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Abstract—Stemming is a common preprocessing method 

aggregating all word variants to a standard stem to aid 

various Natural Language Processing (NLP) tasks. This work 

proposes a new unsupervised corpus-based stemmer that 

identifies the candidate suffixes using pivot word matching. 

Then candidate suffix statistics are used to remove the 

potential suffixes. After this, lexical similarity is measured to 

cluster the morphological related words. Finally, the smallest 

word in each cluster is designated as a stem. To quantify the 

performance of proposed method, two corpus-based and two 

linguistic knowledge-based stemmers for Urdu and English 

languages are used. The performance of each stemmer is 

evaluated on two different datasets for each language. The 

results show that the proposed PWMStem method 

outperforms the selected stemmers, achieving an accuracy of 

0.876 for Urdu and 0.877 for English. To assess the 

performance of PWMStem through different aspects 

multiple evaluation metrics are used. The evaluation scores 

of other metrics are Index Compression Factor (ICF) = 73, 

Mean Number of Words per Conflation Class (MWC) = 3.7 

for Urdu, and ICF = 71 and MWC = 3.5 for English. In the 

Urdu dataset, PWMStem achieved the lowest Under-

stemming Index (UI) of 0.026479, Over-stemming Index (OI) 

of 0.000021, and an Error Rate Relative to Truncation 

(ERRT) of 0.610. In the English dataset, the values for UI, OI, 

and ERRT were measured as 0.102089, 0.000015, and 0.498, 

respectively.   

 

Keywords—corpus-based stemming, morphology, natural 

language processing, Urdu stemmer, words inflection 

 

I. INTRODUCTION 

With the advent of the Internet, the generation and use 

of natural language content in various languages has 

increased exponentially. Several methods, known as pre-

processing methods, are used to transform data into a 

desired form before applying a task-specific algorithm to 
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extract the required information. Among these, stemming 

is an prominent method that aggregates all variations of a 

word into one morphologically related class to aid natural 

language processing tasks [1].  

Urdu is different from other languages like English in 

terms of its linguistic, and phonetic rules. Urdu script is 

written from right-to-left direction. It is highly 

Persianised/Arabicised. It is the national language of 

Pakistan as well as spoken in various parts of world like 

United Arab Emirates (UAE), United Kingdom (UK), 

United States (US) and in many parts of India1. 

Many language processing tools are available for the 

English language. NLP tools for Urdu still need to be 

improved in number and it is required to build more 

efficient tools. New tools are always required to build as 

new tasks and applications are emerging with time.  

Stemming serves multiple roles in language processing 

which include reducing the size of the index file, reducing 

the number of features for classification and lexical 

transfer learning tasks [2]. Stemming can be utilized as a 

crucial preprocessing tool in various Natural Language 

Processing (NLP) tasks like Text Classification (TC), 

automatic indexing, lexical analysis, information 

extraction, and text summarization [3]. It also resolves the 

query mismatch problem in Information Retrieval (IR) 

systems, improving the system’s recall. The emergence of 

new applications of NLP needs more sophisticated and 

high-performance tools like stemming.  

Different approaches have been proposed to develop 

stemmers, including rule-based, supervised, semi-

supervised, and unsupervised machine learning 

methods [4]. In this work, we have proposed a new 

unsupervised corpus-based method that identifies 

candidate suffixes using Pivot Word Matching (PWM) and 

removes potential suffixes based on their statistics, then 

forms clusters of words with lexical similarity and 

1 https://www.britannica.com/topic/Urdu-language 
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designates the smallest word in each cluster as the stem. 

We evaluate the PWMStem for Urdu and the English 

corpus, and the results show that it is an efficient approach 

for both languages. Following list presents the 

contributions of the work: 

• A new Unsupervised Algorithm: PWMstem is an 

unsupervised corpus-based stemmer developed 

considering Urdu words’ structure. 

• Language-independent Approach: PWMstem 

cognitively learns morphological patterns without 

predefined linguistic rules of any language, 

making PWMstem a language-independent 

method. 

• Multi-level Morphology Handling: In contrast to 

other unsupervised stemmers, PWMstem can 

handle morphological words, which may consist of 

multi-level suffixes/long suffixes. 

• Dataset Development: A custom dataset is 

developed for the Urdu language to train and 

evaluate the proposed method. 

• Improved Performance: PWMstem shows 

improved performance over state-of-the-art 

stemmers. 

The rest of the article is organized as follows: the review 

of existing works and comparison is given in Section II. 

Section III depicts a detailed description of the PWMStem 

algorithm. Section IV portrays the evaluation results of the 

proposed stemmer. Result and discussion present in 

Section V. Finally, Section VI provides the conclusion and 

future work directions. 

II. LITERATURE REVIEW 

Various stemmers of different flavors and natures have 

been proposed in the literature. Regarding design and 

functions, stemmers may be categorized into two major 

classes: language-dependent and independent [5]. 

Language-dependent stemmers use specific re-

characterized language-associated requirements to 

represent the morphological variations of the words. These 

language-related rules are manually developed by 

language experts [6]. Several language-dependent 

stemmers have been designed for English and other 

languages. The literature review shows that multiple 

stemmers for minor languages have also been developed. 

Creating a language-dependent stemmer requires 

additional assets, tools, and relevant expertise. On the 

other hand, language-independent and statistical methods 

are used to obtain linguistic features, and a stem is 

extracted via these features. In the following subsections, 

we review relevant linguistic knowledge-based and 

language-independent stemmers. 

A. Language Dependent Stemmers 

Aba et al. [7] proposed a linguistic-based stemming 

algorithm for Urdu, which utilizes a predefined prefix and 

suffix list to recognize the affix part in a query word. 

Further, infixes are recognized with specific letters 

positioned in the query words, and appropriate infixes 

rules are applied. The study identifies some exceptional 

cases, such as سجود [prostration] and نقوش [Impressions], 

that have similar patterns, and such exceptional cases are 

treated differently to obtain stem. Alshalabi et al. [8] 

developed an Arabic linguistic-based stemmer that utilizes 

one character’s prefix and suffix and ignores the higher-

length affixes. The internal structure of the singular word 

changed when converting to plural form know as 

broken/irregular plural word such as [children] from 

singular [child], in which singular form [child] suffers 

internal changes by adding the [alif] and [alif laam] to 

plural form [children]. whereas the singular form of words 

is not broken when making their plural without changing 

the internal structure, such as [female teachers] from 

singular [female teacher]. In this case, the internal 

structure of the singular word did not change, and the 

plural is formed by adding the اalif tee] at the end. Various 

patterns of length 4−6 is designed to get the stem of broken 

plural words. Three patterns are designed for the words of 

length four, 15 patterns for length five, and six patterns for 

words length six. Alshalabi et al. [9] refined “The 

Information Science Research Institute’s (ISRI) Arabic 

stemmer”, which identifies the affixes of up to five 

characters which are then removed according to word 

length instead of the pattern. Alnaied et al. [5] developed 

a list of rules to produce the stem consisting of three phases: 

substring tagging, rule matching, and anti-rule matching. 

