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Abstract—The concept of a smart city and its associated 

services have been extensively explored in terms of 

innovation development and the application of technological 

concepts. One of the significant concerns in promoting smart 

living is the security of personal lives and assets, which are at 

risk from organized crime and acts of terrorism. A 

considerable amount of attention is paid to preventing bomb 

attacks in public places, especially the detection of an 

Improvised Explosive Device (IED). This research focuses on 

developing an analysis model that can accurately classify 

instances of x-ray images of baggage or objects as containing 

IEDs or not. The model provides an alternative to 

conventional techniques that fail to detect concealed or 

hidden devices. For this specific project, sample images are 

generated by experts to cover a range of cases encountered in 

operations during the past decade. These images are then 

used to develop a deep learning model, employing several 

data augmentation methods to overcome the issue of a limited 

number of training samples. As compared to a related work 

that exploits neural networks, the proposed model usually 

achieves higher accuracy rates for unseen samples, with the 

best accuracy rate being 0.985. Furthermore, an empirical 

study is conducted to determine the optimal size of the 

training set that exhibits good predictive performance. The 

study reveals that a large training set, apart from using a lot 

of resources, may not yield the best results as it may indicate 

overfitting.  
 

Keywords—Improvised Explosive Device (IED), detection, x-

ray image, classification, Convolutional Neural Network 

(CNN), augmentation 

 

I. INTRODUCTION 

With the recent surge of development and technological 

applications to smart cities, different sensor and artificial 

intelligence-led systems have been introduced to monitor 

and analyze behavioral patterns [1]. Based on the survey 

by Allam and Newman [2], previous works in this active 

area belong to various categories such as smart people [3], 

smart environment [4], and public safety [5]. In addition to 

road and transport safety, the last group also highly 

overlaps with the security domain, especially those related 

to organized crime and terrorism. As a result, there are 

several approaches proposed in the literature to address 

this threat to both public and individual safety [6]. 

For instance, some researchers focus on disclosing 

groups and communication trends from online and other 

relevant resources [7]. Some others direct their attention to 

cybersecurity, which has emerged as a significant theater 

of terrorist acts [8]. Besides, a few more concentrate on 

identifying and detecting Chemical, Biological, and 

Explosive (CBE) substances [9]. Specific to an Improvised 

Explosive Device (IED) that has been very popular for 

hiding a bombing attack, a computational method that 

supports accurate and automated detection is highly 

demanded [10]. IED terrorist attacks commonly take place 

in densely populated and busy locations such as airports, 

official and commercial buildings. To avoid positive 

identification by typical chemical-led detectors, IEDs are 

usually concealed within a package or baggage [11]. 

Therefore, an alternative method is required to recognize 

those units based on shape, density, and composition, 

which can be captured by an imaging sensor like an x-ray 

[12]. This trend has motivated the current research, which 

aims to investigate the use of Convolutional Neural 

Networks (CNNs) to develop a recognition capability for 

an accurate IED detection system. Details of the 

background, the proposed research work and the 

contribution are summarized below. 

A. Background and Motivation 

Terrorist attack incidents in Thailand’s three southern 

provinces pose a significant challenge to national security, 

endangering the lives and property of government officials 

and residents in the area. Moreover, it results in economic 

losses and a decline in investment, leading to adverse 

effects on tourism, one of the primary sources of national 

income [13]. Although the government and the Ministry of 

Defense have worked together continuously to address the 

issue, their efforts have only been partially effective, with 

periodic bombings in public places and ambushes of 

government officials still being witnessed rather often. 

As one of the preventive measures, x-ray explosive 

detection systems that can operate alongside ordnance-
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disposal robots [14] can serve as a critical decision-making 

aid to prevent mishaps and minimize losses. This research 

work is part of a collaborative project between the Defense 

Technology Institute (DTI), Mae Fah Luang University, 

and the Department of Ordnance, Royal Thai Air Force 

(RTAF), with the objective to reduce the need for 

importing high-value technology from international 

companies. Note that the current study reinforces the 

success of previous projects through the same 

collaboration on topics of face recognition [15, 16] and 

suspect vehicle detection [17]. 

B. Proposed Work 

The main objective of this study is to develop a deep 

learning model, specifically a Convolutional Neural 

Network (CNN) [18], using a set of x-ray images of 

baggage and containers that may contain IEDs. The model 

is intended to be used to provide a detection capability for 

the explosive-recovery robot system [14]. The scope of 

this work is limited to images captured by a portable x-ray 

camera installed on the robot system, which produces 

lower-quality images than those generated by a 

commercial unit commonly used in sensitive locations 

such as airports. In particular, a collection of image 

samples is collected from representative scenarios 

specified by experts. These involve different settings of 

both visible and concealed IEDs, which are seen in many 

incidents over the past decade. The problem under 

investigation is a binary image classification [19], where a 

new image is to be classified as it contains IEDs or not.   

