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Abstract—In recent years, self-driving cars have developed 

rapidly. Many academic research institutes have begun to 

develop self-driving cars. However, the object recognition 

rate of current self-driving cars is still not high, especially the 

recognition of pedestrians and small objects. In order solve 

this problem, we presented an image recognition system 

adopting high-accuracy 3D depth map information. This 

algorithm combines two kinds of sensor data for calculation, 

uses the 3D depth signal of the 3D point cloud map to segment, 

finds the location of the small objects, and uses the color 

image information to recognize the object. A series of 

experiments have proved that the proposed scheme can 

generate marked color images and point cloud images and 

improve the efficiency of the algorithm. Our algorithm 

improves the disadvantages of the traditional YOLO neural 

network in pedestrian recognition, reduces the input image 

range through point cloud image segmentation, and improves 

the recognition rate of small objects in the YOLO network. 

Our method could recognize randomly small objects with 

over 75% recognition accuracy, outperforming other 

methods in the literature.  
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I. INTRODUCTION 

In recent years, Artificial Intelligence (AI) has become 

a hot topic in the news. With Google AlphaGo defeating 

many famous Go players, the AI industry has reached 

unprecedented prosperity. Among them, the self-driving 

car industry is the most eye-catching. Before 2009, self-

driving cars were only in the experimental stage. In 2010, 

the Google X laboratory developed the Toyota Prius self-

driving car, which successfully drove on ordinary roads 

with a driving distance of up to 100,000 miles. Electric 

vehicle Tesla, car manufacturer Delphi, Ford, Benz, BMW, 

and other companies have successively invested in related 

technology research.  

By 2013, four states in the United States had passed 

regulations related to self-driving cars, including Nevada, 

California, Florida, and Michigan, and allowed self-

driving cars to be tested on open roads. Subsequently, 

Germany also passed relevant bills to allow self-driving 

cars equipped with black boxes to be tested on the road. 

With the vigorous development of the self-driving car 

industry, the academic community has also invested in the 

research of self-driving car-related sensors. Among them, 

3D Light Detection And Ranging (3D LiDAR) is the most 

researched project. 

3D LiDAR can generate 360° real-time depth 

Information, and its sensing range can reach up to 100 m, 

which is one of the indispensable sensors for self-driving 

cars. Due to the low vertical resolution of LiDAR, the 

object recognition rate of current autonomous cars is still 

not high, especially the recognition of pedestrians and 

small objects. We designed an image recognition system 

adopting high-accuracy 3D depth map information and 

high resolution color image in order solve this problem. 

The high-resolution camera provides real-time color 

images ahead for the algorithm to detect objects in front. 

Combining the information of the two sensors can realize 

the planning and judgment of the driving route. 

We presented the new fusion scheme of 3D LiDAR 

point cloud map and color image to improve the 

performance of the object recognition. The proposed 

approach overcomes the disadvantages of the traditional 

neural network in pedestrian recognition, reduces the input 

data through 3D point cloud image segmentation, and 

increase the recognition rate of small objects in the YOLO 

network. Besides, this paper considers the 2D Region of 

Interest (ROI) and combines difference regions to reduce 

computing complexity. The presented scheme could 

recognize randomly small objects with over 75% 

recognition accuracy and provide a well solution. 

II. OVERVIEW OF THE DEVELOPMENT OF AUTONOMOUS 

VEHICLES 

After the automobile was developed, inventors began to 

have the idea of self-driving vehicles in 1920. In 1925, 

Francis Houdina invented the radio-controlled car. 

Although the car can be remotely controlled, it is still far 

away from true self-driving. In 1984, Carnegie Mellon 

University launched two projects, Navlab and ALV. In 

1986, the prototype of the self-driving car, NavLab 1, was 

completed in NavLab that contains five computers, three 

Sun workstations, and a Warp supercomputer, with a speed 
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of up to 20 mile/hr (32 km/hr). In 2001, NavLab of 

Carnegie Mellon University published the self-driving car 

of NavLab 11. 

After the first self-driving car came out, many research 

institutions and companies began to invest heavily in 

related research, including Mercedes-Benz, General 

Motors, Continental Automotive Systems, Market 

America, Nissan Motor, Toyota Motor, Audi, University 

of Oxford, and Google. In 2010, Google had a 

breakthrough in the development of self-driving cars. The 

self-driving car Toyota Prius developed by the Google X 

laboratory successfully drove 100,000 miles on ordinary 

roads. Before that self-driving cars have not yet been 

successfully driven on general roads. LiDAR and color 

cameras are the most important sensors. 