They defined 58 prefixes, three infixes’ letters, and 25 

suffixes. Saeed et al. [10] designed an iterative stemmer 

for the Persian language using prefix and suffix lists to find 

the prefixes and suffixes to remove them iteratively, 

resulting in improved performance for the classification 

task. Harouni et al. [11] designed a stemmer for the 

Sundanese language that iteratively removes the longer 

affixes before the shorter ones to obtain the stem. 

Jabbar et al. [12] presented a multi-step Urdu stemmer 

that was evaluated on the custom-designed text and word 

corpus. The stemmer operates in multiple phases, 

including affix striping, template matching, and table look-

up. Khan et al. [13] suggested an Urdu linguistic rule-

based stemmer that identifies the affix letters by the 

predefined pattern, affix list, and exceptional list to derive 

the stem. The porter stemmer [14] is the most famous 

English stemmer widely used in IR systems. It works in 

five steps using rules and conditions matching vowel and 

consonant pattern sequences. Porter stemmer [14] in the 

first step, handles inflectional suffixes. In the next three 

steps, it handles the derivational suffixes and performs the 

recoding. Lovins is another language-dependent 

stemmer [15]. It comprises 294 suffixes associated with 29 

conditions that determine the eligibility of a suffix for its 

removal. It also contains 35 transformation rules based on 

the longest match criterion. After removing suffixes, the 

recoding rules are applied to convert the stem to a 

linguistically correct word. 

B. Language-Independent Stemmers  

Singh and Gupta [16] developed a statistical stemmer 

using linguistic, co-occurrence similarity and suffix pair 

frequency to compute the morphological correlation 

among words to form a cluster. The common prefix in the 

cluster is then retrieved as a stem. Alotaibi and Gupta [4] 

proposed a language-independent stemmer that uses the 
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Jaccard distance similarity measure to cluster 

morphologically related words. The threshold of the 

similarity metrics is set to 1.5 by authors. Kasthuri et 

al. [17] also designed a language-independent stemmer 

using Levenshtein Edit Distance (LED) and the Longest 

Common Subsequence (LCS) metrics to find the similarity 

between the strings. The procedure first groups the words 

based on the length of the common prefix and then selects 

the most common word as a stem using filtering rules. The 

acceptable filtering rule is defined as LED < LCS. Chavula 

and Suleman [18] showed that the orthographic similarity 

measure did not indicate the morphological distribution of 

morphemes. Subsequently, they proposed a weighted 

similarity measure that uses Ordered Weighted Aggregate 

(OWA) to conflate morphologically similar words in the 

corpus using common letter patterns. 

Singh and Gupta [19] developed an efficient stemmer 

that used the Jaro-Winkler distance with a variant to cluster 

morphologically different words using the graph-based 

clustering method. Brychcín and Konopík [20] designed a 

stemming technique that considerably improves precision 

at the cost of a slight decrease in recall. The method uses 

each lexical and co-occurrence metric to learn 

morphological rules for stemming. Husain et al. [21] 

constructed a language-independent stemmer using the n-

gram technique. The system produces n-gram tokens, and 

then the suffix list is generated from these tokens. The 

extracted suffixes are eliminated using criteria of 

frequency and length of the suffixes. The authors claimed 

that frequency-based criteria give better results than the 

suffix length-based method. Paik et al. [22] developed an 

unsupervised stemming algorithm that discovers suffixes 

based on their frequency. They divide the corpus into 

groups using the average word length as prefix matching. 

Then, the potential suffix and longest common prefix 

feature to formulate the morphologically related word 

classes. Paik and Parui [23] extracted the suffixes using the 

co-occurrence of the trailing part of the words in the corpus 

and grouped the morphologically related words on the 

bases of suffix frequency and prefix matching criteria. 

Majumder et al. [24] recommended as a method to 

cluster morphologically related words using four similarity 

metrics to cluster morphologically related words. 

Goldsmith [25, 26] proposed an unsupervised stemming 

model which produces all possible pairs of stems and 

suffixes known as signatures, then Mutual Information 

(MI) filters out the stem and suffix. The minimum 

description length is used as the threshold value of Lee abd 

Goldsmith [27] built a software system called Linguistica 

5 utilizing the framework of [25, 26] for stemmers 

evaluation which is also used in this study. 

C. Comparison and Evaluation 

In this Section we analyze the various features of the 

state-of-the-art stemmer. The comparison is presented in 

Table I. 

TABLE I. COMPARISON OF CHARACTERISTICS OF THE STEMMERS 

Features Ref. 

• Initial classes were created using the average word length as a common prefix. According to 

Peter Norvig2, the average word length for the English language is five. 

• Peter Norvig’s corpus analysis shows that most English words have lengths of three and four 

letters, which are ignored. 

• Suffixes are obtained by matching common prefixes and the potential suffixes are filtered 

using frequency of co-occurrence of suffixes. They typically strip only the last suffix of the 

query word. In the English word like ‘helpfulness’ would be striped to ‘helpful’ by removing 
‘ness’ as suffix by this method. To cut off the whole suffix part (fulness) is a harder task. 

• Features extracted to create the morphologically related words class are: the lexical similarity, 

the co-occurrence frequency of the words and potential suffix is used. 

• This method produces the common part as stem for instance morphologically related word 

class is (share, shares, shared, sharing) and return the ‘shar’ as stem which may improve the 
performance of information retrieval but may not be beneficial for machine translation and 

speech recognition. 

• Language independent in nature. 

Singh and Gupta [16] 

• Initial classes were created using the average words length as common prefix. According to 

Peter Norvig, the average word length for the English language is five. 

• The words with smaller word length are ignored. 

• Suffixes are not retrieved. 

• The morphologically related words are clustered using lexical similarity. In such methods, 

longest suffixes/multilevel suffixes are not properly removed. Therefore, the system suffers 

with under stemming errors. 

• The method is application oriented as the common part of the morphological related cluster is 

considered the stem. 

• Language independent in nature. 

Mujeeb et al. [4] 

• Segment the word in possible stem suffix pair. 

• Mutual Information of the stem suffix pair is used to assess the correct stem and suffix. 

• This method ignored the multilevel suffixes such as the word ‘admirers’. 

• A lot of unnecessary tokens are created which increase the computational cost and space on 

disk. 

