
Reducing the Effect of Denial of Service in Web 

Service Environment 
 

Abdulrahman Alshayea 1,* and Mohammad Ali H. Eljinini 2 

1 Department of Software Engineering, Isra University, Amman, Jordan  
2 Department of Computer Information Systems, Isra University, Amman, Jordan; 

Email: ma.eljinini@iu.edu.jo (M.A.E.) 

*Correspondence: abo_od_x@yahoo.com (A.A.) 

 

 

 
Abstract—Denial of Service (DoS) attacks can cost online and 

web service providers money and damage their reputations. 

The lack of security protection in web services creates a 

vulnerability attackers can exploit. A new XDoS attack 

targeting web services has recently emerged, using XML 

rather than plain old HTML as the attack vector. This paper 

proposes a middleware tool for detecting and preventing web 

service XDoS and HTTP flooding attacks. A rule-based 

technique classifies requests as benign or malicious to detect 

XDoS attacks. According to the middleware tool’s trial 

findings, rule-based technology has successfully recognized 

and blocked XDoS and HTTP flooding assaults such as large 

payloads, forceful parsing, and external XML elements in 

near-real time, such as 0.006s across web services. 

Middleware protects web services from XDoS and 

distributed XDoS attacks by ensuring nearly 100% service 

availability for routine requests (DXDoS).  

 

Keywords—denial of service, web service, attack 

 

I. INTRODUCTION 

Web Services (WS) are implemented in various 

scenarios, including small and large-scale businesses. Self-

descriptive components that can be used by other software 

across the Web can be provided by Web Service 

Description Language (WSDL) and the Simple Object 

Access Protocol (SOAP)-based web services that support 

standard protocols like SOAP and WSDL. Web services 

based on WSDL and SOAP are now essential components 

of system integration. Web services provide a simple, 

well-defined interface for providers and consumers, 

consisting of actions and input/output parameters specified 

by the provider [1–3]. Various technologies and 

management processes ensure the confidentiality, integrity, 

and availability of information transmitted over the 

Internet. This paper discusses Web services security and 

the testing and validation techniques needed from 

development to deployment [4]. Many general security 

risks may exist in Web service security issues; however, 

evaluating general threats in any Web application is 

essential before analyzing security concerns specific to a 

Web service [5, 6].  

In this paper, we first investigate and evaluate the 

security of web service frameworks. Then, we propose an 

anti-XDoS and anti-HTTP flooding solution that uses a 

middleware tool to detect and prevent real-time XDoS and 

HTTP flooding attacks. Finally, we assess the proposed 

method using the two scenarios we developed. The 

contribution of work is as follows: the accessibility of 

online services is a crucial aspect of company continuity. 

Therefore, XDoS attacks are a legitimate concern for 

online businesses. When an XDoS attack occurs, the 

system becomes inaccessible to its intended users because 

all available computing resources, such as the CPU and 

RAM, are utilized. Experiments with XDoS attacks in this 

paper demonstrate that even with a modest allocation of 

resources, they can bring down a web server. Testing has 

shown that the tool effectively detects and prevents such 

attacks. In addition, the middleware tool can detect and 

prevent XDoS and flooding attacks in real-time. In 

addition, the tool’s availability for routine requests is 

nearly perfect.  

The structure of the paper is presented as follows: 

Section II presents related work on Denial-of-Service 

(DoS) attacks caused by a communication outage. In 

Section III, we go over our research methodology in detail. 

Section IV contains a discussion of our work. Finally, in 

Section V, we present our work’s evaluation, and in 

Section VI, we provide a conclusion and future work. 

II. LITERATURE REVIEW 

Many technology experts regard web services and 

service-oriented architectures as two of the most 

significant developments of the last decade. Most resulting 

attacks are of the “Denial-of-Service” (DoS) variety. The 

magnitude of Distributed Denial of Service (DDoS) 

attacks on the Estonian government and commercial 

websites in April and May of 2007 exemplifies this 

perfectly [7]. The attack used computer network flooding 

tactics, specifically botnets. Attacks on web-based denial 

of service require fewer resources than attacks on most 

networks. It is possible to hit a wide range of targets. 

