

PWMStem: A Corpus-Based Suffix Identification

and Stripping Algorithm for Multi-lingual

Stemming

Abdul Jabbar 1, Manzoor Illahi 1, Sajid Iqbal 2, Amjad Rehman Khan 3, *, Narmine ElHakim 3,

and Tanzila Saba 3

1 Department of Computer Science, Comsats University Islamabad (CUI), Main Campus, Park Road, Tarlai Kalan,

Islamabad 45550, Pakistan; Email: a.jabbar73@hotmail.com (A.J.), tamimy@comsats.edu.pk (M.I.)
2 Department of Information Systems, College of Computer Science and Information Technology, King Faisal

University, Saudi Arabia; Email: siqbal@kfu.edu.sa (S.I.)
3 Artificial Intelligence and Data Analytics Lab CCIS Prince Sultan University Riyadh 11586, Saudi Arabia;

Email: nhakim@psu.edu.sa (N.E.), tsaba@psu.edu.sa (T.S.)

*Correspondence: arkhan@psu.edu.sa (A.R.K.)

Abstract—Stemming is a common preprocessing method

aggregating all word variants to a standard stem to aid

various Natural Language Processing (NLP) tasks. This work

proposes a new unsupervised corpus-based stemmer that

identifies the candidate suffixes using pivot word matching.

Then candidate suffix statistics are used to remove the

potential suffixes. After this, lexical similarity is measured to

cluster the morphological related words. Finally, the smallest

word in each cluster is designated as a stem. To quantify the

performance of proposed method, two corpus-based and two

linguistic knowledge-based stemmers for Urdu and English

languages are used. The performance of each stemmer is

evaluated on two different datasets for each language. The

results show that the proposed PWMStem method

outperforms the selected stemmers, achieving an accuracy of

0.876 for Urdu and 0.877 for English. To assess the

performance of PWMStem through different aspects

multiple evaluation metrics are used. The evaluation scores

of other metrics are Index Compression Factor (ICF) = 73,

Mean Number of Words per Conflation Class (MWC) = 3.7

for Urdu, and ICF = 71 and MWC = 3.5 for English. In the

Urdu dataset, PWMStem achieved the lowest Under-

stemming Index (UI) of 0.026479, Over-stemming Index (OI)

of 0.000021, and an Error Rate Relative to Truncation

(ERRT) of 0.610. In the English dataset, the values for UI, OI,

and ERRT were measured as 0.102089, 0.000015, and 0.498,

respectively.

Keywords—corpus-based stemming, morphology, natural

language processing, Urdu stemmer, words inflection

I. INTRODUCTION

With the advent of the Internet, the generation and use

of natural language content in various languages has

increased exponentially. Several methods, known as pre-

processing methods, are used to transform data into a

desired form before applying a task-specific algorithm to

Manuscript received April 24, 2023; revised June 14, 2023; accepted July

3, 2023; published August 28, 2023.

extract the required information. Among these, stemming

is an prominent method that aggregates all variations of a

word into one morphologically related class to aid natural

language processing tasks [1].

Urdu is different from other languages like English in

terms of its linguistic, and phonetic rules. Urdu script is

written from right-to-left direction. It is highly

Persianised/Arabicised. It is the national language of

Pakistan as well as spoken in various parts of world like

United Arab Emirates (UAE), United Kingdom (UK),

United States (US) and in many parts of India1.

Many language processing tools are available for the

English language. NLP tools for Urdu still need to be

improved in number and it is required to build more

efficient tools. New tools are always required to build as

new tasks and applications are emerging with time.

Stemming serves multiple roles in language processing

which include reducing the size of the index file, reducing

the number of features for classification and lexical

transfer learning tasks [2]. Stemming can be utilized as a

crucial preprocessing tool in various Natural Language

Processing (NLP) tasks like Text Classification (TC),

automatic indexing, lexical analysis, information

extraction, and text summarization [3]. It also resolves the

query mismatch problem in Information Retrieval (IR)

systems, improving the system’s recall. The emergence of

new applications of NLP needs more sophisticated and

high-performance tools like stemming.

Different approaches have been proposed to develop

stemmers, including rule-based, supervised, semi-

supervised, and unsupervised machine learning

methods [4]. In this work, we have proposed a new

unsupervised corpus-based method that identifies

candidate suffixes using Pivot Word Matching (PWM) and

removes potential suffixes based on their statistics, then

forms clusters of words with lexical similarity and

1 https://www.britannica.com/topic/Urdu-language

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

863doi: 10.12720/jait.14.4.863-875

mailto:a.jabbar73@hotmail.com
mailto:tamimy@comsats.edu.pk
mailto:siqbal@kfu.edu.sa
mailto:nhakim@psu.edu.sa
mailto:tsaba@psu.edu.sa
mailto:arkhan@psu.edu.sa
https://www.britannica.com/topic/Urdu-language

designates the smallest word in each cluster as the stem.

We evaluate the PWMStem for Urdu and the English

corpus, and the results show that it is an efficient approach

for both languages. Following list presents the

contributions of the work:

• A new Unsupervised Algorithm: PWMstem is an

unsupervised corpus-based stemmer developed

considering Urdu words’ structure.

• Language-independent Approach: PWMstem

cognitively learns morphological patterns without

predefined linguistic rules of any language,

making PWMstem a language-independent

method.

• Multi-level Morphology Handling: In contrast to

other unsupervised stemmers, PWMstem can

handle morphological words, which may consist of

multi-level suffixes/long suffixes.

• Dataset Development: A custom dataset is

developed for the Urdu language to train and

evaluate the proposed method.

• Improved Performance: PWMstem shows

improved performance over state-of-the-art

stemmers.

The rest of the article is organized as follows: the review

of existing works and comparison is given in Section II.

Section III depicts a detailed description of the PWMStem

algorithm. Section IV portrays the evaluation results of the

proposed stemmer. Result and discussion present in

Section V. Finally, Section VI provides the conclusion and

future work directions.

II. LITERATURE REVIEW

Various stemmers of different flavors and natures have

been proposed in the literature. Regarding design and

functions, stemmers may be categorized into two major

classes: language-dependent and independent [5].

Language-dependent stemmers use specific re-

characterized language-associated requirements to

represent the morphological variations of the words. These

language-related rules are manually developed by

language experts [6]. Several language-dependent

stemmers have been designed for English and other

languages. The literature review shows that multiple

stemmers for minor languages have also been developed.

Creating a language-dependent stemmer requires

additional assets, tools, and relevant expertise. On the

other hand, language-independent and statistical methods

are used to obtain linguistic features, and a stem is

extracted via these features. In the following subsections,

we review relevant linguistic knowledge-based and

language-independent stemmers.

A. Language Dependent Stemmers

Aba et al. [7] proposed a linguistic-based stemming

algorithm for Urdu, which utilizes a predefined prefix and

suffix list to recognize the affix part in a query word.

Further, infixes are recognized with specific letters

positioned in the query words, and appropriate infixes

rules are applied. The study identifies some exceptional

cases, such as سجود [prostration] and نقوش [Impressions],

that have similar patterns, and such exceptional cases are

treated differently to obtain stem. Alshalabi et al. [8]

developed an Arabic linguistic-based stemmer that utilizes

one character’s prefix and suffix and ignores the higher-

length affixes. The internal structure of the singular word

changed when converting to plural form know as

broken/irregular plural word such as [children] from

singular [child], in which singular form [child] suffers

internal changes by adding the [alif] and [alif laam] to

plural form [children]. whereas the singular form of words

is not broken when making their plural without changing

the internal structure, such as [female teachers] from

singular [female teacher]. In this case, the internal

structure of the singular word did not change, and the

plural is formed by adding the اalif tee] at the end. Various

patterns of length 4−6 is designed to get the stem of broken

plural words. Three patterns are designed for the words of

length four, 15 patterns for length five, and six patterns for

words length six. Alshalabi et al. [9] refined “The

Information Science Research Institute’s (ISRI) Arabic

stemmer”, which identifies the affixes of up to five

characters which are then removed according to word

length instead of the pattern. Alnaied et al. [5] developed

a list of rules to produce the stem consisting of three phases:

substring tagging, rule matching, and anti-rule matching.

