
An Effective Time-Sharing Switch Migration

Scheme for Load Balancing in Software Defined

Networking

Thangaraj Ethilu 1,*, Abirami Sathappan 1, and Paul Rodrigues 2

1 Department of Computer Science and Engineering, Annamalai University, India; Email: reachabisv@gmail.com (A.S.)
2 Department of Computer and Engineering, King Khalid University, Saudi Arabia; Email: drpaulprof@gmail.com (P.R.)

*Correspondence: ethilthangaraj@yahoo.co.in (T.E.)

Abstract—Using distributed Software Defined Networking

(SDN)control, SDN delivers additional flexibility to network

management, and it has been a significant breakthrough in

network innovation. Switch migration is often used for

distributed controller workload balancing. The Time-

Sharing Switch Migration (TSSM) scheme proposed a

strategy in which multiple controllers are allowed to share

the workload of a switch via time sharing during an

overloaded condition, resulting in reduced ping-pong

controller difficulty, fewer overload occurrences, and

improved controller efficiency. However, it requires more

than one controller to accomplish, it has greater migration

costs and higher controller resource usage during the TSSM

operating time. As a result, we presented a coalitional game

strategy that optimizes controller selection throughout the

TSSM phase depending on flow characteristics. The new

TSSM method reduces migration costs and controller

resource usage while still providing TSSM benefits. For the

sake of practicality, the proposed strategy is implemented

using an open network operating system. The experimental

findings reveal that, as compared to the typical TSSM

system, the proposed technique reduces migration costs and

controller resource usage by approximately 18%.

Keywords—switch migration, load balancing, coalitional

game strategy, time sharing switch migration, software

defined networking

I. INTRODUCTION

The fast proliferation of cloud computing, big data

applications, the internet of multimedia things, and

increased data traffic have significantly raised network

management difficulties. The traditional network

architecture system consists of a data plane and a control

plane in each switch, with the former handling packet

processing and the latter handling decision making and

administration. As a result, upgrading the current

algorithms and policies to the switches is quite hard and

time consuming because all the related switches in the

given network must be updated one by one by system

administrators or workers [1].

 Manuscript received December 22, 2022; revised February 20, 2023;

accepted May 11, 2023; published August 22, 2023.

Today, the software defined networking method

creates a distinct perspective of network administration in

networking applications by shifting the control plane in

switches to a central device known as the controller. As a

result, the controller may handle many switches in the

network. Monitoring and control of network switches are

simplified in this current method as compared to

traditional network management techniques, because the

controller unit can offer such information about the

switches.

Furthermore, by creating a set of rules in the controller,

the newest algorithms and control policies may be

quickly updated to the switches [2]. Aside from that,

SDN may support a broad range of applications, such as

(i) defending against cyber-attacks, (ii) recognizing

malicious access points, and (iii) offering anonymous

authentication, among others [3–7].

A single controller in a large network is a difficult

option because it creates a bottleneck in network

management performance. As a result, Distributed SDN

Control (DSC) is demanded in network applications, and

it acts as a promising solution in large network

management with many switches [8]. The DSC enables

many controllers to communicate with one another to

administer the whole network. Where each controller

manages a subset of switches (i.e., a subnet), and

processes may be transferred among controllers to

facilitate cooperation. Each controller is responsible for

dividing the workload for the subnets and reassigning the

burden of its switches through the periodical check-up of

each subnet, which is known as controller placement [9].

The controller placement is mostly focused on load

balancing and is carried out using a variety of techniques

such as work group control technique [10], deep

reinforcement learning technique [11], and so on. The

upshot of such control strategies may significantly alter

the switches in the subnet, causing the subnet to become

unstable via ping-pong operation. Furthermore, controller

placement strategies are not thought to be successful for

short-term flows such as distributed denial of service and

impulses [12].

Switch migration allows for a smoother change of

subnets in a shorter amount of time and addresses the

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

846doi: 10.12720/jait.14.4.846-856

concerns. A switch migration approach examines the

workload state of each controller in the network in each

time frame (or time interval or period) to determine if

they are overloaded (busy) or lightly occupied (available

to share other works). If a network is overloaded, the

migration technique relocates a switch from the heavily

loaded controller subnet to the lightly loaded controller

subnet. Most existing switch migration methods follow

the smallest slice of the migration, which is one single

switch transferred at the start of the period. Once

migrated, the switch remains in the most recent sub-net

until the switch is picked for the following period. Most

crucially, these migration methods always need a

controller to supervise a single switch for the duration of

the migration. As a result, the controller in these systems

encounters ping-pong problems under elephant flow

situations (i.e., flow conveys numerous packets) and

faces the major problem of subnet instability [13].

The following outlines show the structure of the paper:

The literature review and problem definition of this study

are presented in Section II of this paper. Section III goes

through the fundamentals of the distributed SDN control

network, OpenFlow protocol rules, and network model.

Section IV discusses the proposed enhanced TSSM

scheme and matching algorithms, and Section V presents

the performance evaluation of the proposed approach.

Finally, in Section VI, the conclusion statement is

presented.

II. LITERATURE REVIEW

Several studies have been conducted throughout the

years to highlight the numerous difficulties in the DSC

network. Traditionally, dynamic controller placement

methods are used to achieve controller load balancing.

Chan et al. [14] presented a strategy for minimizing

service interruption time by easily moving the process

from one controller to another [15]. describes how a

lightly loaded controller can operate as a leader in the

event of a breakdown of the standard leader controller

unit. Controller placement approaches and issues are

discussed in [9], which emphasizes the need of

controllers maintaining fairness while sharing their tasks.

When compared to previous controller placement

methods, Hu and Zhang et al. [16] provided a dependable

deployment strategy with the goal of minimizing packet

loss and improving network stability. Kim et al. [17]

developed a strategy for improving the output of a

distributed datastore in an Open Daylight controller

cluster by regularly distributing shared leaders to cluster

members. Wang and Chang [18] described a system in

which controllers collaborate to redirect traffic to prevent

congestions during busy or overloaded periods on

switches. Nithya and Sangeetha et al. [19] proposes a

software defined cyber seeking system with a hybrid

controller for cloudlets and local networks. Sahoo and

Mishra et al. [20] presents prediction-based controllers,

which forecast network demand and conduct device

transfers based on prediction. The controller placement

research, such as the work group control approach and

the deep reinforcement learning technique provided

in [10, 11], where these strategies are ineffective during

impulses and distributed denial of service, etc. Aside

from the dynamic controller placement technique,

approaches for DSC workload balancing are classified

into three types: (i) switch migration, (ii) flow migration,

and (iii) flow splitting.