C. Contribution 

The contribution made by this research is three folds. 

Firstly, it proposes an original approach of using CNN to 

develop a classification model for IED detection in the 

context of ordnance-disposal robots, which will be 

deployed to operational units in southern Thailand. The 2-

D images used in this study are collected from actual x-ray 

sensors and cover real cases from the past, leading to an 

original application of CNN in homeland security and anti-

terrorism. Secondly, this work presents a unique 

application of data augmentation techniques to x-ray 

images of IEDs during the data preprocessing stage. This 

is considered necessary given the limited amount and 

quality of those images acquired from domain experts. As 

such, the paper delivers original findings with respect to 

the relationship between the size/method of oversampling 

and predictive performance. Finally, this work provides a 

parameter analysis of the data augmentation process that 

would be useful for future extensions or applications of the 

proposed approach. 

The remainder of this paper is structured as follows. 

Section II presents related works of IED and detection 

techniques, with a focus on image-based approaches. Then, 

Section III provides details of the proposed method and 

materials employed in this research. After that, Section IV 

presents the evaluation results and associated discussion, 

including those related to the data augmentation process 

and parameter analysis. Finally, Section V concludes the 

paper with future research directions. 

II. RELATED WORK 

Since the 1990s, there has been a rapid increase in 

terrorist attacks worldwide, with explosive incidents being 

a common theme [20]. Given the tight control of military 

explosives in most countries, Improvised Explosive 

Devices (IEDs) have become the major tool for terrorism, 

as they are a lot easier to obtain [21]. IEDs are typically 

concealed and hidden in passengers’ baggage, especially 

for air transportation, to avoid detection [12]. While many 

detection methods, such as mass spectrometry [22], ion 

mobility spectrometry [11], Raman spectrometry [23], and 

fluorescence sensors [24], are effective for common 

explosives, they are unfortunately less useful for the 

detection of IEDs. Consequently, since the event of 

September 11, 2001, research works have focused on 

exploring visual inspection of x-ray images, which can 

support visual search and decision-making accurately [25]. 

The current research direction is consistent with those 

related to the application of Artificial Intelligence (AI) 

techniques to the visual-based inspection of IEDs. These 

are given in Table I. For a comprehensive review 

encompassing baggage inspection, please refer to [26]. 

TABLE I.  SUMMARIZATION OF RELATED WORKS ON X-RAY VISUAL 

INSPECTION OF IEDS 

Relate work & 

Reference 

Context of x-ray 

visual inspection 

Exploited AI 

techniques 

Bag-of-visual-

word feature [27] 
2-D image of baggage 

Classification: SVM & 

SIFT [28] 

Shape-based 

modeling [29-30] 
2-D image of baggage 

Classification: fuzzy 

KNN [31] 

Robust bag-of-

visual-word [32] 
2-D image of baggage 

Classification: SVM & 

SURF [33] 

Spare texture 

descriptor [34] 
2-D image of baggage 

Classification: SVM 

[35] 

3-D object 

classification [36] 
2-D image of baggage 

Classification: 

Clustering & RF [37] 

Transfer learning 

[38] 
2-D image of baggage Object detection: CNN 

Visual object 

detection [39, 40] 
2-D image of baggage 

Object detection: R-

CNN 

Active vision 

approach [41] 
2-D image of baggage 

Object detection: Q-

learning 

Attention based 

detection [42] 
2-D image of baggage Object detection: CNN 

Object-wise 

anomaly detection 

[43] 

2-D image of baggage 
Object detection: 

Dual-CNN 

Change detection 

[44] 

2-D x-ray ground 

image 
Object detection: CNN 

Note: abbreviations used herein are Listed as follows: SVM (Support 

Vector Machine), SIFT (Scale-Invariant Feature Transform), KNN (K-

Nearest Neighbors), SURF (Speeded-Up Robust Feature), RF (Random 

Forest), and R-CNN (Region-Based CNN), respectively. 

At large, the recognition of objects in x-ray images 

presents a challenging problem in the fields of computer 

vision and data science. This is largely due to occlusions 

between the object of interest and others, self-occlusions, 

clutter in the background, and variations in viewpoints. As 

a result, manual feature engineering approaches such as 

those implemented by [27–37] may lead to the problem of 

overfitting to training data, i.e., there is no guarantee that a 

learned model is able to achieve good predictive 

performance with unseen images. To address this 
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challenge, several investigations have utilized deep 

learning models to automatically determine informative 

features [38–44]. Previous reports have suggested that a 

simple Convolutional Neural Network (CNN) can be 

effective for classification tasks with 2-D x-ray images, 

despite being applied in different contexts such as 3-D 

imaging or object detection [38, 42]. In fact, several works 

have shown that CNN models with standard layer sets can 

be competitive with more complex counterparts [45, 46]. 

