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Abstract—Using distributed Software Defined Networking 

(SDN)control, SDN delivers additional flexibility to network 

management, and it has been a significant breakthrough in 

network innovation. Switch migration is often used for 

distributed controller workload balancing. The Time-

Sharing Switch Migration (TSSM) scheme proposed a 

strategy in which multiple controllers are allowed to share 

the workload of a switch via time sharing during an 

overloaded condition, resulting in reduced ping-pong 

controller difficulty, fewer overload occurrences, and 

improved controller efficiency. However, it requires more 

than one controller to accomplish, it has greater migration 

costs and higher controller resource usage during the TSSM 

operating time. As a result, we presented a coalitional game 

strategy that optimizes controller selection throughout the 

TSSM phase depending on flow characteristics. The new 

TSSM method reduces migration costs and controller 

resource usage while still providing TSSM benefits. For the 

sake of practicality, the proposed strategy is implemented 

using an open network operating system. The experimental 

findings reveal that, as compared to the typical TSSM 

system, the proposed technique reduces migration costs and 

controller resource usage by approximately 18%.  

 

Keywords—switch migration, load balancing, coalitional 

game strategy, time sharing switch migration, software 

defined networking 

 

I. INTRODUCTION 

The fast proliferation of cloud computing, big data 

applications, the internet of multimedia things, and 

increased data traffic have significantly raised network 

management difficulties. The traditional network 

architecture system consists of a data plane and a control 

plane in each switch, with the former handling packet 

processing and the latter handling decision making and 

administration. As a result, upgrading the current 

algorithms and policies to the switches is quite hard and 

time consuming because all the related switches in the 

given network must be updated one by one by system 

administrators or workers [1]. 
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Today, the software defined networking method 

creates a distinct perspective of network administration in 

networking applications by shifting the control plane in 

switches to a central device known as the controller. As a 

result, the controller may handle many switches in the 

network. Monitoring and control of network switches are 

simplified in this current method as compared to 

traditional network management techniques, because the 

controller unit can offer such information about the 

switches. 

Furthermore, by creating a set of rules in the controller, 

the newest algorithms and control policies may be 

quickly updated to the switches [2]. Aside from that, 

SDN may support a broad range of applications, such as 

(i) defending against cyber-attacks, (ii) recognizing 

malicious access points, and (iii) offering anonymous 

authentication, among others [3–7]. 

A single controller in a large network is a difficult 

option because it creates a bottleneck in network 

management performance. As a result, Distributed SDN 

Control (DSC) is demanded in network applications, and 

it acts as a promising solution in large network 

management with many switches [8]. The DSC enables 

many controllers to communicate with one another to 

administer the whole network. Where each controller 

manages a subset of switches (i.e., a subnet), and 

processes may be transferred among controllers to 

facilitate cooperation. Each controller is responsible for 

dividing the workload for the subnets and reassigning the 

burden of its switches through the periodical check-up of 

each subnet, which is known as controller placement [9]. 

The controller placement is mostly focused on load 

balancing and is carried out using a variety of techniques 

such as work group control technique [10], deep 

reinforcement learning technique [11], and so on. The 

upshot of such control strategies may significantly alter 

the switches in the subnet, causing the subnet to become 

unstable via ping-pong operation. Furthermore, controller 

placement strategies are not thought to be successful for 

short-term flows such as distributed denial of service and 

impulses [12]. 

Switch migration allows for a smoother change of 

subnets in a shorter amount of time and addresses the 
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concerns. A switch migration approach examines the 

workload state of each controller in the network in each 

time frame (or time interval or period) to determine if 

they are overloaded (busy) or lightly occupied (available 

to share other works). If a network is overloaded, the 

migration technique relocates a switch from the heavily 

loaded controller subnet to the lightly loaded controller 

subnet. Most existing switch migration methods follow 

the smallest slice of the migration, which is one single 

switch transferred at the start of the period. Once 

migrated, the switch remains in the most recent sub-net 

until the switch is picked for the following period. Most 

crucially, these migration methods always need a 

controller to supervise a single switch for the duration of 

the migration. As a result, the controller in these systems 

encounters ping-pong problems under elephant flow 

situations (i.e., flow conveys numerous packets) and 

faces the major problem of subnet instability [13]. 

The following outlines show the structure of the paper: 

The literature review and problem definition of this study 

are presented in Section II of this paper. Section III goes 

through the fundamentals of the distributed SDN control 

network, OpenFlow protocol rules, and network model. 

Section IV discusses the proposed enhanced TSSM 

scheme and matching algorithms, and Section V presents 

the performance evaluation of the proposed approach. 

Finally, in Section VI, the conclusion statement is 

presented. 

II. LITERATURE REVIEW 

Several studies have been conducted throughout the 

years to highlight the numerous difficulties in the DSC 

network. Traditionally, dynamic controller placement 

methods are used to achieve controller load balancing. 

Chan et al. [14] presented a strategy for minimizing 

service interruption time by easily moving the process 

from one controller to another [15]. describes how a 

lightly loaded controller can operate as a leader in the 

event of a breakdown of the standard leader controller 

unit. Controller placement approaches and issues are 

discussed in [9], which emphasizes the need of 

controllers maintaining fairness while sharing their tasks. 

When compared to previous controller placement 

methods, Hu and Zhang et al. [16] provided a dependable 

deployment strategy with the goal of minimizing packet 

loss and improving network stability. Kim et al. [17] 

developed a strategy for improving the output of a 

distributed datastore in an Open Daylight controller 

cluster by regularly distributing shared leaders to cluster 

members. Wang and Chang [18] described a system in 

which controllers collaborate to redirect traffic to prevent 

congestions during busy or overloaded periods on 

switches. Nithya and Sangeetha et al. [19] proposes a 

software defined cyber seeking system with a hybrid 

controller for cloudlets and local networks. Sahoo and 

Mishra et al. [20] presents prediction-based controllers, 

which forecast network demand and conduct device 

transfers based on prediction. The controller placement 

research, such as the work group control approach and 

the deep reinforcement learning technique provided 

in [10, 11], where these strategies are ineffective during 

impulses and distributed denial of service, etc. Aside 

from the dynamic controller placement technique, 

approaches for DSC workload balancing are classified 

into three types: (i) switch migration, (ii) flow migration, 

and (iii) flow splitting. 