Switch Migration: To reduce burden, switch control

can be migrated from overloaded controllers to lightly

loaded controllers. Dixit and Hao et al. [21] discussed

switch migration in consideration of a controller’s CPU

and memory allocation exceeding its threshold level, but

it does not define the method of selecting the targeted

controllers. Min and Hua et al. [22] discusses switch

migration utilizing the Q-learning approach, which has

lowered the standard deviation of the controller workload.

Cui et al. [23] utilized the controller’s reaction time to

migrate switches. This strategy transfers the switch with

the greatest load of the controller in the shortest amount

of time. Sahoo et al. [24] suggested a strategy for

selecting targeted controllers for switch migration based

on CPU use, memory capacity, and bandwidth, among

other factors. Hu and Lan et al. [25] suggested a

simulated annealing algorithm for selecting the targeted

controller to reduce the cost of switch migration.

Flow Migration: Instead of migrating an entire switch,

the flow migration approach merely transfers the

hardness (i.e., flow beyond the threshold level) of the

flow. Hu and Wang et al. presented an approach in which

a super controller administers each controller in the

system and controls the flow controlled by them [26].

Lan and Li et al. [27] presented a game theory strategy

for managing each controller flow through task exchange.

When compared to standard flow migration methods,

Maity and Misra et al. [28] offered a traffic aware

consistent approach for minimizing flow migration

duration and obtained a 15% reduction in flow migration

time. Furthermore, using a traffic-aware flow migration

technique, Maity and Misra et al. [29] offered a method

to lower data plane load and obtained a 13% reduction

when compared to the two-phase update approach.

(a) Hierarchical method

(b) Flat method

Figure 1. Control methods for the DSC architecture.

Flow Splitting: This approach enables a switch to be

managed by many controllers at the same time. Gorkemli

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

847

and Tatlcıoglu et al. [30] presented a solution for flow

splitting utilizing virtual overlay on the data plane that

switches must negotiate with their controllers. Cheng and

Chen [31] developed a convex quadratic programming-

based solution for load balancing and decreasing new

switch-controller appointments by modelling the mapping

between controllers and switches.

Vikas and Samayveer [32] has proposed a self-

adaptive genetic approach-based particle swarm

optimization as a cluster-based routing to optimize the

control nodes in heterogeneous SDN-enabled free-space

optical under water wireless sensor networks. Moreover,

a novel fitness function is presented to balance the cluster

size by considering the most significant parameters

including energy and distance of network devices. It

shows that the proposed method improves stability period,

fitness value, etc. The control relation graph-based

controller placement method for Software-Defined

Networking (SDN) is presented in [33]. It demonstrates

that the proposed approach reduces management costs

through load balancing and response time in LEO

satellite networks. Zhang et al. proposed an SDN-based

space-terrestrial integrated network architecture. In

addition, it has presented an efficient dynamic controller

placement and adjustment algorithm for better load

balancing and response time [34]. Chen et al. proposed a

dynamical control domain division problem to reduce the

management cost. In addition, it has presented a heuristic

algorithm to choose the best controller for better load

balancing [35].

However, due to synchronization and the complexity

of the design, a switch cannot be operated by more than

one controller at the same time. As a result, flow

migration and flow splitting methods violate the

OpenFlow protocol and cannot be used in the real-time

controller platform.

As described in the literature section, most switch

migration solutions struggle with the ping-pong challenge.

The following example explains the ping-pong difficulty

of the controller. Consider two controllers [𝐶𝑋 and 𝐶𝑌]

and three switches [𝑆𝐿 , 𝑆𝑀 , 𝑆𝑁] in a network with a

maximum manageable workload of 200 PIMs per second

for each controller. Switches 𝑆𝐿, 𝑆𝑀, and 𝑆𝑁 generate 120,

160, and 120 PIMS every period, accordingly. 𝐶𝑋

manages switches 𝑆𝐿 and 𝑆𝑀 at time t, and controller 𝐶𝑌

manages switch 𝑆𝑁. Because Υ𝐶𝑋
= 𝛿𝐿(𝑡) + 𝛿𝑀(𝑡)= 120 +

160 > λ𝐶𝑋
 (200 PIMS), 𝐶𝑋 is overloaded and requires

switch migration. In most switch migration strategies, an

overloaded controller will request and take over a switch

from other controllers for an extended period. As a result,

at time t+1, Switch 𝑆𝐿 is moved to controller 𝐶𝑌’s subnet.

However, if Υ𝐶𝑌
= 𝛿𝑁(𝑡) + 𝛿𝐿(𝑡) = 120 + 120 >λ𝐶𝑌

 (200

PIMS) at period t+1, controller 𝐶𝑌 will be overloaded. As

a result, controller 𝐶𝑌 requests that 𝐶𝑋 take over a switch

again at time t+2, increasing the complexity of ping-pong.

Lai and Wang et al. [36] recently suggested a Time-

Sharing Switch Migration Technique (TSSM) that

mitigates controller ping-pong by spreading the burden of

a switch that is monitored by two controllers at the same

time during overloaded situations. It proposes a switch

migration approach in which the burden of the switch is

split across two controllers over a certain time period.

Using the preceding example, at time t+1, 𝐶𝑋 handles 40

PIMs of 𝑆𝐿, while 𝐶𝑌 manages the remaining 80 PIMs via

migration. Both controllers 𝐶𝑋 and 𝐶𝑌 are regulating the

workload of switch 𝑆𝐿 currently. As a result, 𝐶𝑋 ’s

workload is Υ𝐶𝑋
= 𝛿𝐿(𝑡) + 𝛿𝑀(𝑡) = 40 + 160 = λ𝐶𝑋

 (200

PIMS), while 𝐶𝑌’s workload is Υ𝐶𝑌
= 𝛿𝑁(𝑡) + 𝛿𝐿(𝑡) = 120

+ 80 = 𝜆𝐶𝑌
 (200 PIMS), indicating that neither controller

is overloaded (busy) in period t+1. Similarly, at time t+2,

𝐶𝑌 processes 80 PIMs before sending the remaining 20

PIMs to the 𝐶𝑋 controller subnet. The TSSM technique

can effectively overcome the controller’s ping-pong issue

using this strategy.

It provides an approach in which two controllers,

namely an overload controller (one) and a lightly loaded

controller (one), are merged and the switch is relocated

from an overloaded to a lightly loaded controller subnet

at an appropriate moment in time. When compared to

existing switch migration methods such as group-based

dynamical controller placement [10], churn-triggered

migration [30], and best-fit migration [32], the results of

this technique show that it significantly reduces overload

occurrences of controllers while effectively balancing the

workload of all controllers with improved controller

efficiency. Nonetheless, more than one lightly loaded

controller operation in the TSSM yields greater controller

efficacy than the original (i.e., stated in the research)

despite the additional switch migration cost. Furthermore,

because the migration switch is managed (i.e., controlled)

by more than one controller in the network, this technique

consumes additional controller resources during TSSM

operation.

