
Deep Image: An Efficient Image-Based Deep

Conventional Neural Network Method for

Android Malware Detection

1 Information Technology Department, Matrouh University, Marsa Matrouh, Egypt
2 Computer Engineering Department, Pharos University in Alexandria, Alexandria, Egypt;

Email: eng_mikholy@alexu.edu.eg (M.E.)

*Correspondence: mabdelazeem@nctu.edu.eg (M.A.M.)

Abstract—The continuous increment of malware and its

complexity motivated researchers to implement techniques

to detect and classify it. Manual detection of malicious files

is time consuming and shows poor results. Recently, Deep

Convolution Neural Networks (DCNN) shows promising

results in malware detection. DCNNs include large number

of fully connected layers that are capable to deal with fast

iterations of Android malware. Compared to the existing

approach, DCNN shows high performance and accuracy in

detecting different types of malwares. The proposed work

combines Scale-Invariant Feature Transform (SIFT) and

DCNN to detect malware features. Combining SIFT with

DCNN allow higher accuracy of features classification and

overcome the problem of single-feature extraction. The

proposed method is compared to existing approaches to

malware detection in terms of anticipated time and

detection accuracy. The experimental results showed the

significant enhancement offered by the proposed work in

terms of accuracy and performance.

Keywords—malware, Deep Convolution Neural Networks

(DCNN), Scale-Invariant Feature Transform (SIFT), color

image transformation

I. INTRODUCTION

Any software that harms a user, a computer, or a

network is referred to as malware [1]. According to

McAfee Labs Threats Reports, 100,000,000 new

malware samples were found in Quarter 1 and Quarter 2

of 2020, but total malware for the same period reached

1,200,000,000 samples [2]. Furthermore, due to the broad

nature of cyber-attacks against the android mobile system,

the mobile malware detection domain has received

significant interest in both academic and commercial

sectors. Despite the large number of works completed in

this sector, there is a gap between the completed works

and the large number of harmful programs launched daily.

As a result, malware identification has emerged as one of

the most crucial network security jobs for both

businesses and individual users. A single assault can

Manuscript received December 17, 2022; revised February 28, 2023;
accepted May 22, 2023; published August 22, 2023.

cause a data breach and substantial harm [3, 4]. A fast

and effective malware detection approach is therefore

urgently needed.

Deep learning is recently applied in a variety of

academic fields. It shows promising results in image

recognition [5]. The proposed wok acquires a malware

training data set to identify and categorize malware using

deep learning. Data is classified into three categories. The

first category is Application Program Interface (API)

sequences (for example; Create Process, I/O

requests) [6–8]. We can obtain the API sequences by

executing malware. However, running malware and

obtaining the API sequence takes a long time. The

second kind is the opcode sequences [4]. The opcode

sequences can be obtained from malware assembly

programs (e.g., MOV, ADD). The third form is malware

pictures [3, 4], which is the focus of this paper.

The proposed work introduces a framework that

detects malware risks. To achieve a complete detection of

malware, a method based on deep convolution neural

networks and color image visualization is suggested.

Malware images have a distinct kind of nature that differs

from normal scenes images. A normal scene image has

continuous patterns, whereas malware images include

patterns that have several undefined shapes. Hence, deep

learning algorithms are promising to detect these kinds of

patterns. Large significant characteristics of malware

binaries can also help with malware family categorization

performance. With huge image datasets and features,

deep learning gives better results. Deep learning, as

opposed to machine learning, may automatically use

filters to reduce noise. Deep learning algorithms perform

better when utilized with color images. So, for malware

detection, we utilize color image transformation. The

main contributions of the proposed work are listed below

• A promising design for detecting malware is

presented assaults on mobile operating systems.

• A hybrid method concentrating on color image

visualization, Scale-Invariant Feature Transform

(SIFT), and Deep Convolution Neural Networks

(DCNN) is developed that is both affordable and

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

838doi: 10.12720/jait.14.4.838-845

Marwa A. Marzouk 1,* and Mohamed Elkholy 2

flexible computationally and has lower run-time

requirements.

• A comparison is performed between the

suggested approach and earlier malware detection

methods. The experiments showed that the

recommended approach is more reliable, stable,

and economical.

The major parts of the proposed work are structured as

follows: Related Works, Methodology, Experimental

Results, and finally, Conclusions.