Switch Migration: To reduce burden, switch control 

can be migrated from overloaded controllers to lightly 

loaded controllers. Dixit and Hao et al. [21] discussed 

switch migration in consideration of a controller’s CPU 

and memory allocation exceeding its threshold level, but 

it does not define the method of selecting the targeted 

controllers. Min and Hua et al. [22] discusses switch 

migration utilizing the Q-learning approach, which has 

lowered the standard deviation of the controller workload. 

Cui et al. [23] utilized the controller’s reaction time to 

migrate switches. This strategy transfers the switch with 

the greatest load of the controller in the shortest amount 

of time. Sahoo et al. [24] suggested a strategy for 

selecting targeted controllers for switch migration based 

on CPU use, memory capacity, and bandwidth, among 

other factors. Hu and Lan et al. [25] suggested a 

simulated annealing algorithm for selecting the targeted 

controller to reduce the cost of switch migration. 

Flow Migration: Instead of migrating an entire switch, 

the flow migration approach merely transfers the 

hardness (i.e., flow beyond the threshold level) of the 

flow. Hu and Wang et al. presented an approach in which 

a super controller administers each controller in the 

system and controls the flow controlled by them [26]. 

Lan and Li et al. [27] presented a game theory strategy 

for managing each controller flow through task exchange. 

When compared to standard flow migration methods, 

Maity and Misra et al. [28] offered a traffic aware 

consistent approach for minimizing flow migration 

duration and obtained a 15% reduction in flow migration 

time. Furthermore, using a traffic-aware flow migration 

technique, Maity and Misra et al. [29] offered a method 

to lower data plane load and obtained a 13% reduction 

when compared to the two-phase update approach. 
 

 
(a) Hierarchical method 

 

 
(b) Flat method 

Figure 1. Control methods for the DSC architecture. 

Flow Splitting: This approach enables a switch to be 

managed by many controllers at the same time. Gorkemli 
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and Tatlcıoglu et al. [30] presented a solution for flow 

splitting utilizing virtual overlay on the data plane that 

switches must negotiate with their controllers. Cheng and 

Chen [31] developed a convex quadratic programming-

based solution for load balancing and decreasing new 

switch-controller appointments by modelling the mapping 

between controllers and switches. 

Vikas and Samayveer [32] has proposed a self-

adaptive genetic approach-based particle swarm 

optimization as a cluster-based routing to optimize the 

control nodes in heterogeneous SDN-enabled free-space 

optical under water wireless sensor networks. Moreover, 

a novel fitness function is presented to balance the cluster 

size by considering the most significant parameters 

including energy and distance of network devices. It 

shows that the proposed method improves stability period, 

fitness value, etc. The control relation graph-based 

controller placement method for Software-Defined 

Networking (SDN) is presented in [33]. It demonstrates 

that the proposed approach reduces management costs 

through load balancing and response time in LEO 

satellite networks. Zhang et al. proposed an SDN-based 

space-terrestrial integrated network architecture. In 

addition, it has presented an efficient dynamic controller 

placement and adjustment algorithm for better load 

balancing and response time [34]. Chen et al. proposed a 

dynamical control domain division problem to reduce the 

management cost. In addition, it has presented a heuristic 

algorithm to choose the best controller for better load 

balancing [35]. 

However, due to synchronization and the complexity 

of the design, a switch cannot be operated by more than 

one controller at the same time. As a result, flow 

migration and flow splitting methods violate the 

OpenFlow protocol and cannot be used in the real-time 

controller platform.  

As described in the literature section, most switch 

migration solutions struggle with the ping-pong challenge. 

The following example explains the ping-pong difficulty 

of the controller. Consider two controllers [𝐶𝑋  and 𝐶𝑌 ] 

and three switches [ 𝑆𝐿 , 𝑆𝑀 , 𝑆𝑁 ] in a network with a 

maximum manageable workload of 200 PIMs per second 

for each controller. Switches 𝑆𝐿, 𝑆𝑀, and 𝑆𝑁 generate 120, 

160, and 120 PIMS every period, accordingly. 𝐶𝑋 

manages switches 𝑆𝐿  and 𝑆𝑀  at time t, and controller 𝐶𝑌 

manages switch 𝑆𝑁. Because Υ𝐶𝑋
= 𝛿𝐿(𝑡) + 𝛿𝑀(𝑡)= 120 + 

160 > λ𝐶𝑋
 (200 PIMS), 𝐶𝑋  is overloaded and requires 

switch migration. In most switch migration strategies, an 

overloaded controller will request and take over a switch 

from other controllers for an extended period. As a result, 

at time t+1, Switch 𝑆𝐿 is moved to controller 𝐶𝑌’s subnet. 

However, if Υ𝐶𝑌
= 𝛿𝑁(𝑡) + 𝛿𝐿(𝑡) = 120 + 120 >λ𝐶𝑌

 (200 

PIMS) at period t+1, controller 𝐶𝑌 will be overloaded. As 

a result, controller 𝐶𝑌 requests that 𝐶𝑋 take over a switch 

again at time t+2, increasing the complexity of ping-pong. 

Lai and Wang et al. [36] recently suggested a Time-

Sharing Switch Migration Technique (TSSM) that 

mitigates controller ping-pong by spreading the burden of 

a switch that is monitored by two controllers at the same 

time during overloaded situations. It proposes a switch 

migration approach in which the burden of the switch is 

split across two controllers over a certain time period. 

