
Multi-speaker Speech Separation under 

Reverberation Conditions Using Conv-Tasnet 
 

Chunxi Wang, Maoshen Jia *, Yanyan Zhang, and Lu Li 

Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology 

Beijing University of Technology, Beijing, China; Email: chunxiwang@emails.bjut.edu.cn (C.W.), 

13811321209@139.com (Y.Z.), lilubjut@163.com (L.L.) 

*Correspondence: jiamaoshen@bjut.edu.cn (M.J.) 

 

 

 
Abstract—The goal of speech separation is to separate the 

target signal from the background interference. With the 

rapid development of artificial intelligence, speech 

separation technology combined with deep learning has 

received more attention as well as a lot of progress. However, 

in the “cocktail party problem”, it is still a challenge to 

achieve speech separation under reverberant conditions. In 

order to solve this problem, a model combining the Weighted 

Prediction Error (WPE) method and a fully-convolutional 

time-domain audio separation network (Conv-Tasnet) is 

proposed in this paper. The model target on separating 

multi-channel signals after dereverberation without prior 

knowledge of the second field environment. Subjective and 

objective evaluation results show that the proposed method 

outperforms existing methods in the speech separation tasks 

in reverberant and anechoic environments.   
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I. INTRODUCTION 

Language is an important medium for communication. 

Separating useful information from complex scenes is a 

basic skill for humans. However, researchers have found 

in practice that it is challenging to build a speech 

separation system for multi-speaker that is comparable to 

the human auditory system [1]. Especially when the 

acquired signal is limited by the recording environment 

(e.g., the poor sound absorption performance of the wall 

surface and the noise level in the room is relatively high.) 

In recent years, deep neural networks have been introduced 

in speech separation tasks. 

A deep attractor network (DANet) was introduced by 

creating attractor points in the high-dimensional 

embedding space of the acoustic signal. Find the centroids 

of the sources in the embedding space to determine the 

similarity of each bin in the mixture to each source [2]. To 

optimize the network structure, a dual-path recurrent 

neural network (DPRNN) approach was proposed. This 

model can divide longer sequences into smaller chunks, 

iteratively executing local and global modeling [3]. To 

further fuse information of adjacent phases, a Fully 
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Recurrent Convolutional Neural Network (FRCNN) was 

proposed which balances the efficiency and accuracy of 

the model with fewer parameters [4]. In order to improve 

the intelligibility of speech separation, a Deep Neural 

Network (DNN) based speech separation method was 

proposed, which reduced distortion constraints [5]. 

Deep Learning-based speech separation systems have 

achieved excellent performance for pure speech separation, 

unfortunately its performance degrades in the 

reverberation environment. When there are various types 

of interference or noise components in the recording 

environment. For example, if there are two people talking 

at the same time in a room, the reflected and direct 

components of the multi-source speech signal are recorded 

by the microphone simultaneously [6]. The reflect 

components can be modeled from the sound source and 

room impact response [7], resulting in the destruction of 

the time and frequency domain sound spectrum of the 

original signal. With the increase of reverberation time, the 

reflection component increases, the interference becomes 

stronger, and the performance of the separation system will 

be dramatically reduced. 

This is due to the poor separation performance caused 

by the lack of training in the specific acoustic environment. 

To achieve good results, various types of data under 

different reverberations are needed, and this acquisition 

process is complex and very costly (time and 

computational cost) to retrain a network model. 

Therefore, this paper proposes a speech separation 

method under reverberation conditions by combining 

dereverberation and deep learning. The flowchart of the 

proposed method is illustrated in Fig. 1. The input mixture 

signals are transformed into the frequency domain by 

short-time Fourier transform (STFT), where the late 

reverberant components of the mixture signal are removed 

by linear prediction estimation using the Weighted 

Prediction Error (WPE) method [8]. The dereverberation 

signals are then transformed into the time domain by the 

inverse STFT. The signals of each channel are summed. 