As a result, we suggested an approach that optimizes

the lightly loaded controller selection during the TSSM

period and enables for more than one lightly loaded

controller to be used for switch migration during the

TSSM period without increasing migration cost. The

controller is chosen based on flow characteristics using a

coalitional game strategy algorithm, which decreases

controller resource consumption by lowering the number

of controllers involved in flow processing. The new

TSSM method reduces migration costs and controller

resource usage while also providing TSSM advantages.

For its feasibility, the proposed scheme is implemented

using the Open Network Operating System (ONOS),

which can respond to approximately one million flow

processing requests per second.

Figure 2. Switch transferring process in OpenFlow Protocol.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

848

In summary, Software-Defined Networking (SDN)

leads to an efficient administration process in network

management through easy updating of network policies

and the latest algorithms. Typically, distributed SDN is

adopted in network management, considering bottleneck

issues. Load balancing is a critical factor in the SDN, and

it can be managed through (i) the dynamic controller

placement method, (ii) switch migration, (iii) the flow

splitting method, and (iv) the flow migration method.

Considering the practical viability of Open Flow, a switch

cannot be controlled by more than one controller

simultaneously, considering synchronization and complex

design. Therefore, flow migration and flow splitting

methods are non-compliant with the OpenFlow protocol

and cannot be implemented on the real-time controller

platform. Considering the OpenFlow protocol and its

implementation in the real-time controller platform, the

dynamic controller placement method with switch

migration is a better solution for load balancing.

The conventional switch migration methods suffer

from ping-pong difficulty during the switch migration

process because the whole single switch is migrated in

the beginning period. It causes instability issues in the

switch migration. The ping-pong difficulty is rectified by

a time-sharing switch migration scheme. This method

significantly reduces the overload occurrences of the

controller, which leads to better load balancing. However,

the selection of controllers during the TSSM period is

random. So that it could increase the switch migration

cost and higher controller resource consumption during

TSSM operation since the migration switch is managed

by more than one controller in the network. Therefore,

our paper has proposed an improved TSSM scheme, and

it has the following merits: (i) It contains all the merits of

a conventional TSSM scheme, including the removal of

ping-pong controller action during the switch migration

process, a reduction in controller overload occurrences,

and better controller efficiency, (ii) The selection of

controllers during TSSM is specified and optimized

through the coalitional game strategy, which reduces the

switch migration cost and controller resource

consumption, (iii) It provides better controller efficiency

and load balancing compared with the conventional

TSSM scheme.

III. DISTRIBUTED SDN CONTROLLER

This section discusses the architecture of the

distributed SDN control network, the switch transfer

mechanism in the OpenFlow protocol, and network

models.

A. Distributed SDN Control Network Architecture

In a distributed SDN control network, two popular

control methods are commonly used: (i) hierarchical

control and (ii) flat control, also known as circular chain

control [8]. In the hierarchical technique, the central

distributed controller (called the leader) has a global

perspective of the network and updates network

regulations and newest algorithms to the sub controllers,

as illustrated in Fig. 1(a). The sub controller controls

(oversees) the subnet of its switches and transmits its

status to the leader. It should be emphasized that if the

original leader is broken down in the hierarchical

technique, a new leader will be chosen [15]. In the case of

circular chain control, controllers have information about

the network’s local perspective and authority over its own

subnet. The associated controllers exchange information

in a distributed fashion, as shown in Fig. 1(b).

In this article, the hierarchical technique is used to

implement the suggested switch migration methodology.

The leader oversees monitoring the condition of each sub

controller and implementing the TSSM scheme to pick

the lightly loaded controller over the overloaded

controller during flow variations, flow traffic, impulses,

distributed denial of service, and so on. Following that,

two sub controllers (overloaded and lightly loaded) are

committed to sharing workloads and migrating the switch

as needed.

To avoid undesired switch migrations, the threshold

level of the sub controller is likewise established in the

leader. When the workload of the controller exceeds the

controller’s threshold level, it is deemed overloaded, and

it is selected based on the controller’s maximum capacity

and reserve capacity. Generally, network administrators

recommend that the threshold level be set between 90%

and 95% of the full capacity. The controller’s threshold

level is also stated as its maximum workload, and it is

specified in Eq. (1).

 𝛷𝐶 = 𝜆𝐶 − 𝜐𝐶 (1)

𝛷𝐶 ⟶ Thershold workload level of the controller

𝜆𝐶 ⟶ Maximum workload capacity of the controller

𝜐𝐶 ⟶ Reserve workload capacity of the controller

B. Switch Transfer Process in Openflow

OpenFlow allows switch transfers between subnets and

establishes connections with many controllers. Each

related controller 𝐶𝑋 determines the following duties from

the perspective of switch 𝑆𝐿.

• OFPCR_ROLE_EQUAL (Equal): This default

role grants controller 𝐶𝑋 complete authority to

switch 𝑆𝐿 and allows 𝐶𝑋 to send commands to 𝑆𝐿

and receive status information. Similarly, when

𝑆𝐿 is operating in this capacity, all controllers

have complete access to it.

• OFPCR_ROLE_SLAVE (Slave): When the

controller 𝐶𝑋 role is set to slave, 𝐶𝑋 can only

read the state of switch 𝑆𝐿.

• OFPCR ROLE MASTER (Master): It is similar

to an equal role, and controller 𝐶𝑋 has full power

over 𝑆𝐿 . It is insisted, however, that only one

controller (e.g., 𝐶𝑋) is considered a master

controller for a switch 𝑆𝐿 , and all other

controllers are considered slaves to switch 𝑆𝐿.

The OpenFlow protocol defines the switching process,

which is seen in Fig. 2. The master controller initiates the

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

849

switch transferring operation since it has complete control

over the switch. For example, controllers 𝐶𝑋 and 𝐶𝑌 are

the master and targeted (slave) controllers for the switch

𝑆𝐿, respectively. It is insisted that overloaded controllers

use leader to move a switch to other controllers for

workload balance (controller). After receiving a directive

from the leader, the master controller (𝐶𝑋) sends a

transferring request for switch 𝑆𝐿 to the targeted

controller 𝐶𝑌. Following that, controller 𝐶𝑋 requests that

the switch 𝑆𝐿 alter the role of 𝑆𝐿 control to master rather

than slave using the Role Request (Master) message, and

the switch 𝑆𝐿 responds to 𝐶𝑌 with the Role Reply

message (Master). After all, 𝐶𝑌 sends a notification

message to 𝐶𝑋 indicating the successful migration of

switch 𝑆𝐿 , and controller 𝐶𝑋 subsequently operates as a

slave controller for switch 𝑆𝐿.

OpenFlow protocol versions 1.2, 1.3, 1.4, and 1.5

enable switch migration (most recent version). It has been

discovered that OpenFlow regulation simply instructs

how to modify (migrate) the switches between controllers

for their tasks and exchange messages between

controllers. However, OpenFlow does not specify how to

choose target controllers and switches for migration. The

proposed enhanced TSSM method optimises controller

selection and determines when switch migration should

occur during the TSSM period.