Using the preceding example, at time t+1, 𝐶𝑋 handles 40 

PIMs of 𝑆𝐿, while 𝐶𝑌 manages the remaining 80 PIMs via 

migration. Both controllers 𝐶𝑋 and 𝐶𝑌  are regulating the 

workload of switch 𝑆𝐿  currently. As a result, 𝐶𝑋 ’s 

workload is Υ𝐶𝑋
= 𝛿𝐿(𝑡) + 𝛿𝑀(𝑡) = 40 + 160 = λ𝐶𝑋

 (200 

PIMS), while 𝐶𝑌’s workload is Υ𝐶𝑌
= 𝛿𝑁(𝑡) + 𝛿𝐿(𝑡) = 120 

+ 80 = 𝜆𝐶𝑌
 (200 PIMS), indicating that neither controller 

is overloaded (busy) in period t+1. Similarly, at time t+2, 

𝐶𝑌  processes 80 PIMs before sending the remaining 20 

PIMs to the 𝐶𝑋 controller subnet. The TSSM technique 

can effectively overcome the controller’s ping-pong issue 

using this strategy. 

It provides an approach in which two controllers, 

namely an overload controller (one) and a lightly loaded 

controller (one), are merged and the switch is relocated 

from an overloaded to a lightly loaded controller subnet 

at an appropriate moment in time. When compared to 

existing switch migration methods such as group-based 

dynamical controller placement [10], churn-triggered 

migration [30], and best-fit migration [32], the results of 

this technique show that it significantly reduces overload 

occurrences of controllers while effectively balancing the 

workload of all controllers with improved controller 

efficiency. Nonetheless, more than one lightly loaded 

controller operation in the TSSM yields greater controller 

efficacy than the original (i.e., stated in the research) 

despite the additional switch migration cost. Furthermore, 

because the migration switch is managed (i.e., controlled) 

by more than one controller in the network, this technique 

consumes additional controller resources during TSSM 

operation. 

As a result, we suggested an approach that optimizes 

the lightly loaded controller selection during the TSSM 

period and enables for more than one lightly loaded 

controller to be used for switch migration during the 

TSSM period without increasing migration cost. The 

controller is chosen based on flow characteristics using a 

coalitional game strategy algorithm, which decreases 

controller resource consumption by lowering the number 

of controllers involved in flow processing. The new 

TSSM method reduces migration costs and controller 

resource usage while also providing TSSM advantages. 

For its feasibility, the proposed scheme is implemented 

using the Open Network Operating System (ONOS), 

which can respond to approximately one million flow 

processing requests per second. 

 

 

Figure 2. Switch transferring process in OpenFlow Protocol. 
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In summary, Software-Defined Networking (SDN) 

leads to an efficient administration process in network 

management through easy updating of network policies 

and the latest algorithms. Typically, distributed SDN is 

adopted in network management, considering bottleneck 

issues. Load balancing is a critical factor in the SDN, and 

it can be managed through (i) the dynamic controller 

placement method, (ii) switch migration, (iii) the flow 

splitting method, and (iv) the flow migration method. 

Considering the practical viability of Open Flow, a switch 

cannot be controlled by more than one controller 

simultaneously, considering synchronization and complex 

design. Therefore, flow migration and flow splitting 

methods are non-compliant with the OpenFlow protocol 

and cannot be implemented on the real-time controller 

platform. Considering the OpenFlow protocol and its 

implementation in the real-time controller platform, the 

dynamic controller placement method with switch 

migration is a better solution for load balancing. 

The conventional switch migration methods suffer 

from ping-pong difficulty during the switch migration 

process because the whole single switch is migrated in 

the beginning period. It causes instability issues in the 

switch migration. The ping-pong difficulty is rectified by 

a time-sharing switch migration scheme. This method 

significantly reduces the overload occurrences of the 

controller, which leads to better load balancing. However, 

the selection of controllers during the TSSM period is 

random. So that it could increase the switch migration 

cost and higher controller resource consumption during 

TSSM operation since the migration switch is managed 

by more than one controller in the network. Therefore, 

our paper has proposed an improved TSSM scheme, and 

it has the following merits: (i) It contains all the merits of 

a conventional TSSM scheme, including the removal of 

ping-pong controller action during the switch migration 

process, a reduction in controller overload occurrences, 

and better controller efficiency, (ii) The selection of 

controllers during TSSM is specified and optimized 

through the coalitional game strategy, which reduces the 

switch migration cost and controller resource 

consumption, (iii) It provides better controller efficiency 

and load balancing compared with the conventional 

TSSM scheme. 

III. DISTRIBUTED SDN CONTROLLER 

This section discusses the architecture of the 

distributed SDN control network, the switch transfer 

mechanism in the OpenFlow protocol, and network 

models. 

A. Distributed SDN Control Network Architecture 

In a distributed SDN control network, two popular 

control methods are commonly used: (i) hierarchical 

control and (ii) flat control, also known as circular chain 

control [8]. In the hierarchical technique, the central 

distributed controller (called the leader) has a global 

perspective of the network and updates network 

regulations and newest algorithms to the sub controllers, 

as illustrated in Fig. 1(a). The sub controller controls 

(oversees) the subnet of its switches and transmits its 

status to the leader. It should be emphasized that if the 

original leader is broken down in the hierarchical 

technique, a new leader will be chosen [15]. In the case of 

circular chain control, controllers have information about 

the network’s local perspective and authority over its own 

subnet. The associated controllers exchange information 

in a distributed fashion, as shown in Fig. 1(b). 

In this article, the hierarchical technique is used to 

implement the suggested switch migration methodology. 

The leader oversees monitoring the condition of each sub 

controller and implementing the TSSM scheme to pick 

the lightly loaded controller over the overloaded 

controller during flow variations, flow traffic, impulses, 

distributed denial of service, and so on. Following that, 

two sub controllers (overloaded and lightly loaded) are 

committed to sharing workloads and migrating the switch 

as needed. 