• Language independent in nature. 

Goldsmith [25, 26] 

 
2 http://norvig.com/mayzner.html 
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• Use the predefined suffixes list to recognize and remove suffixes. 

• After stripping the suffix, the recoding rules are applied to convert the extracted stem into a 

valid stem. However, in some cases, it produces an invalid word such as ‘stay’ stems to ‘stai’. 

• Due to minimal length-based nature, the method suffers the under stemming errors. 

• The method is specifically developed for English words 

Porter [14] 

• This method uses the predefined suffixes list to recognize and remove them. 

• The suffix list is short of many suffixes. 

• The minimum length of stem is two letters which significantly produce over stemming errors. 

• Consider only English words 

Lovins [15] 

• Used predefine affix list to identify and remove the suffixes. 

• The affix list is incomplete. 

• Unable to treat the new affixes which are not included in the predefined affix list. 

• English loan words did not stem correctly. 

• Hybrid words are not handled. 

• The method is language dependent 

Rehman and Saba [28] 

• Uses predefine affix list to identify and remove the suffixes. 

• Unable to treat the new affixes which are not included in the predefined affix list. 

• Hybrid words are not handled. 

• The method is language dependent 

Jabbar et al. [12] 

• Initial corpus is divided into the various clusters based on the first three letters as common in 

the case of Urdu as well as English language. 

• The suffix part is segmented from the query word on the bases of Pivot Word (PW) matching 

instead of common letters matching. PW based obtained suffixes usually linguistically true. 

However, we further filter the potential suffixes which have certain threshold value. 

• In contrast to prior studies, the Lexicon similarity measures after removing the suffix are used. 

In this way, the long or multilevel suffix words are also allocated the correct morphological 

cluster. 

• Efficiently handle the English loan words, which written in Urdu script. 

• Hybrid words are also handled. 

• The smallest word from these morphological clusters is considered the stem of all the word in 

that cluster. 

Proposed 

III. THE PROPOSED STEMMING METHOD 

The main objective of this work is to design a novel and 

effective corpus-based stemming technique that can serve 

as a universal tool in various NLP applications. The 

proposed technique groups morphologically related words 

appearing in the corpus using lexical similarity and suffix 

statistics. This algorithm acquires unique words as input 

from the corpus and produces a set of morphologically 

related words. Our algorithm works in three phases, as 

depicted in Fig. 1. 

 

 
Figure 1. Phases of PWMStem method. 

TABLE II. DESCRIPTION OF SYMBOLS USED IN METHODOLOGY 

Symbol Meaning 

𝑠𝑖 Suffix with index 𝑖 
𝑤𝑖 A word with index 𝑖 
𝑤𝑗 A word with 𝑗 

𝑝𝑠 A word 𝑝 with attached suffix 𝑠 

𝑞𝑠 A word 𝑞 with attached suffix 𝑠 

𝑤𝑠𝑖 Word with suffix 𝑠 and index 𝑖 
𝑟𝑝𝑞 Similarity score between word 𝑝 and 𝑞 

𝐶𝑖 Class with index 𝑖 
𝐶𝑚 Class of morphologically related words 

𝑃𝑊𝑖 Pivot Word (PW) with index 𝑖 

 
3 https://anc.org/SecondRelease/data/ANC-all-lemma.txt 
4 https://github.com/skywind3000 
5 http://oud.cle.org.pk/ 

Table II lists the symbols which are used in the 

following discussion. 

A. Corpus Development 

For the development and evaluation of the PWMStem 

algorithm, two corpora of English and Urdu languages are 

used. These include Open American National Corpus 

(OANC)3 and English Lemma Dataset compiled by Lin 

Wei 4 , the first dataset for the Urdu language is taken 

from [29] and the second dataset is a custom-made named 

as URSTEM, which contains Urdu morphological and 

related words. The sources of URSTEM include grammar 

books [30–33] on morphology [34] and an online resource 

provided by the Center for Language Engineering, 

University of Engineering and Technology, Lahore, 

Pakistan5. The preprocessing methods include the removal 

of punctuation, numbers, non-Urdu characters, and Urdu 

diacritics. After the preprocessing, stop words and 

duplications were removed from the corpus. Then the 

dataset adaptation is grouped in the form of 

morphologically related words. This step required deep 

consideration and was time-consuming. Multiple corpora 

are used to evaluate the designed method to ensure a 

language-independent assessment. An overview of the 

datasets used in the study is given in Table III. 

Paice’s [35, 36] evaluation method require a list of 

morphologically related groups of words. Following the 

criteria designed by Paice [35, 36] we have categorized the 

corpus into morphological groups or clusters. This helps to 
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compute the performance scores of the proposed method. 

Each cluster has the following two properties: 

• According to Paice [35, 36] morphologically 

related words must share a common stem. The 

developed corpus has a minimum of three letters 

length for common stem. 

• Each cluster has a minimum of two words. This 

condition is also formulated by Paice [35, 36]. An 

example of morphologically related word forms 

from the Urdu dataset URSTEM and the English 

Lemma data set is mentioned in dataset. 

TABLE III. DATASET DESCRIPTIONS 

Dataset Lang. 
Word 

Count 

Distinct 

words 

Clusters 

Count 

Avg. 

Cluste

r Size 

OANC English 221,64985 23,210 11,245 2.1 

English 
Lemma 

English 186,523 33,695 8,982 3.8 

Humayoun Urdu 152,264 8,309 2,384 3.5 

URSTEM Urdu 67,126 67,126 19,652 3.4 

 

B. Corpus-Based Suffix Discovery 

The morphological variations in most inflectional 

languages are formed through suffixation, which is the 

addition of the suffix to the root word to form a new 

word [37, 38]. Although the stem may be present in any 

part of query words, this study does not deal with such 

cases. We assume that a suffix is present in the trailing part 

of a word or its inflectional form; hence the notation 𝑤𝑠 is 

used where  𝑤 is the stem and 𝑠 is the suffix. We start with 

a list of words, such as {𝑤𝑠1 , 𝑤𝑠2, … , 𝑤𝑠𝑛} is produced by 

a Pivot Word (PW) from the corpus, then the suffixes 

𝑠1, 𝑠2, … , 𝑠𝑛 are retrieved. The generated suffixes may not 

be linguistically correct. Statistics like suffix frequency 

and length are then used to filter valid suffixes.  

Using Eq. (1), a Pivot Word (PW) is selected for each 

cluster, and based on the PW, Candidate Suffixes (CS) of 

length (𝑛 = 1,2, … ) are extracted, and then Pivot Word 

Matching (PWM) is performed using Eq. (2). After this, 

CS suffixes are extracted using Eq. (3). The complete 

procedure of discovering CS suffixes is described 

Algorithm 1.  