They defined 58 prefixes, three infixes’ letters, and 25

suffixes. Saeed et al. [10] designed an iterative stemmer

for the Persian language using prefix and suffix lists to find

the prefixes and suffixes to remove them iteratively,

resulting in improved performance for the classification

task. Harouni et al. [11] designed a stemmer for the

Sundanese language that iteratively removes the longer

affixes before the shorter ones to obtain the stem.

Jabbar et al. [12] presented a multi-step Urdu stemmer

that was evaluated on the custom-designed text and word

corpus. The stemmer operates in multiple phases,

including affix striping, template matching, and table look-

up. Khan et al. [13] suggested an Urdu linguistic rule-

based stemmer that identifies the affix letters by the

predefined pattern, affix list, and exceptional list to derive

the stem. The porter stemmer [14] is the most famous

English stemmer widely used in IR systems. It works in

five steps using rules and conditions matching vowel and

consonant pattern sequences. Porter stemmer [14] in the

first step, handles inflectional suffixes. In the next three

steps, it handles the derivational suffixes and performs the

recoding. Lovins is another language-dependent

stemmer [15]. It comprises 294 suffixes associated with 29

conditions that determine the eligibility of a suffix for its

removal. It also contains 35 transformation rules based on

the longest match criterion. After removing suffixes, the

recoding rules are applied to convert the stem to a

linguistically correct word.

B. Language-Independent Stemmers

Singh and Gupta [16] developed a statistical stemmer

using linguistic, co-occurrence similarity and suffix pair

frequency to compute the morphological correlation

among words to form a cluster. The common prefix in the

cluster is then retrieved as a stem. Alotaibi and Gupta [4]

proposed a language-independent stemmer that uses the

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

864

Jaccard distance similarity measure to cluster

morphologically related words. The threshold of the

similarity metrics is set to 1.5 by authors. Kasthuri et

al. [17] also designed a language-independent stemmer

using Levenshtein Edit Distance (LED) and the Longest

Common Subsequence (LCS) metrics to find the similarity

between the strings. The procedure first groups the words

based on the length of the common prefix and then selects

the most common word as a stem using filtering rules. The

acceptable filtering rule is defined as LED < LCS. Chavula

and Suleman [18] showed that the orthographic similarity

measure did not indicate the morphological distribution of

morphemes. Subsequently, they proposed a weighted

similarity measure that uses Ordered Weighted Aggregate

(OWA) to conflate morphologically similar words in the

corpus using common letter patterns.

Singh and Gupta [19] developed an efficient stemmer

that used the Jaro-Winkler distance with a variant to cluster

morphologically different words using the graph-based

clustering method. Brychcín and Konopík [20] designed a

stemming technique that considerably improves precision

at the cost of a slight decrease in recall. The method uses

each lexical and co-occurrence metric to learn

morphological rules for stemming. Husain et al. [21]

constructed a language-independent stemmer using the n-

gram technique. The system produces n-gram tokens, and

then the suffix list is generated from these tokens. The

extracted suffixes are eliminated using criteria of

frequency and length of the suffixes. The authors claimed

that frequency-based criteria give better results than the

suffix length-based method. Paik et al. [22] developed an

unsupervised stemming algorithm that discovers suffixes

based on their frequency. They divide the corpus into

groups using the average word length as prefix matching.

Then, the potential suffix and longest common prefix

feature to formulate the morphologically related word

classes. Paik and Parui [23] extracted the suffixes using the

co-occurrence of the trailing part of the words in the corpus

and grouped the morphologically related words on the

bases of suffix frequency and prefix matching criteria.

Majumder et al. [24] recommended as a method to

cluster morphologically related words using four similarity

metrics to cluster morphologically related words.

Goldsmith [25, 26] proposed an unsupervised stemming

model which produces all possible pairs of stems and

suffixes known as signatures, then Mutual Information

(MI) filters out the stem and suffix. The minimum

description length is used as the threshold value of Lee abd

Goldsmith [27] built a software system called Linguistica

5 utilizing the framework of [25, 26] for stemmers

evaluation which is also used in this study.

C. Comparison and Evaluation

In this Section we analyze the various features of the

state-of-the-art stemmer. The comparison is presented in

Table I.

TABLE I. COMPARISON OF CHARACTERISTICS OF THE STEMMERS

Features Ref.

• Initial classes were created using the average word length as a common prefix. According to

Peter Norvig2, the average word length for the English language is five.

• Peter Norvig’s corpus analysis shows that most English words have lengths of three and four

letters, which are ignored.

• Suffixes are obtained by matching common prefixes and the potential suffixes are filtered

using frequency of co-occurrence of suffixes. They typically strip only the last suffix of the

query word. In the English word like ‘helpfulness’ would be striped to ‘helpful’ by removing
‘ness’ as suffix by this method. To cut off the whole suffix part (fulness) is a harder task.

• Features extracted to create the morphologically related words class are: the lexical similarity,

the co-occurrence frequency of the words and potential suffix is used.

• This method produces the common part as stem for instance morphologically related word

class is (share, shares, shared, sharing) and return the ‘shar’ as stem which may improve the
performance of information retrieval but may not be beneficial for machine translation and

speech recognition.

• Language independent in nature.

Singh and Gupta [16]

• Initial classes were created using the average words length as common prefix. According to

Peter Norvig, the average word length for the English language is five.

• The words with smaller word length are ignored.

• Suffixes are not retrieved.

• The morphologically related words are clustered using lexical similarity. In such methods,

longest suffixes/multilevel suffixes are not properly removed. Therefore, the system suffers

with under stemming errors.

• The method is application oriented as the common part of the morphological related cluster is

considered the stem.

• Language independent in nature.

Mujeeb et al. [4]

• Segment the word in possible stem suffix pair.

• Mutual Information of the stem suffix pair is used to assess the correct stem and suffix.

• This method ignored the multilevel suffixes such as the word ‘admirers’.

• A lot of unnecessary tokens are created which increase the computational cost and space on

disk.

• Language independent in nature.

Goldsmith [25, 26]

2 http://norvig.com/mayzner.html

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

865

http://norvig.com/mayzner.html

• Use the predefined suffixes list to recognize and remove suffixes.

• After stripping the suffix, the recoding rules are applied to convert the extracted stem into a

valid stem. However, in some cases, it produces an invalid word such as ‘stay’ stems to ‘stai’.

• Due to minimal length-based nature, the method suffers the under stemming errors.

• The method is specifically developed for English words

Porter [14]

• This method uses the predefined suffixes list to recognize and remove them.

• The suffix list is short of many suffixes.

• The minimum length of stem is two letters which significantly produce over stemming errors.

• Consider only English words

Lovins [15]

• Used predefine affix list to identify and remove the suffixes.

• The affix list is incomplete.

• Unable to treat the new affixes which are not included in the predefined affix list.

• English loan words did not stem correctly.

• Hybrid words are not handled.

• The method is language dependent

Rehman and Saba [28]

• Uses predefine affix list to identify and remove the suffixes.

• Unable to treat the new affixes which are not included in the predefined affix list.

• Hybrid words are not handled.

• The method is language dependent

Jabbar et al. [12]

• Initial corpus is divided into the various clusters based on the first three letters as common in

the case of Urdu as well as English language.