C. Network Modelling

Let us imagine an SDN-based network with a

collection 𝑆𝑁 of switches and a collection 𝐶𝑁 of

controllers. A switch (e.g., 𝑆𝐿) in 𝑆𝑁 is controllable by a

controller in 𝐶𝑁 (e.g., 𝐶𝑋) with the model of one switch is

controlled by a controller concurrently advocated by

OpenFlow, i.e., 𝐶𝑋 acts as a master controller for 𝑆𝐿 and

may be altered after the switch migration.

Packet In messages (PIMs) sent from switches

determine each controller’s workload. Switch workload

(𝛿(𝑡)) is calculated specifically by the number of PIMs

created by a switch during each period “t”. Following that,

controller workload capacity is defined as the maximum

number of PIMS that may be processed in each period.

For example, if controller 𝐶𝑋 manages switches 𝑆𝑎 to 𝑆𝑧,

the workload of controller 𝐶𝑋 is determined as follows:

 Υ𝐶𝑋
= ∑ 𝛿(𝑡)𝑆𝑧

𝑆𝑎
 (2)

In general, the controller’s maximum workload (Υ𝐶)

should be smaller than its maximum capacity (𝜆𝐶),

considering the need for reserve load under unwanted

scenarios such as flow fluctuation, sudden demand, and

so on. Hierarchical control of DSC architecture is studied

in this study; hence, the leader receives workload from all

controllers at each period and directs switch migration

across controllers, as necessary.

IV. PROPOSED SWITCH MIGRATION SCHEME

The controller placement technique or network

operators are used to set the network switches at the first

stage, with each switch managed by a master controller.

As described in the preceding section, conventional

switch migration methods include migrating a switch at

the start of the period as well as migrating the entire

switch even if it is not necessary. As a result, the link

between controllers and switches remains constant during

whole period.

Algorithms Process

1 It is used to locate the overloaded and lightly loaded controllers in the SDN domain.

2
Initially, it is sorting the overloaded and lightly loaded controllers based on their overloading and PIMS accessibility. After

that, it performs the whole switch migration from overloaded controllers to lightly loaded controllers.
3 It achieves optimized controller selection based on flow path through a Coalitional game strategy for the TSSM operation.

4 It performs the TSSM operation and achieves better load balancing.

Figure 3. Relationship among algorithms used in the improved TSSM scheme.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

850

In the case of TSSM, switch migration is enabled via

time-sharing, and switches in the network can

dynamically change their connections with the controller

at any moment. Furthermore, as mentioned in Section II,

the TSSM approach efficiently overcomes the controller

ping-pong challenge. Nonetheless, controller resource

consumption is greater during the TSSM time, which may

raise the method’s migration cost when compared to

other migration techniques since it allows more than one

controller to share their (switch) loads during the TSSM

period. It is discovered that migration costs are

approximated based on the number of controllers and

switches used. As a result, this research suggested an

approach that greatly decreased the number of controllers

associated with switches during time sharing migration

depending on flow characteristics. We developed a

coalitional game strategy to establish the best possible

connection between switches and controllers during the

time-sharing migration phase, reducing the number of

controllers connected with the switch and, as a result,

controller resource consumption and migration cost are

reduced. The algorithms listed below are intended to

ensure the effective completion of the proposed switch

migration method and Fig. 3 briefs their relationships.

A. Algorithm 1: Identifying Overloaded and

LightlyLoaded Controllers

This algorithm ensures that all overloaded (referred to

as busy) and lightly loaded controllers (referred to as

assistant or target controllers) in the given network are

found, as represented by 𝐶𝑏𝑢𝑠𝑦 and 𝐶𝑙𝑖𝑔ℎ𝑡 , respectively.

The burden of each controller (e.g., Υ𝐶𝑋
) is evaluated

using Eq. (2) by adding the loads of each switch in the

subnet (e.g., 𝛿𝐿,𝑡
(𝑋)

+ 𝛿𝑀,𝑡
(𝑋)

+ ⋯) and is specified in the

method code between 3 and 5 lines. Following that, the

controller workload (e.g., Υ𝐶𝑋
) is compared to the

threshold level (𝛷𝐶_𝑋), and if it is more than the threshold

level, the controller is deemed overloaded and included in

the overload controllers (described in lines 6–7) unit in

the leader. Then, in line 8, lightly loaded controllers are

chosen based on a lightly loaded coefficient �́� ,́ with a

value between 0.8 and 0.85 (specified by network

managers). Following that, the lightly loaded coefficient

is multiplied by the threshold value, and if the workload

of the controllers is less than the multiply value, it is

regarded a lightly loaded controller and is added to the

leader’s lightly loaded controller unit. It is required that

switch migration take place when both the 𝐶𝑏𝑢𝑠𝑦 and

𝐶𝑙𝑖𝑔ℎ𝑡 controllers are not empty, as shown in line 10.

Algorithm 1: Identifying Overloaded and Lightly Loaded Controllers

1 𝐶𝑏𝑢𝑠𝑦 ← ø and 𝐶𝑙𝑖𝑔ℎ𝑡← ø ;

2 foreach𝐶𝑋 ϵ 𝐶do

3 Υ𝐶𝑋
 ← 0 ;

4 foreach𝑆𝐿 ϵ 𝑆𝑋do

5 Υ𝐶𝑋
← Υ𝐶𝑋

 + 𝛿𝐿,𝑡
(𝑋)

 ;

6 if Υ𝐶𝑋
>𝛷𝐶𝑋

 then

7 𝐶𝑏𝑢𝑠𝑦 ← 𝐶𝑏𝑢𝑠𝑦U { 𝐶𝑋} ;

8 else if Υ𝐶𝑋
<𝜇 × 𝛷𝐶𝑋

then

9 𝐶𝑙𝑖𝑔ℎ𝑡← 𝐶𝑙𝑖𝑔ℎ𝑡U { 𝐶𝑋} ;

10 If 𝐶𝑏𝑢𝑠𝑦 ≠ ø and 𝐶𝑙𝑖𝑔ℎ𝑡 ≠ ø then

11 Use Algorithm 2 for load balancing between 𝐶𝑏𝑢𝑠𝑦 and 𝐶𝑙𝑖𝑔ℎ𝑡;

Algorithm 2: Switch Migration Segment for Load Balancing

1 SORT (𝐶𝑏𝑢𝑠𝑦 , Υ𝐶𝑋
− 𝛷𝐶_𝑋);

2 SORT (𝐶𝑙𝑖𝑔ℎ𝑡, 𝛷𝐶_𝑌 − Υ𝐶𝑌
);

3 foreach𝐶𝑋 ϵ 𝐶𝑏𝑢𝑠𝑦do

4 SORT (𝑆𝑋, 𝛿𝐿,𝑡
(𝑋)

);