 

Algorithm 1: Discovering suffixes 

1 Input:  Unannotated Corpus (UC) 

2 Construct the Unique Words List (UWL) after 

preprocessing and normalization  

3 Arrange the UWL in alphabetical order 

4 for each word W in UWL do  

5   Construct 𝐶𝑖 = {𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛} using Eq.(2) 

: 𝑤𝑖𝑖𝑠 variant forms of word W 

end for 

6 for each cluster Ci in cluster list C 

7    for each item 𝑊𝑗 in 𝐶𝑖 do 

8         the suffix is extracted from 𝑊𝑗 by Eq.3 and 

added to the CS list 

9    end for 

10 end for 

The example of top 20 CS of English depicted in Figs. 2 

and 3, top 20 CS of Urdu are shown. Potential Suffixes (PS) 

are found from CS using suffix length and frequency 

criteria. The threshold value of suffix length and frequency 

are determined experimentally. Let 𝑤𝑖  and 𝑤𝑗  are two 

strings sharing a common prefix and 𝑤𝑖  is selected as a 

PW word and 𝑤𝑗  is the variant form of the 𝑤𝑖 , as given in 

Eq. (1). 

 𝑙𝑒𝑛(𝑤𝑖) ≤ 𝑙𝑒𝑛(𝑤𝑗)   (1) 

where (𝑖 < 𝑗) ∧ (𝑤𝑖 = 𝑃𝑊) ∧ 𝑤𝑗 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑡(𝑃𝑊). 

Let 𝑤𝑖  is a PW then: 

 𝑃𝑊𝑀(𝑤𝑖 , 𝑤𝑗) =
|𝑆(𝑤𝑖,𝑤𝑗)|

|𝑤𝑖|
  (2) 

where 𝑆(𝑤𝑖 , 𝑤𝑗) is the common part between 𝑤𝑖  and 𝑤𝑗  

starting from index zero to 𝑙𝑒𝑛(𝑤𝑖). It is to note that the 

zero index will differ for Urdu and English languages due 

to their orientation. The suffix is extracted by Eq. (3). 

 𝑠𝑢𝑓𝑓(𝑊) = 𝑊𝑃𝑊𝑀(𝑤𝑖,𝑤𝑗)
𝑍  (3) 

where 𝑃𝑊𝑀(𝑤𝑖 , 𝑤𝑗) = 𝑚𝑖𝑛 (𝐿𝐶𝐶𝑃(𝑆𝑖,𝑆𝑗,)) + 1 and 𝑍  is 

a size of string  𝑤𝑗 . 

Following Table IV lists few examples of candidate 

suffixes. 

TABLE IV. EXAMPLE OF CANDIDATE SUFFIXES IN ENGLISH 

English Corpus 

affect, affectation, affectations, affected, affectedly, affecteth, 

affecting, affection, affectionate, affectionately, affections, affects 

Pivot word Candidate suffixes 

affect 
ation, ations, ed, edly, eth, ting, ion, ionate, ionately, 

ions, s 

affectation s, ate, ately, 
affected ly 

affection ate, ately, s 

affectionate ly 
 

C. Determine Lexicon Similarity 

This score is measured with the help of a lexical 

similarity score, where morphologically related words 

show a high score for lexical similarity [37, 38]. The string 

similarity function maps a pair of words 𝑝𝑠 and 𝑞𝑠 to a 

real number 𝑟 where the higher value of 𝑟 denotes greater 

similarity between the word pair 𝑝 and 𝑞 after removing 

the suffix 𝑠 . This metric presents the longest common 

prefix, which avoids any early mismatch while comparing 

the strings. We define similarity as 

𝐿𝑜𝑛𝑔𝑒𝑠𝑡𝐶𝑜𝑚𝑚𝑜𝑛𝑃𝑟𝑒𝑓𝑖𝑥(𝐿𝐶𝑃)  between two words 𝑤𝑖  

and 𝑤𝑗  taken from the corpus as shown in Eq. (4). 

 𝐿𝐶𝑃 =
|𝐿(𝑤𝑖,𝑤𝑗,)|

𝑚𝑎𝑥(|𝑤𝑖|,|𝑤𝑗|)
  (4) 

where 𝐿(𝑤𝑖, 𝑤𝑗,) is the length of the common part of words 

𝑤𝑖  and 𝑤𝑗  and denominator is the longer length of strings.  

Algorithm 2 define the procedure to calculate the 

lexicon similarity and create the cluster of morphological 

related words. 
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Figure 2. Example of candidate suffix with count/frequency (English 
corpus). 

 

Figure 3. Example of candidate suffix with count/frequency (Urdu 
corpus). 

D. Creating Morphological Classes 

Morphological classes are constructed using suffix 

statistics and string similarity function. The list of input 

words is divided into several 𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛 based on a 

common prefix of a length 3. The process is described in 

Algorithm 2. 

 

Algorithm 2: Grouping morphologically related 

words 

1 Split the lexicon into initial classes C1, C2, C3, …, 

Cn 

such that each class has the first three letters in 

common 

2 for each word in class  𝐶𝑖 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛} do 

3 Let 𝑃 ← 𝑤0  is a pivot word 

4    for each 𝑤𝑗  in 𝐶𝑖  

5        Iteratively truncate the suffix from 𝑤𝑗  and 

compute  

       𝐿𝐶𝑃 using equation Eq. (4) 

6       If score < 0.8 then 

           𝑤𝑗  is included in 𝐶𝑚 

7       else 

          𝑃 ← 𝑤𝑗  and repeat steps 4 to 5.      

8    end for 

9 end for 

E. Illustrative Example 

The proposed stemmer identifies Morphological 

Clusters (MC) of similar words, then the smallest word is 

deduced as a stem. The stemmer correctly identifies 

different types of suffixes, induced rules of the English 

language (examples: “near”, “neared”, “nearer”, “nearest”, 

“nearing”, “nears” stem to near).  

IV. EXPERIMENTAL RESULTS 

We have used three different evaluation metrics to 

measure the performance of the PWMStem stemmer with 

the existing stemmers. A brief description of these 

evaluation metrics and analysis of obtained result is given 

in the following subsection. 

A. Suffix Removal Evaluation 

We compare the stems produced by the stemmers with 

manually annotated words by human experts. The manual 

annotation process includes labeling each word with its 

true stem. The suffix removal results have been assessed 

in terms of accuracy (Eq. (5)), precision (Eq. (6)), recall 

(Eq. (7)), and F-score (Eq. (8)). These evaluation metrics 

are commonly used to assess the performance of 

stemmers [12, 16]. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (5) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (7) 

Here, TP is the number of correct stems produced by the 

stemmer; FP is the number of incorrect stems; FN is the 

number of words incorrectly un-stemmed by the stemmer; 

TN is the total number of correctly un-stemmed words 

returned by the stemmer. 

 𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (8) 

Using the URSTEM dataset, PWMStem outperforms 

other stemmers with the highest accuracy of 0.874 and an 

F-score of 0.908, as shown in Table V. Our stemmer 

achieves an accuracy of 0.876 and an F-score of 0.907 

using the Humayoun dataset, which is better than the 

existing stemmers. The PWMStem method achieved an 

accuracy score of 0.877 and 0.874 for the F-score using the 

OANC dataset for the English language. With the English 

Lemma dataset, the values of accuracy and F-score were 

0.78 and 0.837, respectively. Fig. 4 compares accuracy, 

precision, recall, and F-score for URSTEM. The results 

obtained from the Humayoun dataset are given in Fig. 5. 

Fig. 6 demonstrates the score for the English dataset 

OANC, and the results obtained using the English Lemma 

dataset are shown in Fig. 7.  

TABLE V. RESULTS OF SELECTED STEMMERS ON FOUR DATASETS 

Method                             Accuracy        Prec.         Recall         F-score 

Urdu results for URSTEM dataset 

PWMStem 0.874 0.94 0.878 0.908 

Alotaibi and Gupta [4] 0.715 0.856 0.721 0.783 
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Linguistica [27] 0.448 0.66 0.50 0.57 
Jabbar et al. [12] 0.42 0.628 0.458 0.53 

Akram et al. [28] 0.352 0.583 0.31 0.404 

English results for OANC dataset 

PWMStem 0.877 0.922 0.831 0.874 
Alotaibi and Gupta [4] 0.71 0.763 0.632 0.691 

Linguistica [27] 0.55 0.55 0.71 0.62 

Porter [14] 0.50 0.52 0.49 0.504 
Lovins [15] 0.413 0.433 0.448 0.44 

Urdu results for Humayoun dataset 

PWMStem 0.876 0.974 0.85 0.907 

Alotaibi and Gupta [4] 0.606 0.846 0.547 0.665 
Linguistica [27] 0.44 0.642 0.566 0.601 

Jabbar et al. [12] 0.3528 0.576 0.368 0.449 
Akram et al. [28] 0.49 0.605 0.50 0.54 

English results for English Lemma dataset 

PWMStem 0.782 0.938 0.755 0.837 

Alotaibi and Gupta [4] 0.57 0.89 0.48 0.62 
Linguistica [27] 0.33 0.58 0.387 0.464 

Porter [14] 0.44 0.69 0.44 0.54 

Lovins [15] 0.56 0.80 0.53 0.64 

 

 

Figure 4. Results comparison for Urdu URSTEM dataset. 

 

Figure 5. Results comparison for Urdu Humayoun dataset. 

B. Stemming Errors 

Paice [35, 36] presented the Over-stemming Index (OI), 

Under-stemming Index (UI), and their ratio, which is 

termed as Stemming Weight (SW) parameters, and the 

Error Rate Relative to Truncation (ERRT). Many 

researchers have used these metrics to assess the 

performance of their designed methods [41, 42]. To obtain 

the score of OI, Paice [35, 36] used Wrongly Merged Total 

(WMT) and Desired Non-merged Total (DNT) parameters. 

The WMT is used to measure the over-stemming errors, 

and it is computed via Eq. (9): 

 𝑊𝑀𝑇𝐺 = 0.5 ∑ 𝑛𝑠𝑖(𝑁𝑠 − 𝑛𝑠𝑖)
𝑓𝑠
𝑖=1  (9) 

𝑁𝑠 is the total number of stems in the stem group  𝑛𝑠𝑖 is the 

number of stems obtained from the𝑖𝑡ℎ concept group t is 

the number of groups that share the same stem. The 

stemmer may confuse some words of one group with 

another morphologically different group. Paice [35, 36] 

used the Desired Non-merge total (DNT), which is given 

by the following formula (Eq. (10)): 

 𝐷𝑁𝑇𝑔 = 0.5𝑁𝑠(𝑤 − 𝑁𝑠) (10) 

where 𝑤 is the total number of words. By summing 𝑊𝑀𝑇 

(Eq. (9)) and 𝐷𝑁𝑇 (Eq. (10)) over all groups in the sample, 

we obtain the Global Unachieved Non-Merge Total 

𝐺𝑊𝑀𝑇  and Global Desired Non-Merge Total (𝐺𝐷𝑁𝑇 ), 

respectively. The 𝑂𝐼 is a ratio as given below (Eq. (11)).  

 𝑂𝐼 =
𝐺𝑊𝑀𝑇

𝐺𝐷𝑁𝑇
 (11) 

To calculate the error rate of 𝑈𝐼 , Paice [35, 36] 

introduced the Desired Merged Total (DMT) and 

Unachieved Merged Total (UMT) parameters. DMT 

represents the number of all pairs of words in the group 

and is given as follows (Eq. 12): 

 𝐷𝑀𝑇𝑔 =
1

2
𝑁𝑠(𝑁𝑠 − 1)  (12) 

where, 𝑁𝑠= the number of words in that group.  

DMT =0, if a group contains only one word. (that’s why 

the minimum number of items in a group must be two, as 

mentioned in sub section A, Corpus Development of 

Section III) 

GUMT is defined by the following Eq. (13): 

 𝑈𝑀𝑇𝐺 = 0.5 ∑ 𝑛𝑔𝑖(𝑁𝑔 − 𝑛𝑔𝑖)
𝑓𝑔
𝑖=1  (13) 

where, 𝑓𝑔 is the number of distinct stems in the group 𝑔, 
and 𝑛𝑔𝑖 is the total number of cases of stem 𝑖 in the group.  