However, the potential of a model is only realized when 

both the number of samples and their diversity are 

sufficient, as demonstrated by the development of large 

datasets [47] such as ImageNet [48] and GoogleNet [49], 

each containing over 10 million images for model training. 

Unfortunately, publicly available datasets of x-ray images 

are rare, and generating such a dataset is often difficult and 

expensive. This is also the case for the current project 

where the size of the dataset is quite limited. 

In order to address the challenge of data availability, 

recent research studies have proposed various algorithms 

to optimize the quality of a target model learned from a 

limited sample set. One of these involves modifying 

structural settings and algorithmic processes within a 

network. For example, the introduction of dropout 

layers [50] has gained significant attention as a means of 

preventing overfitting. This approach reduces the number 

of parameters to update, thereby addressing the issue of 

insufficient training images. Another approach is the 

concept of transfer-learning [51], in which a model trained 

in one domain is re-trained with samples specific to a new 

one.  

In addition to those mentioned above, data 

augmentation techniques are also commonly exploited to 

overcome the curse of limited data collection. They aim to 

increase the number of image samples by making slight 

changes to original ones. This involves operations such as 

flipping [52], rotation [53], and color space shifting [54]. 

The approach has demonstrated high utility in practice for 

the task of x-ray image classification [55]. For a 

comprehensive review of these methods, a reader may 

refer to the works of [56, 57]. 

III. METHOD AND MATERIAL 

In this section, we elaborate on the methodology 

employed in our current research. Specifically, we 

describe the various stages involved, including data 

collection, data preprocessing, model development, and 

evaluation, and provide detailed information regarding the 

proposed models. The purpose of this section is to provide 

context for the subsequent section, where we present our 

results and discuss their implications. 

A. Data Collection and Preprocessing 

As previously mentioned, the image dataset X used for 

this study was created by experts in the field following the 

approach outlined in [58]. The resulting dataset contains 

three subsets: 𝑋 = {𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙𝑑𝑎𝑡𝑒 , 𝑋𝑢𝑛𝑠𝑒𝑒𝑛} that are used 

in the conventional flow of model development and 

evaluation. The first subset 𝑋𝑡𝑟𝑎𝑖𝑛 is employed for training 

the classification model, while the second subset 

𝑋𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒  is utilized as a hold-out set to find an optimal set 

of parameters. Finally, the subset 𝑋𝑢𝑛𝑠𝑒𝑒𝑛  is used to 

evaluate the predictive quality of the learned and 

optimized model. Note that each of samples in X is labeled 

as either an explosive or non-explosive image. Examples 

of these two images categorise or classes are illustrated in 

Figs. 1 and 2, respectively. Moreover, further subset-

specific distributions are given below. 

• Train dataset (𝑋𝑡𝑟𝑎𝑖𝑛 ): originally consists of 39 

explosive and 27 non-explosive images, 

• Validation dataset (𝑋𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒): has 200 explosive 

and another 200 non-explosive 200 images, and 

• Unseen dataset ( 𝑋𝑢𝑛𝑠𝑒𝑒𝑛 ): is composed of 375 

explosive and 375 non-explosive images.  

 

 

Figure 1.  Examples of explosive images. 

 

Figure 2.  Examples of non-explosive images. 

Prior the development of a classification model, a series 

of preparatory steps are conducted. Initially, those 

collected image samples in X undergo a filtering process 

that aims to reduce background noise. Subsequently, data 

augmentation techniques, including flipping [52], 

rotation [53], and brightness adjustment [54], are 

employed to increase the size of the training set beyond 

that of the original 𝑋𝑡𝑟𝑎𝑖𝑛 , which consisted of only 66 

images. This augmentation procedure results in the 

creation of various training-set variations, not only to 

address the issue of a limited training data but also to 

examine the correlation between the training-set size and 

the model predictive performance. Notably, to avoid the 

issue of imbalanced classes, the augmented training sets 

comprise an equal number of explosive and non-explosive 

images. As a result, five different augmented sets of 

training data are produced as follows, with details of 

augmentation techniques used in this generation in 

Tables II and III.  

• Augmented set 500 (𝑋𝑡𝑟𝑎𝑖𝑛−500): consists of 250 

explosives and 250 non-explosive images, 

• Augmented set 1000 (𝑋𝑡𝑟𝑎𝑖𝑛−1000): consists of 500 

explosives and 500 non-explosive images, 

• Augmented set 2000 ( 𝑋𝑡𝑟𝑎𝑖𝑛−2000 ): consists of 

1000 explosive and 1000 non-explosive images, 

• Augmented set 3000 ( 𝑋𝑡𝑟𝑎𝑖𝑛−3000 ): consists of 

1500 explosive and 1500 non-explosive images, 

and 

• Augmented set 4000 ( 𝑋𝑡𝑟𝑎𝑖𝑛−4000 ): consists of 

2000 explosive and 2000 non-explosive images. 
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TABLE II.  AUGMENTED TYPES AND NUMBERS OF EXPLOSIVE X-RAY 