The accumulated sum signal is feed in a fully-

convolutional time-domain audio separation network 

(Conv-Tasnet), which employed an end-to-end deep 
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learning structure. Specifically, the mixture signal is 

trained by this model, and the weights of the individual 

speakers in the mixture signal are estimated. Separated 

signals are obtained using the estimated weights and 

encoded high-dimensional representations.  

Compared with existing methods, the proposed method 

has significant improved separation performance in 

reverberant conditions.  

 

Figure 1. System flowchart. 

The rest of the paper can be summarized as follows. In 

section II, a description of the dereverberation using the 

WPE method is presented. In Section III, the speech 

separation model based on Conv-Tasnet is described. In 

Section IV, the experimental procedure is described to 

show the experimental results and finally, Section V draws 

the conclusion. 

II. WPE-BASED DEREVERBERATION   

A. Reverberation Generation 

The audio signal emitted by sound source in a confined 

room, reflected by different obstacles (each reflection will 

be absorbed by the obstacle part of the energy). After 

several reflections and attenuation, the reverberation 

signal 𝑑𝑞(𝑡) is obtained, which consists of both direct and 

reflected sound. The time in which the energy density 

decreases by 60dB after the source stops sounding is called 

the reverberation time (T60), which is used to describe the 

intensity of the reverberation [9]. 

The recorded signal 𝑑𝑞(𝑡) can be expressed as the sum 

of the convolution of the original speech source and the 

room impulse response:  

 𝑑𝑞(𝑡) = ∑ 𝑠𝑖(𝑡)𝐶
𝑖=1   𝑟𝑖𝑞(𝑡)  (1) 

where 𝑠𝑖(𝑡) is the ith speech signal and 𝑟𝑖𝑞(𝑡) is the room 

impulse response (RIR) between the ith speech signal and 

the qth microphone. ⅈ = 1,2, … , 𝐶 , 𝐶  represents the 

number of sources. 𝑞 = 1,2, … , 𝑄 , 𝑄  represents the 

number of microphone channels. ‘’ is convolution. 

The reverberant component differs from the echo is the 

strong correlation between the direct and reflected 

components. Therefore, it causes confusion in the time 

domain and has a significant impact on speech separation. 

B. Weighted Prediction Error Method 

The WPE method is based on multi-channel linear 

prediction, which is aimed at dereverberation multi-

channel recorded signals without prior knowledge [10].  

The reverberation signal 𝑑𝑞(𝑡)  received by the 

microphone can be divided into three parts: direct signal, 

early reflections, and late reflections [11]. The 

composition of the reverberation signal is illustrated in  

Fig. 2. 

 

Figure 2. Composition of the reverberation signal. 

The WPE method mainly removes the late reverberation 

component. The signal after such an operation becomes the 

desired dereverberation signal 𝑧𝑞(𝑡), which is composed 

of the direct signal and early reflections, which can be 

obtained by the following Eq. (2): 

  𝑧𝑞(𝑡) = 𝑑𝑞(𝑡) − ℎ𝑞(𝑡) (2)  

where ℎ𝑞(𝑡) are the late reflections that can be obtained by 

the Maximum Likelihood Estimate (MLE). ℎ𝑞(𝑡)  is 

expressed in the time domain as: 

 ℎ𝑞(𝑡) = ∑ ∑ 𝛼𝑞,𝑞′(𝜏)𝑄
𝑞′=1

 𝐿p+𝑃−1

𝜏= 𝐿p
𝑑𝑞′(𝑡 − 𝜏)  (3)  

where α represents the filter weights, the prediction step 

𝐿p > 0 , and 𝑃  is the prediction order. 𝑞  and 𝑞′  are the 

indices of different microphone channels in the array, 

where 𝑞 ≠ 𝑞′ . 𝑄  represents the number of microphone 

channels. The diagram of WPE is shown in Fig. 3. 

 

Figure 3. Diagram of WPE method. 

The WPE method uses previous frames to predict the 

reverberation of the current frame, and then subtracts the 

estimated late reverberation component from the signal 

recorded by the microphone. The desired dereverberation 

signal is obtained as well as the optimal estimation of the 
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reverberation component in the Maximum Likelihood 

Estimate.  