The sum of 𝐷𝑀𝑇 (Eq. (12)) and 𝑈𝑀𝑇 (Eq. (13)) overall 

groups give us the Global Unachieved Merge Total 

(GUMT) and Global Desired Merge Total (GDMT). Thus, 

these parameters defined the UI as follows (Eq. (14)): 

 UI = 
𝐺𝑈𝑀𝑇

𝐺𝐷𝑀𝑇
 (14) 

Stemming Weight (SW) refers to the ratio 
𝑂𝐼

𝑈𝐼
. An 

aggressive stemmer strips too many affixes and thus has a 

higher value of OI than UI. On the other hand, a light 

stemmer removes a few affixes and hence has high UI and 

low OI. Error Rate Relative to Truncation (ERRT) refers 

to the values of (𝑈𝐼, 𝑂𝐼) for a series of truncation lines 

from Trunc4 to Trunc7. The coordinates (𝑈𝐼, 𝑂𝐼)  for a 

stemmer should be below the truncation line, and such 

stemmers are known as “good” stemmers. ERRT is taken 

by stretching a line from the origin through the coordinates 
(𝑈𝐼, 𝑂𝐼) point P until it intersects the truncation line at T 

(see Fig. 8). ERRT is computed by Eq. (15): 

0

0.5

1

Accuracy Prec. Recall F-score

PWMStem Alotaibi & Gupta [4]

Linguistica[27] Jabbar et al [12]

Akram et al  [28]
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 𝐸𝑅𝑅𝑇 =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑂𝑃)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑂𝑇)
 (15) 

The standalone value of OI and UI did not specify 

whether a stemmer is better or not because there is a 

tradeoff relationship between them. If suffix stripping 

rules are added or modified to reduce the under-stemming 

errors, these modifications will probably introduce 

additional over-stemming errors. Consequently, ERRT is 

a better metric that shows the performance of a stemmer. 

The lower score of ERRT showed a better stemmer. A 

better stemmer obtains ERRT closer to the origin, i.e., 𝑂, 

whereas the poor stemmer will be away from the origin.  

 

 

Figure 6. Results comparison for English OANC dataset. 

 

Figure 7. Results comparison for English Lemma dataset. 

 

Figure 8. ERRT computation ([36] adapted). 

To compute the relative accuracy of the stemmers, we 

use the ERRT line. It is useful for choosing the best 

stemmer in cases where one stemmer is better in under-

stemming but worse in over-stemming. To calculate the 

ERRT, we created a baseline using truncation length by 

reducing the words in the word list to their 𝑛 first letters 

where 𝑛  is 4, 5, 6, and 7. The values of (𝑈𝐼, 𝑂𝐼)  any 

reasonable stemmers should be found between this line. 

The ERRT point of the ‘best’ stemmer is nearest the origin 

𝑂 as compared to the rest. The comparison results of Paice 

evaluation methods [35, 36] are mentioned in Appendix A. 

In this Section, we examine the error-based evaluation 

parameters [35, 36] of the PWM method and existing 

stemmers. The performance of the under-study stemmer is 

compared with baseline Trun4, Trun5, Trun6, and Trun7 

(in Fig. 8).  

 

 
Figure 9. ERRT plot for Urdu language on URSTEM dataset. 

 

Figure 10. ERRT plot for Urdu language on Humayun dataset. 

 

For the URSTEM dataset, the PWMStem produced a 

GUMT value of 4034, which is lower than existing 

stemmers. UI is 0.026479, OI is 0.000021, and ERRT is 

0.61, which is the lowest score compared to the existing 

stemmers. The PWM stemmer also has the lowest score of 

UI with 0.267608 and 0.820 for ERRT. Alotaibi and 

Gupta [4] achieved the highest UI with 0.807471 using 

Humauoun dataset. Using the OANC dataset, PWMStem 

has the lowest value of GUMT with 1310 and GWMT with 

4095 and has the lowest UI of 0.102089, OI 0.000015, and 

ERRT score is 0.498. For the English lemma dataset, the 
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PWM stemmer achieves the lowest GUMT with 5930 but 

the lowest GWMT for the porter [14] method, which is 

6638.5. The PWM system has a lower value of UI and OI. 

In this dataset, our PWM stemmer is slightly better than 

the porter stemmer. Figs. 9–12 plots hypothetical UI and 

OI values of stemming operations taken from Urdu and 

English datasets. As shown in Fig. 9, only two stemmers 

are better than truncation stemmers, that is [4] and 

PWMStem. Among these two, PWMStem is closer to the 

origin 𝑂, as shown in Fig. 9. For the Humayoun dataset, 

three stemmers are below the truncation line, and our 

PWMStem is closer to the origin than other stemmers, as 

shown in Fig. 10. For the English language, UI and OI 

scores fall under the truncation line for all stemmers. This 

is given in Figs. 11 and 12. However, our PWMStem is 

closer to the origin 𝑂. 

 

 
Figure 11. ERRT Plot for English language on English lemma dataset. 

 

Figure 12. ERRT Plot for English language on OANC dataset. 

C. Stemmer Strength Measurement 

A stemmer strength indicates the average change in 

producing stem concerning a given word. We use the 

Mean Number of Words per Conflation Class (MWC) and 

Index Compression Factor (ICF) to measure the strength 

of the stemmer. MWC refers to the average number of 

words conflated to the common stem. For example, if the 

words “reached”, “reaches”, and “reaching” are stemmed 

to “reach”, then this conflation class size is three. A score 

of one for MWC indicates the weakest stemmer, which 

shows no change in any letter from the stemmed word, and 

such a stemmer is called the weakest stemmer. A higher 

value for MWC indicates a stronger stemmer.  

ICF is described as the ratio of the number of unique 

words before stemming, and the number of unique 

stemmed words after stemming. The ICF was calculated 

using Eq. (16). A high value of this metric denotes a 

stronger stemmer.  

 𝐼𝐶𝐹 = (n − s) 𝑛⁄  (16) 

where, 

𝑛= The number of words in the corpus 

𝑠= The number of stems 

For example, a corpus with 100,000 words (𝑛 ) and 

40.000 stems (𝑠) would have an index compression factor 

of 60%. The third experiment is about the strength of the 

stemmer.  

We use MWC and ICF metrics to measure the strength 

of the stemmer. Tables VI and VII depict the strength of 

the stemmers. Using these stemmer strength measures, it 

is possible to define the limits of stemmer strength. The 

strongest stemmer removes all possible affixes. The 

Maximum Strength (MS) is measured manually on the 

annotated data set, which is mentioned in Table VII. 

Proposed method achieved MWC of 3.7 and 3.0 using 

URSTEM and Humayoun datasets, respectively, as shown 

in Fig. 13. For the English OANC dataset, our method has 

the highest MWC of 3.46 and 2.0 for the English lemma 

dataset, as mentioned in Fig. 8. Fig. 14 portrays the highest 

score of ICF, with 73.0 on the Urdu dataset URSTEM and 

66.0 for ICF using Humayoun dataset and OANC dataset. 

We achieved 71.1 ICF score, the best score in the 

experimental set. Using the English lemma dataset, MWC 

is 50 ICF, as presented in Fig. 10.  

TABLE VI. THE MWC RESULTS COMPARISON FOR URDU AND ENGLISH 

Datasets PWMStem Mujeeb et al. [4] Lee et al. [27] 
Jabbar et al. 

[12] 

Rehman et al. 