• The suffix part is segmented from the query word on the bases of Pivot Word (PW) matching

instead of common letters matching. PW based obtained suffixes usually linguistically true.

However, we further filter the potential suffixes which have certain threshold value.

• In contrast to prior studies, the Lexicon similarity measures after removing the suffix are used.

In this way, the long or multilevel suffix words are also allocated the correct morphological

cluster.

• Efficiently handle the English loan words, which written in Urdu script.

• Hybrid words are also handled.

• The smallest word from these morphological clusters is considered the stem of all the word in

that cluster.

Proposed

III. THE PROPOSED STEMMING METHOD

The main objective of this work is to design a novel and

effective corpus-based stemming technique that can serve

as a universal tool in various NLP applications. The

proposed technique groups morphologically related words

appearing in the corpus using lexical similarity and suffix

statistics. This algorithm acquires unique words as input

from the corpus and produces a set of morphologically

related words. Our algorithm works in three phases, as

depicted in Fig. 1.

Figure 1. Phases of PWMStem method.

TABLE II. DESCRIPTION OF SYMBOLS USED IN METHODOLOGY

Symbol Meaning

𝑠𝑖 Suffix with index 𝑖
𝑤𝑖 A word with index 𝑖
𝑤𝑗 A word with 𝑗

𝑝𝑠 A word 𝑝 with attached suffix 𝑠

𝑞𝑠 A word 𝑞 with attached suffix 𝑠

𝑤𝑠𝑖 Word with suffix 𝑠 and index 𝑖
𝑟𝑝𝑞 Similarity score between word 𝑝 and 𝑞

𝐶𝑖 Class with index 𝑖
𝐶𝑚 Class of morphologically related words

𝑃𝑊𝑖 Pivot Word (PW) with index 𝑖

3 https://anc.org/SecondRelease/data/ANC-all-lemma.txt
4 https://github.com/skywind3000
5 http://oud.cle.org.pk/

Table II lists the symbols which are used in the

following discussion.

A. Corpus Development

For the development and evaluation of the PWMStem

algorithm, two corpora of English and Urdu languages are

used. These include Open American National Corpus

(OANC)3 and English Lemma Dataset compiled by Lin

Wei 4 , the first dataset for the Urdu language is taken

from [29] and the second dataset is a custom-made named

as URSTEM, which contains Urdu morphological and

related words. The sources of URSTEM include grammar

books [30–33] on morphology [34] and an online resource

provided by the Center for Language Engineering,

University of Engineering and Technology, Lahore,

Pakistan5. The preprocessing methods include the removal

of punctuation, numbers, non-Urdu characters, and Urdu

diacritics. After the preprocessing, stop words and

duplications were removed from the corpus. Then the

dataset adaptation is grouped in the form of

morphologically related words. This step required deep

consideration and was time-consuming. Multiple corpora

are used to evaluate the designed method to ensure a

language-independent assessment. An overview of the

datasets used in the study is given in Table III.

Paice’s [35, 36] evaluation method require a list of

morphologically related groups of words. Following the

criteria designed by Paice [35, 36] we have categorized the

corpus into morphological groups or clusters. This helps to

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

866

http://oud.cle.org.pk/

compute the performance scores of the proposed method.

Each cluster has the following two properties:

• According to Paice [35, 36] morphologically

related words must share a common stem. The

developed corpus has a minimum of three letters

length for common stem.

• Each cluster has a minimum of two words. This

condition is also formulated by Paice [35, 36]. An

example of morphologically related word forms

from the Urdu dataset URSTEM and the English

Lemma data set is mentioned in dataset.

TABLE III. DATASET DESCRIPTIONS

Dataset Lang.
Word

Count

Distinct

words

Clusters

Count

Avg.

Cluste

r Size

OANC English 221,64985 23,210 11,245 2.1

English
Lemma

English 186,523 33,695 8,982 3.8

Humayoun Urdu 152,264 8,309 2,384 3.5

URSTEM Urdu 67,126 67,126 19,652 3.4

B. Corpus-Based Suffix Discovery

The morphological variations in most inflectional

languages are formed through suffixation, which is the

addition of the suffix to the root word to form a new

word [37, 38]. Although the stem may be present in any

part of query words, this study does not deal with such

cases. We assume that a suffix is present in the trailing part

of a word or its inflectional form; hence the notation 𝑤𝑠 is

used where 𝑤 is the stem and 𝑠 is the suffix. We start with

a list of words, such as {𝑤𝑠1 , 𝑤𝑠2, … , 𝑤𝑠𝑛} is produced by

a Pivot Word (PW) from the corpus, then the suffixes

𝑠1, 𝑠2, … , 𝑠𝑛 are retrieved. The generated suffixes may not

be linguistically correct. Statistics like suffix frequency

and length are then used to filter valid suffixes.

Using Eq. (1), a Pivot Word (PW) is selected for each

cluster, and based on the PW, Candidate Suffixes (CS) of

length (𝑛 = 1,2, …) are extracted, and then Pivot Word

Matching (PWM) is performed using Eq. (2). After this,

CS suffixes are extracted using Eq. (3). The complete

procedure of discovering CS suffixes is described

Algorithm 1.

Algorithm 1: Discovering suffixes

1 Input: Unannotated Corpus (UC)

2 Construct the Unique Words List (UWL) after

preprocessing and normalization

3 Arrange the UWL in alphabetical order

4 for each word W in UWL do

5 Construct 𝐶𝑖 = {𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛} using Eq.(2)

: 𝑤𝑖𝑖𝑠 variant forms of word W

end for

6 for each cluster Ci in cluster list C

7 for each item 𝑊𝑗 in 𝐶𝑖 do

8 the suffix is extracted from 𝑊𝑗 by Eq.3 and

added to the CS list

9 end for

10 end for

The example of top 20 CS of English depicted in Figs. 2

and 3, top 20 CS of Urdu are shown. Potential Suffixes (PS)

are found from CS using suffix length and frequency

criteria. The threshold value of suffix length and frequency

are determined experimentally. Let 𝑤𝑖 and 𝑤𝑗 are two

strings sharing a common prefix and 𝑤𝑖 is selected as a

PW word and 𝑤𝑗 is the variant form of the 𝑤𝑖 , as given in

Eq. (1).

 𝑙𝑒𝑛(𝑤𝑖) ≤ 𝑙𝑒𝑛(𝑤𝑗) (1)

where (𝑖 < 𝑗) ∧ (𝑤𝑖 = 𝑃𝑊) ∧ 𝑤𝑗 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑃𝑊).

Let 𝑤𝑖 is a PW then:

 𝑃𝑊𝑀(𝑤𝑖 , 𝑤𝑗) =
|𝑆(𝑤𝑖,𝑤𝑗)|

|𝑤𝑖|
 (2)

where 𝑆(𝑤𝑖 , 𝑤𝑗) is the common part between 𝑤𝑖 and 𝑤𝑗

starting from index zero to 𝑙𝑒𝑛(𝑤𝑖). It is to note that the

zero index will differ for Urdu and English languages due

to their orientation. The suffix is extracted by Eq. (3).

 𝑠𝑢𝑓𝑓(𝑊) = 𝑊𝑃𝑊𝑀(𝑤𝑖,𝑤𝑗)
𝑍 (3)

where 𝑃𝑊𝑀(𝑤𝑖 , 𝑤𝑗) = 𝑚𝑖𝑛 (𝐿𝐶𝐶𝑃(𝑆𝑖,𝑆𝑗,)) + 1 and 𝑍 is

a size of string 𝑤𝑗 .

Following Table IV lists few examples of candidate

suffixes.