The specific process is to transform the recorded signal 

to the time-frequency domain using STFT, considering the 

sparsity of the frequency domain of the speech signal. The 

desired dereverberation signal 𝑍𝑞(𝑛, 𝑘) in the time-

frequency domain can be expressed as: 

 𝑍𝑞(𝑛, 𝑘) = 𝐷𝑞(𝑛, 𝑘) − 𝐴𝑞(𝑘)𝐷𝑞(𝑛 − 𝑛′, 𝑘) (4) 

where 𝑛 = 1,2, … , 𝑁  represents the index of frame,  𝑁 

denotes the total number of frames. 𝑘 = 1,2, … , 𝐾 

represents the index of frequency, 𝐾  denotes the total 

number of sampling points in each frame. 𝐷𝑞(𝑛, 𝑘) 

represents the time-frequency representation of the 

reverberation signal. 𝐴𝑞(𝑘)  represents the frequency 

domain representation of the filter weights. 

And then, the desired dereverberation signal is assumed 

to be a time-varying Gaussian process model [12]. So, the 

probability density function of the desired dereverberation 

signal is modeled as follows: 

 𝑝 (𝑍𝑞(𝑛, 𝑘); 𝜓𝑞(𝑛, 𝑘)) = 𝐺𝑃(𝑍𝑞(𝑛, 𝑘); 0, 𝜓𝑞(𝑛, 𝑘)) (5) 

where  𝐺𝑃( ⋅ )  is the probability density function of a 

complex Gaussian random process with zero mean and 

variance 𝜓𝑞(𝑛, 𝑘). 

For each frequency bin, the weights 𝛼 and variances 𝜓 

take different values. The desired dereverberation signal 

𝑍𝑞(𝑛, 𝑘)  of each time-frequency is statistically 

independent.  

Thus, the MLE function of the model is given as follows: 

 ℒ(𝛼, 𝜓) = ∏ 𝐺𝑃(𝑍𝑞(𝑛, 𝑘); 0, 𝜓𝑞(𝑛, 𝑘))
𝑁

𝑛=1
 (6) 

Eq. (6) can be used for the estimation of weights 𝛼 and 

variances 𝜓. It can be equated to minimize the Negative 

Log Likehood  𝐿𝑚𝑖𝑛(𝛼, 𝜓) , transforming into the 

optimization problem: 

 𝐿𝑚𝑖𝑛(𝛼, 𝜓) = ∑ (
|𝑍𝑞(𝑛,𝑘)|

2

𝜓𝑞(𝑛,𝑘)
+ 𝑙𝑜𝑔 𝜋𝜓𝑞(𝑛, 𝑘)

𝑁

𝑛=1

  (7) 

The model is continuously iterated to optimize the 

weights 𝛼 and variance 𝜓 to obtain the best results of the 

dereverberation model. After this process of model 

parameter optimization, the desired dereverberation signal 

𝑍𝑞(𝑛, 𝑘) can be calculated from Eq. (4).  

III. CONVOLUTIONAL TIME-DOMAIN SPEECH SEPARATION 

NETWORK 

In this paper, Conv-Tasnet is used for speech separation 

of the dereverberation signal. 

A. Time Domain 

Conv-Tasnet consists of three main components, the 

encoder, the separator and the decoder [13]. The mixture 

signal consists of 𝐶  independent signals 

𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝐶(𝑡)  superimposed in the time domain, 

which can be expressed as: 

 𝑠(𝑡) = ∑ 𝑠𝑖(𝑡)C
𝑖=1   (8) 

In the time domain, our goal is to derive the separated 

𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝐶(𝑡), 𝐶 = 2 in this paper. 

B. Convolutional Encoder-Decoder Structure 

The encoder which input mixture signal, and performs 

feature extraction and segmentation to map a segment of 

the signal to a higher dimension. The decoder performs the 

reverse operation on the masked signal, transforming the 

higher dimensional signal into the same dimension as the 

input signal and merging the segments. 