In 2014, Google released Firefly, a new self-driving car 

prototype. This prototype has no accelerator, steering 

wheel, or brakes, and is 100% autonomous. Its purpose is 

to be used as a learning and development platform to 

improve the later route planning algorithm. 

Using LiDAR to obtain distance information and left 

and right cameras to obtain image information can 

simulate the information received by the human eye, and 

develop a route planning algorithm based on this 

information, which can greatly reduce the probability of 

misjudgment. 

Currently, self-driving car classification is defined by 

the International Society of Automatic Machine Engineers 

(SAE International), which is divided into Levels 0 to 5. 

From Level 0 to Level 2, it is an auxiliary system that still 

needs to rely on driving to make decisions. Level 3 has 

some scenarios and reliable system solutions. Level 4 and 

above are so-called highly automated self-driving cars. 

Since the system needs to handle most situations, almost 

all of its sensors are equipped with LiDAR and cameras to 

obtain a large amount of information for judgment. It 

shows that the two are indispensable devices for highly 

automated systems. 

III. 3D POINT CLOUD SEGMENTATION 

From the above, we can know that 3D LiDAR point 

cloud images and color images are indispensable 

information for self-driving cars, and they are also one of 

the most popular research projects in recent years. In the 

research projects of object recognition and detection, most 

papers only take a single piece of information used as the 

basis for judgment, such as object segmentation and 

classification for LiDAR point cloud images, or object 

detection and identification for color images. The reason is 

that research related to object detection is mostly 

implemented by neural networks. It is easier to train and 

design the network architecture, so this kind of paper does 

not use the characteristics of the two pieces of information 

to combine the algorithm. For example, the LiDAR point 

cloud image belongs to the depth information, which is 

easier to implement the object segmentation algorithm, 

while the color image is beneficial.  

LiDAR point cloud image-cutting algorithms can be 

roughly divided into two methods. One is to use the 

marked point cloud image data with a neural network for 

training. This type of algorithm will use the point cloud 

image features to find a specific single object, and is 

mostly used to find points. Roads or vehicles in the cloud 

image [1–3], since the goal of this paper, is to use the depth 

information of the point cloud image to segment, and then 

use the corresponding color image to classify, so the above 

algorithm is not in the scope of this paper. 

Another way is to use algorithms other than neural 

networks for segmentation. This type of algorithm can be 

divided into two categories. The first type is the ground 

extraction-oriented cutting algorithm. Douillard et al. [4], 

Himmelsbach et al. [5, 6], and Cheng et al. [7] all use the 

above-mentioned algorithm. The approaches are to 

segment the ground points and non-ground points, and 

then classify the non-ground points. The advantage is that 

most objects will be connected to other objects due to the 

ground. When the ground is filtered out, the object 

segmentation can become easier. However, the 

disadvantage of this method is that the ground point is 

assumed to be relatively flat terrain, which will not exist in 

actual applications. 

The second category is to use a two-dimensional grid 

algorithm for object segmentation, such as the algorithm 

mentioned in Ref. [8–11], all use a two-dimensional grid 

as the basis for cutting. The two-dimensional grid is a 

commonly used algorithm for point cloud image 

segmentation. The grid is used for preliminary analysis of 

the point cloud image. The size of the grid determines the 

fineness of the segmentation and the calculation time. 

When the point cloud image is scattered in a two-

dimensional grid, we can analyze the higher density points 

for cutting. The above algorithms all have excellent 

calculation speed, but over-cutting often occurs, resulting 

in a decrease in the recognition rate.  

Most of the above studies use the KITTI Dataset [12]. 

The quality of 3D point cloud image reconstruction will 

affect the segmentation results [13–15]. 

In recent years, some researchers have begun to use 

neural networks to realize automatic driving, and this type 

of method has begun to have more accurate  

results [16–20]. However, the calculation time and training 

time are too long. 

In order to solve the above problems, this paper 

proposes image recognition based on high accuracy 3D 

depth map information. For object recognition, the 

algorithm in this paper is divided into two stages. In the 

first stage, the LiDAR point cloud image is used for 

preliminary segmentation. In the second stage, a neural 

network is used to identify the segmented image to achieve 

a high-efficiency object detection algorithm.  