[28] 
Porter [14] Lovins [15] MS 

URSTEM 3.5 3.5 2.7 2.1 1.7   3.5 

Humayoun 3 2.7 3 1.9 2   3.4 

OANC 2 1.9 2   2 1.9 2.1 
English Lemma  3.5 2 3.4   3.1 3.2 3.8 

TABLE VII. ICF RESULTS COMPARISON FOR URDU AND ENGLISH 

Datasets 
PWMStem Mujeeb et al. [4] Lee and Goldsmith [27] Jabbar et al. 

[12] 

Rehman et al. 

[28] 

Porter [14] Lovins [15] 

URSTEM 73 73 63 53 43   

Humayoun 68 63 68 47 58   
OANC 53 50 53   53 49 

English Lemma 71 50 70   68 69 
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Figure 13. Comparison of the results of MWC for Urdu and English 
language. 

 

Figure 14. Comparison of the results of ICF for Urdu and English 

language. 

V. RESULTS AND DISCUSSIONS 

Measuring the efficiency of a stemmer from different 

aspects such as accuracy, stemming errors, and strength of 

the stemmer is essential for several reasons [39, 40].  

• Lemmatization groups the morphologically related 

words under a base dictionary form, a crucial step 

of NLP preprocessing in Machine Translation 

(MT), POS tagging, and Named Entity 

Recognition (NER). Accuracy measures the 

correctness of stem concerning manually 

annotated lemma. Lemmatizes also produce 

lemma. So, this assessment shows the ability of 

stemmer to replace the lemmatizes.  

• The precision of an IR system is highly affected by 

under-stemming and over-stemming errors. IR 

system designers need a stemmer to address the 

vocabulary mismatch problem.  

• The features are vital in NLP applications, 

including Text Classification (TC), Machine 

Translation (MT), and IR systems. The ICF and 

MWC metrics represent a feature reduction 

achieved through the stemming process.  

The experimental results of the PWMStem show that it 

achieved better results as compared to the other linguistic 

[12, 14, 15, 28] and non-linguistic [4, 25–27] stemmers. 

We analyze the PWMStem from three aspects. Firstly, we 

determine how a system produces the correct stem using 

the manually annotated dataset. Linguistic stemmers are 

aggressive because these stemmers committed high under-

stemming errors such as [ridiculousnesses] stems to 

[ridiculeness] by Akram et al. [28] and [ridiculous] 

produced by Jabbar et al. [12]. But the stem produced 

through the PWMStem method is [ridicule] which is the 

correct stem. That is why linguistic-based stemmers have 

low accuracy and F-score, as shown in Table IV. The 

performance of language-independent stemmers is usually 

lower because these stemmers produce the stem like 

[separation] to [invalid Urdu word] which is incorrect in 

most cases. On the other hand, as an example, our stemmer 

performed better and produced the correct stem 

[separately]. 

In the same way, the English linguistic stemmer [14] 

and language-independent stemmer Linguistica [25–27] 

stems (“voice”, “voiced”, “voices”, “voicing”) to “voice”, 

which reduces the accuracy and F-score of the stemmer. 

The method given in [4] produces two stems, “voice” and 

‘voicing’ for the same group of words. In contrast, our 

method produces only the correct stem that is “voice”.  

The second experiment is conducted to know how a 

stemmer committed stemming errors. For this, metrics 

proposed by Paice [35, 36, 39]  are used. As demonstrated 

in Table VIII, the PWMStemmer committed the smallest 

number of under-stemming and over-stemming errors on 

the Urdu data set by achieving a UI score of 0.025693, OI 

of 0.000483, and ERRT of 0.61 for the Urdu dataset 

URSTEM. Our method also outperforms other stemmers 

on the English dataset with UI of 0.102089, OI of 0.000015, 

and ERRT of 0.498. The sample results of over and under-

stemming for English in Table VIII. 

TABLE VIII. SAMPLE RESULT OF OVER-STEMMING AND UNDER 

STEMMING FOR ENGLISH 

References Query Text Error Types 

 

[‘photograph’, ‘photographed’, 

‘photographing’, 
‘photographs’]  

[‘photostate’, ‘photostated’, 

‘photostating’, ‘photostats’, 
‘photostatted’, ‘photostatting’] 

 

PWMStem 

[‘photograph’, ‘photographed’, 

‘photographing’, 

‘photographs’]  
[‘photostat’, ‘photostated’, 

‘photostating’, ‘photostats’, 

‘photostatted’, ‘photostatting’] 

No error 

Alotaibi and 
Gupta [4] 

[‘photograph’, ‘photographed’, 

‘photographing’, 

‘photographs’, ‘photostat’, 
‘photostated’, ‘photostating’, 

‘photostats’, ‘photostatted’, 

‘photostatting’] 

Over-
stemming 

Linguistica [27] 

[‘photostat’, ‘photostat’, 

‘photostats’, ‘photostated’]  

[‘photostatt’, ‘photostatting’] 

Under-

stemming 

Lovins [15] 

[‘photograph’, ‘photographed’, 
‘photographing’, 

‘photographs’]  

[‘photostat’, ‘photostats’, 
‘photostatted’, ‘photostatting’]  

[‘photost’, ‘photostating’] 

Under-

stemming 

Porter [14] 

[‘photograph’, ‘photographed’, 
‘photographing’, 

‘photographs’] 

[‘photostat’, ‘photostats’, 
‘photostatted’, ‘photostatting’]  

[‘photost’, ‘photostating’] 

Under-

stemming 
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For the last evaluation metric, we measure cluster-level 

conflation and corpus-level conflation. We utilize words’ 

level conflation to measure MWC and ICF. Our method 

also outperforms other stemmers for Urdu and English 

regarding the MWC and ICF, as mentioned in Tables VII 

and VIII. We achieved a 3.7 MWC score for the Urdu 

language for the PWMStem and [4] methods. [28]‘s 

stemmer is the weakest stemmer with the lowest MWC of 

1.7. Concerning the ICF score, 73% is achieved on our 

stemmer and [4] on URDSTEM. For the Humayoun 

dataset, the weakest stemmer is the one by [12] with an 

MWC of 1.9 and ICF of 58.0, and the strongest stemmer is 

Linguistica. The PWMStem method produced an MWC of 

3.0 and an ICF of 68.0.  

