
HASumRuNNer: An Extractive Text

Summarization Optimization Model Based on a

Gradient-Based Algorithm

Muljono 1,*, Mangatur Rudolf Nababan 2, Raden Arief Nugroho 3 and Kevin Djajadinata 1

1 Department of Informatics Engineering, Universitas Dian Nuswantoro, Semarang, Indonesia;

Email: p31201902233@dinus.ac.id (K.D.)
2 English Department, Universitas Sebelas Maret, Surakarta, Indonesia;

Email: amantaradja.nababan_2017@staff.uns.ac.id (M.R.N.)
3 English Department, Universitas Dian Nuswantoro, Semarang, Indonesia;

Email: arief.nugroho@dsn.dinus.ac.id (R.A.N.)

*Correspondence: muljono@dsn.dinus.ac.id (M.)

Abstract—This article is based on text summarization

research model, also referred to as “text summarization”,

which is the act of summarizing materials in a way that

directly communicates the intent or message of a document.

Hierarchical Attention SumRuNNer (HASumRuNNer), an

extractive text summary model based on the Indonesian

language is the text summary model suggested in this study.

This is a novelty for the extractive text summary model based

on the Indonesian language, as there is currently very few

related research, both in terms of the approach and dataset.

Three primary methods—BiGRU, CharCNN, and

hierarchical attention mechanisms—were used to create the

model for this study. The optimization in this suggested

model is likewise carried out using a variety of gradient-

based methods, and the ROUGE-N approach is used to assess

the outcomes of text synthesis. The test results demonstrate

that Adam’s gradient-based approach is the most effective

for extracting text summarization using the HASumRuNNer

model. As can be seen, the values of RED-1 (70.7), RED-2

(64.33), and RED-L (68.14) are greater than those of other

methods employed as references. The approach used in the

suggested HASumRuNNer Model, which combines BiGRU

with CharCNN, can result in more accurate word and

sentence representations at word and sentence levels.

Additionally, the word and sentence-level hierarchical

attention mechanisms aid in preventing the loss of

information on each word in documents that are typically

brought on by the length of the input model word or

sentence.

Keywords—extractive text summarization, hierarchical

attention mechanism, deep learning, BiGRU, CharCNN

I. INTRODUCTION

Compacting a written document to make the core

concept obvious is the process of text summarization [1].

Text summarization falls into two categories: abstractive

and extractive. Since an abstractive text summarizing uses

 Manuscript received November 30, 2022; revised February 2, 2023,

accepted March 23, 2023; published July 11, 2023.

word-for-word paraphrasing, some words in the summary

may not be present in the original text. By paraphrasing the

text sentence by sentence, extractive text summarization

ensures that the words used are those of the original text.

There are various approaches to text summarization. Some

of the fundamental methods used are unsupervised,

supervised, and neurally supervised. Studies have shown

that text summarization has recently shifted more in the

direction of neural-supervised learning [2–4].

Text summarization research for Indonesian documents

is still relatively rare, with few publicly available datasets.

Finally, as a result of research conducted by Andrearczyk

et al. [5], a public dataset of Indonesian for text

summarization known as Indosum was published.

Furthermore, text summarization methods in Indonesia are

still limited to general methods based on Recurrent Neural

Network (RNN), Gated Recurrent Units (GRU), and Long

Short-Term Memory (LSTM), with little exploration as in

Ref. [2] and [6]. Based on these facts, the author conducts

research on text summarization in Indonesian using the

Hierarchical Attention SumRuNNer method or model

(HASumRuNNer). The studies of [4, 7, 8] serve as the

foundation for proposing this model. In the first study,

Bhargava et al. [7] proposed a model for extractive text

summarization called NeuralSum. For encoder-level

sentences, the model employed CharCNN for word-level

encoding and LSTM with an attention mechanism.

CharCNN was used in this model because it was effective

in classifying text at the sentence level, such as for

sentiment analysis [9]. Then, to reduce the risk of

vanishing gradient problems [10], LSTM was chosen, and

an attention mechanism was added to increase focus and

reduce information loss in long word and sentence

sequences, the authors of proposed a model called

SumaRuNNer in the second study [8]. The model used

BiGRU [11] with two levels, the first layer served as the

word level and the second layer served as the sentence

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

656doi: 10.12720/jait.14.4.656-667

,

level. The features for content, salience, novelty, absolute

positional embedding and relative positional embedding

are then introduced during the final classification stage. By

including these features, the model was able to

comprehend the context and sentence structure and

anticipate sentences for text summarization better than

other models.