In this network, given up the legacy method of speech 

separation is not used to estimate the time-frequency part 

of the signal by STFT. Instead, a convolutional encoder is 

introduced directly to extract the features of the speech. 

The mixture signal 𝑠(𝑡) can be divided into overlapping 

frames 𝜺𝒏(𝑡) ∈ 𝑅1×𝐿 , where 𝑛 = 1,2, … , 𝑁 , and 

𝑁 represents the number of frames, “1” represents the 

number of channels of the input mixture signal, and 𝐿 

represents the length of the overlapping frames. With the 

1-D convolution module, the overlapping 

frames  𝜺𝒏(𝑡) obtains a high-dimensional 

representation  𝒘𝜖𝑅1×𝑩 . It is expressed by matrix 

multiplication as: 

 𝒘 = Relu(𝜺𝒏𝒗)  (9) 

where the dimension of the encoder matrix 𝒗 is 𝐵 × 𝐿, 𝐵 

represents the basis function of the encoder. The Linear 

rectification function (Relu(⋅)) as activator ensure that the 

output values are all positive.  

The convolutional decoder is a 1-D transposed 

convolutional module that reconstructs the overlapping 

frames 𝜺𝒏(𝑡)  from the system input �̂�𝒏 ∈ 𝑅1×𝐿 . �̂�𝒏 

represents the reconstruction of 𝜺𝒏 , which can be 

expressed in the same way as a matrix multiplication: 

 �̂�𝒏 = 𝒘𝒖  (10) 

where the decoder matrix 𝒖 ∈ 𝑅𝐵×𝐿 , 𝐵  represents the 

basis function of the decoder. The overlapping parts of the 

reconstructed signals are superimposed to obtain the 

output of the model. 

This convolutional encoder-decoder structure is used in 

this network to operate on overlapping frames by 

convolution and transposition convolution modules. It is 

beneficial to reduce latency and improve model accuracy. 

C. Convolutional Separation Process 

The separation part is the core of this network, and its 

basic idea is to estimate different masks by training the 

mixture signals.  

The system multiplies the mask with the result of the 

convolutional encoder. It is further reconstructed by the 

convolutional decoder to get the separated signal estimated 

by the system, and this process is shown in Fig. 4. 

The mask 𝒎𝒊𝜖𝑅1×𝐵 , ⅈ = 1,2, … , 𝐶 , 𝐶  represents the 

number of sources. The mask 𝒎𝒊 is an estimate of the 𝐶 

vectors for each frame of the mixture signal, subject to the 

following conditions: 

 ∑ 𝒎𝒊
𝐶
𝑖=1 = 11×𝐵 (11) 
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where the elements are in 𝒎𝒊 and take values from 0 to 1. 

After the mask is obtained by the network, the weights 

of the mask are assigned to each source to acquire an initial 

estimation of the source 𝒚𝑖 ∈ 𝑅1×𝐵, which is calculated as 

follows: 

 𝒚𝑖 = 𝒘⨀𝒎𝒊  (12) 

where ‘⨀ ’ represents the operation of multiplying the 

elements of two matrices at corresponding positions. 

The separated source waveform which is an estimate of 

the ⅈth initial source can be obtained as: 

 �̂�𝒊 = 𝒚𝒊𝒖  (13) 

 

 

Figure 4. Conv-Tasnet block diagram. 

 

Figure 5. System flowchart of Conv-Tasnet. 

Specifically, during the separation process, the feature 

dimension of 𝒘𝜖𝑅1×𝑩 is reduced by a LayerNorm and a 

1 × 1 Conv layer (Bottleneck layer). And then a three-

layer Time-domain Convolutional Network (TCN) is used 

to increase the receptive field by stacking eight times 1-D 

convolutional block in each layer [14]. Thus, the long-time 

speech signals are modeled for higher classification 

accuracy. Fig. 5. Illustrates the system flowchart of Conv-

Tasnet. In Fig. 5, the gray part represents the encoder and 

decoder, while the orange part represents the separation 

module.  In the TCN, each 1-D convolutional block with 

different colors represents exponential growth due to its 

different dilation factors to satisfy the long-term 

dependence of the speech signal on the network. Each of 

these convolutional blocks requires the same length of 

input and is filled with “0” if it is insufficient. 