IV. IMAGE RECOGNITION BASED ON HIGH ACCURACY 3D 

DEPTH MAP INFORMATION 

This paper uses 3D LiDAR point cloud images and 

color images to propose an accurate object recognition 

algorithm. We propose the fusion technology of 3D 

LiDAR point cloud image and color image and improve 

the efficiency of the object recognition algorithm by using 

the characteristics of these two kinds of data. 
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A. KITTI Dataset 

This paper uses KITTI Dataset. KITTI Dataset is a 

database specially designed for autonomous vehicles [12], 

which uses the autonomous driving platform Annieway to 

collect relevant road information [21, 22]. 

Its autonomous driving platform is equipped with a 

Velodyne LiDAR scanner, a high-resolution color camera, 

and a GPS positioning system, which are used to collect 

LiDAR point cloud images, corresponding color images, 

and vehicle location information [23, 24]. The information 

categories include object detection, object Tracking, visual 

ranging, etc., and this paper will use the KITTI Dataset 

object detection database for experiments and tests [12]. 

There are three different types of data in the object 

detection database, which are color images, LiDAR point 

cloud images, and camera internal parameters. Since the 

color camera only collects front images, the provided 

LiDAR point cloud image is cut, and only the point cloud 

image information at 45° in front is taken and then enters 

the point cloud image object cutting stage [12]. 

Since the color camera only collects the front image, it 

is necessary to cut the LiDAR point cloud image provided 

by the database, and only take the point cloud image 

information of 45° in front and then start the point cloud 

image object segmentation stage [12]. 

B. Point Cloud Segmentation 

The point cloud segmentation algorithm we designed 

includes layer segmentation, layer merging, and ground 

removal. Since the neural network in the next step will 

recognize vehicles, bicycles, and pedestrians, background 

objects will be removed together in the algorithm to reduce 

the recognition range at the back end to achieve the goal of 

acceleration.  

C. 2D Region of Interest Extraction 

After the point cloud object is segmented, we can select 

the area to be tested on the color image according to each 

object cluster [25]. Since the point cloud image is 3D 

information, and the color image is 2D information, we 

need to use the 3D to the 2D algorithm [26, 27].  
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To match point cloud images and color images, the 

algorithm is shown in Eq. (1), where u and v are the output 

two-dimensional coordinates, x, y, and z are the input 

three-dimensional coordinates and the middle is the 

camera parameters provided by KITTI Dataset, fu, and fv 

are the focal length of the camera, u0 and v0 are the initial 

coordinates of the camera, R and t are the rotation matrices, 

by substituting the object cluster into formula 1, we can 

use the 3×4 M array to find the corresponding color image 

area, and send this area to the neural network for the next 

stage of judgment [28–30]. Fig. 1 is the result of two-

dimensional ROI extraction. It can be seen that there are 

two selected areas in the figure. 
 

 

Figure 1. Two-dimensional ROI extraction result. 

D. Neural Network Architecture 

R-CNN, Faster-RCNN, FCN neural networks, etc. can 

be used during object detection. Since the algorithm in this 

paper is expected to be applied to self-driving cars, even if 

the accuracy is high, the speed does not meet the 

requirements, the output information often does not meet 

the current situation. This will cause the system to judge 

completely wrong. Therefore, the speed of the algorithm is 

the primary consideration of this paper. 

At present, the fastest neural network architecture for 

object detection is the YOLO neural network. This paper 

considers the 2D ROI generated by the LiDAR 

segmentation algorithm and combines it with the YOLO 

network to construct the R-YOLO network. 

We input the color image and 2D ROI information into 

the R-YOLO network and use the ROI information to slice 

the color image into several pieces. For the sake of 

computational efficiency and the possibility of 

overlapping ROI information, we combine several ROIs 

into one or two regions and input them into the back-end 

YOLO neural network. After obtaining the object 

detection result, merge it with the front-end ROI 

information to obtain the final output result. 

V. EXPERIMENTAL RESULTS 

Firstly, the experimental environment, software, and 

database used in this system are introduced, as shown in 

Table I.  

TABLE I. SIMULATION ENVIRONMENT 

Simulation Environment 

Hardware Personal Computer, Training Computer 

Software Matlab R2018a 

Dataset Pascal VOC, KITTI 

TABLE II. PC SPECIFICATION 

PC Specification 

OS Microsoft Windows 10 Professional 64-bit 

CPU Intel® Core™ i7-4770 Processor 

RAM 8.00 GBytes 
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We use personal computers and train dedicated 

computers in the experimental environment. Since the 

back-end R-YOLO neural network requires a lot of 

calculations during training, the dedicated computer for 

training is equipped with a GPU with high computing 

performance to increase computing efficiency. Table II 

and Table III show the specifications of the personal 

computer and training computer respectively. 