IMAGES 

 
500 

images 

1000 

images 

2000 

images 

3000 

images 

4000 

images 

Exp 39 39 39 39 39 

Exp-l 39 39 39 39 39 

Exp-d 39 39 39 39 39 

Exp-HP 39 39 39 39 39 

Exp-HP-l 39 39 39 39 39 

Exp-HP-d 39 39 39 39 39 

Exp-R 4 45 129 211 295 

Exp-l-R 2 44 127 211 294 

Exp-d-R 2 44 127 211 294 

Exp-HP-R 4 45 129 211 295 

Exp-HP-l-R 2 44 127 211 294 

Exp-HP-d-R 2 44 127 211 294 

Sum 250 500 1000 1500 2000 

Note: Abbreviations Used Herein Are listed as Follows: Exp (Explosive), 

Exp-l (Explosive Lightness), Exp-d (Explosive Darkness), Exp-HP 

(Explosive Horizontal Flipping), Exp-HP-l (Explosive Horizontal 

Flipping-lightness), Exp-HP-d (Explosive Horizontal Flipping-darkness), 

Exp-R (Explosive Rotation), Exp-l-R (Explosive Lightness Rotation), 

Exp-d-R (Explosive Darkness Rotation), Exp-HP-R (Explosive 

Horizontal Flipping Rotation), Exp-HP-l-R (Explosive Horizontal 

Flipping-lightness Rotation), Exp-HP-d-R (Explosive Horizontal 

Flipping-darkness Rotation). 

TABLE III.  AUGMENTED TYPES AND NUMBERS OF NONEXPLOSIVE  
X-RAY IMAGES 

 
500 

images 

1000 

images 

2000 

images 

3000 

images 

4000 

images 

Non-Exp 27 27 27 27 27 

Non-Exp-l 27 27 27 27 27 

Non-Exp-d 27 27 27 27 27 

Non-Exp-HP 27 27 27 27 27 

Non-Exp-HP-l 27 27 27 27 27 

Non-Exp-HP-d 27 27 27 27 27 

Non-Exp-R 16 57 141 223 307 

Non-Exp-l-R 14 56 139 223 306 

Non-Exp-d-R 14 56 139 223 306 
Non-Exp-HP-R 16 57 141 223 307 

Non-Exp-HP-l-R 14 56 139 223 306 
Non-Exp-HP-d-R 14 56 139 223 306 

Sum 250 500 1000 1500 2000 

Note: Abbreviations Used Herein are Similar to Those Appear in Table 

Ⅱ, with the Additional Entry of Non-Exp (Nonexplosive). 

Upon the completion of initial experiments (on those 

five augmented training sets) that will be reported in the 

next section, a question arises as to whether a set 

containing between 2000 and 3000 images could yield a 

higher or more proximal accuracy compared to those five. 

This is motivated by the observation of high rates with the 

two sets of 2000 and 3000 samples. In order to address this 

inquiry, three supplementary training datasets comprising 

2250, 2500, and 2750 images respectively, have been 

incorporated into the empirical study. See Tables IV and 

V for further detail. 

• Augmented set 2250 ( 𝑋𝑡𝑟𝑎𝑖𝑛−2250 ): consists of 

1125 explosive and 1125 non-explosive images, 

• Augmented set 2500 ( 𝑋𝑡𝑟𝑎𝑖𝑛−2500 ): consists of 

1250 explosive and 1250 non-explosive images, 

and 

• Augmented set 2750 ( 𝑋𝑡𝑟𝑎𝑖𝑛−2750 ): consists of 

1375 explosive and 1375 non-explosive images. 

TABLE IV.  AUGMENTED TYPES AND NUMBERS OF EXPLOSIVE X-RAY 

IMAGES IN THE TRAINING DATASETS OF 2250, 2500 AND 2750 IMAGES 

 2250 images 2500 images 2750 images 

Exp 39 39 39 

Exp-l 39 39 39 

Exp-d 39 39 39 

Exp-HP 39 39 39 

Exp-HP-l 39 39 39 

Exp-HP-d 39 39 39 

Exp-R 150 170 191 

Exp-l-R 148 169 190 

Exp-d-R 148 169 190 

Exp-HP-R 149 170 191 

Exp-HP-l-R 148 169 190 

Exp-HP-d-R 148 169 190 

Sum 1125 1250 1375 

TABLE V.  AUGMENTED TYPES AND NUMBERS OF NONEXPLOSIVE X-
RAY IMAGES IN THE TRAINING DATASETS OF 2250, 2500 AND 2750 

IMAGES 

 2250 images 
2500 

images 
2750 images 

Non-Exp 27 27 27 

Non-Exp-l 27 27 27 

Non-Exp-d 27 27 27 

Non-Exp-HP 27 27 27 

Non-Exp-HP-l 27 27 27 

Non-Exp-HP-d 27 27 27 

Non-Exp-R 162 182 203 

Non-Exp-l-R 160 181 202 

Non-Exp-d-R 160 181 202 

Non-Exp-HP-R 161 182 202 

Non-Exp-HP-l-R 160 181 202 

Non-Exp-HP-d-R 160 181 202 

Sum 1125 1250 1375 

 

 

Figure 3.  Example of rotating an image by 20 degrees. 

