
Authentication and Role-Based Authorization in

Microservice Architecture: A Generic

Performance-Centric Design

Randa Ahmad Al-Wadi * and Adi A. Maaita

Department of Software Engineering, Isra University, Amman, Jordan; Email: adi.maaita@iu.edu.jo (A.A.M.)

*Correspondence: randa.it.alwadi@gmail.com (R.A.A.W.)

Abstract—In a microservice-based system, each

microservice is a stand-alone application that may be

targeted individually to obtain unauthorized access.

Consequently, it is necessary to include authentication and

authorization features. However, a set of related design

decisions needs to be taken in a way that accommodates the

scale of a developed system. To illustrate, a user may be

authenticated depending on a password and authorized

based on roles. In such a case, one integrated authentication

and role-based authorization microservice can be added.

Besides, the Application Programming Interfaces (APIs)

that are associated with roles may be hard-coded as static

API-level role authorization checks. Nevertheless, static

relation between roles and APIs hinders the ease of

modification of their associations when a massive number of

APIs exist in a microservice system. To transform the

relation into dynamic relation, this paper presents a generic

microservice-based architectural design with a separate

role-based authorization microservice that contains

role/API database records. Moreover, it shows

experimentation for performance optimization that was

carried out on authentication and role-based authorization

databases to utilize the suggested architectural design. The

obtained results of password-based authentication

encouraged employing not only Structured Query Language

(NoSQL) databases with small microservice-based systems,

which deal with 1500 users or less while employing

Structured Query Language (SQL) databases with medium

to large systems. Furthermore, the results indicated that

there is no difference between the two database types in the

role-based authorization process for all API-based system

scale levels.

Keywords—microservices, architectural design, security,

password-based authentication, role-based authorization,

Application Programming Interface (API), Structured

Query Language (SQL), not only SQL (NoSQL), response

time

I. INTRODUCTION

In the area of software architecture design, there is a

continuous need for devising new architecting paradigms

to accommodate some emerging requirements. Generally,

the direction is towards the “Separation of Concerns”

 Manuscript received January 13, 2023; revised March 15, 2023;

accepted April 26, 2023; published August 3, 2023.

concept which facilitates the software development

process and raises maintainability. This concept led

architects to shift from the monolithic architecture to

Service-Oriented Architecture (SOA), then to

microservice architecture to adapt to particular

circumstances [1].

The monolithic architecture implies building

applications as a single deployable unit. In contrast, SOA

enforces some level of independence by splitting up

functionalities into “services” but with central

governance and data storage. Recently, microservice

architecture emerged as a natural evolution to maximize

the loose-coupling concept by eliminating centralization.

This enables microservices to be highly maintainable and

highly scalable [2, 3].

Microservice-based systems, as distributed systems,

require careful attention to each related security

consideration [1]. This is due to the broadness of their

attack surface which arises from the existence of many

small independent and distributed services that are

accessible by various client applications [4, 5]. To secure

such systems, it is not sufficient to protect the perimeter

only. Instead, it is substantial to protect every

microservice inside the perimeter by enforcing security

mechanisms by using security modules. That involves

safeguarding microservices from the blind trust of clients

or other microservices that request access to their

functionalities [6, 7].

Enforcing the authentication and authorization security

requirements is considered an essential way of achieving

protection and building the required conscious trust [6, 7].

Authentication is the process of checking the identity of a

user whereas authorization is the process of granting the

user permission to perform specific actions or reach

certain resources [8, 9].

In the literature, different microservice-based

architectural designs aimed to satisfy authentication and

authorization characteristics. Focusing on the

architectures that implement features of authentication

and role-based authorization, it was found that the most

adopted design idea is to add Identity

microservice [10–13]. Identity microservice is

responsible for authenticating a user based on a username

and a password combination and issuing an access token

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

758doi: 10.12720/jait.14.4.758-768

for role-based authorization at the business microservices

level. In addition, it manages all user-related data such as

roles. The issue with this design is that authorization data

cannot be stored since Identity microservice is only

concerned with user data. As a specific example,

user/role database records can be included in the Identity

database while role/Application Programming Interface

(API) database records cannot. That provides the ability

to change users’ roles dynamically, whereas modifying

role-related APIs can only be done statically via hard

coding at API-level. Hard coding of permissions is a

common practice among developers [14], however, it is

not recommended whenever the number of APIs is

substantial. To overcome this limitation, an extended

microservice architectural design was proposed that

includes a separate role-based authorization microservice

with an attached database of role/API associations.

Merging authentication and authorization

characteristics with a microservice-based system without

degrading its performance, in terms of response time, is a

crucial point [15]. Therefore, the suggested architecture

can be customized based on design decisions related to

database type and design. As part of this research,

suggestions for achieving the best performance are

presented based on a comparison between Structured

Query Language (SQL), and not only SQL (NoSQL)

databases with an experimentation phase to determine the

performance level of each during the password-based

authentication and role-based authorization processes.

Security and performance are two important research

aspects in the field of microservice architecture design.

According to Vural’s study [16], there is still a lack of

related empirical studies which are greatly needed for

extracting valuable information for making design

decisions. This paper contributes to that branch of

microservice research by conducting an experimental

study to help resolve security and performance issues.