To avoid undesired switch migrations, the threshold 

level of the sub controller is likewise established in the 

leader. When the workload of the controller exceeds the 

controller’s threshold level, it is deemed overloaded, and 

it is selected based on the controller’s maximum capacity 

and reserve capacity. Generally, network administrators 

recommend that the threshold level be set between 90% 

and 95% of the full capacity. The controller’s threshold 

level is also stated as its maximum workload, and it is 

specified in Eq. (1). 

 𝛷𝐶 = 𝜆𝐶 − 𝜐𝐶  (1) 

𝛷𝐶 ⟶ Thershold workload level of the controller 

𝜆𝐶 ⟶ Maximum workload capacity of the controller 

𝜐𝐶 ⟶ Reserve workload capacity of the controller  

B. Switch Transfer Process in Openflow 

OpenFlow allows switch transfers between subnets and 

establishes connections with many controllers. Each 

related controller 𝐶𝑋 determines the following duties from 

the perspective of switch 𝑆𝐿. 

• OFPCR_ROLE_EQUAL (Equal): This default 

role grants controller 𝐶𝑋  complete authority to 

switch 𝑆𝐿 and allows 𝐶𝑋 to send commands to 𝑆𝐿 

and receive status information. Similarly, when 

𝑆𝐿  is operating in this capacity, all controllers 

have complete access to it. 

• OFPCR_ROLE_SLAVE (Slave): When the 

controller 𝐶𝑋  role is set to slave, 𝐶𝑋  can only 

read the state of switch 𝑆𝐿. 

• OFPCR ROLE MASTER (Master): It is similar 

to an equal role, and controller 𝐶𝑋 has full power 

over 𝑆𝐿 . It is insisted, however, that only one 

controller (e.g., 𝐶𝑋 ) is considered a master 

controller for a switch 𝑆𝐿 , and all other 

controllers are considered slaves to switch 𝑆𝐿.  

The OpenFlow protocol defines the switching process, 

which is seen in Fig. 2. The master controller initiates the 
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switch transferring operation since it has complete control 

over the switch. For example, controllers 𝐶𝑋  and 𝐶𝑌  are 

the master and targeted (slave) controllers for the switch 

𝑆𝐿, respectively. It is insisted that overloaded controllers 

use leader to move a switch to other controllers for 

workload balance (controller). After receiving a directive 

from the leader, the master controller ( 𝐶𝑋 ) sends a 

transferring request for switch 𝑆𝐿  to the targeted 

controller 𝐶𝑌. Following that, controller 𝐶𝑋 requests that 

the switch 𝑆𝐿 alter the role of 𝑆𝐿 control to master rather 

than slave using the Role Request (Master) message, and 

the switch 𝑆𝐿  responds to 𝐶𝑌  with the Role Reply 

message (Master). After all, 𝐶𝑌  sends a notification 

message to 𝐶𝑋  indicating the successful migration of 

switch 𝑆𝐿 , and controller 𝐶𝑋  subsequently operates as a 

slave controller for switch 𝑆𝐿. 

OpenFlow protocol versions 1.2, 1.3, 1.4, and 1.5 

enable switch migration (most recent version). It has been 

discovered that OpenFlow regulation simply instructs 

how to modify (migrate) the switches between controllers 

for their tasks and exchange messages between 

controllers. However, OpenFlow does not specify how to 

choose target controllers and switches for migration. The 

proposed enhanced TSSM method optimises controller 

selection and determines when switch migration should 

occur during the TSSM period. 

C. Network Modelling 

Let us imagine an SDN-based network with a 

collection 𝑆𝑁  of switches and a collection 𝐶𝑁  of 

controllers. A switch (e.g., 𝑆𝐿) in 𝑆𝑁 is controllable by a 

controller in 𝐶𝑁 (e.g., 𝐶𝑋) with the model of one switch is 

controlled by a controller concurrently advocated by 

OpenFlow, i.e., 𝐶𝑋 acts as a master controller for 𝑆𝐿 and 

may be altered after the switch migration. 

Packet In messages (PIMs) sent from switches 

determine each controller’s workload. Switch workload 

(𝛿(𝑡)) is calculated specifically by the number of PIMs 

created by a switch during each period “t”. Following that, 

controller workload capacity is defined as the maximum 

number of PIMS that may be processed in each period. 

For example, if controller 𝐶𝑋 manages switches 𝑆𝑎 to 𝑆𝑧, 

the workload of controller 𝐶𝑋 is determined as follows: 

 Υ𝐶𝑋
= ∑ 𝛿(𝑡)𝑆𝑧

𝑆𝑎
 (2) 

In general, the controller’s maximum workload (Υ𝐶 ) 

should be smaller than its maximum capacity ( 𝜆𝐶 ), 

considering the need for reserve load under unwanted 

scenarios such as flow fluctuation, sudden demand, and 

so on. Hierarchical control of DSC architecture is studied 

in this study; hence, the leader receives workload from all 

controllers at each period and directs switch migration 

across controllers, as necessary.   

IV. PROPOSED SWITCH MIGRATION SCHEME 

The controller placement technique or network 

operators are used to set the network switches at the first 

stage, with each switch managed by a master controller. 

As described in the preceding section, conventional 

switch migration methods include migrating a switch at 

the start of the period as well as migrating the entire 

switch even if it is not necessary. As a result, the link 

between controllers and switches remains constant during 

whole period.  

 

 
 

Algorithms Process 

1 It is used to locate the overloaded and lightly loaded controllers in the SDN domain. 

2 
Initially, it is sorting the overloaded and lightly loaded controllers based on their overloading and PIMS accessibility. After 

that, it performs the whole switch migration from overloaded controllers to lightly loaded controllers. 
3 It achieves optimized controller selection based on flow path through a Coalitional game strategy for the TSSM operation. 

