1 2.9 1.8 0.9 - - - 

0.4 6.7 5.5 4.4 3.3 2.6 1.5 0.7 - - - - 

0.5 5.6 4.5 3.7 2.5 1.3 0.4 - - - - - 

0.6 4.2 2.9 2.4 1.3 0.3 - - - - - - 

0.7 3.2 2.1 1.2 0.2 - - - - - - - 

0.8 2.3 0.9 0.1 - - - - - - - - 

0.9 1.2 0.0 - - - - - - - - - 

1 0.0 - - - - - - - - - - 

TABLE V. ∆MEAN_TOTAL OF PASSENGER WAITING TIME FOR NP = 3 

Inc Inter-floor 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 16.1 15.0 13.7 11.8 10.4 9.3 6.7 5.2 4.4 2.8 2.4 

0.1 14.6 12.4 10.8 9.5 7.7 6.5 4.9 4.1 2.2 1.8 - 

0.2 11.4 9.7 8.3 7.2 5.6 4.8 2.9 2.1 1.5 - - 

0.3 8.6 7.0 5.6 5.0 4.4 3.1 1.8 1.0 - - - 

0.4 6.8 5.4 4.4 3.3 2.5 1.6 0.8 - - - - 

0.5 5.7 4.3 3.2 2.3 1.2 0.4 - - - - - 

0.6 3.6 2.4 1.9 1.0 0.3 - - - - - - 

0.7 2.3 1.5 1.0 0.2 - - - - - - - 

0.8 1.4 0.5 0.1 - - - - - - - - 

0.9 0.7 0.0 - - - - - - - - - 

1 0.0 - - - - - - - - - - 

TABLE VI. ∆MEAN_TOTAL OF HALL CALL WAITING TIME FOR NP = 4 

Inc Inter-floor 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 26.9 23.1 20.2 17.4 13.8 11.1 8.9 6.8 5.9 3.6 2.8 

0.1 20.3 17.1 13.7 12.3 10.3 8.2 6.6 4.8 2.9 2.3 - 

0.2 15.0 12.5 11.5 9.9 8.1 5.8 4.5 2.4 1.6 - - 

0.3 12.7 10.1 8.4 6.7 5.2 3.6 2.4 0.8 - - - 

0.4 10.1 7.9 6.0 5.2 3.5 2.0 0.7 - - - - 

0.5 8.0 5.9 4.9 3.3 2.1 0.5 - - - - - 

0.6 6.3 4.4 3.4 1.7 0.2 - - - - - - 

0.7 4.7 3.8 2.2 0.1 - - - - - - - 

0.8 4.1 1.9 0.1 - - - - - - - - 

0.9 2.1 0.0 - - - - - - - - - 

1 0.0 - - - - - - - - - - 

TABLE VII. ∆MEAN_TOTAL OF PASSENGER WAITING TIME FOR NP= 4 

Inc Inter-floor 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 32.7 28.0 25.3 21.8 17.9 14.4 11.5 8.8 7.7 5.0 3.4 

0.1 24.9 20.9 17.5 15.1 12.7 9.7 8.0 5.6 3.7 2.9 - 

0.2 17.8 15.0 15.0 12.6 9.0 6.9 5.8 3.1 1.9 - - 

0.3 14.3 11.5 8.5 6.9 5.4 3.9 2.6 0.8 - - - 

0.4 10.3 8.2 6.0 4.9 3.0 1.8 0.8 - - - - 

0.5 6.6 5.0 3.7 2.7 1.6 0.6 - - - - - 

0.6 4.7 2.8 2.1 1.3 0.3 - - - - - - 

0.7 2.7 2.2 1.0 0.2 - - - - - - - 

0.8 1.5 0.7 0.1 - - - - - - - - 

0.9 0.5 0.0 - - - - - - - - - 

1 0.0 - - - - - - - - - - 

 

VIII. CONCLUSION 

In this study we considered sequential decision making 

for elevator control as a reinforcement learning problem 

and modeled it as a finite MDP. We described state space, 

action space and dynamics of the model based on the 

elevator traffic components and solved the MDP using 

dynamic programming. We used elevator traffic simulator 

to simulate and verify the theoretically proposed model. 

For comparison we involved a conventional elevator 

control method which is known as Nearest Car Method. 

The proposed method outperformed in most of conditions 

and in some conditions gave the same result. Since NCM 

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1130



is not suitable for outgoing traffic, we also tried down 

collective control and obtained the same results by the 

proposed method in pure outgoing traffic. As the optimal 

policy includes optimal actions for each state, it presents 

generalization capability. However, due to the curse of 

dimensionality, as the number of floors and elevators 

increase, the state space will grow exponentially. 

Therefore, regarding memory and computation concerns, 

more advanced RL methods which approximates MDP can 

be tried for more complex cases. In conclusion, in future 

studies we regard this study as a basis and aim to extend 

the framework to other model-free RL methods such as Q-

learning which do not rely on explicit state-transition 

probabilities and rewards. A such approach could deal with 

the complex control problem of elevator group systems 

and make autonomous driving elevators possible. 
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