The proposed stemmer is stronger on the OANCE 

dataset with MWC 3.47 and ICF 71.0, as shown in Tables 

VII and VIII. Linguistica [27] is the weakest stemmer that 

obtained the MWC 2.0 and ICF 50.0. For the English 

Lemma dataset, the weakest stemmer [4] with MWC of 1.9 

(see Table VII) and ICF of 49.0 (given in Table VIII). On 

the other hand, our stemmer is stronger with MWC of 2.0 

and 53.0 for ICF scores closer to the maximum strength of 

the stemmer. Linguistica and Porter [14] obtained 2.0 for 

MWC and 53.0 for ICF. The weakest possible affix 

removal stemmer would be one that changes no characters 

in any stemmed word. Such a stemmer would have one 

word per conflation class. 

VI. CONCLUSION AND FUTURE WORK DIRECTIONS 

Text mining is a challenging task that involves 

analyzing raw data. One of the easiest methods to analyze 

text mining is changing the textual files or documents into 

a standard dataset. This is a challenge for stemmers, and to 

the best of our knowledge, no standard stemmer addresses 

such issues. Hence, in this article, we designed an 

algorithm to overcome such issues.  

This paper proposes a new language-independent 

method to conflate morphologically similar words to the 

common stem. LCP measure is used to determine the 

linguistic similarity to the pivot word after removing the 

suffix extracted based on the pivot word. Two datasets are 

used for each of the Urdu and English languages to 

perform a comparative evaluation of stemmers. Further, 

the results of our PWMStem stemmer are compared with 

two linguistic-based and two language-independent 

stemmers for each language. We computed the 

performance with three different evaluation methods, that 

is accuracy measurement, error estimate, conflation, and 

index compression factor. Finally, results suggest that the 

PWMStem algorithm is more effective than the other 

stemmers tested. The PWMStem method can decrease the 

size of terms vocabulary from 53% to 73% in TC and 

increase the performance of IR systems. The accuracy 

score shows that PWMStem may be used instead of a 

lemmatizer in ML, POS tagging, and Named Entity 

Recognition (NER) systems. 

Although the PWMStem stemmer achieved acceptable 

performance results, there are some things that could be 

improved in its behavior and functionality. This study has 

concentrated only on lexical similarity at the word level. 

Further research would be required to address sentencing 

level or semantic similarity to improve the accuracy score 

by introducing semantic processing. Application of the 

PWMStem method on big datasets and its scope 

enhancement, including languages such as Arabic, 

German, French, and Turkish, is also part of future work. 

The big dataset usually includes many co-suffixes or 

words with a larger length of suffixes that need special 

treatment. Recent advances in AI and statistical methods 

urge using artificial neural networks and other machine 

learning methods to develop more efficient and high-

performing stemmers. Recently, transformers and 

generative AI have shown huge progress in various 

applications. Applications of these algorithms can lead to 

high performance methods. 

APPENDIX: RESULTS PRODUCED USING PAICE’S [35, 36] EVALUATION METHOD 

Method GUMT GDMT GWMT GDNT UI 𝑂𝐼 𝑆𝑊 ERRT 

Urdu results for URSTEM dataset 

PWMStem 4034 152349 46190 2252629777 0.026479 0.000021 0.000774 0.610 

Alotaibi and Gupta [4] 5458.5 152349 79017.5 2252629777 0.035829 0.000035 0.000979 1.03 

Linguistica [27] 75141 152349 24463.5 2252629777 0.493216 0.000011 0.000022 0.993 

Jabbar et al. [12] 84201 152349 54561 2252629777 0.552685 0.000024 0.000044 1.450 

Akram et al. [28] 99061 152349 50174 2252629777 0.650224 0.000022 0.000034 1.532 

Trun 4 7391 153823 81774.5 2272810353 0.048514 0.000036 0.000748 1 

Trun 5 82424 153823 14192 2272810353 0.541021 0.000006 0.000012 1 

Trun 6 121507.5 153823 3457.0 2272810353 0.797560 0.000002 0.000002 1 

Trun 7 141009.5 153823 752.5 2272810353 0.925569 0.000000 0.000000 1 

Urdu results for Humayoun dataset 

PWMStem 2880 10762 1143 34488209 0.267608 0.000033 0.000124 0.820 

Alotaibi and Gupta [4] 8690 10762 237.5 34488209 0.807471 0.000007 0.000009 1.057 

Linguistica [27] 3097 10762 2584.5 34488209 0.287772 0.000075 0.000260 1.367 

Jabbar et al. [12] 3598 10762 1703 34488209 0.334324 0.000049 0.000148 1.123 

Akram et al. [28] 4003.5 10762 3030 34488209 0.372003 0.000088 0.000236 1.656 

Trun 4 3312 10762 3101 34488209 0.307749 0.000090 0.000292 1 

Trun 5 5937 10762 1037.5 34488209 0.551663 0.000030 0.000055 1 

Trun 6 8503.5 10762 341 34488209 0.790141 0.000010 0.000013 1 

Trun 7 10009.5 10762 77 34488209 0.930078 0.000002 0.000002z 1 

English results for OANC dataset  

PWMStem 1310 12832 4095 269327613 0.102089 0.000015 0.000149 0.498 
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Alotaibi and Gupta [4] 2968.5 12832 8929 269327613 0.231336 0.000033 0.000143 1.104 

Linguistica [27] 3769.5 12832 6359 269327613 0.293758 0.000024 0.000080 1.045 

Porter [14] 2731.5 12832 6177 269327613 0.212866 0.000023 0.000108 0.870 

Lovins [15] 3356 12832 6595.5 269327613 0.261534 0.000024 0.000094 0.997 

Trun 4 2734 12832 97829.5 269327613 0.213061 0.000363 0.001705 1 

Trun 5 4085 12832 33058 269327613 0.318345 0.000123 0.000386 1 

Trun 6 4935.5 12832 11315 269327613 0.384624 0.000042 0.000109 1 

Trun 7 6226.5 12832 6058.5 269327613 0.485232 0.000022 0.000046 1 

English results for English Lemma dataset 

PWMStem 5930 48052 19813.5 568049726 0.123408 0.000035 0.000283 0.444 

Alotaibi and Gupta [4] 21129 48052 14510 568049726 0.439711 0.000026 0.000058 1.130 

Linguistica [27] 14579 48052 17638.5 568049726 0.303400 0.000031 0.000102 0.842 

Porter [14] 8703.5 48052 6638.5 568049726 0.181127 0.000012 0.000065 0.471 

Lovins [15] 10656 48052 14775.5 568049726 0.221760 0.000026 0.000117 0.631 

Trun 4 6608 48052 266227.5 568049726 0.137518 0.000469 0.003410 1 

Trun 5 12404.5 48052 65325.0 568049726 0.258147 0.000115 0.000445 1 

Trun 6 18071.5 48052 16304.5 568049726 0.376082 0.000029 0.000076 1 

Trun 7 27995 48052 3751 568049726 0.582598 0.000007 0.000011 1 
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