4 It performs the TSSM operation and achieves better load balancing. 
 

Figure 3. Relationship among algorithms used in the improved TSSM scheme. 
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In the case of TSSM, switch migration is enabled via 

time-sharing, and switches in the network can 

dynamically change their connections with the controller 

at any moment. Furthermore, as mentioned in Section II, 

the TSSM approach efficiently overcomes the controller 

ping-pong challenge. Nonetheless, controller resource 

consumption is greater during the TSSM time, which may 

raise the method’s migration cost when compared to 

other migration techniques since it allows more than one 

controller to share their (switch) loads during the TSSM 

period. It is discovered that migration costs are 

approximated based on the number of controllers and 

switches used. As a result, this research suggested an 

approach that greatly decreased the number of controllers 

associated with switches during time sharing migration 

depending on flow characteristics. We developed a 

coalitional game strategy to establish the best possible 

connection between switches and controllers during the 

time-sharing migration phase, reducing the number of 

controllers connected with the switch and, as a result, 

controller resource consumption and migration cost are 

reduced. The algorithms listed below are intended to 

ensure the effective completion of the proposed switch 

migration method and Fig. 3 briefs their relationships. 

A. Algorithm 1: Identifying Overloaded and 

LightlyLoaded Controllers 

This algorithm ensures that all overloaded (referred to 

as busy) and lightly loaded controllers (referred to as 

assistant or target controllers) in the given network are 

found, as represented by 𝐶𝑏𝑢𝑠𝑦  and 𝐶𝑙𝑖𝑔ℎ𝑡 , respectively. 

The burden of each controller (e.g., Υ𝐶𝑋
) is evaluated 

using Eq. (2) by adding the loads of each switch in the 

subnet (e.g., 𝛿𝐿,𝑡
(𝑋)

+ 𝛿𝑀,𝑡
(𝑋)

+ ⋯  ) and is specified in the 

method code between 3 and 5 lines. Following that, the 

controller workload (e.g., Υ𝐶𝑋
) is compared to the 

threshold level (𝛷𝐶_𝑋), and if it is more than the threshold 

level, the controller is deemed overloaded and included in 

the overload controllers (described in lines 6–7) unit in 

the leader. Then, in line 8, lightly loaded controllers are 

chosen based on a lightly loaded coefficient �́� ,́ with a 

value between 0.8 and 0.85 (specified by network 

managers). Following that, the lightly loaded coefficient 

is multiplied by the threshold value, and if the workload 

of the controllers is less than the multiply value, it is 

regarded a lightly loaded controller and is added to the 

leader’s lightly loaded controller unit. It is required that 

switch migration take place when both the 𝐶𝑏𝑢𝑠𝑦  and 

𝐶𝑙𝑖𝑔ℎ𝑡 controllers are not empty, as shown in line 10.  
 

Algorithm 1: Identifying Overloaded and Lightly Loaded Controllers 

1 𝐶𝑏𝑢𝑠𝑦 ← ø and 𝐶𝑙𝑖𝑔ℎ𝑡← ø ; 

2 foreach𝐶𝑋 ϵ 𝐶do 

3  Υ𝐶𝑋
 ← 0 ; 

4  foreach𝑆𝐿 ϵ 𝑆𝑋do 

5   Υ𝐶𝑋
← Υ𝐶𝑋

 +  𝛿𝐿,𝑡
(𝑋)

 ; 

6  if Υ𝐶𝑋
>𝛷𝐶𝑋

 then 

7   𝐶𝑏𝑢𝑠𝑦 ← 𝐶𝑏𝑢𝑠𝑦U { 𝐶𝑋} ; 

8  else if Υ𝐶𝑋
<𝜇 × 𝛷𝐶𝑋

then 

9   𝐶𝑙𝑖𝑔ℎ𝑡← 𝐶𝑙𝑖𝑔ℎ𝑡U { 𝐶𝑋} ; 

10 If 𝐶𝑏𝑢𝑠𝑦 ≠ ø and 𝐶𝑙𝑖𝑔ℎ𝑡 ≠ ø then 

11  Use Algorithm 2 for load balancing between  𝐶𝑏𝑢𝑠𝑦 and 𝐶𝑙𝑖𝑔ℎ𝑡; 

 

Algorithm 2: Switch Migration Segment for Load Balancing 

1 SORT (𝐶𝑏𝑢𝑠𝑦 , Υ𝐶𝑋
− 𝛷𝐶_𝑋); 

2 SORT (𝐶𝑙𝑖𝑔ℎ𝑡, 𝛷𝐶_𝑌 − Υ𝐶𝑌
);  

3 foreach𝐶𝑋 ϵ 𝐶𝑏𝑢𝑠𝑦do  

4  SORT (𝑆𝑋, 𝛿𝐿,𝑡
(𝑋)

); 

5  whileΥ𝐶𝑋
>𝛷𝐶_𝑋do 

6  if𝐶𝑙𝑖𝑔ℎ𝑡= ø then 

7   Cease this module; 

8  Pick the optimized controllers [𝐶𝑌1, 𝐶𝑌2,...]from 𝐶𝑙𝑖𝑔ℎ𝑡;  

9  (Controller-Switch Association Matrix) ← Algorithm 3 (Request PIM´s of Switch, Switches from 𝐶𝑏𝑢𝑠𝑦) 

10   (𝑆𝐿, [𝜏1 , 𝜏2 , …] , [𝜌1 , 𝜌2  , … ]) ← Algorithm 4 (𝐶𝑋 , [𝐶𝑌1,   𝐶𝑌2,...]) ; 

11  Transfer 𝑆𝐿 to [𝐶𝑌1, 𝐶𝑌2,...]’s subnet after [𝜏1 , 𝜏2 , …] units of  time;  

12   Υ𝐶𝑋
 ← Υ𝐶𝑋

− [𝜌1 , 𝜌2  , … ]; 

13 
  Υ𝐶𝑌_1

 ← 𝛷𝐶_𝑌 + [𝜌1 , 𝜌2  , … ] ; 