Services, Web services with WS-Security, and Web-

oriented Web services. Web Service variants (such as WS-

BAG) apply to all Web Service compositions, but for 

illustration purposes, we have chosen WS-BP (or BPEL, 

 

Manuscript received October 5, 2022; revised November 21, 2022; 

accepted February 1, 2023; published October 20, 2023. 

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1096doi: 10.12720/jait.14.5.1096-1102

mailto:ma.eljinini@iu.edu.jo
mailto:abo_od_x@yahoo.com


for short) as an attack paradigm. Everything, however, is 

subject to change [8, 9].  

Cloud Computing’s new approach poses a new level of 

protection problems. First, Grobauer [10] revealed security 

issues related to cloud computing. Second, the weaknesses 

are: (1) VM escape; (2) session hijacking; (3) unsafe 

cryptography; (4) interface connection to the management 

system; and (5) online protocol security flaws, including 

online data retrieval and extraction. Third, the review 

concluded that existing protection measures are not 

tailored to Cloud infrastructures, so new measures are 

necessary. While they discussed Cloud-specific security 

threats, no viable alternatives are offered. In Ref. [11], the 

researchers identified, organized, interpreted, and 

measured cloud data-taxology: network design, device 

protection, data processing problems, and storage rights. 

They often used pie charts to illustrate protection threats 

and countermeasures. Security issues are considered 12%, 

and less than a third of the work is being done on possible 

alternatives. It means finding new ways to separate VMs 

from each other to prevent hardware attacks (CPU, storage, 

memory). External Cloud firewalls shield the provider’s 

networks against insiders and external threats, mitigating 

Denial-of-Service (DoS) and Distributed-Denial-of-

Service (DDoS) assaults. We have found three types of 

Cloud Security: as a Service (SaaS, PaaS, and IaaS) [9]. 

They used a test to investigate Cloud Computing risks and 

an assessment implementing machine learning methods to 

uncover them. In Ref. [12], the authors identified, 

classified, and listed the various security problems, 

weaknesses, strategies, data security procedures, and 

platforms needed for the SaaS, PaaS, IaaS, and OaaS 

models. The paper detailed many types of attacks: service 

hijacking, code theft, DDoS, and memory problems on 

virtual machines. 

Khalil et al. [13] categorized cloud threats into 

standards, control, infrastructure, data, network, and 

networking standards, as well as defense (IMS). Only 

intrusions that have been detected are studied (IMS). Ali 

et al. [14] showed that connectivity and cloud protection 

problems can be presented at the level of the virtual system, 

the client-server level, and the user level. Various 

countermeasures have been discussed to deal with the 

protection problems. They used tables to highlight the 

various countermeasures and provided additional 

information on each one of them. In recent research on the 

forms of Distributed Denial of Service (DoS) attacks in the 

cloud computing world features several virtual machines 

and hypervisor threats [15]. Denial of Service and cloud 

threats are also used in the authors’ well-known network 

and infrastructure security strategies. In an aggressive 

denial-of-of-service assault against a cloud infrastructure 

survey [16], an application-level assault is split into two 

categories: infrastructure and creative. Additional cloud 

computing capabilities (centralized control, resource 

access, flexibility) are required to protect end-users and 

cloud resources. Protection depends on the consumer or 

the supplier: depending on the model. It could be one or 

the other. As mentioned above, cloud computing 

protection is becoming well-understood. Our investigation 

explicitly covers Distributed Denial of Service (DDoS) 

and DDoS assaults on cloud computing. The following 

pages covered cloud infrastructure attack modes and 

security models. 

Abdelsayed and Glimsholt et al. [17] have suggested a 

system to analyze network traffic using heuristic principles 

such as tabulated packet statistics. This procedure uses 

several pre-configured tables to identify domain and IP-

address imbalance. In Ref. [18], it has also been suggested 

to implement a way of detecting DDoS attacks in local 

networks by measuring the flow entropy of the network 

routers and reporting if it is missing. In addition, Flash 

mobs are distinguished from Distributed Denial of Service 

(DDoS) attacks because of the lack of knowledge distance. 