 

Figure 4.  Example of a horizontal flipping. 

 

Figure 5.  Examples of brightness adjustment: 25% lightness and 50% 

darkness 25%. 

In a data analytics research, data augmentation 

techniques have become widely used to mitigate the 

challenges posed by limited datasets. It is observed in 

many CNN-driven studies that the machine learning 

program usually treats an image as a matrix structure of 

numerical values that present a degree of brightness as an 

individual and a pattern as a group. Employing those three 

techniques of augmentation produces a series of new 

images with modified structures or value ranges. In 

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

677



particular, the first involves an image rotation, which alters 

its orientation through a rotation degree. For this study, the 

right-hand rotation method is employed. An illustrative 

sample of this procedure is illustrated in Fig. 3, with a 

rotation degree of 20. In contrast to the previous method, 

flipping as the second augmented operation is similar to 

reflecting the image itself in one dimension, which can be 

either a horizontal or vertical flip. Fig. 4 demonstrates an 

example of a horizontal flip. Furthermore, Fig. 5 

demonstrates two brightness operations employed in this 

work [59–61]. Note that the implementation of these three 

techniques and the learning model discussed in the 

following section are made available via GitHub 

(https://github.com/KwinLook/ADEX-Project.git). 

B. Model Development and Evaluation 

In line with the successful utilization of CNN for object 

detection in x-ray images [35, 39], this study employs a 

common model for the classification of input images as an 

explosive or a non-explosive one. Essentially, CNN is a 

special type of Artificial Neural Network (ANN). ANNs 

generally consist of an input layer, a hidden layer or layers, 

and an output layer, where each layer is comprised of a 

number of computational neurons, except for the input 

layer. For an image sample, each element is represented by 

a vector 𝑋 =  [𝑥1, 𝑥2, . . . , 𝑥𝑛] where 𝑥𝑛  denotes the value 

of the nth pixel taken by a specific neuron. Hence, the 

number of input neurons equals the resolution of a visual 

data matrix. Similarly, the size of the output layer is 

dependent on the number of target classes define for a 

classification problem. For instance, a binary classification 

problem requires two output neurons representing classes 

0 and 1. One of these maintains the probability of an input 

instance belonging to a specific class. Each neuron within 

a layer is connected to all neurons in the adjacent layers, 

constructing a fully connected network with a set of 

connection-specific weights. The output of one layer 

serves as the input of the next layer. For each 

computational neuron, the weighted sum of the input 

vector 𝑥 is passed through an activation function, which 

introduces nonlinear factors into the network to meet some 

of the problem specifications to be solved: 𝑓(𝑊𝑇 +  𝑏) 

where W denotes the weight vector, and b denotes the bias. 

Two commonly used activation functions are Rectified 

Linear Unit (ReLU): 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) and Sigmoid: 
𝑓(𝑥) = (1 + 𝑒−𝑥)−1.  

The CNN model includes one or more layers added on 

top of the fully connected network that alternate with 

integration layers, as illustrated conceptually by the layer-

wise framework in Fig. 6. Each convolutional layer 

comprises many property detectors, also called filters or 

kernels that have been designed to capture properties of 

each input image. These filters are essentially a matrix of 

weights that scan through an image; thus the distortion is 

achieved by computing the dot product of the matrix and 

the corresponding part of the image at all positions. With 

this, each result is regarded as an element in a new matrix 

known as a feature map. It is typically followed by an 

aggregation layer, where the collected features are divided 

into regions of the same size, such as 2 × 2, and one input 

value is subsampled from each region according to the 

maximum, average, or even a random value. Consequently, 

the subsampling function reduces the size of the input 

representation progressively, thereby decreasing the 

network complexity and accelerating computation. This 

also makes the network more robust to minor changes, 

distortions, and translations [62]. 
 

 

Figure 6.  The layer-wise architecture of a common CNN. 