  Υ𝐶𝑌_2
 ← 𝛷𝐶_𝑌 + [𝑛1 , 𝑛2 , … ] ; 

14   ifΥ𝐶𝑌[1,2,… ]
≥ 𝜇 × 𝛷𝐶_𝑌[1,2,… ]then  

15   𝐶𝑙𝑖𝑔ℎ𝑡← 𝐶𝑙𝑖𝑔ℎ𝑡\, [𝐶𝑌1, 𝐶𝑌2,...]; 

16   else 

17   SORT (𝐶𝑙𝑖𝑔ℎ𝑡, 𝛷𝐶_𝑌 − Υ𝐶𝑌
); 
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Algorithm 3: Selection of Optimised Controller for TSSM Scheme 

1 Input: Organised light and busy controllers ={𝐶𝑏𝑢𝑠𝑦}, {𝐶𝑙𝑖𝑔ℎ𝑡} obtained from Algorithm 2; 

2 SORT ( 𝛿𝐿,𝑡
(𝑋)

, 𝛿𝑀,𝑡
(𝑋)

, 𝛿𝑁,𝑡
(𝑋)

, …); 

3 Capacity and redundant load for each controller under a leader 

4 Traffic Matrix: 𝑇´ = [𝑇𝑋𝑌] 

5 Initialization:𝑇 = [𝑇𝑋𝑌], 𝐶𝑁 = [𝐶𝑋𝑌
´ ],𝜆𝐶 , 𝜐𝐶 

6 repeat  

7   Every switch performs its most desired migration. 

8   Initial migration pair 𝑆𝐿: 𝐶𝑋 → 𝐶𝑌; 

9  for all controllers do: 

10  if𝑆𝐿: 𝐶𝑋 → 𝐶𝑌; and Υ𝐶𝑌
 ≤ 𝜆𝐶_𝑌 . 𝜐𝐶_𝑌 : satisfy migration does not violate capacity constraint. 

11 
 if migration value (𝑆𝑛, 𝐶𝑛) < 0: consider a weight factor between control resource consumption and  control traffic 

overhead. 

12   Implement switch migration selection 𝑆𝐿 → 𝐶𝑌 

13   Update 𝐶𝑁 = [𝐶𝑋𝑌
´ ]; 

14   end if 

15  end if 

16 end for 

17 Until no proposals have been made by the switches 

 
Algorithm 4: Time to Switch Migration Estimating Segment 

1 Δ𝑜𝑣𝑒𝑟 ← min (Υ𝐶𝑋
− 𝛷𝐶_𝑋) & Δ𝑙𝑖𝑔ℎ𝑡 ← max (𝛷𝐶_𝑌 −  Υ𝐶𝑌

) ; 

2 𝑆𝑋
𝜒

←  ø  and 𝑆𝑋
𝜓

←  ø  ; 

3 foreach𝑆𝐿 ϵ 𝑆𝑋do 

4  if 𝛿𝐿,𝑡
(𝑋)

 ≥  Δ𝑜𝑣𝑒𝑟then 

5   𝑆𝑋
𝜒

← 𝑆𝑋
𝜒

⋃ {𝑆𝐿 };  

6  else 

7   𝑆𝑋
𝜓

← 𝑆𝑋
𝜓

⋃ {𝑆𝐿 }; 

8 if𝑆𝑋
𝜒

≠ øthen  

9  𝑆𝐿 ← the last switch of 𝑆𝑋
𝜒

 ; 

10 𝜏 = [% 𝑜𝑓 Δ𝑙𝑖𝑔ℎ𝑡 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 Δ𝑜𝑣𝑒𝑟] × (𝐿𝑡) ; 

11 else   

12  𝑆𝐿 ←the first switch of 𝑆𝑋
𝜓

; 

13  𝜏 ← 0 then 𝜌 ← 𝛿𝐿,𝑡
(𝑋)

 ; 

14 𝛿𝐿,𝑡
(𝑋)

 ← 𝛿𝐿,𝑡
(𝑋)

 – 𝜌 and 𝛿𝐿,𝑡
(𝑌)

← 𝜌 ; 

15 return  (𝑆𝐿, 𝜏, 𝜌 );  

 

B. Algorithm 2:Ordering the Overloaded and Assisting 

Controllers, as Well as Switch Migration 

This algorithm goal is to distribute workload across 

controllers by identifying a pair of overloaded and lightly 

burdened controllers. The SORT function aids in the 

organization of overloaded and lightly loaded controllers 

in decreasing workload order. Line 1 of the code sorts the 

overload controllers, whereas line 2 sorts of the 

information about the lightly loaded controller. As a 

result, a controller with very excess capacity will be 

prioritized in contributing to the task of an overloaded 

(busy) controller. The code in lines 3–17 tackles each 

controller in the network using a for-loop, from the most 

overloaded to the least overloaded. Line 4 arranges the 

switches under 𝐶𝑋 management in decreasing order based 

on their workload. The while loop on lines 5–16 

continues to reduce the burden of the 𝐶𝑋  by moving a 

switch until it reaches the threshold workload. However, 

if there is no assistant controller to assist (i.e., 𝐶𝑙𝑖𝑔ℎ𝑡  is 

empty) and there are still overloaded controllers in the 

domain, Algorithm 2 ends as shown in lines 6–7. 