Both studies still employed single method, either

CharCNN or BiGRU, to turn word representations in

documents into sentences, notably at the word level. In the

first study, the attention mechanism was only used at the

phrase level, and it was not used at all in the second study.

While in a document, a correct word representation is also

crucial to identify which sentences are part of text

summarization. There is a hazardous possibility that the

information at the word level cannot be retained when it is

acquired at the sentence level. As a result, the proposed

HASumRuNNer model by the authors can change and

supplement the two models used in the study.

Hierarchical attention in this model uses references

from the third research model, CRHASum [4]. The use of

hierarchical attention in this model helps obtain important

information on every word or sentence in the document.

The HASumRuNNer model uses two methods for the

processing at the word level. The first method is BiGRU,

which adds an attention mechanism as in the CRHASum

model. The second method employs CharCNN, as in the

NeuralSum model. The outputs from the two methods are

combined to become the input at the sentence level. The

sentence level again uses the BiGRU method and the same

attention mechanism as in the CRHASum model. The

sentence-level output is used for the final classification

using the Summar-RuNNer model’s technique, which

includes salience addition, absolute position, relative

position information, and replacement of novelty

information with a combination of the previous and

following context generated by the attention mechanism in

the sentence-level.

A better representation of the words and sentences in the

document can be obtained by using two methods at the

word level. This is because there are two processes used to

create the weights for the word level, which should, in

principle, result in the addition of information to each

sentence and enhance the process of summarizing the text

accurately. The HASumRuNNer model is examined

utilizing several gradient-based techniques during the

backpropagation process, in addition to concentrating on

merging two methods and hierarchical attention.

According to researches [12–14], the application of

various gradient-based approaches yields various

outcomes and degrees of accuracy in neural-based models.

Additionally, the Indosum dataset is utilized to test this

model. This Indosum dataset is selected since it has been

utilized in Ref. [4], making it a direct benchmark or

baseline for the author’s future research.

The contribution of this research is later proposed to the

HASumRuNNer model, which can produce more accurate

word representations with the feature processing of two

methods, namely CharCNN and BiGRU, and the use of

hierarchical attention mechanisms to prevent information

loss in documents with long sentences or words, so that it

can help people in texting extractive summarization with

greater accuracy. The following is the research’s next

section: A summary of some related research is provided

in Section II. The gradient-based technique employed in

this study and the proposed model’s methodology are both

explained in Section III of the paper. In Section IV, we

provide a more thorough explanation of the dataset, the

parameter that the suggested model relied upon, and the

outcomes and comparisons of the text summarization for

each gradient-based approach. Conclusion and possible

future research, Section V is presented in the final part.

II. RELATED WORKS

Text summarization has been the subject of numerous

studies, particularly when utilizing the deep learning

approach. From Andrearczyk et al. [5] comes the first one.

The absence of datasets for text summarizing in

Indonesian is the basis for the study. Indosum is the name

of a dataset published in Indonesian. Twenty thousand

documents make up this dataset, which is divided into six

sections: entertainment, motivation, sport, showbiz,

headlines, and technology. This study published the

dataset and tested many approaches, including oracle-

based, unsupervised, non-neural supervised, and neural

supervised. Then, we employed ROUGE with types R-1,

R-2, and R-L for the evaluation procedure. The ROUGE

value is higher when using a neural supervised learning

approach, especially Neuralsum with a word embedding of

300. However, the authors stated that the resulting

ROUGE value is still far from the maximum possible. This

indicates that there is still a lot of room for improvement

with this Indosum dataset.

The following one, from Bhargava et al. [7], proposes a

supervised neural-based model called Neuralsum. The

model used the CharCNN approach to represent sentences

at the sentence level. The LSTM technique was then used

to process each sentence representation, together with the

attention mechanism. Based on the outcomes, sentences

used in the text summaries were selected. Model testing

was carried out using the DUC 2002 and DailyMail

datasets. The evaluation procedure then used types R1, R-

2, and R-L together with the ROUGE method. According

to the findings, the URANK technique produced the

highest R-1 value in the DUC 2002 dataset, the TGRAPH

method produced the highest R-2 value, and the

Neuralsum method with the Sentence Extractor type

produced the top R-L value. Then, using the Neuralsum

method and the Sentence Extractor type, all of the top R1,

R-2, and R-L values for the DailyMail dataset were

obtained.