II. LITERATURE REVIEW

To identify malware evasion methods, researchers and

anti-malware firms have lately introduced machine

learning and deep learning methodologies to the malware

detection domain. The detailed related work is covered in

the following section. The utilization of byte plot

visualization for automatic malware classification was

pioneered by Nataraj et al. [9]. They retrieved texture-

based characteristics from the malware picture after

converting all of the samples of malware to visualizations

of gray scale byte plots. Gastrointestinal Stromal Tumor

(GIST), an abstract representation approach, was utilized

to compute texture characteristics from images. Their

collection contains 9458 samples of malware. They used

global image-based attributes to train a K-Nearest

Neighbor model using Euclidean distance as the distance

metric to classify malware samples and obtained 97.18%

accuracy.

Makandar et al. [10] transformed malware into a 2-

dimensional grey scale image and then used texture-

based characteristics to detect the samples. Utilizing the

Mahenhur dataset, which contains 3,131 binary samples

from 24 distinct malware categories. In their research,

they used the Gabor wavelet transform and GIST to

retrieve texture-based global features. They reported an

accuracy of 96.35% when detecting malware using

Artificial Neural Networks (ANN). Previous research in

this field, such as [9, 11–15], employs standard mapping

methods to convert malware binaries to images, even

though image-based malware categorization is a unique

approach that can overcome anti-analysis measures.

Therefore, it is possible to ignore the malware’s

semantics. According to our observations, the more data

provided to classifiers, the higher the accuracy rate that

can be stored. Kalash and Rochan et al. [3] implemented

the Multi-scale Convolutional Neural Networks (M-

CNN) model, which is based on the VGG-16 image

classification architecture [16]. The last layer of an

artificial neural network can be replaced using techniques

that use an Support Vector Machine (SVM)

classifier [17]. To classify imbalanced malware images,

Yue [18] developed a weighted softmax loss for CNNs

and got an accurate classification. Gilbert and Mateu

et al. [19] developed a model with three convolutional

layers and one fully connected layer, which they tested

on the Malimg and Microsoft Malware Classification

Challenge datasets. A methodology for malware

identification utilizing a Convolution Neural Networks

(CNN) that categorized images of malware was proposed

by Seon and Kim [20]. They separated their experiments

into two groups. When using the top-1 and top-2 ranked

values, Malware was first accurately classified into 9

families with an accuracy percentage of 96.2% and

98.4% in the initial round of testing.

Hybrid methods hold great promise because they

significantly outperformed static and dynamic methods

alone. Santos and Devesa et al. [21] proposed a novel

approach that combines both static and dynamic

information to train a malware classifier. They combined

the frequency of operational codes, a static feature, with

the implementation trail of an executable, obtained by

detecting operations carried out, system calls, and

exceptions thrown, a dynamic feature, to apply a hybrid

technique that exceeds both approaches when used alone.

They tested their strategy by using a range of machine

learning algorithms, including decision trees, K-Nearest

Neighbors (KNN), Bayesian networks, and SVM, to two

different datasets.

Islam and Tian et al.’s classification method [22] for

separating the binaries into benign and malware files

included both dynamic-based and static-based criteria.

They made use of API variables and API user-defined

functions, as well as printed sting information and

frequency of method length. They use 541 benign

samples and 2939 malignant samples to test their model.

They obtained an accuracy of 97.055% when

categorizing malware samples using combined Meta

classifiers like SVM, IB1, Decision Tree (DT), and

Random Forest (RF). Their outcomes were an upgrade

over the earlier ones [23]. The novel method was

introduced by using global features of malware

visualization and texture patterns for malware

classification based on binary texture analysis [14]. To

extract effective texture feature vector classification. The

advantages of this visualization technique are based on

the image processing approach. The file whether it is

packed or unpacked can be computed competently which

is important for large malware datasets. This technique

uses only static analysis that’s why it is limited because it

does not use dynamic analysis.

As previously stated, various academic research on the

subject of Android malware detection has been

conducted, some of which will be mentioned in this

section. SafeDroid is a static analysis-based approach.

has been presented in [24]. The suggested methodology

relies on analyzing the DEX (Dalvik Executable) coding

to retrieve binary relevant features that were used to learn

various machine learning classifiers. A random forest

classification model has also been trained by Zhu and

You et al. [25], several criteria, including authorization,

sensitive APIs (application program interfaces), system

logs, and access frequency, which may be used to

determine if an Android app is harmful or not. Long and

Yu [26] proposed a lightweight system based on machine

learning that can discriminate between benign and

malicious applications. They also collected application

characteristics using both static and dynamic approaches.

Furthermore, They describe a unique method for

reducing the dimensionality of features that have proved

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

839

successful in feature selection. Huang and Kao [27]

suggested a color image-based approach for detecting

Android malware. They tested numerous CNN models

that had performed well in the ImageNet LargeScale

Visual Recognition Challenge (ILSVRC) [28]. Their

technique identified malware with an accuracy of 98.42%.