Otherwise, if we wish to pick a lightly loaded controller 

𝐶𝑌  for workload sharing, the time-sharing switch 

migration technique must be enabled. Initially, Algorithm 

3 is used to determine the best controllers [𝐶𝑌1, 𝐶𝑌2,...] 

for TSSM in terms of controller resource usage and 

migration cost. Following the discovery of the optimal 

controllers, the TSSM scheme based on Algorithm 4 is 

run. As seen in line 10, the result of Algorithm 4 gives 

three output parameters. In which “𝜏” specifies the time 

switch 𝑆𝐿 should migrate to other controllers, whilst “𝜌” 

specifies the number of PIMs to be migrated to each 

controller. Following that, workload updates of 𝐶𝑋  and 

[𝐶𝑌1, 𝐶𝑌2,...] are performed in lines 11 to 13, and if [𝐶𝑌1, 

𝐶𝑌2,...] exceeds the threshold level, these controllers are 

removed from the lightly loaded controllers as shown in 

line 14, otherwise these controllers are returned to the 

lightly loaded controller unit as shown in lines 17 and 2. 
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C. Algorithm 3: Optimization of the Controller for the 

TSSM Scheme to Save Migration Cost 

This algorithm’s goal is to produce efficient controllers 

for TSSM operation. The optimized controller is chosen 

based on flow characteristics to decrease controller 

resource usage and, as a result, switch migration cost. 

The coalitional game strategy [37] is used for optimal 

controller selection and is shown in Algorithm 3. This 

algorithm requires the PIMs of each switch in the 

overloaded controller 𝐶𝑋 , as well as the controller’s 

threshold level, network topology map, and so on. 

Between lines 3 and 12, the flow sort function evaluates 

the total quantity of flow in each path and sorts it in 

ascending order. Lines 4–6 execute and choose a 

controller that covers most of the switches in the route. 

D. Algorithm 4: Time to Switch Migration Estimating 

Segment 

After defining the best lightly loaded controllers (𝐶𝑌1, 

𝐶𝑌2 ,...) using Algorithm 3, they are paired with an 

overloaded controller to accomplish three tasks using 

Algorithm 4. The tasks are as follows: (i) choose a switch 

(from an overloaded controller) to share their burden with 

lightly loaded controllers, (ii) compute the switch 

migration time (𝜏), and (iii) calculate the number of PIMs 

(𝜌) that lighter loaded controllers will process. Line 1 of 

Algorithm 4 is executed, with “∆𝑙𝑖𝑔ℎ𝑡” representing the 

remaining capacity of the lightly loaded controllers and 

“∆𝑜𝑣𝑒𝑟” representing the lowest amount of overload in the 

overloaded controllers. Following that, switches in the 

overloaded controllers are divided into two subnets, 𝑆𝑋
𝜒

 

and 𝑆𝑋
𝜓

, respectively; if the switch load is greater than 

“∆”, it is sorted in 𝑆𝑋
𝜒

 with decreasing load order, and 𝑆𝑋
𝜓

 

includes remaining switches in the overloaded controllers; 

respecting codes are given in lines 2–7. In order to reduce 

the number of migrations (executed in lines 8–9), 

switches near “∆” (might be the very last switch in 𝑆𝑋
𝜒

 

based on load sorting order) are selected in the 𝑆𝑋
𝜒

 subnet 

for migration. This is because a minimal amount of 

overload in the overloaded controllers can easily be 

placed in the lightly loaded controllers. The estimated 

switch migration time is determined by the number of 

PIMs generated in the switch, the ∆𝑙𝑖𝑔ℎ𝑡 in the optimum 

lightly loaded controllers, and the ∆𝑜𝑣𝑒𝑟  in the switch. For 

example, if ∆𝑙𝑖𝑔ℎ𝑡  is half the ∆𝑜𝑣𝑒𝑟value and the rate of 

PIMs created is constant, the switch migration time is 

expected to be half the period duration provided in 

Eq. (3). If 𝜏 = 0, switch migration happens at the start of 

the period, as shown in line 13. Furthermore, once the 

switches in the 𝑆𝑋
𝜒

 subnet are empty, the 𝑆𝑋
𝜓

 subnet is 

evaluated for better load balancing even though it is not 

overloaded, as seen in lines 11 and 12. This procedure 

will be continued until all the controllers are load 

balanced for each switch in the time-sharing scheme 

using optimum controller finding (Algorithm 3) and then 

returned to Algorithm 2. 

V. EVALUATION AND ANALYSIS 

The proposed switch migration strategy’s performance 

is tested using time domain simulation analysis. As 

illustrated in Fig. 4, the ONOS platform is used as the test 

platform, and a hierarchical DSC design is used for the 

experimental network, which contains 7 controllers and 

24 switches. As a result, one controller acts as a leader, 

and its major purpose is to oversee the other six 

controllers in the network; however, it is not involved in 

switch management; the secondary six controllers operate 

their switches in their subnet. This test platform considers 

simulation duration to be 250 seconds divided into 50 

phases. Each secondary controller has a PIMs processing 

capacity of 800,000 PIMs every 5 second interval. 

Furthermore, the barrier for each controller is set at 

640,000 PIMs every period. As a result, the overall 

controller affordable load is estimated to be 3.84 ×106 

PIMs each period. The switches loads are divided into 

three levels: (i) light load, (ii) medium load, and (iii) big 

load. Each switch generates roughly 17,000 PIMs per 

second under mild load, whereas a switch producing 

33,500 PIMs per second is considered medium load. 

However, if a switch generates more than 51,000 PIMs 

per second, it is considered a big load. If all switches are 

lightly loaded, the overall controller affordable load is 2 

×106 PIMs per period, which is approximately 48% of 

the total controller affordable load. However, if all 

switches are deemed heavy loads, the overall load is 6.01 

×106 PIMs per period, which is significantly greater than 

the total controller affordable load.  
 

 
(a) network topology at “0” second 

 

 
(b) network topology at 16th second 

Figure 4. Network topology used in the simulation test platform. 