In contrast to previous studies, the current approach relies 

on data and hypotheses. At the beginning of this process, 

the analysis of the local network’s entropy is performed, 

and if the value drops over time, an attack signal is 

generated. Suspected network flows result in a decrease in 

router flow entropy. In Ref. [19], a new Distributed Denial 

of Service (DDoS) mitigation method is built on teamwork, 

and attacks may be deterred or addressed at the root, 

considering the attacker’s location and the attacked 

locations. Anitha and Malliga [20] employed CLASSIE, a 

rule-based detection framework, to identify XDoS assaults. 

The packet tagging approach was used to avoid spoofing 

attacks. There should be a mechanism one hop away from 

the host to recognize known floods and XDoS assaults. In 

addition, CLASSIE drops packets that match one of the 

rule sets. Edge and core routers flag packets that have 

passed CLASSIE testing. One bit is needed to show that a 

packet has been tagged at the edge router. 

III. MATERIALS AND METHODS 

The web service engine requires an XML parser to parse 

an incoming SOAP message. An attacker could use this 

parser to send malicious SOAP requests for XDoS attacks. 

Including a Document Type Definition (DTD) in an XML 

document may cause the parser to behave  

differently [21, 22].  

According to a recent study, XDoS and DXDoS are 

more harmful than traditional DoS [23]. SOAP requests 

containing malicious XML content are sent as part of these 

attacks designed to consume system resources. As a result, 

because these malicious requests appear to be legitimate 

packets, TCP/network IPs or transportation layers fail to 

detect them. Because firewalls cannot scan XML content 

for suspicious packets, stopping malicious traffic with 

firewalls is difficult. 

As a result, this research aims to fill that void by 

presenting a middleware solution that uses deep XML 

analysis techniques to identify and mitigate flooding 

attacks at the application and network levels of the OSI 

model. This method is based on the notion that XML 

packets can be analyzed in two ways: content-wise and 

structure-wise. Furthermore, using a rule-based 

classification approach, the middleware tool classifies 

these packets as benign or harmful. 

With the proposed technology, intelligent detection and 

prevention of XDoS and HTTP flooding attacks in web 

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1097



services are possible. The suggested tool simplifies 

implementing the strategy on any public or commercial 

web service-based application. The utility can be deployed 

using web service and middleware servers. The proposed 

tool has two main parts the rule-based classification 

module and the mitigation module shown in Fig. 1. 
 

 

Figure 1. System of proposed work. 

Fig. 1 depicts three primary levels: the client access 

layer, the middleware layer, and the web service layer. 

First, one or more web services may be clients to the web 

service providing the client access layer. Second, the 

middleware layer receives the HTTP/SOAP request from 

the client layer and categorizes it according to predefined 

criteria. Finally, the web service layer receives and 

processes soap requests before returning a SOAP response 

with the necessary results to the original requester. 

According to 20 rules [23] described in Table I, the rule-

based categorization module examines incoming requests 

to see if they are legitimate or malicious. The regulations 

consider the number of requests, packet size, SOAP size, 

nested attributes, entity count, DTD declaration in SOAP 

requests, and the overlong name of attributes or entities. 

IP addresses are checked and compared to a list of IP 

addresses the firewall has already blacklisted. The firewall 

will reject the connection if the source IP address is on the 

blocked list. If the IP address is not one of the ones on the 

blacklist, the client request will be routed to the function 

that checks for request attempts, if necessary. Fig. 2 

depicts the rule-based categorization module. 
 

 

Figure 2. Classification module based on Rules. 

To prevent flooding attacks, the middleware tool limits 

the number of requests. A client may make only one 

request during a given time. The default value is 1000 ms. 