TABLE IV. EXAMPLE OF CANDIDATE SUFFIXES IN ENGLISH

English Corpus

affect, affectation, affectations, affected, affectedly, affecteth,

affecting, affection, affectionate, affectionately, affections, affects

Pivot word Candidate suffixes

affect
ation, ations, ed, edly, eth, ting, ion, ionate, ionately,

ions, s

affectation s, ate, ately,
affected ly

affection ate, ately, s

affectionate ly

C. Determine Lexicon Similarity

This score is measured with the help of a lexical

similarity score, where morphologically related words

show a high score for lexical similarity [37, 38]. The string

similarity function maps a pair of words 𝑝𝑠 and 𝑞𝑠 to a

real number 𝑟 where the higher value of 𝑟 denotes greater

similarity between the word pair 𝑝 and 𝑞 after removing

the suffix 𝑠 . This metric presents the longest common

prefix, which avoids any early mismatch while comparing

the strings. We define similarity as

𝐿𝑜𝑛𝑔𝑒𝑠𝑡𝐶𝑜𝑚𝑚𝑜𝑛𝑃𝑟𝑒𝑓𝑖𝑥(𝐿𝐶𝑃) between two words 𝑤𝑖

and 𝑤𝑗 taken from the corpus as shown in Eq. (4).

 𝐿𝐶𝑃 =
|𝐿(𝑤𝑖,𝑤𝑗,)|

𝑚𝑎𝑥(|𝑤𝑖|,|𝑤𝑗|)
 (4)

where 𝐿(𝑤𝑖, 𝑤𝑗,) is the length of the common part of words

𝑤𝑖 and 𝑤𝑗 and denominator is the longer length of strings.

Algorithm 2 define the procedure to calculate the

lexicon similarity and create the cluster of morphological

related words.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

867

Figure 2. Example of candidate suffix with count/frequency (English
corpus).

Figure 3. Example of candidate suffix with count/frequency (Urdu
corpus).

D. Creating Morphological Classes

Morphological classes are constructed using suffix

statistics and string similarity function. The list of input

words is divided into several 𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛 based on a

common prefix of a length 3. The process is described in

Algorithm 2.

Algorithm 2: Grouping morphologically related

words

1 Split the lexicon into initial classes C1, C2, C3, …,

Cn

such that each class has the first three letters in

common

2 for each word in class 𝐶𝑖 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛} do

3 Let 𝑃 ← 𝑤0 is a pivot word

4 for each 𝑤𝑗 in 𝐶𝑖

5 Iteratively truncate the suffix from 𝑤𝑗 and

compute

 𝐿𝐶𝑃 using equation Eq. (4)

6 If score < 0.8 then

 𝑤𝑗 is included in 𝐶𝑚

7 else

 𝑃 ← 𝑤𝑗 and repeat steps 4 to 5.

8 end for

9 end for

E. Illustrative Example

The proposed stemmer identifies Morphological

Clusters (MC) of similar words, then the smallest word is

deduced as a stem. The stemmer correctly identifies

different types of suffixes, induced rules of the English

language (examples: “near”, “neared”, “nearer”, “nearest”,

“nearing”, “nears” stem to near).

IV. EXPERIMENTAL RESULTS

We have used three different evaluation metrics to

measure the performance of the PWMStem stemmer with

the existing stemmers. A brief description of these

evaluation metrics and analysis of obtained result is given

in the following subsection.

A. Suffix Removal Evaluation

We compare the stems produced by the stemmers with

manually annotated words by human experts. The manual

annotation process includes labeling each word with its

true stem. The suffix removal results have been assessed

in terms of accuracy (Eq. (5)), precision (Eq. (6)), recall

(Eq. (7)), and F-score (Eq. (8)). These evaluation metrics

are commonly used to assess the performance of

stemmers [12, 16].

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (5)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7)

Here, TP is the number of correct stems produced by the

stemmer; FP is the number of incorrect stems; FN is the

number of words incorrectly un-stemmed by the stemmer;

TN is the total number of correctly un-stemmed words

returned by the stemmer.

 𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (8)

Using the URSTEM dataset, PWMStem outperforms

other stemmers with the highest accuracy of 0.874 and an

F-score of 0.908, as shown in Table V. Our stemmer

achieves an accuracy of 0.876 and an F-score of 0.907

using the Humayoun dataset, which is better than the

existing stemmers. The PWMStem method achieved an

accuracy score of 0.877 and 0.874 for the F-score using the

OANC dataset for the English language. With the English

Lemma dataset, the values of accuracy and F-score were

0.78 and 0.837, respectively. Fig. 4 compares accuracy,

precision, recall, and F-score for URSTEM. The results

obtained from the Humayoun dataset are given in Fig. 5.

Fig. 6 demonstrates the score for the English dataset

OANC, and the results obtained using the English Lemma

dataset are shown in Fig. 7.

TABLE V. RESULTS OF SELECTED STEMMERS ON FOUR DATASETS

Method Accuracy Prec. Recall F-score

Urdu results for URSTEM dataset

PWMStem 0.874 0.94 0.878 0.908

Alotaibi and Gupta [4] 0.715 0.856 0.721 0.783

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

868

Linguistica [27] 0.448 0.66 0.50 0.57
Jabbar et al. [12] 0.42 0.628 0.458 0.53

Akram et al. [28] 0.352 0.583 0.31 0.404

English results for OANC dataset

PWMStem 0.877 0.922 0.831 0.874
Alotaibi and Gupta [4] 0.71 0.763 0.632 0.691

Linguistica [27] 0.55 0.55 0.71 0.62

Porter [14] 0.50 0.52 0.49 0.504
Lovins [15] 0.413 0.433 0.448 0.44

Urdu results for Humayoun dataset

PWMStem 0.876 0.974 0.85 0.907

Alotaibi and Gupta [4] 0.606 0.846 0.547 0.665
Linguistica [27] 0.44 0.642 0.566 0.601

Jabbar et al. [12] 0.3528 0.576 0.368 0.449
Akram et al. [28] 0.49 0.605 0.50 0.54

English results for English Lemma dataset

PWMStem 0.782 0.938 0.755 0.837

Alotaibi and Gupta [4] 0.57 0.89 0.48 0.62
Linguistica [27] 0.33 0.58 0.387 0.464

Porter [14] 0.44 0.69 0.44 0.54

Lovins [15] 0.56 0.80 0.53 0.64

Figure 4. Results comparison for Urdu URSTEM dataset.

Figure 5. Results comparison for Urdu Humayoun dataset.

B. Stemming Errors

Paice [35, 36] presented the Over-stemming Index (OI),

Under-stemming Index (UI), and their ratio, which is

termed as Stemming Weight (SW) parameters, and the

Error Rate Relative to Truncation (ERRT). Many

researchers have used these metrics to assess the

performance of their designed methods [41, 42]. To obtain

the score of OI, Paice [35, 36] used Wrongly Merged Total

(WMT) and Desired Non-merged Total (DNT) parameters.

The WMT is used to measure the over-stemming errors,

and it is computed via Eq. (9):

 𝑊𝑀𝑇𝐺 = 0.5 ∑ 𝑛𝑠𝑖(𝑁𝑠 − 𝑛𝑠𝑖)
𝑓𝑠
𝑖=1 (9)

𝑁𝑠 is the total number of stems in the stem group 𝑛𝑠𝑖 is the

number of stems obtained from the𝑖𝑡ℎ concept group t is

the number of groups that share the same stem. The

stemmer may confuse some words of one group with

another morphologically different group. Paice [35, 36]

used the Desired Non-merge total (DNT), which is given

by the following formula (Eq. (10)):

 𝐷𝑁𝑇𝑔 = 0.5𝑁𝑠(𝑤 − 𝑁𝑠) (10)

where 𝑤 is the total number of words. By summing 𝑊𝑀𝑇

(Eq. (9)) and 𝐷𝑁𝑇 (Eq. (10)) over all groups in the sample,

we obtain the Global Unachieved Non-Merge Total

𝐺𝑊𝑀𝑇 and Global Desired Non-Merge Total (𝐺𝐷𝑁𝑇),

respectively. The 𝑂𝐼 is a ratio as given below (Eq. (11)).