The rest of the paper is organized as follows. Section II

analyzes the state of the art in microservice architectural

designs that have inherent authentication and

authorization features. Sections III–VI explain the

implementation details of the suggested microservice

architecture. These involve its architectural design, the

SQL and NoSQL database structures of the password-

based authentication and role-based authorization

microservices, and a description of the authentication and

authorization processes. Section VII explores the

performance testing-related aspects of the architecture

including the test scenarios and test cases, the hardware

specifications, and an explanation of the data collection

and analysis procedure. In addition, it presents the steps

taken to achieve the reliability and validity of

measurements as well as the experimental limitations.

Section VIII shows and analyzes the obtained results

from carrying out the test cases. Then, Section IX

interprets the analyzed results. And finally, Section X

clarifies the conclusions that were drawn.

II. LITERATURE REVIEW

A range of architectural design decisions aimed at

achieving authentication and authorization security

requirements within a microservice architecture can be

found in the literature. For example, several architectural

solutions employ a component called “API gateway” to

play a specific role in the authentication and authorization

processes either as the main entity or simply as a

facilitator [4–6, 10].

The API gateway acts as a single-entry point that

mediates the communication between clients and

microservices. The aims are to forbid malicious or

unauthorized access [4, 10] and to minimize the number

of calls from clients to microservices, or in other words,

to solve the problem of “chatty communication” [6, 10].

Due to the benefits that the API gateway provides, it is

seen as a substantial component in any microservice

architecture [17]. Besides this, “having no API gateway”

is considered, between researchers and practitioners, an

anti-pattern or bad design practice [18, 19].

Alternatively, several architectures involve

implementing authentication and authorization as a

dedicated microservice. Microservices usually serve the

business functionalities of a system. Nevertheless, using a

dedicated microservice for security purposes showed the

ability and benefit of employing microservices in

achieving cross-cutting concerns as well.

To illustrate, He and Yang [12], and Sharma [13]

dedicated a microservice to represent an authentication

and authorization server. Authentication was achieved by

taking the responsibility of checking the credentials of

users while authorization was involved by issuing access

tokens. Access tokens are stand-alone pieces of

information that allow every business microservice to

make its authorization checks for granting access to its

functionalities. Such an approach served as an alternative

to going back and forth with requests to the central

dedicated authentication and authorization microservice.

Another goal was to allow users to sign in only once and

then use the generated tokens as indicators of

authentication in subsequent requests. Fig. 1 describes

that suggested architecture.

Figure 1. Authentication and authorization as a microservice.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

759

Looking at industry practices in architecting, the

mentioned architecture was adopted by leading

companies such as Microsoft [10] and Oracle [11].

However, Microsoft renamed the dedicated security

microservice to be “Identity Microservice”. The reason is

to reflect its task of managing the identities of users.

Identity microservice has three responsibilities: storing

the identities, verifying their correctness through the

authentication process, and generating access tokens

filled with identity information.

Furthermore, Microsoft [10] introduced another

improved architecture as well. It is a design that

combines Identity Microservice with an API gateway.

One purpose for this integration is to optionally add two

layers of authentication and authorization instead of one

to a microservice-based system. The first layer is the

mandatory authentication through Identity Microservice

which includes user login and obtaining an authorization

access token, while the second layer is the optional API

gateway token-based authentication and claim-based

authorization. Claim-based authorization is an

authorization type that depends on what claims are

included in the token attached to a sent request such as

the user role.

By analyzing Refs. [10–13], a limitation related to

role-based authorization was found. As discussed,

Identity Microservice database includes information

related to users including their roles. When a user logs in,

his/her role(s) are filled into the issued access token to be

evaluated against static API-level authorization attributes

such as [Authorize (Roles = “Admin”)]. Static

authorization attributes imply that each API has a hard-

coded role authorization check, which allows or prevents

user access [14]. Hard coding of associations between

APIs and roles is acceptable while the number of APIs is

small, however, as the number increases, such an

approach becomes tedious and difficult to manage. In

order to better manage the latter case, this paper suggests

adding database records of role/API associations for

enabling dynamic re-association.

Since the software architecture community promotes

the Separation of Concerns concept [1], this paper

suggests separating authentication and role-based

authorization into two microservices with two distinct

databases. Authentication microservice database manages

user-related data, while role-based authorization

microservice manages authorization-related role data that

is represented as role/API associations.

 In addition, and as an attempt to preserve a

satisfactory performance level of password-based and

role-based authorization processes, related database

design decisions have been included as part of the

architecture. These design decisions determine the most

efficient database type to be used along with its design.

This is based on comparing SQL and NoSQL database

performance, in terms of response time, within the

context of microservice architecture.

III. ARCHITECTURAL DESIGN

Selecting the right components that comprise a system

and appropriately connecting them serve to fulfill specific

quality attributes. This paper suggests an architectural

design that achieves password-based authentication and

role-based authorization security requirements with a

focus on performance. Upon surveying the literature and

observing the contributions of practitioners in the field,

the proposed microservice architecture was structured as

presented in Fig. 2. This architecture is comprised of the

following components:

Business Microservices are provider applications that

deliver the main services intended by a system.