5 whileΥ𝐶𝑋
>𝛷𝐶_𝑋do

6 if𝐶𝑙𝑖𝑔ℎ𝑡= ø then

7 Cease this module;

8 Pick the optimized controllers [𝐶𝑌1, 𝐶𝑌2,...]from 𝐶𝑙𝑖𝑔ℎ𝑡;

9 (Controller-Switch Association Matrix) ← Algorithm 3 (Request PIM´s of Switch, Switches from 𝐶𝑏𝑢𝑠𝑦)

10 (𝑆𝐿, [𝜏1 , 𝜏2 , …] , [𝜌1 , 𝜌2 , …]) ← Algorithm 4 (𝐶𝑋 , [𝐶𝑌1, 𝐶𝑌2,...]) ;

11 Transfer 𝑆𝐿 to [𝐶𝑌1, 𝐶𝑌2,...]’s subnet after [𝜏1 , 𝜏2 , …] units of time;

12 Υ𝐶𝑋
 ← Υ𝐶𝑋

− [𝜌1 , 𝜌2 , …];

13
 Υ𝐶𝑌_1

 ← 𝛷𝐶_𝑌 + [𝜌1 , 𝜌2 , …] ;

 Υ𝐶𝑌_2
 ← 𝛷𝐶_𝑌 + [𝑛1 , 𝑛2 , …] ;

14 ifΥ𝐶𝑌[1,2,…]
≥ 𝜇 × 𝛷𝐶_𝑌[1,2,…]then

15 𝐶𝑙𝑖𝑔ℎ𝑡← 𝐶𝑙𝑖𝑔ℎ𝑡\, [𝐶𝑌1, 𝐶𝑌2,...];

16 else

17 SORT (𝐶𝑙𝑖𝑔ℎ𝑡, 𝛷𝐶_𝑌 − Υ𝐶𝑌
);

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

851

Algorithm 3: Selection of Optimised Controller for TSSM Scheme

1 Input: Organised light and busy controllers ={𝐶𝑏𝑢𝑠𝑦}, {𝐶𝑙𝑖𝑔ℎ𝑡} obtained from Algorithm 2;

2 SORT (𝛿𝐿,𝑡
(𝑋)

, 𝛿𝑀,𝑡
(𝑋)

, 𝛿𝑁,𝑡
(𝑋)

, …);

3 Capacity and redundant load for each controller under a leader

4 Traffic Matrix: 𝑇´ = [𝑇𝑋𝑌]

5 Initialization:𝑇 = [𝑇𝑋𝑌], 𝐶𝑁 = [𝐶𝑋𝑌
´],𝜆𝐶 , 𝜐𝐶

6 repeat

7 Every switch performs its most desired migration.

8 Initial migration pair 𝑆𝐿: 𝐶𝑋 → 𝐶𝑌;

9 for all controllers do:

10 if𝑆𝐿: 𝐶𝑋 → 𝐶𝑌; and Υ𝐶𝑌
 ≤ 𝜆𝐶_𝑌 . 𝜐𝐶_𝑌 : satisfy migration does not violate capacity constraint.

11
 if migration value (𝑆𝑛, 𝐶𝑛) < 0: consider a weight factor between control resource consumption and control traffic

overhead.

12 Implement switch migration selection 𝑆𝐿 → 𝐶𝑌

13 Update 𝐶𝑁 = [𝐶𝑋𝑌
´];

14 end if

15 end if

16 end for

17 Until no proposals have been made by the switches

Algorithm 4: Time to Switch Migration Estimating Segment

1 Δ𝑜𝑣𝑒𝑟 ← min (Υ𝐶𝑋
− 𝛷𝐶_𝑋) & Δ𝑙𝑖𝑔ℎ𝑡 ← max (𝛷𝐶_𝑌 − Υ𝐶𝑌

) ;

2 𝑆𝑋
𝜒

← ø and 𝑆𝑋
𝜓

← ø ;

3 foreach𝑆𝐿 ϵ 𝑆𝑋do

4 if 𝛿𝐿,𝑡
(𝑋)

 ≥ Δ𝑜𝑣𝑒𝑟then

5 𝑆𝑋
𝜒

← 𝑆𝑋
𝜒

⋃ {𝑆𝐿 };

6 else

7 𝑆𝑋
𝜓

← 𝑆𝑋
𝜓

⋃ {𝑆𝐿 };

8 if𝑆𝑋
𝜒

≠ øthen

9 𝑆𝐿 ← the last switch of 𝑆𝑋
𝜒

 ;

10 𝜏 = [% 𝑜𝑓 Δ𝑙𝑖𝑔ℎ𝑡 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 Δ𝑜𝑣𝑒𝑟] × (𝐿𝑡) ;

11 else

12 𝑆𝐿 ←the first switch of 𝑆𝑋
𝜓

;

13 𝜏 ← 0 then 𝜌 ← 𝛿𝐿,𝑡
(𝑋)

 ;

14 𝛿𝐿,𝑡
(𝑋)

 ← 𝛿𝐿,𝑡
(𝑋)

 – 𝜌 and 𝛿𝐿,𝑡
(𝑌)

← 𝜌 ;

15 return (𝑆𝐿, 𝜏, 𝜌);

B. Algorithm 2:Ordering the Overloaded and Assisting

Controllers, as Well as Switch Migration

This algorithm goal is to distribute workload across

controllers by identifying a pair of overloaded and lightly

burdened controllers. The SORT function aids in the

organization of overloaded and lightly loaded controllers

in decreasing workload order. Line 1 of the code sorts the

overload controllers, whereas line 2 sorts of the

information about the lightly loaded controller. As a

result, a controller with very excess capacity will be

prioritized in contributing to the task of an overloaded

(busy) controller. The code in lines 3–17 tackles each

controller in the network using a for-loop, from the most

overloaded to the least overloaded. Line 4 arranges the

switches under 𝐶𝑋 management in decreasing order based

on their workload. The while loop on lines 5–16

continues to reduce the burden of the 𝐶𝑋 by moving a

switch until it reaches the threshold workload. However,

if there is no assistant controller to assist (i.e., 𝐶𝑙𝑖𝑔ℎ𝑡 is

empty) and there are still overloaded controllers in the

domain, Algorithm 2 ends as shown in lines 6–7.