For this purpose, customers’ IP addresses and the most 

recent time they requested a web service are saved in a 

monitoring list. The total number of tries is calculated 

using the following formula: 𝑇𝑡  ≤ (𝑅𝑐 −  𝑅𝑖) 

where: 

𝑇𝑡: Time threshold 

𝑅𝑐: Time of the current request 

𝑅𝑖: Time of the last request 

TABLE I. SELECTION OF THE 20 RULES IN OUR WORK 

No 

Features 

Decision 
No Request 

No Invalid 

Request 
Request Size SOAP Size 

Nested 

Attributes 

Nested 

Entity 

DTD 

Declaration 

Overlong 

Name 

1 V V N N NO NO NO NO A 

2 V V N N NO NO NO YES D 

3 V V N N NO NO YES NO D 

4 V V N N NO YES NO NO D 

5 V V N N YES NO NO NO D 

6 V V N L NO NO NO NO D 

7 V V L V NO NO NO NO D 

8 V E N N NO NO NO NO D 

9 E V N N NO NO NO NO D 

10 V V N N NO NO YES YES D 

11 V V N N NO YES YES YES D 

12 V V N N YES NO YES YES D 

13 V V N N YES YES YES YES D 

14 V V N L YES YES YES YES D 

15 V V L L YES YES YES YES D 

16 V E L L YES YES YES YES D 

17 E E L L YES YES YES YES D 

18 V V - - - - - - A 

19 V E - - - - - - D 

20 V V N - - - - - A 

V= Valid; N = Normal; A= Allow; D= Deny; E= Exceed; L=Large. 

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1098



The request’s features are sifted through at this point. 

The features are tested and confirmed to ensure that the 

XML attack does not compromise the service. Following 

retrieving the characteristics, the decision is made using 

the 20 rules. Denied requests are discarded and routed to 

the Handling Response Function. The request will be 

routed to the Handling Request Function if the judge 

allows it. Table I shows a selection of the developed  

rules [23]. 

The current client’s connection will be terminated, and 

the IP address of the client will be sent to the mitigation 

module. 

To quickly remove the IP addresses of customers who 

make large requests to the web server, the mitigation 

module uses a block listing of suspicious IP addresses. 

Furthermore, before allowing or rejecting a client’s request, 

the mitigation module compares the client’s request ratio 

to the baseline ratio. In addition, the mitigation module can 

modify firewall rules to prevent future attacks. 

The following HTTP response is sent to clients by the 

middleware tool see Table II, then, the web service 

receives the client’s request and sends it to the Handling 

Request Function. 

TABLE II. RETURNS RESPONSE WITH MEANING DETAILS 

No 
Return 

Response 
Meaning Response 

1 200 There is no problem with this request; it is OK 

2 400 A request for an invalid request is a bad one 

3 404 
A method that is not authorized is marked with a 

405 Method Not Allowed error. 

4 405 Unable to locate the requested URL; not found 

5 500 Internal Server Error, a Server error 

IV. RESULT AND DISCUSSION 

We will evaluate the recommended strategy based on 

the server response time. As a result, we use a regular 

mode to calculate the server response time for the pre-

prepared SOAP queries. Fig. 3 depicts a typical mode of 

operation for the response time collection technique. 

Microsoft IIS version 10 security settings and ASMX web 

service countermeasures will be used in regular mode. 

Furthermore, the login page now includes a username and 

password field to improve security. There will be no 

assault in this situation. 

 

 

Figure 3. Time stamping in normal mode for server response times. 

Scenario 1 experiment settings were identical to those 

in Normal mode. It was, however, simulated as if it were 

being attacked. By sending malicious SOAP queries to the 

web service, an attacker can cause a service outage. The 

SOAP requests generated by the typical user will be sent 

simultaneously. As a result, as shown in Fig. 4, each 

request would have to be analyzed. 

 

 

Figure 4. Scenario 1. 

In Scenario 2, users could not access the web service 

directly from the system’s back end. Instead, to access the 

web service, users had to utilize the middleware tool. The 

second case is shown in Fig. 5. 

 

 

Figure 5. Scenario 2 

The consequences of both situations will be discussed 

in this section. Based on the kind of XDoS assaults, the 

two scenarios are evaluated. 

A. Dataset 

In this section, we will attempt to determine the 

experimental controls. This investigation begins by 

employing the ASMX web service and the programming 

language. Net C#. Microsoft SQL 2014 shall serve as the 

database management system Version 10 of Internet 

Information Service (IIS) hosts the active website. This 

middleware product was developed using C# as its 

programming language. In addition, Windows Firewall is 

the add-on that enables network-layer security. 