Authentication Microservice is a security component

that manages user data, authenticates user identities by

validating the usernames and passwords, and issues

access tokens.

Role-Based Authorization Microservice is a security

component that stores roles in a system, information

about the system’s APIs, and the relationships between

the roles and the APIs that represent the allowed list of

APIs for each role.

RabbitMQ Message Broker is a queue-based

communication component that enables asynchronous

interaction between Business Microservices as well as

between Authentication and Authorization Microservices.

Client Application is a consumer application that

sends requests to Business Microservices asking for

specific services.

Figure 2. The proposed microservice architectural design.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

760

API Gateway is a mediator communication

component that facilitates the interaction between Client

Application and microservices. Furthermore, it is a

security component that can be activated to make initial

token-based authentication and authorization.

From Fig. 2 once again, it is noticed that one of the

Business Microservices is connected to a SQL database

while the other is connected to a NoSQL database. This

reflects the diversity and heterogeneity that can be found

in any microservice-based system, which relates to the

nature of each Business Microservice. In contrast, the

database technologies utilized for each of the

Authentication and Authorization Microservices are not

determined. These microservices deal with some cross-

cutting concerns that all microservice-based system

components rely on. Selecting the right database

technology to use with these cross-cutting concerns

microservices cannot be arbitrary and such a decision

requires proper justification.

From the performance perspective, SQL and NoSQL

technologies may have a positive or negative effect on

authentication and authorization processes. To make the

suggested architectural design performance-centric, it

was important to include database architectural design

decisions that are related to the Authentication and

Authorization Microservices. These decisions help

architects in selecting the most efficient database type

proved by experimentation along with its design. The

next two sections present the SQL and NoSQL database

structures which were employed in the experimentation

phase.

IV. SQL DATABASE SCHEMAS

SQL database schemas are commonly utilized in

implementing Authentication and Authorization

Microservices. By reviewing the SQL database schema

provided by ASP.NET Core Identity [20], the minimum

requirements for an authentication microservice were

extracted, which are shown in Fig. 3. The experiments in

this paper depended on the full schema of ASP.NET Core

Identity but what appears in the figure is a suggestion for

architects who are looking for a simplified design

solution.

Figure 3. A basic SQL schema for an authentication microservice.

Figure 4. The SQL schema for the role-based authorization.

The extracted schema involves three main tables which

are Users, Roles, and UserClaims. The Users table stores

user identity data. The Roles table defines the different

available roles for users in a system. The association

between these users and roles is represented in a

subsidiary table named UserRoles. Besides, the

UserClaims table keeps user claims to be used in the

access tokens generation process. Typically, the essential

claim in the suggested microservice architecture is the

role. Therefore, it is mandatory to be included within

access tokens as a preparation for the role-based

authorization process.

Each role in a system is supposed to be a key for

enabling users to access a specific range of APIs. Hence,

the role-based authorization SQL schema was structured

to be as clarified in Fig. 4.

By comparing Figs. 3–4, it is found that both schemas

have a Roles table. The two tables, in fact, are identical in

content, i.e., they store the same roles existing in a system.

However, the main table is the one owned by

Authorization Microservice while the other is a

subordinate. What is meant by “subordinate” is that it

receives a data copy from Authorization Microservice

through the RabbitMQ message broker component

appearing in Fig. 2.

Authentication Microservice’s responsibility is to deal

with the identities of users whereas the responsibility of

Authorization Microservice is to preserve the

authorization-related data including roles and APIs, thus,

employing the principle of Separation of Concerns.

V. NOSQL DATABASE COLLECTIONS

Simply, the authentication SQL schema presented in

Fig. 3 can be transformed into two NoSQL collections

with the same data fields. The first collection is Users,

which is the union of the three SQL tables: Users,

UserRoles, and UserClaims. It holds the identity data of

users as well as their roles and claims. Whereas the

second collection replaces the Roles SQL table that

maintains the roles supported by a system and can be

assigned to users. This structure is shown in Fig. 5.

Regarding the role-based authorization process, its

database can be implemented in NoSQL as appears in

Fig. 6. To clarify, the Roles collection holds a system’s

roles with their associated APIs. On the other hand, the

full information of the APIs that are exposed by a system

is stored in the APIs collection.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

761

Figure 5. Authentication’s NoSQL database collections.

Figure 6. The role-based authorization process’s NoSQL collections.

VI. AUTHENTICATION AND AUTHORIZATION PROCESSES

To allow a user to access a protected resource, the user

needs to pass two layers of authentication and one layer

of authorization. The first authentication level is

password-based authentication conducted by

Authentication Microservice. It requires the user to send

his/her credentials to the login API to be verified. The

verification includes accessing the Authentication

Microservice’s database to look for a matching username

and an identical password hash. And then, in case of

success, generating a token that is embedded with the

user’s claims which are retrieved from the same database.

Using the SQL or NoSQL technology to complete this

process may make a difference in terms of performance.

Thus, it was decided to include password-based

authentication in the experiments to see which database

technology performs better in this context.