 𝑂𝐼 =
𝐺𝑊𝑀𝑇

𝐺𝐷𝑁𝑇
 (11)

To calculate the error rate of 𝑈𝐼 , Paice [35, 36]

introduced the Desired Merged Total (DMT) and

Unachieved Merged Total (UMT) parameters. DMT

represents the number of all pairs of words in the group

and is given as follows (Eq. 12):

 𝐷𝑀𝑇𝑔 =
1

2
𝑁𝑠(𝑁𝑠 − 1) (12)

where, 𝑁𝑠= the number of words in that group.

DMT =0, if a group contains only one word. (that’s why

the minimum number of items in a group must be two, as

mentioned in sub section A, Corpus Development of

Section III)

GUMT is defined by the following Eq. (13):

 𝑈𝑀𝑇𝐺 = 0.5 ∑ 𝑛𝑔𝑖(𝑁𝑔 − 𝑛𝑔𝑖)
𝑓𝑔
𝑖=1 (13)

where, 𝑓𝑔 is the number of distinct stems in the group 𝑔,
and 𝑛𝑔𝑖 is the total number of cases of stem 𝑖 in the group.

The sum of 𝐷𝑀𝑇 (Eq. (12)) and 𝑈𝑀𝑇 (Eq. (13)) overall

groups give us the Global Unachieved Merge Total

(GUMT) and Global Desired Merge Total (GDMT). Thus,

these parameters defined the UI as follows (Eq. (14)):

 UI =
𝐺𝑈𝑀𝑇

𝐺𝐷𝑀𝑇
 (14)

Stemming Weight (SW) refers to the ratio
𝑂𝐼

𝑈𝐼
. An

aggressive stemmer strips too many affixes and thus has a

higher value of OI than UI. On the other hand, a light

stemmer removes a few affixes and hence has high UI and

low OI. Error Rate Relative to Truncation (ERRT) refers

to the values of (𝑈𝐼, 𝑂𝐼) for a series of truncation lines

from Trunc4 to Trunc7. The coordinates (𝑈𝐼, 𝑂𝐼) for a

stemmer should be below the truncation line, and such

stemmers are known as “good” stemmers. ERRT is taken

by stretching a line from the origin through the coordinates
(𝑈𝐼, 𝑂𝐼) point P until it intersects the truncation line at T

(see Fig. 8). ERRT is computed by Eq. (15):

0

0.5

1

Accuracy Prec. Recall F-score

PWMStem Alotaibi & Gupta [4]

Linguistica[27] Jabbar et al [12]

Akram et al [28]

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

869

 𝐸𝑅𝑅𝑇 =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑂𝑃)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑂𝑇)
 (15)

The standalone value of OI and UI did not specify

whether a stemmer is better or not because there is a

tradeoff relationship between them. If suffix stripping

rules are added or modified to reduce the under-stemming

errors, these modifications will probably introduce

additional over-stemming errors. Consequently, ERRT is

a better metric that shows the performance of a stemmer.

The lower score of ERRT showed a better stemmer. A

better stemmer obtains ERRT closer to the origin, i.e., 𝑂,

whereas the poor stemmer will be away from the origin.

Figure 6. Results comparison for English OANC dataset.

Figure 7. Results comparison for English Lemma dataset.

Figure 8. ERRT computation ([36] adapted).

To compute the relative accuracy of the stemmers, we

use the ERRT line. It is useful for choosing the best

stemmer in cases where one stemmer is better in under-

stemming but worse in over-stemming. To calculate the

ERRT, we created a baseline using truncation length by

reducing the words in the word list to their 𝑛 first letters

where 𝑛 is 4, 5, 6, and 7. The values of (𝑈𝐼, 𝑂𝐼) any

reasonable stemmers should be found between this line.

The ERRT point of the ‘best’ stemmer is nearest the origin

𝑂 as compared to the rest. The comparison results of Paice

evaluation methods [35, 36] are mentioned in Appendix A.

In this Section, we examine the error-based evaluation

parameters [35, 36] of the PWM method and existing

stemmers. The performance of the under-study stemmer is

compared with baseline Trun4, Trun5, Trun6, and Trun7

(in Fig. 8).

Figure 9. ERRT plot for Urdu language on URSTEM dataset.

Figure 10. ERRT plot for Urdu language on Humayun dataset.

For the URSTEM dataset, the PWMStem produced a

GUMT value of 4034, which is lower than existing

stemmers. UI is 0.026479, OI is 0.000021, and ERRT is

0.61, which is the lowest score compared to the existing

stemmers. The PWM stemmer also has the lowest score of

UI with 0.267608 and 0.820 for ERRT. Alotaibi and

Gupta [4] achieved the highest UI with 0.807471 using

Humauoun dataset. Using the OANC dataset, PWMStem

has the lowest value of GUMT with 1310 and GWMT with

4095 and has the lowest UI of 0.102089, OI 0.000015, and

ERRT score is 0.498. For the English lemma dataset, the

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

870

PWM stemmer achieves the lowest GUMT with 5930 but

the lowest GWMT for the porter [14] method, which is

6638.5. The PWM system has a lower value of UI and OI.

In this dataset, our PWM stemmer is slightly better than

the porter stemmer. Figs. 9–12 plots hypothetical UI and

OI values of stemming operations taken from Urdu and

English datasets. As shown in Fig. 9, only two stemmers

are better than truncation stemmers, that is [4] and

PWMStem. Among these two, PWMStem is closer to the

origin 𝑂, as shown in Fig. 9. For the Humayoun dataset,

three stemmers are below the truncation line, and our

PWMStem is closer to the origin than other stemmers, as

shown in Fig. 10. For the English language, UI and OI

scores fall under the truncation line for all stemmers. This

is given in Figs. 11 and 12. However, our PWMStem is

closer to the origin 𝑂.

Figure 11. ERRT Plot for English language on English lemma dataset.

Figure 12. ERRT Plot for English language on OANC dataset.

C. Stemmer Strength Measurement

A stemmer strength indicates the average change in

producing stem concerning a given word. We use the

Mean Number of Words per Conflation Class (MWC) and

Index Compression Factor (ICF) to measure the strength

of the stemmer. MWC refers to the average number of

words conflated to the common stem. For example, if the

words “reached”, “reaches”, and “reaching” are stemmed

to “reach”, then this conflation class size is three. A score

of one for MWC indicates the weakest stemmer, which

shows no change in any letter from the stemmed word, and

such a stemmer is called the weakest stemmer. A higher

value for MWC indicates a stronger stemmer.

ICF is described as the ratio of the number of unique

words before stemming, and the number of unique

stemmed words after stemming. The ICF was calculated

using Eq. (16). A high value of this metric denotes a

stronger stemmer.

 𝐼𝐶𝐹 = (n − s) 𝑛⁄ (16)

where,

𝑛= The number of words in the corpus

𝑠= The number of stems

For example, a corpus with 100,000 words (𝑛) and

40.000 stems (𝑠) would have an index compression factor

of 60%. The third experiment is about the strength of the

stemmer.

We use MWC and ICF metrics to measure the strength

of the stemmer. Tables VI and VII depict the strength of

the stemmers. Using these stemmer strength measures, it

is possible to define the limits of stemmer strength. The

strongest stemmer removes all possible affixes. The

Maximum Strength (MS) is measured manually on the

annotated data set, which is mentioned in Table VII.