TABLE III. SPECIFICATIONS OF THE TRAINING COMPUTER 

Specifications of the Training Computer 

OS Ubuntu 

CPU Intel® Core™ i7-7700K Processor 

RAM 32.00 GBytes 

Graphic Processor NVIDIA GeForce GTX 1080 Ti 

 

In the implementation of the LiDAR segmentation 

algorithm, we use Matlab for development, which contains 

several simulation-specific function libraries, which can 

analyze and display the results of the algorithm. During the 

implementation process, we can also observe the result 

figures of the functions of each stage, and adjust the 

algorithm. 

For the database, we use the Pascal VOC database to 

train the R-YOLO neural network and use the KITTI 

database to test the final result of the algorithm. The KITTI 

database contains color images and corresponding point 

cloud images. Table IV shows the specifications of the 

LiDAR. The scanning depth can reach up to 120 m, the 

horizontal scanning range is 360°, and the vertical 

scanning range is 26.9°. 

TABLE IV. LIDAR SPECIFICATION 

LiDAR Specification 

Name HDL-64E 

Range 120m 

Data Rate Up to 2.2 Million Points per Second 

Vertical FOV 26.9º 

Vertical Resolution 0.4º 

Horizontal FOV 360º 

Horizontal Resolution 0.08° Angular Resolution 

The above is the experimental environment and the 

database and sensors used in this paper. In the 

experimental method part, we will first implement the 

LiDAR segmentation algorithm on a personal computer, 

and send the generated bounding box information to a 

dedicated training computer. We use R-YOLO for object 

detection and compare the detection results with the 

bounding box to produce the final result map. 

Next, we will show the results of the experiment and 

analyze the advantages and disadvantages of the algorithm 

in this paper in different scenarios. Figs. 2–6 are the result 

pictures numbered 502. The first two are the processing 

steps of color images, and the last three are the processing 

steps of the point cloud image.  
 

 

Figure 2. Original color image of No. 502. 

  

Figure 3. ROI of color image No. 502. 

Fig. 4 is the point cloud image scanned by HDL-64E 

LiDAR in the KITTI database, and is positioned by GPS. 

The point cloud image of Fig. 4 was captured by driving 

around the mid-size city of Karlsruhe. This scene contains 

cars, bicycles, roads, trees etc. The effective range of 

LiDAR scanning is about 120m. Vertical FOV is 26.9º. 

Vertical Resolution is 0.4º. Horizontal FOV is 360º. 

Horizontal Resolution is 0.08° Angular Resolution. 

 

 

Figure 4. Point cloud image No. 502. 

 

Figure 5. Segmentation result of the point cloud image No. 502. 
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Figure 6. Marking result of point cloud image No. 502. 

It can be seen that some backgrounds are marked as 

vehicles (blue) in the part of the point cloud image marking 

result. The reason is that when combining the bounding 

box and the detection frame, a detection frame may not 

only be selected as a single bounding box, so small objects 

behind the vehicle will also be framed together, but they 

will be judged as obstacles in the end, so there is no 

security concern. On the other hand, it also compensates 

for the excessive segmentation of the point cloud image 

due to the above situation problem, it can be seen that the 

vehicle in Fig. 5 is over-segmented, but after combining 

the detection results, all points of the vehicle are marked 

as the same object as shown in Fig. 6, and the red part in 

the figure represents a pedestrian. 

VI. CONCLUSION 

This paper proposes an algorithm for real-time object 

detection and greatly increases the recognition rate of 

pedestrians. However, it is easy to produce errors in the 

part where the final bounding box and the detection box 

are combined. The main reason for the error is that the 

algorithm in this paper takes immediacy as the main 

consideration, so the accuracy of point cloud image 

segmentation will be sacrificed, which will further cause 

errors in the final results. Therefore, if the accuracy of 

point cloud image segmentation can be improved, the error 

in the final data combination will be reduced, and the 

neural network has a similar situation. Due to the large 

reduction in the number of layers, the recognition rate 

tends to decline in more complex scenes. In the future, we 

could try to increase the number of network layers or 

structures to achieve a better trade-off between time and 

performance. 
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