The Fig. 6 shows the structure of 1-D convolutional 

block. Multiple 1-D convolutional blocks are connected to 

ensure a sufficiently large receptive field to exploit the 

long-range correlation of the speech signal. The output of 

one block is used as the input of the next block. After the 

expansion of the feature dimension, Depthwise 

convolution (D-conv) is adopted to perform collisional 

convolution in the time dimension. Skip-connection and 

Output are obtained by activation function (parametric 

rectified linear unit, PRelu) and normalization operation. 

In order to improve the fitting capacity of the model, 

𝑃𝑅𝑒𝑙𝑢(⋅) is expressed as follows: 

 

Figure 6. 1-D convolutional block. 

 𝑃𝑅𝑒𝑙𝑢(𝑋) = max (0, 𝑋) + 𝑎   mⅈn(0, 𝑋)  (14) 

where max (0, 𝑋) represents the slope of 1 when the input 

is positive, and 𝑎 mⅈn(0, 𝑋)  represents the slope of 𝑎 

(learnable parameter) when the input is negative. All the 

Outputs passed to the PRelu, 1×1 Conv and sigmoid for 

mask 𝒎𝒊  estimation. The estimated clean sources are 

obtained by reconstructing the hybrid encoder. 

D. Loss Function 

In this paper, the scale-invariant source-to-noise ratio 

(SI-SNR) is chosen as the loss function. It does not 

misestimate the similarity between the estimated clean 

source and the original clean source [15]. This is 

accomplished by projecting the estimated clean source to 

the vertical direction of the true vector (i.e., 𝒙 ) and 
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suppressing the undesirable effects due to signal variations 

by regularization, as follows: 

 𝒙 =
⟨�̂�,𝒔⟩

‖𝒔‖𝟐 𝒔 (15) 

where �̂� ∈ 𝑅1×𝐿 is the estimated clean source, 𝒔 ∈ 𝑅1×𝐿 is 

the original clean source, ⟨�̂�, 𝒔⟩ is inner product operation. 

To ensure scale invariance, both �̂� and 𝒔, required to be 

normalized (zero-mean normalization).  

And then the SI-SNR, which is the evaluation metric of 

the speech separation system, is calculated as follows: 

 rSI−SNR = 10 𝑙𝑜𝑔10
‖𝒙‖2

‖�̂�−𝒙‖
  (16) 

A larger value of rSI−SNR  means a better separation 

performance. 

IV. EXPERIMENTAL PROCEDURE AND ANALYSIS OF THE 

RESULT 

A. Experiment 

In this paper, the Wall Street Journal dataset of two 

speakers (WSJ0-2mix) is selected. The dataset consists of 

a training set of about 30 hours of mixture signals, a 

validation set of about 10 hours and a test set of about 5 

hours. Two speakers were randomly selected from a Wall 

Street Journal dataset (WSJ0) containing multiple speakers. 

The validation sets and test sets were generated with two 

different speakers at a Signal-to-Noise ratio (SNR) from -

5dB to 5dB. Special processing was also done on the data 

of the test set. The First-order Ambinsonics (FOA) 

microphone was used for recording, four channels 

recorded signals from FOA microphone were simulated 

with different reverberation times under a two-source 

environment [16]. Different reverberation times (T60) of  

0 ms, 150 ms, 300 ms, 450 ms, and 600 ms were simulated 

using ROOMSIM simulation software [17], and the 

information of the four channels front left up, front right 

down, back left down, and back right up was recorded in a 

room size of 6 m × 4 m × 3 m with the speech signal in the 

test set as the source. The signal was sampled at 8 kHz. 