Proposed method achieved MWC of 3.7 and 3.0 using

URSTEM and Humayoun datasets, respectively, as shown

in Fig. 13. For the English OANC dataset, our method has

the highest MWC of 3.46 and 2.0 for the English lemma

dataset, as mentioned in Fig. 8. Fig. 14 portrays the highest

score of ICF, with 73.0 on the Urdu dataset URSTEM and

66.0 for ICF using Humayoun dataset and OANC dataset.

We achieved 71.1 ICF score, the best score in the

experimental set. Using the English lemma dataset, MWC

is 50 ICF, as presented in Fig. 10.

TABLE VI. THE MWC RESULTS COMPARISON FOR URDU AND ENGLISH

Datasets PWMStem Mujeeb et al. [4] Lee et al. [27]
Jabbar et al.

[12]

Rehman et al.

[28]
Porter [14] Lovins [15] MS

URSTEM 3.5 3.5 2.7 2.1 1.7 3.5

Humayoun 3 2.7 3 1.9 2 3.4

OANC 2 1.9 2 2 1.9 2.1
English Lemma 3.5 2 3.4 3.1 3.2 3.8

TABLE VII. ICF RESULTS COMPARISON FOR URDU AND ENGLISH

Datasets
PWMStem Mujeeb et al. [4] Lee and Goldsmith [27] Jabbar et al.

[12]

Rehman et al.

[28]

Porter [14] Lovins [15]

URSTEM 73 73 63 53 43

Humayoun 68 63 68 47 58
OANC 53 50 53 53 49

English Lemma 71 50 70 68 69

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

871

Figure 13. Comparison of the results of MWC for Urdu and English
language.

Figure 14. Comparison of the results of ICF for Urdu and English

language.

V. RESULTS AND DISCUSSIONS

Measuring the efficiency of a stemmer from different

aspects such as accuracy, stemming errors, and strength of

the stemmer is essential for several reasons [39, 40].

• Lemmatization groups the morphologically related

words under a base dictionary form, a crucial step

of NLP preprocessing in Machine Translation

(MT), POS tagging, and Named Entity

Recognition (NER). Accuracy measures the

correctness of stem concerning manually

annotated lemma. Lemmatizes also produce

lemma. So, this assessment shows the ability of

stemmer to replace the lemmatizes.

• The precision of an IR system is highly affected by

under-stemming and over-stemming errors. IR

system designers need a stemmer to address the

vocabulary mismatch problem.

• The features are vital in NLP applications,

including Text Classification (TC), Machine

Translation (MT), and IR systems. The ICF and

MWC metrics represent a feature reduction

achieved through the stemming process.

The experimental results of the PWMStem show that it

achieved better results as compared to the other linguistic

[12, 14, 15, 28] and non-linguistic [4, 25–27] stemmers.

We analyze the PWMStem from three aspects. Firstly, we

determine how a system produces the correct stem using

the manually annotated dataset. Linguistic stemmers are

aggressive because these stemmers committed high under-

stemming errors such as [ridiculousnesses] stems to

[ridiculeness] by Akram et al. [28] and [ridiculous]

produced by Jabbar et al. [12]. But the stem produced

through the PWMStem method is [ridicule] which is the

correct stem. That is why linguistic-based stemmers have

low accuracy and F-score, as shown in Table IV. The

performance of language-independent stemmers is usually

lower because these stemmers produce the stem like

[separation] to [invalid Urdu word] which is incorrect in

most cases. On the other hand, as an example, our stemmer

performed better and produced the correct stem

[separately].

In the same way, the English linguistic stemmer [14]

and language-independent stemmer Linguistica [25–27]

stems (“voice”, “voiced”, “voices”, “voicing”) to “voice”,

which reduces the accuracy and F-score of the stemmer.

The method given in [4] produces two stems, “voice” and

‘voicing’ for the same group of words. In contrast, our

method produces only the correct stem that is “voice”.

The second experiment is conducted to know how a

stemmer committed stemming errors. For this, metrics

proposed by Paice [35, 36, 39] are used. As demonstrated

in Table VIII, the PWMStemmer committed the smallest

number of under-stemming and over-stemming errors on

the Urdu data set by achieving a UI score of 0.025693, OI

of 0.000483, and ERRT of 0.61 for the Urdu dataset

URSTEM. Our method also outperforms other stemmers

on the English dataset with UI of 0.102089, OI of 0.000015,

and ERRT of 0.498. The sample results of over and under-

stemming for English in Table VIII.

TABLE VIII. SAMPLE RESULT OF OVER-STEMMING AND UNDER

STEMMING FOR ENGLISH

References Query Text Error Types

[‘photograph’, ‘photographed’,

‘photographing’,
‘photographs’]

[‘photostate’, ‘photostated’,

‘photostating’, ‘photostats’,
‘photostatted’, ‘photostatting’]

PWMStem

[‘photograph’, ‘photographed’,

‘photographing’,

‘photographs’]
[‘photostat’, ‘photostated’,

‘photostating’, ‘photostats’,

‘photostatted’, ‘photostatting’]

No error

Alotaibi and
Gupta [4]

[‘photograph’, ‘photographed’,

‘photographing’,

‘photographs’, ‘photostat’,
‘photostated’, ‘photostating’,

‘photostats’, ‘photostatted’,

‘photostatting’]

Over-
stemming

Linguistica [27]

[‘photostat’, ‘photostat’,

‘photostats’, ‘photostated’]

[‘photostatt’, ‘photostatting’]

Under-

stemming

Lovins [15]

[‘photograph’, ‘photographed’,
‘photographing’,

‘photographs’]

[‘photostat’, ‘photostats’,
‘photostatted’, ‘photostatting’]

[‘photost’, ‘photostating’]

Under-

stemming

Porter [14]

[‘photograph’, ‘photographed’,
‘photographing’,

‘photographs’]

[‘photostat’, ‘photostats’,
‘photostatted’, ‘photostatting’]

[‘photost’, ‘photostating’]

Under-

stemming

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

872

For the last evaluation metric, we measure cluster-level

conflation and corpus-level conflation. We utilize words’

level conflation to measure MWC and ICF. Our method

also outperforms other stemmers for Urdu and English

regarding the MWC and ICF, as mentioned in Tables VII

and VIII. We achieved a 3.7 MWC score for the Urdu

language for the PWMStem and [4] methods. [28]‘s

stemmer is the weakest stemmer with the lowest MWC of

1.7. Concerning the ICF score, 73% is achieved on our

stemmer and [4] on URDSTEM. For the Humayoun

dataset, the weakest stemmer is the one by [12] with an

MWC of 1.9 and ICF of 58.0, and the strongest stemmer is

Linguistica. The PWMStem method produced an MWC of

3.0 and an ICF of 68.0.

The proposed stemmer is stronger on the OANCE

dataset with MWC 3.47 and ICF 71.0, as shown in Tables

VII and VIII. Linguistica [27] is the weakest stemmer that

obtained the MWC 2.0 and ICF 50.0. For the English

Lemma dataset, the weakest stemmer [4] with MWC of 1.9

(see Table VII) and ICF of 49.0 (given in Table VIII). On

the other hand, our stemmer is stronger with MWC of 2.0

and 53.0 for ICF scores closer to the maximum strength of

the stemmer. Linguistica and Porter [14] obtained 2.0 for

MWC and 53.0 for ICF. The weakest possible affix

removal stemmer would be one that changes no characters

in any stemmed word. Such a stemmer would have one

word per conflation class.

VI. CONCLUSION AND FUTURE WORK DIRECTIONS

Text mining is a challenging task that involves

analyzing raw data. One of the easiest methods to analyze

text mining is changing the textual files or documents into

a standard dataset. This is a challenge for stemmers, and to

the best of our knowledge, no standard stemmer addresses

such issues. Hence, in this article, we designed an

algorithm to overcome such issues.