In our work, a maximum integration strategy is 

employed to retain the most crucial characteristics of the 

input. Additionally, a dropout layer can be inserted 

between convolutional layers, which is a technique used to 

prevent overfitting by randomly ignoring some nodes from 

the network with respect to each training sample [63]. To 

adapt the predefined CNN model to a given training data, 

optimization is a crucial step. Several optimization tools 

are commonly used, including SGD, Adagrad, Adadelta, 

RMSprop, and Adam. In general, these methods extend a 

basic optimizer with batch size, momentum, adaptive 

learning rate, and other features [64, 65]. Fig. 7 provides a 

detailed description of the specific CNN model to be 

exploited in this empirical study. In particular, 3 by 3 

filters are exploited in the coevolutionary layers (i.e., 

Conv2D), with ReLU being the default activation  

function [66]. Also, Adam and CrossEntropy are choices 

of the optimizer and the loss function, respectively. Other 

major parameter settings are the learning rate of 0.001, the 

batch size and epoch of and 35 and 100. Note that dropout 

layers are included in the first four sections of the proposed 

CNN network (with dropping ratios of 0.75, 0.5, 0.25 and 

0.25), such that the chance of overfitting can be reduced, 

especially at the early stage in this network-driven learning. 

Having finalized the network design, Fig. 8 depicts the 

process of model development and evaluation. The first 

step involves the preparation and augmentation of the 

training data, followed by the development of the CNN 

model, which is initially evaluated using the validation set 

to determine the hyper-parameter settings. To achieve this, 

patterns of accuracy and loss are examined with respect to 

both the training and validation sets. Once the desired 

model is established, it is evaluated against an unseen test 

set to conclude. The evaluation process is based on a 

confusion matrix, which represents a measure of 

comparison between the true classes and the predictions 

made by the model. Specifically, in the binary 

classification study presented in this research (as shown in 

Fig. 9), the confusion matrix comprises four measures: 

True Positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN) [67]. The hardware utilized 

for training the CNN model is based solely on the Google 
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Colab service, which constitutes a component of the 

Google Cloud platform. In particular, all settings are 

configured in accordance with the following specification. 

• Hardware accelerator: GPU, 

• NVIDIA-SMI: 525.85.12, 

• CUDA Version: 12.0, 

• Runtime shape: High RAM (90 GB), and 

• Disk Space: SSD (170 GB). 
 

 

Figure 7.  The architecture of the CNN model and its layer-specific 

parameter settings. 

IV. RESULTS AND DISCUSSION 

The predictive performance of the CNN model is 

evaluated using measures such as accuracy, precision, 

recall, and F1, which are derived from the confusion 

matrix. The accuracy, being the foremost measure of 

interest, is calculated as follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

Furthermore, it is possible to define class-specific recall 

metrics, which can be expressed by: 

 𝑟𝑒𝑐𝑎𝑙𝑙1 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , 𝑟𝑒𝑐𝑎𝑙𝑙0 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  

Similarly, class-specific precision measures can also be 

estimated using the following equations. 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛0 =

𝑇𝑁

𝑇𝑁+𝐹𝑁
  

With the knowledge of both precision and recall 

measures, it is possible to determine the class specific F1 

values through the following expressions. 

 𝐹11 =
2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛1+ 𝑟𝑒𝑐𝑎𝑙𝑙1
, 𝐹10 =

2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛0 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙0

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛0 + 𝑟𝑒𝑐𝑎𝑙𝑙0
  

The initial part of this section entails the outcomes 

related to accuracy and loss of the CNN model throughout 

training and validation stages. Fig. 10 illustrates these 

metrics for the CNN model that was developed using the 

initial training set 𝑋𝑡𝑟𝑎𝑖𝑛  (consists of only 66 images, 

including 39 explosive and 27 non-explosive ones). The 

accuracy of the resulting model exhibits the anticipated 

trend of gradual incline with the increase in the number of 

epochs (from 1 to 100). This was also apparent in the case 

of the model loss, which decreases rapidly as the model 

learned more from input images. However, both validation 

accuracy and loss were found to be worse than those of 

their training counterparts, indicating the poor 

performance on new cases that were not included in the 

training set. Besides, the accuracy and loss curves in the 

figure depict high fluctuations, suggesting that additional 

training samples would be required to stabilize the 

underlying learning process [55]. Having completed this 

with the original training set, the same experiment is 

repeated with those five augmented sets, namely 

𝑋𝑡𝑟𝑎𝑖𝑛−500 , 𝑋𝑡𝑟𝑎𝑖𝑛−1000 , 𝑋𝑡𝑟𝑎𝑖𝑛−2000 , 𝑋𝑡𝑟𝑎𝑖𝑛−3000  and 

𝑋𝑡𝑟𝑎𝑖𝑛−4000, respectively. 
 

 

Figure 8.  Overview of the model development and evaluation. 

 

Figure 9.  Illustration of a confusion matrix for this binary 

classification problem. 

 

Figure 10.  Comparison of accuracy & loss from initial training.  
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Figs. 11–13 illustrate the trends in model accuracy and 

loss using augmented train sets of 500, 1000, and 2000 

samples. Compared to the previous experiment, these 

newly observed patterns of training accuracy and loss have 

become more stable, while the validation measures have 

slightly improved from those presented in Fig. 10. 
 

 

Figure 11.  Comparison of accuracy & loss from set 𝑋𝑡𝑟𝑎𝑖𝑛−500. 