TABLE I. NETWORK SETTING 

Symbol Parameter Description 

N 512 Number of filters 

L 16 Convolution kernel size 

B 128 Number of 1 × 1 conv module channels 

H 512 Number of channels in convolution blocks 

P 3 
The convolution kernel size of 1-D 

convolution module 

X 8 Number of repetitions in each group 

R 3 Number of repeats 

Norm Gln The normalization method 

Num-spks 2 Number of speakers 

Activate Relu Activation function 

In these experiments, a Conv-Tasnet is first trained to 

achieve the separation of pure speech based on the selected 

training and validation sets. Adam is selected as the 

optimizer; the learning rate is set to 0.001.  Mixture signals 

of about 6s from two speakers were trained for 100 epochs. 

The settings of this network hyperparameters are shown in 

Table I. 

After 100 epochs, the network model with the best 

results is saved. The four-channel recorded signal 

simulated by ROOMSIM is passed through the WPE 

method (relevant parameters are listed in Table II). 

A four-channel output is generated, and the summation 

of the signals from each channel is extracted and fed into 

the Conv-Tasnet trained model for further testing (the sum 

signal is equivalent to an omnidirectional signal, 

containing all source information in the scene). 

TABLE Ⅱ. PARAMETERS OF WPE METHOD 

Symbol Parameter Description 

Channels 4 Number of input channels 

Out-num 4 Number of output channels 

P 15 Number of prediction order 

𝐿𝑃 2 Number of prediction step 

Frame-size 2 Length of the frame 

Overlap 0.5 The overlap factor between adjacent frames 

 

B. Result Analysis 

In this paper, the proposed method and the existing 

Conv-Tasnet method [13] were evaluated using Multi-

Stimulus Test with Hidden Reference (MUSHRA) and 

Short-Time Objective Intelligibility (STOI),  

respectively [18, 19]. In order to compare the impact of 

reverberation on the speech separation system, two types 

of speech to be evaluated were selected. One is the 

separation result obtained by directly feeding the mixture 

signal into the speech separation system (Conv-Tasnet), 

and the other is the separation result obtained by the 

proposed method (i.e., removing the reverberation of the 

mixture signal first and then using a Conv-Tasnet to 

separate the mixture signal). 

The MUSHRA listening test is a subjective evaluation 

method, in which the original signal is set as the reference 

(upper limit) and the signal that cannot be separated 

properly is set as the anchor factor (lower limit). The range 

of MUSHRA is 0–100, and the higher the value, the better 

the perceived quality is. In this paper, 15 listeners were 

selected for double-blind listening to evaluate the 

separation performance under different reverberation 

times, and all the measured data were averaged as shown 

in Fig. 7. 

In addition, STOI is used as an objective evaluation 

method to score the speech to be evaluated by comparing 

the target speech with the speech to be evaluated. The 

value of STOI ranges from 0 to 1, and the higher the value, 

the better the intelligibility of the separation speech is. The 

separation performance of the proposed method was 

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

698



evaluated under different reverberation times, and the 

average test results were shown as shown in Fig. 8. 

 

Figure 7. Results of MUSHRA listening test with 95% confidence 

intervals. 

 

Figure 8. Results of STOI. 

From Fig. 7 and Fig. 8, it is easily to figure out that the 

MUSHRA score as well as the STOI values keep 

decreasing as the reverberation time increases. The 

proposed method scored 8.4% higher in the MUSHRA and 

the 13.3% higher in the STOI test compared to the existing 

Conv-Tasnet method [13]. At the same time, the rate of 

decline becomes slower and more robust. The results show 

that this paper obtains better speech separation results that 

are more suitable for complex acoustic conditions. It 

shows that the proposed method is effective. 

V. CONCLUSION 

In this paper, a multi-speaker speech separation 

methods combining WPE method and Conv-Tasnet is 

proposed. First, the WPE method achieves reverberation 

removal by predicting the late reverberant component of 

the signal. Then, Conv-Tasnet is used to model directly in 

the time domain, and speech separation is achieved by the 

mask learned by TCN. The experimental results show that 

the proposed method can achieve good performance under 

different reverberation conditions. At the same time, no 

priori knowledge of the sound field environment is 

required. The generalization performance of the model is 

to be tested on other data sets. 
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