However, while creating the photos, they did not take the

structure of the DEX file into account. Gennissen and

Cavallaro et al. [29] suggested an Android malware

detection method. They created 10 new types of images

by converting images using domain knowledge. They use

a transform class CNN model with two layers.dex into a

Hilbert curve image with a fractal shape depending on

the Dalvik opcode and API details. Their technology is

up to 92% accurate. The distinction between this work

and the other research stated above is that the data

utilized is current. To identify Mobile malware, Suleiman

and Sezer et al. [30] devised a classifying method based

on parallel machine learning. A total of 179 training

characteristics were retrieved and separated into relevant

API calls and instructions based on genuine malware

samples and benign apps that have been built from it: 54

attributes; 125 permissions for the app. A parallel

collection of homogeneous classifications, including

Simple Logistic, Naive Bayes, Decision Tree, PART, and

Ripple Down Rule learner (RIDOR), were used to create

a hybrid classifiers.According to their studies, Ripple

Down Rule learner outperformed all other classifications,

achieving a true-positive rate of 0.95%, a true-negative

rate of 0.96%, a false-positive rate of 0.03%, a false-

negative rate of 0.04%, and an accuracy rate of 0.96%.

Alzaylaee and Yerima et al. [31] showed that actual

phones are more stable and capable of recognizing more

characteristics while analyzing Android applications than

emulator environments. Our article compares the

detection of Android malware using classical

classification techniques vs deep learning methodologies.

III. MATERIALS AND METHODS

A malware detection model for the Android

environment is presented in the propose work as shown

in Fig. 1. A prommising learning methodology is

introduced to generate more discriminating and robust

feature descriptors. The proposed ethodology combines

DCNN and SIFT, as well as a color image transformation.

Before being processed by a DCNN and SIFT model, the

raw Android file is transformed into a color image. The

file fingerprints are then compared to a behavioral

database to determine if the file is malware or

benign. Below is a description of the specific procedure

for each section of the proposed design. The three most

important modules that make up the proposed

architecture’s core are color image transformation, SIFT,

and the DCNN model.

A. Color Image Transformation

Deep learning algorithms shows better perform in case

of using colored images. Hence, the proposed work uses

color image transformation. An extractor is used to unzip

the.apk file for color image visualization. The .apk file

often includes a Class.DEX file with all of the Dalvik

binary code. In three phases, we extract binary code from

the an.apk file. To begin with, The apk was

decompressed. file and obtained the class. Dex file.

Second, we use the dex2jar tools to convert the class.

Dex file into a Java.Class file [32]. Third, We extract

Java binary code. class file by using the JD-GUI

decompiler as shown in Fig. 2. Three critical procedures

are involved in the translation of malware binary data to

color images.

First, substrings are created from the malware’s binary

bit string. Each substring is 8 bits long and corresponds

to a single pixel. Eight bits are thought of as unsigned

integers (0–255). Second, a one-dimensional decimal

number vector is created from the malware’s binary bit

string. Third, a color matrix in two dimensions with the

required width is created from the one-dimensional

decimal numbers vector. based on observations made in

practice.

Figure 1. Methodology of malware detection.

Figure 2. Color image transformation.

B. Dense SIFT

Dense SIFT computes a SIFT descriptor using Lowe’s

method at each position [33, 34]. It gathers features at

each location and scales an image to improve recognition

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

840

accuracy. It divides an image into small patches and then

divides each patch into smaller bins. The feature is then

calculated as gradient magnitude histograms in eight

different bin orientations. As the sliding window

advances, gradient histograms of the image’s local

neighborhoods are computed. Finally, it uses cascaded

connection functions to get the image feature descriptors.

C. Deep Convolutional Neural Network (DCNN)

Throughout this paper, we provide an in-depth

examination of the DCNN model as shown in Fig. 3. The

suggested DCNN model is composed of four components.

The following is a quick description of each layer.

Figure 3. Deep convential neural network [32].

1) Convolution layer

The convolutional layer eliminates noise and improves

signal quality initially. The suggested deep learning

model’s performance is improved by optimizing the

convolutional kernel width, the number of hidden units,

and the learning rate. The convolutional layer’s input

consists of many maps [35].