 

Figure 12.  Comparison of accuracy & loss from set 𝑋𝑡𝑟𝑎𝑖𝑛−1000. 

 

Figure 13.  Comparison of accuracy & loss from set 𝑋𝑡𝑟𝑎𝑖𝑛−2000. 

 

Figure 14.  Comparison of accuracy & loss from set 𝑋𝑡𝑟𝑎𝑖𝑛−3000. 

 

Figure 15.  Comparison of accuracy & loss from set 𝑋𝑡𝑟𝑎𝑖𝑛−4000. 

Figs. 14 and 15 depict that validation accuracy and loss 

have aligned with their respective training measures, 

indicating the stability of learned models. However, this 

new discovery has been achieved by increasing the size of 

the train set to 3000 and 4000 images, respectively. 

Despite the trends exhibited in these figures, there is a risk 

of overfitting as the model is trained with up to 4000 

instances. To address this concern, all the five models 

developed from augmented train sets are evaluated against 

the unseen dataset, and the corresponding results reported 

in Table VI are obtained after 100 epochs.  

Based on the results shown in Table VI, it can be 

observed that among the five CNN models developed 

using augmented training sets, 𝑋𝑡𝑟𝑎𝑖𝑛−3000  and 

𝑋𝑡𝑟𝑎𝑖𝑛−2000  exhibit the most optimal predictive 

performance. Specifically, the former achieves the highest 

accuracy of 0.985, while the latter has a slightly lower but 

still favorable accuracy of 0.982. These two models also 

demonstrate similar trends with respect to other quality 

metrics such as F1 and Recall, which are specific to class 

1. However, it is worth noting that the model trained with 

𝑋𝑡𝑟𝑎𝑖𝑛−4000  achieves the best precision value of 0.986, 

indicating a lower number of false positives than the other 

models. Nevertheless, this model’s recall capability is 

relatively weaker, making it less effective in recognizing 

explosive images, which is the main focus of this study, as 

evidenced by its higher FN value. 

TABLE VI.  CONFUSION MATRICES AND CORRESPONDING MEASURES 

OF PREDICTIVE PERFORMANCE WERE OBTAINED FROM FIVE 

AUGMENTED TRAIN SETS 

Train set TP FP TN FN Pc Rc F1 Accuracy 

X-500 336 39 340 35 0.896 0.905 0.900 0.901 

X-1000 357 18 360 15 0.952 0.959 0.955 0.956 

X-2000 367 8 370 5 0.978 0.986 0.982 0.982 

X-3000  367 8 372 3 0.978 0.991 0.985 0.985 

X-4000  370 5 357 18 0.986 0.953 0.969 0.969 

Note: Pc = Precision / Rc= Recall / F1 are Reported for Class 1 only here, 

and the Best Two Scores for Each Metric are Highlighted in Bold Font. 

 

Figure 16.  Comparison of accuracy measures from different sizes of 

train sets. 

These results indicate that data augmentation has proven 

effective to substantially improve the CNN model’s 

learning outcome. However, excessively large, augmented 

train sets may not be necessary to achieve the optimal 

assessment measures. Thus, further experiments were 

conducted to investigate the appropriate size of the train 

set, ranging from 2000 to 3000 samples, to minimize 

resource consumption while maintaining a high level of 

predictive quality. The new train sets generated are 

𝑋𝑡𝑟𝑎𝑖𝑛−2250 , 𝑋𝑡𝑟𝑎𝑖𝑛−2500,  and 𝑋𝑡𝑟𝑎𝑖𝑛−2750 . Fig. 16 

illustrates the accuracy measures obtained by the CNN 

model trained with these new augmented sets. It suggests 

that the training process converges around a train set of 

2750 to 3000 images, whereas a smaller number of images 
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might lead to an unstable outcome, especially in the case 

of the set with 2500 samples. Therefore, the 

aforementioned range is recommended for anyone willing 

to extend this work. It is of utmost significance to 

acknowledge that a larger training set can result in a 

wastage of resources during the training phase and often 

leads to overfitting, which ultimately diminishes the 

accuracy of predictions for new instances. 