The second level of authentication is token-based. This

is performed by any microservice that exposes protected

APIs. For more explanation, when a protected API is

called, the responsible microservice checks whether an

access token is attached to the request or not. If a token is

found, the microservice verifies that token against some

criteria such as the issuer of the token as well as the

expiration date. Finally, if all tests are passed, the

procedure of token-based authorization commences. The

experimentation stage was not concerned about the

second layer of authentication because database access is

not required. However, it was planned to test the

authorization process.

The token-based authorization in the suggested

microservice architecture is the role-based authorization

process, which the SQL and NoSQL databases’ structures

were prepared for in the previous two sections. It is a

procedure performed whenever an HTTP request arrives

by the Authorization middleware that is found in each

microservice.

The first step in this process is extracting the user’s

roles from the token. Then, slicing the HTTP request to

find the request path and the HTTP method, i.e.,

determining the information of the requested API. The

third step is to find an association between the roles of the

user and that API in the Authorization Microservice’s

database. And finally, allowing the user to access the

functionality provided by the API or return a refusal in

case of failure.

Similar to password-based authentication, employing a

SQL or NoSQL database to be accessed during the role-

based authorization may present different performance

levels. To make a proven comparison, an experimentation

phase is required. In the next section, all the aspects of

the conducted database performance tests will be

discussed in detail.

VII. RESEARCH METHOD

In this section, the test scenarios and test cases that

were followed to execute the performance testing on the

suggested microservice architecture will be clarified.

Also, the specifications of the machine that was

employed in carrying out those test cases will be listed.

Furthermore, the data collection and analysis procedure

as well as how the reliability and validity of

measurements were assured will be explained. Finally,

the limitations of experimentation will be mentioned.

A. Test Scenarios and Test Cases

The experiments on the proposed microservice

architecture include two parts. One part is to measure the

time needed to authenticate a user based on the password-

based authentication process. The second part is to

determine how long it takes to authorize a user depending

on the role-based authorization process. Table I describes

the test scenarios that were conducted—it is worth

mentioning that the tables’ structure in this section is

inspired by the work provided by Fahrurazi, Ibrahim, and

Suffian [21].

TABLE I. THE TEST SCENARIOS OF THE PROPOSED MICROSERVICE

ARCHITECTURE

Test

Scenario ID
Scenario

Test Objects or

Subsystems
Test Items

TS1

Response

time for

authentication

Authentication

Microservice

Login API &

Authentication

database

TS2

Response

time for role-

based

authorization

Authorization

Microservice &

any microservice

that has APIs

Authorization

database &

Authorization

middleware

Determining test scenarios is not sufficient for

conducting research experiments. Therefore, they were

supplemented by two test suites, one for each scenario.

Table II shows the first test suite that is dedicated for

testing the scenario of authentication. It contains five test

cases, each of which is intended to test, in terms of

performance, the authentication of one virtual user

against a specific number of stored user records. It is

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

762

noticeable that the number of these records increases

exponentially.

The test cases in Table II begin with one stored user

only to represent a baseline performance measurement.

This baseline forms a starting point for the measurements

of response time. For more explanation, the value of the

baseline does not include the time consumed in the search

action. Instead, it is related to the procedure of

authenticating a user by directly accessing his/her record

in the authentication database.

TABLE II. THE AUTHENTICATION PROCESS’ TEST CASES

Test

Scenario

ID

Test

Case ID

Authentication

Scheme

Number

of Virtual

Users

Number

of Stored

Users

TS1

TS1_TC1

Password-

Based
1

1

TS1_TC2 10

TS1_TC3 100

TS1_TC4 1000

TS1_TC5 10,000

In the second test case and beyond, the number of

stored records rises exponentially by a factor of ten.

Usually, in performance testing, the baseline is

determined, then it is doubled, tripled, or multiplied by a

larger factor [22]. The factor of ten was chosen here to

reach huge record numbers, which reflect a realistic

situation in the microservice architecture, with minimum

numbers of test cases. In other words, to reduce the

performance testing cost.

Table III, on the other hand, clarifies the second test

suite that was created for testing the scenario of role-

based authorization. This test suite involves ten test cases

that are divided into two groups. The first consists of four

test cases that test the performance of authorizing a user

when the authorization database is filled with

exponentially increasing APIs records that are linked to

one role only in the system. Whereas, the second is

comprised of six test cases that are similar to what exists

in the first group but with two roles, each of which is

taking half of the stored APIs.

As general remarks regarding the test cases of the

second test scenario, firstly, the exponential rise in the

number of stored APIs stops at one thousand in the first

part of these test cases. This is because it is not possible

to find ten thousand APIs, for instance, in a microservice-

based system or even more than one thousand in such a

system that contains one role only. In the second part of

the test cases, two further points after one thousand were

defined since the system now supports more than one role.

Nevertheless, the increase stopped at three thousand

records due to the unrealism of the existence of more than

this number in a microservice-based system.

It is important to mention that both test suites,

explained in this section, were executed against the SQL

technology one time and the NoSQL technology another

time. The reason is the analysis of the results will be

comparative in the first place. The purpose of this is to be

able to select the appropriate database technology for

completing the password-based authentication and role-

based authorization processes in a microservice-based

system.

B. Hardware Specifications

To execute the experimentation’s test cases, a laptop

personal computer with the following specifications was

used:

• Intel Core i5-4210U CPU @ 1.70GHz.