 𝑥𝑗
𝑖𝑓 (∑ 𝑥𝑗

𝑖−1  𝐾𝑖𝑗
𝑖 + 𝑏𝑗

𝑖
𝑖𝜖𝑀𝑗

) (1)

where Mj represents the collection of input maps; 𝐾𝑖𝑗
𝑖

indicates the convolution kernel that is used to mix the

𝑖𝑡ℎ input feature map with the 𝑗𝑡ℎ output feature map; 𝑏𝑗
𝑖

displays the bias associated with the 𝑖𝑡ℎ feature map and

𝑓 is the activation function.

2) Pooling layer

It improves model performance while reducing the

overall feature map dimension numbers. Each sampling

result is accompanied by a feature map:

 𝑥𝑗
𝑖 𝑓(𝑑𝑜𝑤𝑛(𝑥𝑗

𝑖−1) + 𝑏𝑗
𝑖 (2)

where down (.) does a pooling task, and 𝑏 shows a bias

value.

3) Dense layer

It converts a feature vector in two dimensions to a

feature vector in one dimension before passing it to an

output layer.

4) Output layer

Android examples are classified as either malicious or

benign. For data training, the DCNN model applies the

Softmax-Cross-Entropy loss.

D. Feature Fusion

To combine the two different kinds of characteristics

discussed above, the eigenvector splicing approach is

applied in this study. We choose a weighting function to

combine the two vectors to create new features since the

varied dimensions of the two eigenvectors will result in

different proportions. The following is the precise feature

fusion process.

1) Integrate the DCNN and SIFT features

The SIFT eigenvector in n dimensions is represented

as VLi, where VLi = (VL1, VL2, …, VLn); the m-dimensional

DCNN eigenvector is represented as VCi, where VCi =

(VC1, VC2,…, VCm). A new fused eigenvector Vfc = (VN1,

VN2, …, VNN). The 𝑖𝑡ℎ element VNi can be calculated as

follows:

 Vfc = 𝛼VCi + (1 − 𝛼) VLi (3)

while 𝛼 is represent a real value between 0 and 1, This

corresponds to the weight of the two sorts of

characteristics when combined. If N image samples are

given and each sample has a dimension of D, then to

determine the value of each class label in 𝑀 classes, the

Softmax function will be applied, as illustrated.

 𝑃𝑦𝑖 =
𝑒𝑓𝑛

∑ 𝑒𝑓𝑛𝑀
𝑗−1

 𝑓𝑜𝑟 𝑖 = 1,… ,𝑚 (4)

 𝑓𝑦𝑖=𝑊𝑖
𝑇 𝑋+𝑏𝑖

 (5)

where 𝑓𝑦𝑖 is the score function and 𝑌𝑖 is the 𝑖𝑡ℎ linear

prediction. 𝑓𝑖 is the sum of all sample score function

values. Each sample’s size 𝑋𝑖 is 𝐷  1, 𝑊𝑖
𝑇 , i is the i-th

weight matrix, the size is 𝑀  𝐷. The deviation is b, and

the size is 𝐷  1. For an input sample 𝑥𝑖 and 𝑗 = 1, … ,𝑀,

the probability value 𝑃 = (𝑌𝑖|𝑋𝑖) of a specific class can

be represented as a matrix as:

 (

P = (𝑌𝑖|𝑋𝑖 ;𝑊)

P = (𝑌𝑖|𝑋𝑖 ;𝑊)
𝑀

P = (𝑌𝑖|𝑋𝑖 ;𝑊)

) =
1

∑ 𝑒𝑗 𝑋𝑖
𝑇𝑀

𝑗−1

(

𝑒𝑗 𝑋𝑖
𝑇

𝑒𝑗 𝑋𝑖
𝑇

𝑀
𝑒𝑗 𝑋𝑖
𝑇

)

 (6)

We may construct the loss function using Eqs. (4)–(6)

by using the backpropagation strategy based on the

stochastic gradient descendant optimization technique to

minimize Eq. (7).

 𝐿 = − log (
𝑒𝑓𝑛

∑ 𝑒𝑓𝑛𝑀
𝑗−1

). (7)