This paper proposes a new language-independent

method to conflate morphologically similar words to the

common stem. LCP measure is used to determine the

linguistic similarity to the pivot word after removing the

suffix extracted based on the pivot word. Two datasets are

used for each of the Urdu and English languages to

perform a comparative evaluation of stemmers. Further,

the results of our PWMStem stemmer are compared with

two linguistic-based and two language-independent

stemmers for each language. We computed the

performance with three different evaluation methods, that

is accuracy measurement, error estimate, conflation, and

index compression factor. Finally, results suggest that the

PWMStem algorithm is more effective than the other

stemmers tested. The PWMStem method can decrease the

size of terms vocabulary from 53% to 73% in TC and

increase the performance of IR systems. The accuracy

score shows that PWMStem may be used instead of a

lemmatizer in ML, POS tagging, and Named Entity

Recognition (NER) systems.

Although the PWMStem stemmer achieved acceptable

performance results, there are some things that could be

improved in its behavior and functionality. This study has

concentrated only on lexical similarity at the word level.

Further research would be required to address sentencing

level or semantic similarity to improve the accuracy score

by introducing semantic processing. Application of the

PWMStem method on big datasets and its scope

enhancement, including languages such as Arabic,

German, French, and Turkish, is also part of future work.

The big dataset usually includes many co-suffixes or

words with a larger length of suffixes that need special

treatment. Recent advances in AI and statistical methods

urge using artificial neural networks and other machine

learning methods to develop more efficient and high-

performing stemmers. Recently, transformers and

generative AI have shown huge progress in various

applications. Applications of these algorithms can lead to

high performance methods.

APPENDIX: RESULTS PRODUCED USING PAICE’S [35, 36] EVALUATION METHOD

Method GUMT GDMT GWMT GDNT UI 𝑂𝐼 𝑆𝑊 ERRT

Urdu results for URSTEM dataset

PWMStem 4034 152349 46190 2252629777 0.026479 0.000021 0.000774 0.610

Alotaibi and Gupta [4] 5458.5 152349 79017.5 2252629777 0.035829 0.000035 0.000979 1.03

Linguistica [27] 75141 152349 24463.5 2252629777 0.493216 0.000011 0.000022 0.993

Jabbar et al. [12] 84201 152349 54561 2252629777 0.552685 0.000024 0.000044 1.450

Akram et al. [28] 99061 152349 50174 2252629777 0.650224 0.000022 0.000034 1.532

Trun 4 7391 153823 81774.5 2272810353 0.048514 0.000036 0.000748 1

Trun 5 82424 153823 14192 2272810353 0.541021 0.000006 0.000012 1

Trun 6 121507.5 153823 3457.0 2272810353 0.797560 0.000002 0.000002 1

Trun 7 141009.5 153823 752.5 2272810353 0.925569 0.000000 0.000000 1

Urdu results for Humayoun dataset

PWMStem 2880 10762 1143 34488209 0.267608 0.000033 0.000124 0.820

Alotaibi and Gupta [4] 8690 10762 237.5 34488209 0.807471 0.000007 0.000009 1.057

Linguistica [27] 3097 10762 2584.5 34488209 0.287772 0.000075 0.000260 1.367

Jabbar et al. [12] 3598 10762 1703 34488209 0.334324 0.000049 0.000148 1.123

Akram et al. [28] 4003.5 10762 3030 34488209 0.372003 0.000088 0.000236 1.656

Trun 4 3312 10762 3101 34488209 0.307749 0.000090 0.000292 1

Trun 5 5937 10762 1037.5 34488209 0.551663 0.000030 0.000055 1

Trun 6 8503.5 10762 341 34488209 0.790141 0.000010 0.000013 1

Trun 7 10009.5 10762 77 34488209 0.930078 0.000002 0.000002z 1

English results for OANC dataset

PWMStem 1310 12832 4095 269327613 0.102089 0.000015 0.000149 0.498

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

873

Alotaibi and Gupta [4] 2968.5 12832 8929 269327613 0.231336 0.000033 0.000143 1.104

Linguistica [27] 3769.5 12832 6359 269327613 0.293758 0.000024 0.000080 1.045

Porter [14] 2731.5 12832 6177 269327613 0.212866 0.000023 0.000108 0.870

Lovins [15] 3356 12832 6595.5 269327613 0.261534 0.000024 0.000094 0.997

Trun 4 2734 12832 97829.5 269327613 0.213061 0.000363 0.001705 1

Trun 5 4085 12832 33058 269327613 0.318345 0.000123 0.000386 1

Trun 6 4935.5 12832 11315 269327613 0.384624 0.000042 0.000109 1

Trun 7 6226.5 12832 6058.5 269327613 0.485232 0.000022 0.000046 1

English results for English Lemma dataset

PWMStem 5930 48052 19813.5 568049726 0.123408 0.000035 0.000283 0.444

Alotaibi and Gupta [4] 21129 48052 14510 568049726 0.439711 0.000026 0.000058 1.130

Linguistica [27] 14579 48052 17638.5 568049726 0.303400 0.000031 0.000102 0.842

Porter [14] 8703.5 48052 6638.5 568049726 0.181127 0.000012 0.000065 0.471

Lovins [15] 10656 48052 14775.5 568049726 0.221760 0.000026 0.000117 0.631

Trun 4 6608 48052 266227.5 568049726 0.137518 0.000469 0.003410 1

Trun 5 12404.5 48052 65325.0 568049726 0.258147 0.000115 0.000445 1

Trun 6 18071.5 48052 16304.5 568049726 0.376082 0.000029 0.000076 1

Trun 7 27995 48052 3751 568049726 0.582598 0.000007 0.000011 1

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Conceptualization: A.J., A.R.K., and M.I.;

Methodology: T.S., S.A.; Software: M.I and N.E.;

Validation: A.J. A.R.K., N.E., and T.S.; Writing—original

draft preparation: A.J., S.I., A.R.K., and M.I.; Writing—

review and editing: T.S., N.E.; Visualization: M.I. and T.S.;

Supervision: A.R.K.; Project administration: T.S., S.I.; all

authors have read and agreed to the published version of

the manuscript.

ACKNOWLEDGEMENT

This work was supported by Artificial Intelligence &

Data Analytics Research Lab, CCIS Prince Sultan

University Riyadh Saudi Arabia. The authors would like

to thank Prince Sultan University Riyadh Saudi Arabia for

the support of APC for this publication.

REFERENCES

[1] S. Latif, F. Shafait, and R. Latif, “Analyzing LDA and NMF topic

models for Urdu tweets via automatic labeling,” IEEE Access, vol.
9, pp. 127531–127547, 2021.

[2] A. T. Azar, Z. I. Khan, S. U. Amin, et al., “Hybrid global

optimization algorithm for feature selection,” Comput. Mater.
Contin., vol. 74, pp. 2021–2037, 2023.

[3] A. A. Laith, M. Shahbaz, H. F. Alaskar, et al., “Arasencorpus: A

semi-supervised approach for sentiment annotation of a large
Arabic text corpus,” Applied Sciences, vol. 11, no. 5, 2434, 2021.

[4] F. S. Alotaibi and V. Gupta, “A cognitive inspired unsupervised

language-independent text stemmer for Information retrieval,”

Cogn. Syst. Res., vol. 52, pp. 291–300, 2018, doi:

10.1016/j.cogsys.2018.07.003

[5] A. Rehman and T. Saba, “Performance analysis of character
segmentation approach for cursive script recognition on benchmark

database,” Digital Signal Processing, vol. 21, no. 3, pp. 486−490,

2011.
[6] T. Saba, A. Rehman, A. Altameem, et al., “Annotated comparisons

of proposed preprocessing techniques for script recognition,”

Neural Computing and Applications, vol. 25, pp. 1337−1347, 2014.