For this task, a cluster of four computers is utilized. The 

middleware server comprises two computers, one running 

Windows service provider and the other Windows Server 

2016. Both of the other computers pose as legitimate users 

and malicious hackers. 

The suggested technique is evaluated based on the 

server response time. Thus, the server response time for 

SOAP queries that have been prepared. The SOAP 

requests contain Normal, Oversized payload, Deep nested 

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1099



payload, XML external entity, XML entity expansion, 

XML attribute count, XML entity count, and Overlong 

Names requests. The quantity per request is twenty. 

The outcome is a draw based on the 20 rules listed in 

Table I. The 20 rules are evaluated using two situations in 

which each rule is under assault. The time that is recorded 

represents the server’s response. 

B. Attack with a Large Payload 

Scenario 2 has outperformed Scenario 1 regarding the 

20 “Oversized Payload” requests, as shown in Fig. 6, by 

employing the suggested defensive strategy. Scenario 1 

has an average reaction time of 0.459 s, while Scenario 2 

has an average reaction time of 0.006 s. 
 

 

Figure 6. Result request “Oversized payload”. 

C. Attack with a Large Payload 

The 20 ‘Deeply Nested Payload’ requests show that 

Scenario 2 outperforms Scenario 1. Scenario 1 takes an 

average of 0.171 s to respond, whereas Scenario 2 takes 

only 0.007 s, as shown in Fig. 7. 
 

 

Figure 7. Result Request for deeply nested payload. 

 

Figure 8. XML attribute count attack result. 

D. Attack on the XML Attribute Count 

Fig. 8 shows the results of both “XML attribute count 

attack” queries. According to the findings, Scenario 2 

outperformed Scenario 1 for the “XML attribute count 

attack” queries. The average reaction time in Scenario 1 is 

0.130 s, while the average response time in Scenario 2 is 

0.007 s. 

E. Attack on the XML Element Counts 

Fig. 9 depicts the results of both “XML element count 

attack” requests. Scenario 2 outperformed Scenario 1 and 

the Normal scenario in this experiment, yielding the same 

results. Scenario 1 has an average response time of 0.118  s, 

while Scenario 2 has a response time of 0.006 s. 
 

 

Figure 9. Response to the “XML element counts assault”. 

F. An Exploit against the XML Entity Expansion 

Fig. 10 shows that Scenario 2 outperformed Scenario 1 

for the twenty “XML entity expansion attack” requests, 

with an average response time of 0.067 s versus 0.126 s for 

Scenario 1. 
 

 

Figure 10. The ‘XML entity expansion attack’ request’s outcome. 

G. The Attack on an XML External Entity 

Fig. 11 depicts the results of the “XML external entity 

attack” queries in both cases. Scenario 2 outperformed 

Scenario 1 for the twenty “XML external entity attack” 

queries, with an average response time of 0.067 s vs. 

0.081  s. 

H. Overlong Names Attack XML 

Fig. 12 depicts the results of both scenarios for 

“overlong names” queries. Scenario 2 outperformed 

Scenario 1 for the twenty “XML external entity assault” 

requests. Scenario 1 has a response time of 0.085 s, while 

Scenario 2 has a response time of 0.070 s. 

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1100



 

Figure 11. The attack request resulted in an “XML External Entity 

attack”. 

 

Figure 12. The attack request resulted in an “XML External Entity 

attack”. 

TABLE III. RESPONDING TIMES FOR THE SEVEN DIFFERENT KINDS OF SOAP QUERIES 

Scenario 

No 

Response of Time Average (ms) 

Oversized 

payload 

In deep 

payload 

XML 

attribute 

XML 

element 

XML 

entity 

XML external 

entity 

XML overlong 

name 

Sce.1 459 171 130 118 126 81 85 

Sce.2 6 7 7 6 67 67 70 

 

Table III summarizes the average comparisons of the 

seven XDoS assaults conducted on Scenario 1 (which did 

not use the proposed defense) and Scenario 2 (which did 

use the proposed defense). 