2) Dimension reduction of fusion features

Because of the integration of the two types of features,

there is a lot of duplicated information, which contributes

to the high 𝑉𝑓𝑐 dimension. As a consequence, we

increased the number of nodes in our network model’s

last fully connected layer to 256, which is comparable to

lowering the dimension of 𝑉𝑁𝑖 through our model,

removing redundant features and inventing new, relevant

data. The network model’s Softmax layer receives the

fusion feature to provide the final classification

recognition result.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

841

IV. RESULT AND DISCUSSION

The Drebin Android Malware dataset [36], Malgenom

Android Malware dataset [37], and Android Malware

Dataset (AMD) [38] were used to test the suggested

approach. Three image datasets were created, each with

10,000 samples, including 5000 benign photos and 5000

malware images. The samples of malware include 5000

samples chosen at random from the popular Android

malware datasets AMD, Drebin, and Malgenom, as well

as 5000 examples chosen at random from the Android

malware dataset. The Drebin has 5560 Android malicious

applications from 179 families, whereas the Malgenom

contains 1260 malicious apps from 49 families. The

AMD comprises 24,553 samples classified into 135

different malware families. The benign applications, on

the other hand, were downloaded from the Google Play

store using the free internet downloader APKPure.Based

on scanning the downloaded applications with the Virus

Total online API, a Python script has been created to

guarantee that they are safe. The DCNN model is built

through tests using the Graphics Processing Unit (GPU)

version GTX1080 NVIDIA, 758GB of RAM, 64-bit

Ubuntu 16.04, and Python Tensorflow 1.9.

Hyperparameter-based deep learning model creation is

made possible by TensorFlow.The system uses multi-

dimensional arrays to carry out operations. To expedite

the detection process, parallel implementation is

used [39].

Precision, recall, and accuracy were the three

assessment variables we utilized to assess performance.

Malware samples number classified as true or false were

indicated by the number of True Positives (TPs) and

False Positives (FPs). The number of True Negatives

(TNs) and False Negatives (FNs) indicated how many

benign samples were determined to be true or false [40] .

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8)

 𝑝𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9)

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛

2
 × 100 (10)

Table I displays the comparative results of various

Deep Learning (DL) techniques for malware detection.

For evaluating the efficacy of the proposed malware

detection technique, malware detectors based on pre-

trained DL models such as DCNN and their variations

are utilized. For the three datasets, the proposed model

outperforms DL-based malware detection techniques in

terms of performance. The proposed model had an

accuracy of 98.38% for the Drebin dataset, 98.83% for

the Malgenom dataset, and 99.15% for the AMD dataset.

Table II shows how long it took the proposed model to

train and test the data. In terms of computational

efficiency, the proposed model is compared against

malware detectors based on several DL approaches.

When compared to previous malware detection

techniques based on deep learning, the studies show that

the proposed malware detection model requires less time

to test the samples.

TABLE I. A COMPARISON OF THE PROPOSED APPROACH WITH DEEP LEARNING-BASED METHODS FOR THE THREE TRAINING DATASETS

Models
Drebin dataset Malgenom Dataset AMD Dataset

Acc % Pr Re Acc % Pr Re Acc % Pr Re

DCNN 97.58 0.977 0.974 95.70 0.96 0.950 94.3 0.9400 0.9420

VGG19 97.50 0.980 0.975 88.80 0.89 0.880 96.3 0.9640 0.9630
Inception-v3 97.70 0.987 0.986 93.00 0.93 0.930 95.0 0.9570 0.9450

Xception 98.00 0.980 0.980 96.80 0.97 0.960 97.5 0.9770 0.9740

DenseNet‐121 98.12 0.980 0.980 96.80 0.96 0.970 95.0 0.9540 0.9520

Proposed 98.38 0.986 0.989 98.83 0.98 0.989 99.2 0.9899 0.9912

TABLE II: COMPARE MALWARE DETECTION ALGORITHMS BASED ON DEEP LEARNING ON THE BASIS OF COMPUTING TIME

Models
Training Time (in a sec) Testing Time (in a sec)

Drebin Malgenom AMD Drebin Malgenom AMD

DCNN 6140 4406 10946 7.82 8.14 8.58

VGG19 5174 3652 12721 6.67 6.84 7.04

Inception-v3 5604 4146 11379 5.89 6.08 6.36
Xception 5674 4226 10448 5.08 5.53 6.36

DenseNet‐121 6574 5259 8328 8.48 8.70 8.96

Proposed 1911 2199 2288 3.89 4.99 4.89

Table III displays the accuracy, precision, recall rate,

and time for each method. We ran tests with three distinct

virus image sizes, 224224, 229229 and 192192. Our

solution obtained 99.33% detection accuracy, precision,

and recall rate, which was higher than existing machine

learning and deep learning malware classifications. The

result indicates our method’s capacity to detect

correspondences between comparable visual components

and allows malware analysis to categorize malware and

identify variants. Although our technique had a

classification time of 58 ms to 4 s with different types of

image sizes, which was significantly longer than other

methods, it was more accurate in processing small-scale

and large-scale malware analysis.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

842

TABLE III. COMPARISON OF DETECTION PERFORMANCE BETWEEN

PREVIOUS APPROACHES AND THE SUGGESTED METHOD

Methods Image size Acc (%) Pr Re Time

Songqing et al.