Otherwise, if we wish to pick a lightly loaded controller

𝐶𝑌 for workload sharing, the time-sharing switch

migration technique must be enabled. Initially, Algorithm

3 is used to determine the best controllers [𝐶𝑌1, 𝐶𝑌2,...]

for TSSM in terms of controller resource usage and

migration cost. Following the discovery of the optimal

controllers, the TSSM scheme based on Algorithm 4 is

run. As seen in line 10, the result of Algorithm 4 gives

three output parameters. In which “𝜏” specifies the time

switch 𝑆𝐿 should migrate to other controllers, whilst “𝜌”

specifies the number of PIMs to be migrated to each

controller. Following that, workload updates of 𝐶𝑋 and

[𝐶𝑌1, 𝐶𝑌2,...] are performed in lines 11 to 13, and if [𝐶𝑌1,

𝐶𝑌2,...] exceeds the threshold level, these controllers are

removed from the lightly loaded controllers as shown in

line 14, otherwise these controllers are returned to the

lightly loaded controller unit as shown in lines 17 and 2.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

852

C. Algorithm 3: Optimization of the Controller for the

TSSM Scheme to Save Migration Cost

This algorithm’s goal is to produce efficient controllers

for TSSM operation. The optimized controller is chosen

based on flow characteristics to decrease controller

resource usage and, as a result, switch migration cost.

The coalitional game strategy [37] is used for optimal

controller selection and is shown in Algorithm 3. This

algorithm requires the PIMs of each switch in the

overloaded controller 𝐶𝑋 , as well as the controller’s

threshold level, network topology map, and so on.

Between lines 3 and 12, the flow sort function evaluates

the total quantity of flow in each path and sorts it in

ascending order. Lines 4–6 execute and choose a

controller that covers most of the switches in the route.

D. Algorithm 4: Time to Switch Migration Estimating

Segment

After defining the best lightly loaded controllers (𝐶𝑌1,

𝐶𝑌2 ,...) using Algorithm 3, they are paired with an

overloaded controller to accomplish three tasks using

Algorithm 4. The tasks are as follows: (i) choose a switch

(from an overloaded controller) to share their burden with

lightly loaded controllers, (ii) compute the switch

migration time (𝜏), and (iii) calculate the number of PIMs

(𝜌) that lighter loaded controllers will process. Line 1 of

Algorithm 4 is executed, with “∆𝑙𝑖𝑔ℎ𝑡” representing the

remaining capacity of the lightly loaded controllers and

“∆𝑜𝑣𝑒𝑟” representing the lowest amount of overload in the

overloaded controllers. Following that, switches in the

overloaded controllers are divided into two subnets, 𝑆𝑋
𝜒

and 𝑆𝑋
𝜓

, respectively; if the switch load is greater than

“∆”, it is sorted in 𝑆𝑋
𝜒

 with decreasing load order, and 𝑆𝑋
𝜓

includes remaining switches in the overloaded controllers;

respecting codes are given in lines 2–7. In order to reduce

the number of migrations (executed in lines 8–9),

switches near “∆” (might be the very last switch in 𝑆𝑋
𝜒

based on load sorting order) are selected in the 𝑆𝑋
𝜒

 subnet

for migration. This is because a minimal amount of

overload in the overloaded controllers can easily be

placed in the lightly loaded controllers. The estimated

switch migration time is determined by the number of

PIMs generated in the switch, the ∆𝑙𝑖𝑔ℎ𝑡 in the optimum

lightly loaded controllers, and the ∆𝑜𝑣𝑒𝑟 in the switch. For

example, if ∆𝑙𝑖𝑔ℎ𝑡 is half the ∆𝑜𝑣𝑒𝑟value and the rate of

PIMs created is constant, the switch migration time is

expected to be half the period duration provided in

Eq. (3). If 𝜏 = 0, switch migration happens at the start of

the period, as shown in line 13. Furthermore, once the

switches in the 𝑆𝑋
𝜒

 subnet are empty, the 𝑆𝑋
𝜓

 subnet is

evaluated for better load balancing even though it is not

overloaded, as seen in lines 11 and 12. This procedure

will be continued until all the controllers are load

balanced for each switch in the time-sharing scheme

using optimum controller finding (Algorithm 3) and then

returned to Algorithm 2.

V. EVALUATION AND ANALYSIS

The proposed switch migration strategy’s performance

is tested using time domain simulation analysis. As

illustrated in Fig. 4, the ONOS platform is used as the test

platform, and a hierarchical DSC design is used for the

experimental network, which contains 7 controllers and

24 switches. As a result, one controller acts as a leader,

and its major purpose is to oversee the other six

controllers in the network; however, it is not involved in

switch management; the secondary six controllers operate

their switches in their subnet. This test platform considers

simulation duration to be 250 seconds divided into 50

phases. Each secondary controller has a PIMs processing

capacity of 800,000 PIMs every 5 second interval.

Furthermore, the barrier for each controller is set at

640,000 PIMs every period. As a result, the overall

controller affordable load is estimated to be 3.84 ×106

PIMs each period. The switches loads are divided into

three levels: (i) light load, (ii) medium load, and (iii) big

load. Each switch generates roughly 17,000 PIMs per

second under mild load, whereas a switch producing

33,500 PIMs per second is considered medium load.

However, if a switch generates more than 51,000 PIMs

per second, it is considered a big load. If all switches are

lightly loaded, the overall controller affordable load is 2

×106 PIMs per period, which is approximately 48% of

the total controller affordable load. However, if all

switches are deemed heavy loads, the overall load is 6.01

×106 PIMs per period, which is significantly greater than

the total controller affordable load.

(a) network topology at “0” second

(b) network topology at 16th second

Figure 4. Network topology used in the simulation test platform.

As a result, in this simulation research, the simulation

begins with a minimal load in all switches, and the load is

randomly raised in the switches using the cbench tool as

simulation duration advances, to evaluate the

performance of the switch migration approach. For

example, at the 16th second time, ten switches (S1, S3,

S4, S6, S7, S8, S9, S10, S22, S23,) are creating about

17,000 PIMS/s, eight switches (S2, S5, S11, S12, S15,

S18, S21, S24,) are generating 33,500 PIMs/s, and the

remaining switches (S13, S14, S16, S17, S19, S20) are

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

853

carrying 51,000 PIMs/s, As a result, the total controller

workload is 3.772 ×106 PIMs each period, and switch

migration must occur using both the traditional (full

switch) and TSSM schemes. Three examples are studied

for assessing the performance of the suggested method:

(i) work loads of controllers, (ii) overload events, and

(iii) controller resource consumption.

A. Test 1: Workload of Controllers

As previously stated, each controller may process up to

640,000 PIMs every period, and if the controller has

processed more than 128,000 PIMs/s, it is deemed

overloaded. Two standards approach, (i) OpenFlow, and

(ii) TSSM schemes, are studied in this test, and their test

results are compared with the proposed method for

assessing performance.

(a)

(b)

(c)

Figure 5. Comparison of workload of controllers: (a) OpenFlow method,
(b) Conventional TSSM, (c) Proposed method.