• 8GB RAM.

• 64-bit Operating System.

C. Data Collection and Analysis

Research experimentations are concentrated on

collecting data about time intervals required to complete

the processes of authentication and authorization.

Consequently, timers were adjusted to take these

measurements, in milliseconds as integers. Also, pieces

of code were written to embed the taken values into result

records. The result records are of a previously defined

structure, and they are part of a dedicated database for

performance testing results.

To obtain the performance testing results, each

prepared test case was carried out more than one time

against each database technology. In addition, multiple

readings were taken and stored in the performance testing

database during each test. This is to ensure the

trustworthiness of the collected values. For analyzing the

gathered data, the average of the readings was calculated,

for each test case and each database technology

separately, and anomalies were excluded depending on

the standard deviation method.

TABLE III. THE ROLE-BASED AUTHORIZATION PROCESS’ TEST CASES

Test Scenario

ID
Test Case ID

Authorization

Scheme

Number of

Virtual Users

Number of

Stored Roles

Number of Stored

APIs

Num of Linked

APIs to each Role

TS2

TS2_TC1

Token-Based 1

1

1

All of the APIs
TS2_TC2 10

TS2_TC3 100

TS2_TC4 1000

TS2_TC5

2

(The virtual user

is assigned to

one of these

roles solely)

2

Half of the APIs

TS2_TC6 10

TS2_TC7 100

TS2_TC8 1000

TS2_TC9 2000

TS2_TC10 3000

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

763

D. Reliability and Validity of Measurements

In any quantitative research, reliability and validity are

considered two fundamental criteria that make the

measurements trustworthy. Reliability is related to the

consistency of results, which indicates that the obtained

results must be identical whenever an experiment is

repeated under the same circumstances. Whereas, validity

is related to the accuracy or the closeness of the collected

data to the truth [23].

To assure these two criteria, as much as possible, it

was planned to achieve the following:

• Conducting the experiments multiple times and

storing several readings during each of them.

• Eliminating anomalous values based on the

standard deviation method.

• Testing the worst cases, i.e., the cases of reaching

the last record or document in the databases. This

is to get accurate comparative results regarding

the performance of SQL and NoSQL.

• Executing a test case on the SQL and NoSQL

databases in turn instead of carrying out all the

test cases against one technology and then all of

them against each other. The goal is to keep the

ratio of the taken values between the SQL and

NoSQL consistent. This is in case the

performance of the computer used in testing

degrades at a point in time for some reason.

E. Experimental Limitations

The following represent two major limitations of this

research:

• Sample size. The computer that was used in the

development and performing testing is a personal

computer with limited resources. As a result, it

was hard to generate more than 10,000 records

using this computer to fill a database table in

preparation for conducting experiments.

Consequently, tests on huge numbers, 100,000 or

1,000,000, for instance, that reflect some real

situations could not be executed.

• Time limitation. The time that was dedicated for

completing all the aspects of this research was

limited. Thus, the number of cases to be studied

and tested was minimized. Besides, that led to a

partial implementation of the microservice

architecture but with enough details to make

conducting experiments possible.

VIII. RESULTS

In this section, the experiments’ results of the process

of password-based authentication and role-based

authorization will be presented and analyzed.

A. General Analytical View

The experimentation in this research is comparative in

nature, i.e., it compares the performance level, in terms of

response time, of the SQL and NoSQL database

technologies in certain contexts within the microservice

architecture. Therefore, the relative relationship between

the SQL and NoSQL resulting time values is more

significant than the absolute time values themselves.

Besides, it is important to mention that the testing

environment does not reflect a realistic deployment

environment. Consequently, some unexpected behaviors

in the results’ curves may be noticed. To illustrate, an

enhancement in performance instead of decay, a

fluctuation, or semi-fluctuation may appear with the

increase in the stored record numbers in the databases.

Those matters were considered to give correct

interpretations of the results at the end of the research.

B. Password-Based Authentication

This branch of experimentation focused on measuring

the required time to authenticate one virtual user when

the SQL and NoSQL authentication databases are filled

with a particular number of users’ records. By looking at

the SQL part of the Authentication Time column in Table

IV, it is seen that the numbers of the five experiments are,

nearly, close to each other and there is no considerable

increase or decrease. In other words, there was general

stability in performance. However, when the NoSQL part

is scanned, a disparity between numbers is noticed

besides an obvious performance drop in the last test.

TABLE IV. THE RESULTS OF SQL AND NOSQL PERFORMANCE

TESTING ON AUTHENTICATING ONE VIRTUAL USER BASED ON A

PASSWORD

Test

Scenario

ID

Test

Case ID

Number

of

Stored

Users

Database

Technology

Authentication

Time (in

milliseconds)

TS1

TS1_TC1 1

SQL

195.78

TS1_TC2 10 189.34

TS1_TC3 100 189.22

TS1_TC4 1000 182.86

TS1_TC5 10,000 187.40

TS1_TC1 1

NoSQL

176.63

TS1_TC2 10 169.11

TS1_TC3 100 155.88

TS1_TC4 1000 171.03

TS1_TC5 10,000 248.97

To study the behaviors over experiments and compare

the performance of SQL and NoSQL database

technologies, the results were illustrated as a chart as

appears in Fig. 7. By tracking the SQL line, which is in

blue color, the performance stability, which was observed

before, becomes assured. In contrast, the NoSQL line,

which is in green color, shows different behavior. In the

beginning, the values were going down, then, a small rise

occurred followed by a significant one. That reflects huge

degradation in performance affected by the increase in

the number of stored users in the system.