[18]
ND 97.32 ND ND ND

Abien et al. [41] ND 84.92 85 85 11ms

Zhihua et al. [42] 192  192 93.20 93.40 93.00 48ms

Aziz et al. [12] 128  128 89.11 ND ND ND

Proposed Method

192  192 99.28 99.33 99.15 58ms

224  224 99.18 99.24 99.12 2 s

229  229 98.68 98.68 98.54 4 s

Table IV represent evaluation of the suggested

approach against other malware feature extraction

algorithms. Three different algorithms are chosen for

comparison with the proposed approach in this study.The

first method used Local Binary Patterns (LBP) features

of malware images [27], the second method applied

GIST features of malware images [43], and the third

method implemented local and global features of

malware images [44]. The dataset from [45] is utilised to

assess the suggested approach. It contains 4000 Android

malware samples and 2000 benign samples.

For a test set of 9 families, the best average accuracy

of the LBP-SVM algorithm was 90.12%, GIST was 91%,

Internet Group Management Protocol (LGMP) was

92.39%, and the suggested technique was 92.86%. As a

result, it was established that the suggested method’s

accuracy was dependent on the size of the training and

feature algorithms.

TABLE IV. ACCURACY OF THE SUGGESTED APPROACH AGAINST

OTHER MALWARE FEATURE EXTRACTION ALGORITHMS

Number of Training

Samples (%)

Accuracy (%)

LGMP GIST LBP Proposed

10 86.30 87.61 87.04 86.11

20 88.91 85.35 86.48 89.1

30 89.12 88.42 86.64 89.33
40 90.90 90.33 87.06 90.78

50 90.50 89.02 87.07 91.01

60 90.88 89.52 87.31 91.11
70 91.20 90.30 88.30 91.55

80 92.31 89.05 89.22 92.78
90 92.39 91.00 90.12 92.86

Table V Compars different Deep Learning (DL)

techniques for malware detection .The proposed model

had an accuracy of 98.38% for the Drebin dataset,

98.83% for the Malgenom dataset, and 99.15% for the

AMD dataset. In terms of computational efficiency, the

proposed model is compared against malware detectors

based on several DL approaches. The proposed malware

detection model requires less time to test the

samples. Finally, by comparing the detection

performance between previous approaches and the

suggested method. Although having a classification time

of 58 ms to 4s with various image sizes, which was much

longer than previous approaches, our approach was more

accurate in processing small-scale and large-scale

malware analyses.

TABLE V. HYPER-PARAMETERS FOR THE VALUES WHERE THE PROPOSED MODEL GIVES THE BEST RESULTS

Proposed Model Outperforms DL-Based Malware Detection Techniques in the Performance

Models
Drebin dataset Malgenom Dataset AMD Dataset

Acc (%) Pr Re Acc (%) Pr Re Acc (%) Pr Re

Proposed 98.38 0.986 0.989 98.83 0.9877 0.9889 99.2 0.9899 0.9912

Proposed Malware Detection Model Requires Less Time to Test and Traing the Samples

Models
Training Time (in a sec) Testing Time (in a sec)

Drebin Malgenom AMD Drebin Malgenom AMD

Proposed 1911 2199 2288 3.89 4.99 4.89

Accuracy, Precision, Recall Rate, and Time with Different Image Size

Methods Image size Acc (%) Pr Re Time in (sec)

Proposed

Method

192  192 99.28 99.33 99.15 58ms

224  224 99.18 99.24 99.12 2 s

229  229 98.68 98.68 98.54 4 s

V. CONCLUSION

In this study, a visualization-based framework is

provided for detecting Android files as benign or

malicious. The suggested methodology is based on

transforming the contents of some APK archives into

color images and detecting malware using image

processing methods and deep learning techniques. To

extract the malware’s image features, the DCNN model

and SIFT are used. Finally, the detection accuracy of

state-of-the-art approaches is compared to the method

presented for demanding data sets. The Drebin Android

Malware dataset [31], Malgenom Android Malware

dataset [32], and AMD malware datasets were utilized to

evaluate the proposed technique. In terms of detection

accuracy and computing time, All other state-of-the-art

models were surpassed by the proposed model. 98.46%

for the Drebin dataset, 98.46% for the Malgenom dataset,

and 98.21% for the AMD dataset, all of which are greater

than the other approaches tested. The suggested approach

correctly identified the majority of the obfuscated

malware samples, demonstrating its resistance to

malware mitigation techniques. The suggested detection

method has good accuracy and time performance that is

equivalent to traditional machine learning-based systems.