The experiment was first run with the same parameters 

as the Normal setting. On the other hand, an attack 

simulation was staged to give the impression that the city 

was under siege. The attacker would send malicious SOAP 

requests to the web service for a denial-of-service attack. 

At the same time, the average user will submit the prefab 

SOAP requests. All demands would be weighed in this 

manner. This is illustrated in Fig. 4. 

In this case, as shown in Scenario 2, the web service was 

in the backend and inaccessible to users. Users had to use 

the middleware tool to connect to the web service. Fig. 5 

depicts the alternative case. 

V. CONCLUSION 

This study was conducted to learn more about popular 

web service frameworks and how they respond to denial-

of-service attacks. Using relevant security research and 

web service attacking technologies, we built our Denial of 

Service (DoS) arsenal. These assaults were carried out 

after they had been planned. We devised a multi-phased 

testing strategy to assess how a service platform operates 

during attacks and detect potential attack effects. Using 

real-world methods ensures that application and service 

platform developers and providers can assess the security 

of their service platforms. The availability of web-based 

services is critical to ensuring business continuity. The 

consequences of XDoS attacks pose a severe threat to web-

based systems. Massive, Distributed Denial of Service 

(DDoS) attacks necessitate significant computing 

resources, such as CPU and memory, rendering the system 

inaccessible to legitimate users. The XDoS attacks 

examined in this study demonstrated that they could halt a 

web server with limited resources. 

A middleware tool has been designed and developed to 

address this issue. The tool’s effectiveness in detecting and 

blocking these attacks has been demonstrated in testing. 

Furthermore, the middleware tool can detect and prevent 

Distributing Denial of Service (DDoS) and flooding 

attacks in near real-time. Furthermore, the middleware tool 

ensures that regular requests are serviced at a nearly 100% 

reliable rate. We will focus on time in the future, so we 

must devise a method to detect apps that can make bogus 

requests. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

The authors of this paper collaborated to present it in the 

most effective way possible, with AA proposing the 

methodology and designing the experiment. MAE formats 

the concept and writes and edits the paper; all authors have 

approved the final version. 

REFERENCES 

[1] B. S. Balaji, S. Balakrishnan, K. Venkatachalam, V. Jeyakrishnan 

et al., “Automated query classification-based web service similarity 

technique using machine learning,” Journal of Ambient Intelligence 

and Humanized Computing, vol. 12, no. 6, pp. 6169–6180, 2021. 

[2] Q. Yu, X. Liu, A. Bouguettaya, B. Medjahed et al., “Deploying and 

managing web services: Issues, solutions, and directions,” The 

VLDB Journal, vol. 17, no. 3, pp. 537–572, 2008. 

[3] Z. Wu, Y. Yin, G. Li, M. Yue et al., “Coherent detection of 

synchronous low-rate DoS attacks,” Security and Communication 

Networks, vol. 2021, 2021. 

[4] L. O’Brien, P. Merson, L. Bass et al., “Quality attributes for service-

oriented architectures,” in Proc. International Workshop on 

Systems Development in SOA Environments (SDSOA’07: ICSE 

Workshops 2007), IEEE, 2007, p. 3.  

[5] R. Daigneau, Service Design Patterns: Fundamental Design 

Solutions for SOAP/WSDL and Restful Web Services, Addison-

Wesley, 2012. 

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1101



[6] S. Bourekkache, O. Kazar, and A. Aloui, “Computer and network 

security: Ontological and multi-agent system for intrusion 

detection,” J. Digit. Inf. Manag., vol. 17, no. 3, p. 133, 2019. 

[7] M. Jensen, N. Gruschka, R. Herkenhoner, N. Luttenberger et al., 

“Soa and web services: New technologies, new standards-new 

attacks,” in Proc. Fifth European Conference on Web Services 

(ECOWS’07), IEEE, 2007, pp. 35–44.  

[8] G. P. Bherde and M. Pund, “Recent attack prevention techniques in 

web service applications,” in Proc. 2016 International Conference 

on Automatic Control and Dynamic Optimization Techniques 

(ICACDOT), IEEE, 2016, pp. 1174–1180.  