When the performance of SQL is compared to NoSQL,

by observing Fig. 7 again, it is realized that NoSQL

shows better performance in password-based

authentication with small numbers of users. Specifically,

when the number of stored records is around two

thousand or less. However, SQL is superior in the case

that user records numbers exceed the two thousand limit.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

764

Figure 7. The SQL performance against the NoSQL performance in

completing the password-based authentication process for one virtual

user.

C. Role-Based Authorization

The experimentation on the role-based authorization

procedure included two parts. The first was to measure

the time taken to authorize a virtual user when the system

under test contains one role. The second part was the

same as the first but with two roles stored in the system

such that the virtual user is assigned to one of them.

The latter testing aimed to see the effect of dividing the

system’s APIs between two roles on the performance of

SQL and NoSQL databases. More precisely, to determine

whether the division makes the NoSQL performance

surpasses that of SQL. This is because the search, then, in

NoSQL will be limited to an array that is embedded in the

NoSQL document of a role, which saves, solely, the APIs

that are linked to that role. This is in comparison to

looking inside a SQL relationship table that has the

associations between all the roles and APIs in the system.

Looking at the first part of the experimentation, it is

noticed that the results of SQL and NoSQL, as appears in

Table V, are approximately constant and equal. They are

all around 1.25ms. That indicates stability in the

performance of SQL as well as NoSQL. Furthermore,

that shows that both technologies complete the role-based

authorization process within the same time period.

TABLE V. THE RESULTS OF SQL AND NOSQL PERFORMANCE TESTING

ON AUTHORIZING ONE VIRTUAL USER WHEN THE SYSTEM INVOLVED

ONE ROLE

Test

Scenario

ID

Test

Case ID

Number

of

Stored

APIs

Database

Technology

Authorization

Time (in

milliseconds)

TS2

TS2_TC1 1

SQL

1.57

TS2_TC2 10 1.11

TS2_TC3 100 1.19

TS2_TC4 1000 1.31

TS2_TC1 1

NoSQL

1.20

TS2_TC2 10 1.28

TS2_TC3 100 1.27

TS2_TC4 1000 1.23

Fig. 8 confirms the remarks that were mentioned. The

two lines that represent SQL and NoSQL performance

are almost straight, which reflects constancy. In addition,

they show overlapping which clarifies the equality

between the two database types in the execution time

required to authorize a user.

Figure 8. The SQL performance against the NoSQL performance in

completing the role-based authorization process for one virtual user

when the system held one role.

Regarding the second part of the role-based

authorization testing, the numbers that Table VI presents

are very similar to what Table V showed before. This

similarity conveys two points. The first is that the

existence of two roles in the system, which share the

stored APIs, neither enhanced nor degraded the efficiency

of the authorization process. And the second is sharing or

dividing the APIs set between two roles did not give

either database technologies superiority over the other.

TABLE VI. THE RESULTS OF SQL AND NOSQL PERFORMANCE

TESTING ON AUTHORIZING ONE VIRTUAL USER WHEN THE SYSTEM

INVOLVED TWO ROLES

Test

Scenario

ID

Test Case

ID

Number

of

Stored

APIs

Database

Technology

Authorization

Time (in

milliseconds)

TS2

TS2_TC5 2

SQL

1.23

TS2_TC6 10 1.26

TS2_TC7 100 0.97

TS2_TC8 1000 1.26

TS2_TC9 2000 1.09

TS2_TC10 3000 1.26

TS2_TC5 2

NoSQL

1.34

TS2_TC6 10 1.26

TS2_TC7 100 1.18

TS2_TC8 1000 1.22

TS2_TC9 2000 1.24

TS2_TC10 3000 1.26

As an additional note on the new results, raising the

number of stored APIs in the system up to three thousand

kept the same level of performance of SQL and NoSQL

in the process of authorization. By performing

experiments on a huge number of APIs, it was intended to

provide evident outcomes that help architects in taking

the right architectural design decisions while creating

large-scale microservice systems.

Fig. 9 clarifies that the performance line of SQL is

stable along all the experiments as well as the line of

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

765

NoSQL. Furthermore, it is observed that some of the two

lines’ data points are laid on top of each other and the rest

are very close to each other. These are signs of

equivalence between the SQL and NoSQL database

technologies in the time that they spend completing the

role-based authorization process.

Figure 9. The SQL performance against the NoSQL performance in

completing the role-based authorization process for one virtual user

when the system held two roles.

D. Final Analytical Thoughts

Results can be analyzed from another perspective such

as the scale of a microservice application. In this research,

three scales were defined based on the value of the

independent variable in each test scenario. These include

small-, medium-, and large-scale applications as

presented in Table VII.