To obtain an ideal solution, we will focus on reducing

false negatives in the future.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

843

AUTHOR CONTRIBUTIONS

Marwa A. Marzouk conceived and designed the

analysis, analyzed the data, and wrote the paper.

Mohamed Elkholy collected the data, contributed data

and analysis tools, and performed the analysis. Both of

the authors wrote the paper.

REFERENCES

[1] Ö. A. Aslan and R. Samet, “A comprehensive review on malware

detection approaches,” IEEE Access, vol. 8, pp. 6249–6271, 2020.

[2] C. Beek, S. Chandana, T. Dunton, S. Grobman, R. Gupta, T.
Holden, et al., “McAfee labs threats report, November 2020,”

McAfee Labs, 2020.
[3] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang,

and F. Iqbal, “Malware classification with deep convolutional

neural networks,” in Proc. 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS),

2018, pp. 1–5.

[4] M. El Kholy and A. Elfatatry, “Intelligent broker a knowledge
based approach for semantic web services discovery,” in Proc.

2015 International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE), 2015, pp. 39–44.
[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,” Advances

in Neural Information Processing Systems, vol. 25, 2012.
[6] M. M. Madbouly, M. Elkholy, Y. M. Gharib, and S. M. Darwish,

“Predicting stock market trends for japanese candlestick using

cloud model,” in Proc. the International Conference on Artificial
Intelligence and Computer Vision, 2020, pp. 628–645.

[7] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, and S.

Venkatraman, “Robust intelligent malware detection using deep
learning,” IEEE Access, vol. 7, pp. 46717–46738, 2019.

[8] M. Elkholy and M. A. Marzok, “Light weight serverless

computing at fog nodes for internet of things systems,”
Indonesian Journal of Electrical Engineering and Computer

Science, vol. 26, no. 1, pp. 394–403, 2022.

[9] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath,
“Malware images: Visualization and automatic classification,” in

Proc. the 8th International Symposium on Visualization for Cyber

Security, 2011, pp. 1–7.
[10] A. Makandar and A. Patrot, “Malware analysis and classification

using artificial neural network,” in Proc. 2015 International

Conference on Trends in Automation, Communications and
Computing Technology (I-TACT-15), 2015, pp. 1–6.

[11] L. Nataraj and B. Manjunath, “Spam: Signal processing to analyze

malware [applications corner],” IEEE Signal Processing
Magazine, vol. 33, pp. 105–117, 2016.

[12] A. Makandar and A. Patrot, “Malware class recognition using

image processing techniques,” in Proc. 2017 International
Conference on Data Management, Analytics and Innovation

(ICDMAI), 2017, pp. 76–80.

[13] L. Liu and B. Wang, “Malware classification using gray-scale
images and ensemble learning,” in Proc. 2016 3rd international

conference on systems and informatics (ICSAI), 2016, pp. 1018–

1022.
[14] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware analysis

using visualized images and entropy graphs,” International

Journal of Information Security, vol. 14, pp. 1–14, 2015.
[15] S. Z. M. Shaid and M. A. Maarof, “Malware behavior image for

malware variant identification,” in Proc. 2014 International

Symposium on Biometrics and Security Technologies (ISBAST),
2014, pp. 238–243.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint,

arXiv:1409.1556, 2014.

[17] X.-X. Niu and C. Y. Suen, “A novel hybrid CNN-SVM classifier
for recognizing handwritten digits,” Pattern Recognition, vol. 45,

pp. 1318–1325, 2012.

[18] S. Yue, “Imbalanced malware images classification: A CNN
based approach,” arXiv preprint, arXiv:1708.08042, 2017.

[19] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Using

convolutional neural networks for classification of malware

represented as images,” Journal of Computer Virology and

Hacking Techniques, vol. 15, pp. 15–28, 2019.

[20] S. Seok and H. Kim, “Visualized malware classification based-on
convolutional neural network,” Journal of The Korea Institute of

Information Security & Cryptology, vol. 26, pp. 197–208, 2016.

[21] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas,
“Opem: A static-dynamic approach for machine-learning-based

malware detection,” in Proc. International Joint Conference

CISIS’12-ICEUTE’ 12-SOCO’ 12 Special Sessions, 2013, pp.
271–280.

[22] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification

of malware based on integrated static and dynamic features,”
Journal of Network and Computer Applications, vol. 36, pp. 646–

656, 2013.

[23] T. Xu, M. Xu, Y. Ren, J. Xu, H. Zhang, and N. Zheng, “A file
fragment classification method based on grayscale image,” J.

Comput., vol. 9, pp. 1863–1870, 2014.