In addition to the results reported thus far, it is also 

important to match them to a benchmark method in the 

literature, thus leading to the next comparison between the 

CNN model built within this project and the conventional 

ANN: artificial neural network. Another experiment is 

conducted to train the ANN model of two hidden layers 

(using ReLu as the default activation function, SoftMax as 

the function in the output layer, SGD as the optimizer with 

the learning rate of 0.001) using the augmented training set 

of 3000 images and the same epoch setting of 100. Based 

on the comparative results shown in Table VII, it is clear 

that the ANN model tends to overfit with training samples, 

i.e., it may not be suitable to accommodate unseen data. To 

be exact, the ANN model cannot recall any of explosive 

images in the unseen set (i.e., Rc = 0.000), despite a very 

high measure of 0.858 has been obtained with the 

validation set. Note that the precision or Pc of this model 

on the unseen set is inherently zero as well provided that 

recall. In particular, the four components of its confusion 

matrix are: TP = 0, FP = 0, TN = 235, and FN = 515, 

respectively. Given these, it is justifiable for this study to 

employ a CNN model explicitly designed for image 

processing and offers superior efficacy in handling image 

classification tasks [68–70]. The difference witnessed here 

may be due to the way input features are represented and 

learned (or not learned). At first, the CNN makes use of 

kernels or filters to extract features in which pixels are 

spatially related, whilst each pixel is considered as a 

feature by the ANN. Of course, one of feature extraction 

methods can be used to generate a set of more 

discriminative features, but they are normally subjected to 

some assumptions that are not generalised across 

problems [71]. Also, these features are specified upfront, 

thus requiring an expertise to foresee an optimal setting. 

On the other hand, it is possible that the relevance of those 

filter-driven features can be learned in parallel as the CNN 

adjusts its algorithmic variables to minimize the difference 

between its prediction and the truth.  

TABLE VII.  SUMMARY OF PREDICTION PERFORMANCE MEASURES 

OBTAINED BY ANN AND CNN MODELS, USING THE AUGMENTED 

TRAINING SET WITH 3000 SAMPLES AND THE EPOCH OF 100 

Model Train set Pc Rc F1 Accuracy 

ANN-Validation data X-3000 0.700 0.980 0.821 0.858 

ANN-Unseen data X-3000 0.000 0.000 0.000 0.314 

CNN-Unseen data X-3000 0.986 0.991 0.985 0.985 

 

Based on the results presented and discussed in this 

section, it is reasonable to suggest that the CNN model 

developed herein performs well with the validation set and 

accurate for the unseen samples. Despite this, it can be 

widely agreed that the training step is usually resource 

demanding, with the implementation in this work has been 

on the platform of Google Colab. With this cloud-based 

service or a privately-owned computing stack, the task can 

be accomplished in the background, where the model can 

be re-learned with an updated set of training inputs. 

However, its application would be a lot quicker to produce 

a prediction of a new case. In practice, the learned model 

can be installed as another working module in the 

computing unit of a robot, where a newly captured x-ray 

image can be stored and fed to the model. This may 

provide a seamless flow of control from sensing to 

decision making at the point of operation. Nonetheless, it 

requires a careful design that allows the underlying model 

to be updated locally as a new version becomes available. 

This may lead to another complication given a large 

number of robots in operation. Yet, since they are deployed 

in a dangerous and hostile environment, their processing 

units and data maintained within may be lost altogether. 

To this end, another innovative approach has been 

introduced, where x-ray images captured by a robot are 

relayed to a computing station in the command post. Then, 

the underlying classification procedure is conducted in a 

much safer setting, where it can be realized as a locally 

installed program or a cloud-based service. 

V. CONCLUSION AND FUTURE WORK 

This article details a novel approach to the detection of 

explosives, developed as a collaborative study between 

Mae Fah Luang University and the Defense Technology 

Institute (Public Organization). The research utilizes a 

CNN model to classify images as either explosive or non-

explosive, a crucial component in the identification of 

IEDs. This task is particularly challenging due to the 

limited number of images available, which necessitates the 

development of new methodologies to increase the image 

volume. To this end, data augmentation has been 

employed, incorporating three distinct processes of image 

rotation, flipping, and brightness adjustment. Following 

the acquisition of additional images, the researchers must 

ascertain the optimal number of images to be utilized 

during training. Excessively large training sets risk 

overlearning, leading to the consumption of excessive time 

and resources without an expected increase in accuracy. As 

such, a balance must be struck between maximizing 

accuracy and minimizing the required training time and 

resources. In the coming years, there will be a concerted 

effort to develop detection methods that are capable of 

targeting specific areas within an image rather than 

analyzing the entire image indiscriminately. Possible 

future works are summarized below. 

To enhance the identification of explosive materials, 

one possible approach is to employ the use of OpenCV, a 

computer vision library, to improve the ability to focus on 

relevant areas of interest within the image before 

proceeding to the core analysis. This technology offers an 

opportunity to selectively highlight features that are 

relevant to the presence of explosives, thus improving the 

accuracy of detection. 

Another potential avenue for future research is to 

employ transfer learning techniques to may enhance the 

current models’ performance. By utilizing similar datasets, 
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such as x-ray images of various weapons, the model can 

be augmented, potentially enabling them to recognize 

features that are commonly presented across different 

types of explosive devices. 

Lastly, it may be interesting to explore the technique of 

Generative Adversarial Networks or GANs to simulate the 

reconstruction of input images. GANs are capable of 

identifying distinctive features within a given image and 

generating a new image instance based on those learned 

features. It differs from the concept of data augmentation 

and may provide an alternative means of augmenting a 

limited dataset.  
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