Because switch migration is not done in the OpenFlow

technique, controllers C4, and C5 are significantly

overloaded, as seen in Fig. 5(a), based on PIMs generated

in the switches. During this time, controllers C4 and C5

must handle about 932,000 PIMs every period, which

exceeds their maximum capacity (800,000 PIMs per

period) and causes unforeseen challenges in the

networking domain. In the case of the TSSM scheme, it

distributes workload across controllers via time sharing

migration and ensures that all controllers are under their

threshold limits, as illustrated in Fig. 5(b). Furthermore,

the Ping-Pong problem (no high leaps, and often

transmitted switches are treated as nil) is not detected in

the test results. The suggested switch migration scheme’s

test results are shown in Fig. 5(c). When compared to the

TSSM scheme, load sharing between controllers is

substantially flatter (i.e., almost all controllers are sharing

around similar load, which improves efficiency and

reduces downtime or maintenance activities).

B. Test 2: Number of Overload Occurrences

This test is important for determining the performance

of the switch migration technique by evaluating the

number of overload occurrences for the controllers for the

whole duration (250S). Fig. 6 shows a comparison of

overload occurrence for all three approaches. It

demonstrates that the OpenFlow method provides a high

number of over-load occurrences because there is number

of switch migration action, and thus controllers C1, C2,

C3, and C6 are in the lightly loaded range, whereas C4,

and C5 are highly loaded, and these controllers are

completely overloaded during the given period.

Figure 6. Comparison of number of overload occurrences in

conventional and proposed method.

In the case of TSSM, it has considerably decreased the

number of overload events for the controller since it

avoids the ping-pong problem and so switches that are

repeatedly moved are ignored. When compared to the

TSSM system, the proposed method reduces the amount

of overload incidents even more. During time sharing

migration, the suggested technique employs more than

one optimal controller as a lightly loaded controller,

which may minimize the frequency of overload events.

Because, in the conventional TSSM method, if one

controller is not sufficient to share the load of the switch

(this controller may be considered initially as excess in

this situation), then it is necessary to find another

controller for switch sharing. This may occur when the

requirement of load sharing is high in the over-loaded

controller and lightly loaded single converters are

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

854

insufficient to handle this load. The proposed strategy, on

the other hand, selects more optimal controllers based on

load sharing and minimizes unnecessary processing and

overload situations.

C. Test 3: Controller Resource Consumption

This test could be utilized to determine the migration

cost of switch migration techniques based on controller

resource usage. Controller resource consumption

describes how many controllers and switches are used. It

should be noted that minimizing the number of

controllers associated with the switches minimizes the

network’s switch migration cost. Because OpenFlow is

not conducted during the switch migration event, it is

excluded from this assessment research. When compared

to alternative switch migration methods, the standard

TSSM has a lower migration cost. However, it is greater

when compared to the proposed switch migration

technique since the proposed approach selects the

appropriate controllers for workload sharing based on

flow characteristics, which minimizes controller resource

consumption and switch migration cost. Fig. 7 depicts the

control resource usage of the switch migration strategy.

When compared to the conventional TSSM system, the

suggested switch migration approach saves

approximately 18% on switch migration costs. The

overall effectiveness of the proposed method with

existing methods is given in Table I.

Figure 7. Comparison of controller resource consumption between

TSSM and proposed switch migration method.

TABLE I. COMPARISON OF THE EFFECTIVENESS OF THE PROPOSED

METHOD WITH EXISTING METHODS

Ref.

Load

balancing

Strategy

OpenFlow

Complaint

Time

Sharing

Controller
Ping-

pong

difficulty

Switch

Migration

Cost

[22]
Switch

Migration
Yes No Yes High

[24]
Switch

Migration
Yes No Yes High

[25]
Switch

Migration
Yes No Yes Medium

[35]
Switch

Migration
Yes Yes No Medium

Proposed

Method

Switch

Migration
Yes Yes No Low

VI. CONCLUSION

This research offered an enhanced TSSM methodology

that addresses the issue of higher switch migration cost in

the standard TSSM method by locating several optimum

target controllers throughout the time-sharing period. It

used flow characteristics to determine the best controllers

using a coalitional game strategy method. Furthermore,

the suggested switch migration strategy provides TSSM

benefits that have overcome the ping-pong controller

challenge. The ONOS platform was used to evaluate the

performance of this study, and it was discovered that the

modified TSSM scheme outperformed the standard

TSSM approach in terms of controller workload sharing,

number of overload events, and controller resource

consumption. When compared to the typical TSSM, it

decreases controller resource use by 18%.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Thangaraj Ethilu: data collection, implementation, and

making output. Abrami Sathappan: supervision of the

project work. Paul Rodrigues: proofreading of the paper.

All authors had approved the final version.

REFERENCES

[1] N. Anerousis, P. Chemouil, A. A. Lazar, N. Mihai, and S. B.

Weinstein, “The origin and evolution of open programmable

networks and SDN,” IEEE Commun. Surveys Tuts., vol. 23, no. 3,
pp. 1956–1971, 2021.

[2] Y.-C. Wang and H. Hu, “An adaptive broadcast and multicast

traffic cutting framework to improve Ethernet efficiency by SDN,”
J. Inf. Sci Eng., vol. 35, no. 2, pp. 375–392, 2019.

[3] M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, “Toward
adaptive and scalable OpenFlow-SDN flow control: A survey,”

IEEE Access, vol. 7, pp. 107346–107379, 2019.

[4] J. H. Cox, R. Clark, and H. Owen, “Leveraging SDN and
WebRTC for rogue access point security,” IEEE Trans. Netw.

Service Manag., vol. 14, no. 3, pp. 756–770, Sep. 2017.

[5] Y.-C. Wang and S.-Y. You, “An efficient route management
framework for load balance and overhead reduction in SDN-based

data center networks,” IEEE Trans. Netw. Service Manag., vol. 15,

no. 4, pp. 1422–1434, Dec. 2018.
[6] W. Iqbal, et al., “ALAM: Anonymous lightweight authentication

mechnism for SDN-enabled smart homes,” IEEE Internet Things

J., vol. 8, no. 12, pp. 9622–9633, Jun. 2021.
[7] Y.-C. Wang and R.-X. Ye, “Credibility-based countermeasure

against slow HTTP DoS attacks by using SDN,” in Proc. IEEE

Annu. Comput. Commun. Workshop Conf., 2021, pp. 890–895.
[8] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control:

Survey, taxonomy, and challenges,” IEEE Commun. Surveys Tuts.,

vol. 20, no. 1, pp. 333–354, 2018.
[9] J. Lu, Z. Zhang, T. Hu, P. Yi, and J. Lan, “A survey of controller

placement problem in software-defined networking,” IEEE Access,

vol. 7, pp. 24290–24307, 2019.
[10] H. Sufiev, Y. Haddad, L. Barenboim, and J. Soler, “Dynamic SDN

controller load balancing,” Future Internet, vol. 11, no. 3, pp. 1–

21, 2019.
[11] Y. Wu, S. Zhou, Y. Wei, and S. Leng, “Deep reinforcement

learning for controller placement in software defined network,” in

Proc. IEEE INFOCOM Workshop, Toronto, ON, Canada, 2020,
pp. 1254–1259.