TABLE VII. MICROSERVICE APPLICATION SCALES BASED ON USER

AND API NUMBERS

Test

Scenario

ID

Independent

Variable

Microservice

Application

Scale

Value of

Independent

Variable per Scale

TS1
Number of

users

Small Less than 1500 users

Medium
Between 1500 and

5000 users

Large
More than 5000

users

TS2
Number of

APIs

Small Less than 500 APIs

Medium
Between 500 and

1000 APIs

Large
More than 1000

APIs

Looking at the results of the authentication process, it

is optimal to use NoSQL databases with small-scale

software while it is preferable to use SQL databases for

medium- to large-scale software. On the other hand, the

role-based authorization process results indicate that

using either SQL or NoSQL databases is acceptable for

all scale levels.

IX. DISCUSSION OF RESULTS

This section provides a discussion and interpretation of

the obtained results. Particularly, it explains the reasoning

behind the superiority of each database type over the

other in each branch of experimentation. The explanation

will be based on hypotheses, previous studies, and

practitioners’ opinions.

A. Password-Based Authentication

The password-based authentication process comprises

two programmatic main steps. The first is the search to

find a match for a username and password, submitted by

a user, inside the authentication database. The second is

the generation of a token that contains the user’s claims

which are retrieved from the authentication database as

well.

To complete such a process efficiently, the right

database selection decision must be made. Regarding this

context, the expectation is that using a NoSQL database

gives better performance. As proven in research works,

the NoSQL technology performs well in the execution of

simple CRUD operations [24, 25]. In the password-based

authentication process, the token generation step includes

a straightforward read operation and what happened in

the search step is reading as well but without a retrieval

action.

Despite this assumption, it is speculated that SQL

technology will outperform NoSQL at some point with

the increase in the number of user records. The reason for

that is that both the search and the claims fetching tasks

depend on indexed columns. Indexes in SQL work on

enhancing the search and querying speed to achieve

optimization [26].

The results of authentication affirmed these two

hypotheses. In the beginning, they revealed the

superiority of the NoSQL database in performance, then,

at a certain limit, they showed reversing in favor of the

SQL database.

B. Role-Based Authorization

To authorize a user based on roles that are associated

with APIs, simple database read operations are required.

That leads to the anticipation of the suitability of the

NoSQL technology for this context in terms of

performance because, as was mentioned before, NoSQL

was proven to carry out simple CRUD operations

efficiently.

After performing experiments, surprising results were

obtained. The SQL and NoSQL databases spent equal

time completing the authorization process. The process

was too short and lasted solely one millisecond to finish.

The shortness of the process is the reason behind the

equivalence since there was no opportunity for NoSQL to

exceed.

Even when the authorization performance testing was

repeated to include two roles each of which is holding the

half set of the system’s APIs, it was expected that NoSQL

will exhibit more superiority. The reason behind that is

each role in NoSQL is represented by a document that

stores an array of the linked APIs’ IDs. This contrasts

with SQL which preserves the relationships between all

roles and APIs inside one table. Nevertheless, as

discussed, the procedure’s duration was not long enough

to show any difference in performance.

That shows the significance of the conducted

performance tests since developers may think in the same

way as the authors. And consequently, insist on

employing a NoSQL database in authorization losing the

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

766

feature of preserving data consistency that SQL provides.

Security contexts are very sensitive so if there is a

possibility of using reliable data sources like SQL

databases, then it should be done.

X. CONCLUSION

Authentication and authorization are principal security

requirements in any microservice-based system. In the

context of password-based authentication and role-based

authorization, one integrated microservice may be

sufficient to achieve their requirements. Nevertheless,

depending on two separate microservices, each of which

is connected to a distinct database, becomes a necessity in

case of significant growth in API numbers. This is to

facilitate storing role/API associations and enable

modifying them dynamically. This is instead of hard-

coding these associations via API-level authorization

attributes.

For database performance optimization of the separate

password-based authentication and role-based

authorization microservices, several performance tests

were executed as a comparison between SQL and NoSQL

databases. Depending on the analyzed and interpreted

performance testing result, some conclusions were drawn.

These conclusions are split into two parts in the same

way that the results and their discussion were divided

earlier.

A. Password-Based Authentication

To authenticate users based on passwords efficiently, it

was discovered that the NoSQL database technology is

better to use with small microservice-based systems

which involve about 1500 users or less. On the other hand,

SQL was found to be more suitable with medium- to

large-scale microservice-based systems that deal with

more than 1500 users.

B. Role-Based Authorization

In the process of role-based authorization, there is no

difference between employing a SQL or NoSQL database.

They both provide the same level of performance in the

different API-based scale levels including small (less than

500 APIs), medium (from 500 to 1000 APIs), and large

(more than 1000 APIs). That is true whether a

microservice-based system contains only one role that is

linked to all the system’s APIs or to many roles that share

these APIs.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Authors had integral roles in producing this research

work as best as possible. Randa Ahmad Al-Wadi

conducted the research, performed the testing and

analysis phases, and drafted the manuscript. Adi A.

Maaita suggested the research idea, supervised the

research work, and made regular revisions to the

manuscript. All authors had approved the final version of

the manuscript.

REFERENCES

[1] N. Dragoni, et al., “Microservices: Yesterday, today, and

tomorrow,” in Present and Ulterior Software Engineering, M.