[9] M. Elhamam, A. Chillali, L. El-Fadil et al., “Public key 

cryptosystem and binary Edwards curves on the ring F2n[e], e2 = e 

for data management,” in Proc. 2022 2nd International Conference 

on Innovative Research in Applied Science, Engineering and 

Technology (IRASET), IEEE, 2022, pp. 1–4.  

[10] B. Grobauer, T. Walloschek, E. Stocker et al., “Understanding 

cloud computing vulnerabilities,” IEEE Security & Privacy, vol. 9, 

no. 2, pp. 50–57, 2010. 

[11] N. Gonzalez et al., “A quantitative analysis of current security 

concerns and solutions for cloud computing,” Journal of Cloud 

Computing: Advances, Systems and Applications, vol. 1, no. 1, pp. 

1–18, 2012. 

[12] K. Hashizume, D. G. Rosado, E. Fernández-Medina, E. B. 

Fernandez et al., “An analysis of security issues for cloud 

computing,” Journal of internet services and applications, vol. 4, 

no. 1, pp. 1–13, 2013. 

[13] I. M. Khalil, A. Khreishah, M. Azeem et al., “Cloud computing 

security: A survey,” Computers, vol. 3, no. 1, pp. 1–35, 2014. 

[14] M. Ali, S. U. Khan, A. V. Vasilakos et al., “Security in cloud 

computing: Opportunities and challenges,” Information Sciences, 

vol. 305, pp. 357–383, 2015. 

[15] M. Masdari and M. Jalali, “A survey and taxonomy of DoS attacks 

in cloud computing,” Security and Communication Networks, vol. 

9, no. 16, pp. 3724–3751, 2016. 

[16] O. Osanaiye, K.-K. R. Choo, M. Dlodlo et al., “Distributed Denial 

of Service (DDoS) resilience in cloud: Review and conceptual 

cloud DDoS mitigation framework,” Journal of Network and 

Computer Applications, vol. 67, pp. 147–165, 2016. 

[17] S. Abdelsayed, D. Glimsholt, C. Leckie, S. Ryan, S. Shami et al., 

“An efficient filter for denial-of-service bandwidth attacks,” in Proc. 

GLOBECOM’03, IEEE Global Telecommunications Conference, 

IEEE, 2003, vol. 3, pp. 1353–1357.  

[18] Y. Tao and S. Yu, “DDoS attack detection at local area networks 

using information theoretical metrics,” in Proc. 2013 12th IEEE 

International Conference on Trust, Security and Privacy in 

Computing and Communications, IEEE, 2013, pp. 233–240.  

[19] S. T. Zargar and J. Joshi, “DiCoDefense: Distributed collaborative 

defense against DDoS flooding attacks,” in Proc. IEEE Symposium 

on Security and Privacy, Citeseer, 2013.  

[20] E. Anitha and S. Malliga, “A packet marking approach to protect 

cloud environment against DDoS attacks,” in Proc. 2013 

International Conference on Information Communication and 

Embedded Systems (ICICES), IEEE, 2013, pp. 367–370.  

[21] C. Späth, C. Mainka, V. Mladenov, J. Schwenk et al., “SoK: {XML} 

parser vulnerabilities,” in Proc. 10th {USENIX} Workshop on 

Offensive Technologies ({WOOT} 16), 2016.  

[22] A. Alasri and R. Sulaiman, “Protection of XML-based denial-of-

service and http flooding attacks in web services using the 

middleware tool,” International Journal of Engineering and 

Technology (UAE), vol. 7, no. 4, pp. 322–329, 2018. 

[23] G.-Y. Chan, F.-F. Chua, C.-S. Lee et al., “Intrusion detection and 

prevention of web service attacks for software as a service: Fuzzy 

association rules vs fuzzy associative patterns,” Journal of 

Intelligent & Fuzzy Systems, vol. 31, no. 2, pp. 749–764, 2016.  

 

Copyright © 2023 by the authors. This is an open-access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution, and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 

 

Journal of Advances in Information Technology, Vol. 14, No. 5, 2023

1102

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N5-1096