As a result, in this simulation research, the simulation 

begins with a minimal load in all switches, and the load is 

randomly raised in the switches using the cbench tool as 

simulation duration advances, to evaluate the 

performance of the switch migration approach. For 

example, at the 16th second time, ten switches (S1, S3, 

S4, S6, S7, S8, S9, S10, S22, S23,) are creating about 

17,000 PIMS/s, eight switches (S2, S5, S11, S12, S15, 

S18, S21, S24,) are generating 33,500 PIMs/s, and the 

remaining switches (S13, S14, S16, S17, S19, S20) are 
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carrying 51,000 PIMs/s, As a result, the total controller 

workload is 3.772 ×106 PIMs each period, and switch 

migration must occur using both the traditional (full 

switch) and TSSM schemes. Three examples are studied 

for assessing the performance of the suggested method: 

(i) work loads of controllers, (ii) overload events, and 

(iii) controller resource consumption. 

A. Test 1: Workload of Controllers 

As previously stated, each controller may process up to 

640,000 PIMs every period, and if the controller has 

processed more than 128,000 PIMs/s, it is deemed 

overloaded. Two standards approach, (i) OpenFlow, and 

(ii) TSSM schemes, are studied in this test, and their test 

results are compared with the proposed method for 

assessing performance.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Comparison of workload of controllers: (a) OpenFlow method, 
(b) Conventional TSSM, (c) Proposed method. 

Because switch migration is not done in the OpenFlow 

technique, controllers C4, and C5 are significantly 

overloaded, as seen in Fig. 5(a), based on PIMs generated 

in the switches. During this time, controllers C4 and C5 

must handle about 932,000 PIMs every period, which 

exceeds their maximum capacity (800,000 PIMs per 

period) and causes unforeseen challenges in the 

networking domain. In the case of the TSSM scheme, it 

distributes workload across controllers via time sharing 

migration and ensures that all controllers are under their 

threshold limits, as illustrated in Fig. 5(b). Furthermore, 

the Ping-Pong problem (no high leaps, and often 

transmitted switches are treated as nil) is not detected in 

the test results. The suggested switch migration scheme’s 

test results are shown in Fig. 5(c). When compared to the 

TSSM scheme, load sharing between controllers is 

substantially flatter (i.e., almost all controllers are sharing 

around similar load, which improves efficiency and 

reduces downtime or maintenance activities). 

B. Test 2: Number of Overload Occurrences 

This test is important for determining the performance 

of the switch migration technique by evaluating the 

number of overload occurrences for the controllers for the 

whole duration (250S). Fig. 6 shows a comparison of 

overload occurrence for all three approaches. It 

demonstrates that the OpenFlow method provides a high 

number of over-load occurrences because there is number 

of switch migration action, and thus controllers C1, C2, 

C3, and C6 are in the lightly loaded range, whereas C4, 

and C5 are highly loaded, and these controllers are 

completely overloaded during the given period. 

 

 

Figure 6. Comparison of number of overload occurrences in 

conventional and proposed method. 

In the case of TSSM, it has considerably decreased the 

number of overload events for the controller since it 

avoids the ping-pong problem and so switches that are 

repeatedly moved are ignored. When compared to the 

TSSM system, the proposed method reduces the amount 

of overload incidents even more. During time sharing 

migration, the suggested technique employs more than 

one optimal controller as a lightly loaded controller, 

which may minimize the frequency of overload events. 

Because, in the conventional TSSM method, if one 

controller is not sufficient to share the load of the switch 

(this controller may be considered initially as excess in 

this situation), then it is necessary to find another 

controller for switch sharing. This may occur when the 

requirement of load sharing is high in the over-loaded 

controller and lightly loaded single converters are 
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insufficient to handle this load. The proposed strategy, on 

the other hand, selects more optimal controllers based on 

load sharing and minimizes unnecessary processing and 

overload situations. 

C. Test 3: Controller Resource Consumption 

This test could be utilized to determine the migration 

cost of switch migration techniques based on controller 

resource usage. Controller resource consumption 

describes how many controllers and switches are used. It 

should be noted that minimizing the number of 

controllers associated with the switches minimizes the 

network’s switch migration cost. Because OpenFlow is 

not conducted during the switch migration event, it is 

excluded from this assessment research. When compared 

to alternative switch migration methods, the standard 

TSSM has a lower migration cost. However, it is greater 

when compared to the proposed switch migration 

technique since the proposed approach selects the 

appropriate controllers for workload sharing based on 

flow characteristics, which minimizes controller resource 

consumption and switch migration cost. Fig. 7 depicts the 

control resource usage of the switch migration strategy. 

When compared to the conventional TSSM system, the 

suggested switch migration approach saves 

approximately 18% on switch migration costs. The 

overall effectiveness of the proposed method with 

existing methods is given in Table I. 

 

 

Figure 7. Comparison of controller resource consumption between 

TSSM and proposed switch migration method. 

TABLE I. COMPARISON OF THE EFFECTIVENESS OF THE PROPOSED 

METHOD WITH EXISTING METHODS 

Ref. 

Load 

balancing 

Strategy 

OpenFlow 

Complaint 

Time 

Sharing 

Controller 
Ping-

pong 

difficulty 

Switch 

Migration 

Cost 

[22] 
Switch 

Migration 
Yes No Yes High 

[24] 
Switch 

Migration 
Yes No Yes High 

[25] 
Switch 

Migration 
Yes No Yes Medium 

[35] 
Switch 

Migration 
Yes Yes No Medium 

Proposed 

Method 

Switch 

Migration 
Yes Yes No Low 

VI. CONCLUSION 

This research offered an enhanced TSSM methodology 

that addresses the issue of higher switch migration cost in 

the standard TSSM method by locating several optimum 

target controllers throughout the time-sharing period. It 

used flow characteristics to determine the best controllers 

using a coalitional game strategy method. Furthermore, 

the suggested switch migration strategy provides TSSM 

benefits that have overcome the ping-pong controller 

challenge. The ONOS platform was used to evaluate the 

performance of this study, and it was discovered that the 

modified TSSM scheme outperformed the standard 

TSSM approach in terms of controller workload sharing, 

number of overload events, and controller resource 

consumption. When compared to the typical TSSM, it 

decreases controller resource use by 18%. 
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