[12] Y.-C. Wang and Y.-C. Wang, “Efficient and low-cost defense

against distributed denial-of-service attacks in SDN-based
networks,” Int. J. Commun. Syst., vol. 33, no. 14, pp. 1–24, 2020.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

855

[13] F. Tang, H. Zhang, L. T. Yang, and L. Chen, “Elephant flow

detection and load-balanced routing with efficient sampling and

classification,” IEEE Trans. Cloud Comput., vol. 9, no. 3, pp.
1022–1036, Jul.–Sep. 2021.

[14] Y.-C. Chan, K. Wang, and Y.-H. Hsu, “Fast controller failover for

multidomain software-defined networks,” in Proc. Eur. Conf.
Netw. Commun., Paris, France, 2015, pp. 370–374.

[15] W. H. F. Aly, “Controller adaptive load balancing for SDN

networks,” in Proc. Int. Conf. Ubiquitous Future Netw., Zagreb,
Croatia, 2019, pp. 514–519.

[16] T. Hu, J. Zhang, L. Cao, and J. Gao, “A reliable controller

deployment strategy based on network condition evaluation in
SDN,” in Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci., Beijing,

China, 2017, pp. 367–370.

[17] T. Kim, J. Myung, and S.-E. Yoo, “Load balancing of distributed
datastore in Open Daylight controller cluster,” IEEE Trans. Netw.

Service Manag., vol. 16, no. 1, pp. 72–83, Mar. 2019.

[18] Y.-C. Wang and E.-J. Chang, “Cooperative flow management in
multidomain SDN-based networks with multiple controllers,” in

Proc. IEEE Int. Conf. Smart Commun. Improving Qual. Life Using

ICT IoT AI, Charlotte, NC, USA, 2020, pp. 82–86.
[19] S. Nithya, M. Sangeetha, K. N. A. Prethi, K. S. Sahoo, S. K.

Panda, and A. H. Gandomi, “SDCF: A software-defined cyber

foraging framework for cloudlet environment,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 4, pp. 2423–2435, Dec. 2020.

[20] K. S. Sahoo, P. Mishra, M. Tiwary, S. Ramasubbareddy, B.

Balusamy, and A. H. Gandomi, “Improving end-users’ utility in
software-defined wide area network systems,” IEEE Trans. Netw.

Service Manag., vol. 17, no. 2, pp. 696–707, Jun. 2020.

[21] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
“Towards an elastic distributed SDN controller,” ACM SIGCOMM

Comput. Commun. Rev., vol. 43, no. 4, pp. 7–12, 2013.

[22] Z. Min, Q. Hua, and Z. Jihong, “Dynamic switch migration
algorithm with q-learning towards scalable SDN control plane,” in

Proc. Int. Conf. Wireless Commun. Signal Process., Nanjing,

China, 2017, pp. 1–4.
[23] J. Cui, Q. Lu, H. Zhong, M. Tian, and L. Liu, “SMCLBRT: A

novel load-balancing strategy of multiple SDN controllers based
on response time,” in Proc. IEEE Int. Conf. High Perform.

Comput. Commun., Exeter, U.K., 2018, pp. 541–546.

[24] K. S. Sahoo, et al., “ESMLB: Efficient switch migration-based
load balancing for multi-controller SDN in IoT,” IEEE Internet

Things J., vol. 7, no. 7, pp. 5852–5860, Jul. 2020.

[25] T. Hu, J. Lan, J. Zhang, and W. Zhao, “EASM: Efficiency-aware
switch migration for balancing controller loads in software-

defined networking,” Peer-to-Peer Netw. Appl., vol. 12, pp. 452–

464, Mar. 2019.
[26] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “BalanceFlow:

Controller load balancing for OpenFlow networks,” in Proc. IEEE

Int. Conf. Cloud Comput. Intell. Syst., Hangzhou, China, 2012, pp.

780–785.

[27] W. Lan, F. Li, X. Liu, and Y. Qiu, “A dynamic load balancing
mechanism for distributed controllers in software-defined

networking,” in Proc. Int. Conf. Meas. Technol. Mechatronics

Autom., Changsha, China, 2018, pp. 259–262.
[28] Maity, S. Misra, and C. Mandal, “Traffic-aware consistent flow

migration in SDN,”in Proc. 2020 IEEE International Conference

on Communications (ICC), 2020, pp. 1–6.
[29] Maity, S. Misra and C. Mandal, “DART: Data plane load

reduction for traffic flow migration in SDN,” in IEEE

Transactions on Communications, vol. 69, no. 3, pp. 1765–1774,
March 2021, doi: 10.1109/TCOMM.2020.3042271.

[30] B. Gorkemli, S. Tatlcıoglu, A. M. Tekalp, S. Civanlar, and E.

Lokman, “Dynamic control plane for SDN at scale,” IEEE J. Sel.
Areas Commun., vol. 36, no. 12, pp. 2688–2701, Dec. 2018.

[31] G. Cheng and H. Chen, “Game model for switch migrations in

software defined network,” Electron. Lett., vol. 50, no. 23, pp.
1699–1700, 2014.

[32] T. Vikas and S. Samayveer, “A novel energy efficient routing

technique for SDN-enabled underwater WSNs using free-space
optical communication,” Journal of Optical Communications, pp.

1–8, 2022.

[33] L. Chen, F. Tang, and X. Li, “Mobility-and load-adaptive
controller placement and assignment in LEO satellite networks,”

in Proc. the IEEE Conference on Computer Communications, pp.

1–10,2021.
[34] X. Zhang, et al., “Dynamical controller placement among SDN

space-terrestrial integrated networks,” in Proc. the IEEE 22nd

International Conference on High Performance Computing and
Communications, 2020, pp. 352–359.

[35] L. Chen, et al., “Dynamical control domain division for software-

defined satellite-ground integrated vehicular networks,” IEEE
Transaction on Network Science and Engineering, vol. 8, no.4,

2021, pp. 2732–2741.

[36] W.-K. Lai, Y.-C. Wang, Y.-C. Chen, and Z.-T. Tsai, “TSSM:
Time-sharing switch migration to balance loads of distributed

SDN controllers,” IEEE Trans. Network and Service Management,
vol. 19, no. 2, pp. 1585–1597, June 2022.

[37] Y. Zhang, Y. Ran, and Z. Zhang, “A simple approximation

algorithm for minimum weight partial connected set cover,” J.
Combinat. Optim., vol. 34, no. 3, pp. 956–963, 2017.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

856

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N4-846