Mazzara and B. Meyer, Eds. Cham: Springer International

Publishing, 2017, pp. 195–216.

[2] Z. Xiao, I. Wijegunaratne, and X. Qiang, “Reflections on SOA

and Microservices,” in Proc. 2016 4th International Conference

on Enterprise Systems (ES), 2016, pp. 60–67.

[3] M. Fowler and J. Lewis. Microservices. [Online]. Available:

https://martinfowler.com/articles/microservices.html

[4] C. K. Rudrabhatla, “Security design patterns in distributed

microservice architecture,” arXiv preprint, arXiv:2008.03395,

2020.

[5] A. Nehme, V. Jesus, K. Mahbub, and A. Abdallah, “Securing

microservices,” IT Professional, vol. 21, no. 1, pp. 42–49, 2019.

[6] R. M. Munaf, J. Ahmed, F. Khakwani, and T. Rana,

“Microservices architecture: Challenges and proposed conceptual

design,” in Proc. 2019 International Conference on

Communication Technologies (ComTech), 2019, pp. 82–87.

[7] T. Yarygina and A. H. Bagge, “Overcoming security challenges in

microservice architectures,” in Proc. 2018 IEEE Symposium on

Service-Oriented System Engineering (SOSE), 2018, pp. 11–20.

[8] N. Mateus-Coelho, M. Cruz-Cunha, and L. G. Ferreira, “Security

in microservices architectures,” Procedia Computer Science, vol.

181, pp. 1225–1236, 2021.

[9] S. Aruna, “Security in web services-issues and challenges,”

International Journal of Engineering Research & Technology, vol.

5, no. 9, 2016.

[10] C. D. L. Torre, B. Wagner, and M. Rousos. NET Microservices:

Architecture for Containerized .NET Applications. [Online].

Available: https://dotnet.microsoft.com/learn/aspnet/microservices

-architecture

[11] Oracle Developers Channel. (2018). Authentication as a

Microservice. YouTube. [Online]. Available:
https://www.youtube.com/watch?v=SLc3cTlypwM

[12] X. He and X. Yang, “Authentication and authorization of end user

in microservice architecture,” Journal of Physics: Conference

Series, vol. 910, 012060, 2017.

[13] U. Sharma, Practical Microservices, Packt Publishing, 2017.

[14] Role-based authorization in ASP.NET Core. [Online].

Available: https://learn.microsoft.com/en-us/aspnet/core/security/

authorization/roles?view=aspnetcore-7.0

[15] M. McLarty, R. Wilson, and S. Morrison, Securing Microservice

APIs, 1st ed., O’Reilly, 2018.

[16] H. Vural, M. Koyuncu, and S. Guney, “A systematic literature

review on microservices,” in Proc. 2017 International Conference

on Computational Science and Its Applications, pp. 203–217,

2017.

[17] P. Nkomo and M. Coetzee, “Software development activities for

secure microservices,” in Proc. 2019 International Conference on

Computational Science and Its Applications, 2019, pp. 573–585.

[18] D. Taibi and V. Lenarduzzi, “On the definition of microservice

bad smells,” IEEE Software, vol. 35, no. 3, pp. 56–62, 2018.

[19] R. Tighilt, M. Abdellatif, N. Moha, and Y.-G. Guéhéneuc,

“Towards a tool-based approach for microservice antipatterns

identification,” in Proc. the 12th International Conference on

Advanced Service Computing, 2020, pp. 15–20.

[20] R. Anderson. Introduction to Identity on ASP.NET Core. [Online].

Available: https://docs.microsoft.com/en-us/aspnet/core/security/

authentication/identity?view=aspnetcore-6.0&tabs=visual-studio

[21] F. Fahrurazi, S. Ibrahim, and D. Suffian, “The design and

execution of performance testing strategy for cloud-based

system,” International Journal of Software Engineering and

Technology, vol. 1, 2014.

[22] O. Prusak. How many virtual users do I need for load testing?

TechBeacon. [Online]. Available: https://techbeacon.com/app-

dev-testing/how-many-virtual-users-do-i-need-load-testing#aoh=

16424249205485&referrer=https%3A%2F%2Fwww.google.com

&_tf=%D9%85%D9%86%20%251%24s&share=https%3

A%2F%2Ftechbeacon.com%2Fapp-dev-testing%2Fhow-many-

virtual-users-do-i-need-load-testing

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

767

[23] F. Middleton. Reliability vs validity: What’s the difference?

[Online]. Available: Scribbr.

https://www.scribbr.com/methodology/reliability-vs-validity/

[24] M.-L. E. Chang and H. N. Chua, “SQL and NoSQL database

comparison,” in Proc. 2019 International Conference on Advances

in Information and Communication Networks, 2019, pp. 294–310.

[25] Z. Parker, S. Poe, and S. V. Vrbsky, “Comparing NoSQL

MongoDB to an SQL DB,” in Proc. the 51st ACM Southeast

Conference, 2013, https://doi.org/10.1145/2498328.2500047

[26] SolarWinds. How to Increase Database Performance—6 Easy Tips.

[Online]. Available: https://www.dnsstuff.com/how-to-increase-

database-performance

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

768

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N4-758