[24] R. Goyal, A. Spognardi, N. Dragoni, and M. Argyriou,
“SafeDroid: A distributed malware detection service for Android,”

in Proc. 2016 IEEE 9th International Conference on Service-

Oriented Computing and Applications (SOCA), 2016, pp. 59–66.
[25] H.-J. Zhu, Z.-H. You, Z.-X. Zhu, W.-L. Shi, X. Chen, and L.

Cheng, “DroidDet: Effective and robust detection of android

malware using static analysis along with rotation forest model,”
Neurocomputing, vol. 272, pp. 638–646, 2018.

[26] L. Wen and H. Yu, “An Android malware detection system based

on machine learning,” AIP Conference Proceedings, vol. 1864,
020136, 2017.

[27] T. H.-D. Huang and H.-Y. Kao, “R2-d2: Color-inspired

convolutional neural network (cnn)-based android malware
detections,” in Proc. 2018 IEEE International Conference on Big

Data, 2018, pp. 2633–2642.

[28] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et
al., “Imagenet large scale visual recognition challenge,”

International Journal of Computer Vision, vol. 115, pp. 211–252,

2015.
[29] J. Gennissen, L. Cavallaro, V. Moonsamy, and L. Batina, “Gamut:

Sifting through images to detect android malware,” Bachelor

thesis, Royal Holloway University, London, UK, 2017.

[30] S. Y. Yerima, S. Sezer, and I. Muttik, “Android malware detection

using parallel machine learning classifiers,” in Proc. 2014 Eighth
International Conference on Next Generation Mobile Apps,

Services and Technologies, 2014, pp. 37–42.

[31] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Emulator vs real
phone: Android malware detection using machine learning,” in

Proc. the 3rd ACM on International Workshop on Security and

Privacy Analytics, 2017, pp. 65–72.
[32] H. Naeem, F. Ullah, M. R. Naeem, S. Khalid, D. Vasan, S. Jabbar,

et al., “Malware detection in industrial internet of things based on

hybrid image visualization and deep learning model,” Ad Hoc
Networks, vol. 105, 102154, 2020.

[33] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang,

“Transformer in transformer,” Advances in Neural Information
Processing Systems, vol. 34, pp. 15908–15919, 2021.

[34] Z. Zhan, G. Zhou, and X. Yang, “A method of hierarchical image

retrieval for real-time photogrammetry based on multiple features,”
IEEE Access, vol. 8, pp. 21524–21533, 2020.

[35] R. C. Gonzalez, “Deep convolutional neural networks,” IEEE

Signal Processing Magazine, vol. 35, pp. 79–87, 2018.
[36] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and

C. Siemens, “Drebin: Effective and explainable detection of

android malware in your pocket,” in Proc. of the 21th Network
and Distributed System Security Symposium (NDSS), 2014, pp.

23–26.

[37] Y. Zhou and X. Jiang, “Dissecting android malware:
Characterization and evolution,” in Proc. 2012 IEEE Symposium

on Security and Privacy, 2012, pp. 95–109.

[38] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth
analysis of current android malware,” in Proc. International

Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, 2017, pp. 252–276.
[39] M. Elkholy, Y. Baghdadi and M. Marzouk, “Snowball framework

for web service composition in SOA applications,” International

Journal of Advanced Computer Science and Applications
(IJACSA), vol. 13, no. 1, 2022.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

844

[40] M. J. Awan, O. A. Masood, M. A. Mohammed, A. Yasin, A. M.

Zain, R. Damaševičius, et al., “Image-based malware

classification using VGG-19 network and spatial convolutional
attention,” Electronics, vol. 10, 2444, 2021.

[41] A. F. Agarap, “Towards building an intelligent anti-malware

system: A deep learning approach using support vector machine
(SVM) for malware classification,” arXiv preprint,

arXiv:1801.00318, 2017.

[42] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-G. Wang, and J. Chen,
“Detection of malicious code variants based on deep learning,”

IEEE Transactions on Industrial Informatics, vol. 14, pp. 3187–

3196, 2018.
[43] K. Kosmidis and C. Kalloniatis, “Machine learning and images

for malware detection and classification,” in Proc. the 21st Pan-

Hellenic Conference on Informatics, 2017, pp. 1–6.

[44] H. Naeem, B. Guo, M. R. Naeem, and D. Vasan, “Visual malware

classification using local and global malicious pattern,” Journal of

Computers, pp. 73–83, 2019.
[45] I. T. Jolliffe, Principal Component Analysis, New York, NY:

Springer, 2002, doi: 10.1007/b98835

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

845

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N4-838