[7] T. Saba, A. Rehman, and M. E. Boudihir, “Methods and strategies

on off-line cursive touched characters segmentation: A directional

review,” Artificial Intelligence Review, vol. 42, pp. 1047−1066,

2014.

[8] H. Alshalabi, S. Tiun, N. Omar, E. A. Anaam, and Y. Saif, “BPR

algorithm: New broken plural rules for an Arabic stemmer,” Egypt.

Informatics J., vol. 23, no. 3, 2022.
[9] H. Alshalabi, S. Tiun, N. Omar, F. N. A. Aswadi, and K. A. Alezabi,

“Arabic light-based stemmer using new rules,” J. King Saud Univ.

Comput. Inf. Sci., vol. 34, no. 9, 2021.
[10] A. M. Saeed, T. A. Rashid, A. M. Mustafa, R. A. A.-R. Agha, A. S.

Shamsaldin, and N. K. Al-Salihi, “An evaluation of Reber stemmer

with longest match stemmer technique in Kurdish Sorani text
classification,” Iran J. Comput. Sci., vol. 1, no. 2, pp. 99–107, 2018.

[11] M. Harouni, M. S. M. Rahim, M. Al-Rodhaan, et al., “Online

Persian/Arabic script classification without contextual information,”
The Imaging Science Journal, vol. 62, no. 8, pp. 437–448, 2014.

[12] A. Jabbar, S. Iqbal, A. Akhunzada, and Q. Abbas, “An improved

Urdu stemming algorithm for text mining based on multi-step
hybrid approach,” J. Exp. Theor. Artif. Intell., vol. 30, no. 5, 2018.

[13] S. Khan, W. Anwar, U. Bajwa, and X. Wang, “Template based affix

stemmer for a morphologically rich language,” Int. Arab J. Inf.
Technol., vol. 12, no. 2, pp. 146–154, 2015.

[14] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[15] J. B. Lovins, “Development of a stemming algorithm,” Mech.

Transl. Comput. Linguist., vol. 11, pp. 22–31, 1968.
[16] J. Singh and V. Gupta, “A novel unsupervised corpus-based

stemming technique using lexicon and corpus statistics,”

Knowledge-Based Syst., vol. 180, pp. 147–162, 2019.
[17] M. Kasthuri, S. B. R. Kumar, and S. Khaddaj, “PLIS: Proposed

language independent stemmer for information retrieval systems

using dynamic programming,” in Proc. the 2nd World Congr.
Comput. Commun. Technol., 2017, pp. 132–135.

[18] C. Chavula and H. Suleman, “Morphological cluster induction of

Bantu words using a weighted similarity measure,” in Proc.
SAICSIT’17: The South African Institute of Computer Scientists and

Information Technologists, 2017, pp. 1–9.

[19] J. Singh and V. Gupta, “An efficient corpus-based stemmer,”
Cognit. Comput., vol. 9, no. 5, pp. 671–688, 2017.

[20] T. Brychcín and M. Konopík, “HPS: High precision stemmer,” Inf.

Process. Manag., vol. 51, no. 1, pp. 68–91, 2015.
[21] M. S. Husain, “An unsupervised approach to develop IR system:

The case of Urdu,” Int. J. Artif. Intell. Appl., vol. 4, no. 5, pp. 77–

87, 2013.

[22] J. H. Paik, S. K. Parui, D. Pal, and S. E. Robertson, “Effective and

robust query-based stemming,” ACM Trans. Inf. Syst., vol. 31, no.

4, 2013.
[23] J. H. Paik, D. Pal, and S. K. Parui, “A novel corpus-based stemming

algorithm using co-occurrence statistics,” in Proc. the 34th Int.

ACM SIGIR Conf. Res. Dev. Inf. Retr., 2011, pp. 863–872.
[24] P. Majumder, M. Mitra, S. K. Parui, G. Kole, P. Mitra, and K. Datta,

“YASS: Yet another suffix stripper,” ACM Trans. Inf. Syst., vol. 25,

no. 4, 2007.
[25] J. Goldsmith, “Unsupervised learning of the morphology of a

natural language,” Computational Linguistics, vol. 27, no. 2, 2001.

[26] J. Goldsmith, “An algorithm for the unsupervised learning of
morphology,” Nat. Lang. Eng., vol. 12, no. 4, pp. 353–371, 2006.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

874

[27] J. L. Lee and J. A. Goldsmith, “Linguistica 5: Unsupervised

learning of linguistic structure,” in Proc. 2016 Conf. North Am.

Chapter Assoc. Comput. Linguist. Hum. Lang. Technol., 2016, pp.
22–26.

[28] Q. U. A. Akram, A. Naseer, and S. Hussain, “Assas-Band, an affix-

exception-list based Urdu stemmer,” in Proc the 7th Workshop on
Asian Language Resources, 2009, pp. 40–47.

[29] M. Humayoun, R. M. A. Nawab, M. Uzair, S. Aslam, and O.

Farzand, “Urdu summary corpus,” in Proc. the 10th International
Conference on Language Resources and Evaluation, 2016, pp.

796–800.

[30] T. Saba, A. Rehman, and G. Sulong, “Cursive script segmentation
with neural confidence,” Int. J. Innov. Comput. Inf. Control, vol. 7,

no. 7, pp. 1–10, 2011.

[31] T. Saba and F. A. Alqahtani, “Semantic analysis-based forms
information retrieval and classification,” 3D Research, vol. 4, no. 3,

pp. 1–6, 2013.

[32] Z. Hussain, S. Iqbal, T. Saba, et al., “Design and development of
dictionary-based stemmer for the Urdu language,” Journal of

Theoretical & Applied Information Technology, vol. 95, no. 15,

2017.

[33] S. L. M. Sainte, B. S. Alnamlah, N. F. Alkassim, and S. Y.

Alshathry, “A new framework for Arabic recitation using speech

recognition and the Jaro Winkler algorithm,” Kuwait J. Sci., vol. 49,
2022.

[34] S. Hussain. Finite-state morphological analyzer for Urdu. [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.128.1603&rep=rep1&type=pdf

[35] C. D. Paice, “Method for evaluation of stemming algorithms based

on error counting,” J. Am. Soc. Inf. Sci., vol. 47, no. 8, pp. 632–649,
1996.

[36] C. D. Paice, “An evaluation method for stemming algorithms,” in

Proc. the 17th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, 1994, pp. 42–
50.

[37] K. Neamah, D. Mohamad, T. Saba, and A. Rehman,

“Discriminative features mining for offline handwritten signature
verification,” 3D Research, vol. 5, pp. 1–6, 2014.

[38] T. A. Khan, “Morphological integration of Urdu loan words in

Pakistani English,” English Lang. Teach., vol. 13, no. 5, 49, 2020.
[39] Y. Jaafar, D. Namly, K. Bouzoubaa, and A. Yousfi, “Enhancing

Arabic stemming process using resources and benchmarking tools,”

J. King Saud Univ. Comput. Inf. Sci., vol. 29, no. 2, pp. 164–170,
2017.

[40] T. Saba, A. Rehman, and G. Sulong, “Improved statistical features

for cursive character recognition,” International Journal of
Innovative Computing, Information and Control, vol. 7, pp. 5211–

5224, 2011.

[41] K. Abainia, S. Ouamour, and H. Sayoud, “A novel robust Arabic
light stemmer,” J. Exp. Theor. Artif. Intell., vol. 29, no. 3, pp. 557–

573, 2017.

[42] F. N. Flores and V. P. Moreira, “Assessing the impact of stemming

accuracy on information retrieval—A multilingual perspective,” Inf.

Process. Manag., vol. 52, no. 5, pp. 840–854, 2016.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

875

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N4-863