A model called SummaRuNNer was proposed in a

different study by R. Bhargava [8]. Both BiGRU at the

word level and BiGRU at the sentence level made up the

model. To extract additional features such as content,

salience, novelty, absolute position, relative position, and

bias, the output from the sentence level was further

processed. To determine which sentence was a part of the

text summarization, all of these attributes were combined.

The DUC 2002 and DailyMail datasets were used in this

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

657

study, and the ROUGE method types R-1, R-2, and R-L

were used in the evaluation procedure. The extractive and

abstractive text summarization were done using the

SummaRuNNer model, which was being developed. The

extractive SummaRuNNer approach produced the highest

R-1 and R-2 values in the DailyMail dataset, while the

Lead-3 technique produced the highest R-L value. The

highest R-1 value was then obtained by the URANK

approach, the highest R-2 value was the TGRAPH method,

and the highest R-L value was obtained by the Cheng and

Lapata’s method for the DUC 2002 dataset with a text

summary of 75 words [10]. This is because the existing

SummaRuNNer model was trained using a DailyMail

dataset, which had a different domain than the DUC 2002

dataset. According to the author of this study, the proposed

SummaRuNNer model is more interpretable due to the

addition of information and features, such as content,

salience, and novelty.

The research by Anand et al. [4] employed the

hierarchical attention mechanism and proposed the

CRHASum model. This model was capable of picking up

on semantic contextual information and the connections

between document aspects. For each existing sentence, the

existing model used a hierarchical attention mechanism to

add information at the word and sentence levels. The

BiGRU approach with hierarchical attention at the word

level and sentence level made up the CRHASum model

itself. The sentence-level output underwent additional

processing to obtain the prior and subsequent context

vector attributes. The process of selecting sentences that

was part of the text summarization itself used the original

output from the sentence-level, previous and following

context, as well as additional features such as time features,

topic features, sentiment features, and statistical features.

Then, the dataset used to test the model was DUC 2001,

DUC 2002, and DUC 2004 with the ROUGE evaluation

method type R-1 and R-2. The results showed that the

CRHASum method with Semantics Feature (SF) obtained

the highest R-1 and R-2 values, only losing to the Upper

bound method for every dataset used in this research. This

shows that the use of semantic features helped the model

learn the representation and context of each word in the

document. Besides that, hierarchical attention was also an

effective method to be used in the model by helping the

model add or enrich the context of each word in the

document.

The African Vulture Optimization Algorithm (AVOA)

by Shaddeli [15] also related to others studies that are cited.

The simulation results demonstrated that the proposed

BAOVAH algorithm outperformed other binary meta-

heuristic algorithms in terms of performance. It also

performed well in terms of feature selection. Moreover,

Hosseinalipour et al. [16] used two distinct wrapped

feature selection procedures based on the Farmland

Fertility Algorithm (FFA) for the selection of research

features. The FFA algorithm was suggested in two binary

forms, BFFAS and BFFAG. The findings indicated that

the suggested strategy outperformed competing

approaches in terms of classification accuracy, the average

number of features selected, and objective function value.

Similar feature selection research was done by

Shaddeli [17]. A binary hyper-heuristic feature ranking

method was created in this research to address the feature

selection issue. The outcomes demonstrated that the BFRA

algorithm behaved in low dimensions like a robust meta-

heuristic algorithm. Maragheh et al. [18] carried out

pertinent research. This research proposed a new model for

Managed Long-Term Care (MLTC) based on the LSTM

network and Spotted Hyena Optimizer-Long Short-Term

Memory (SHO-LSTM). According to the evaluation, the

suggested model was more accurate than LSTM, Genetic

Algorithm LSTM (GA-LSTM), Particle Swarm

Optimization LSTM (PSO-LSTM), Artificial Bee Colony

LSTM (ABC-LSTM), Harmony Algorithm Search LSTM

(HAS-LSTM), and Differential Evolution LSTM (DE-

LSTM). The other related works in text summarization are

explained in Table I below.

TABLE I. RELATED WORKS IN TEXT SUMMARIZATION.

Author Methods Dataset
Evaluation

Method

[7]

NeuralSum

(CharCNN +

LSTM)

DUC 2002,

DailyMail

ROUGE (R-

1, R-2, R-L)

[8]

SummaRuNNer

(BiGRU + content,

salience, novelty

feature)

DUC 2002,

CNN News,

DailyMail

ROUGE (R-

1, R-2, R-L)

[19]

Attentive Encoder +

RNN

(Unidirectional &

Bidirectional)

CNN News

ROUGE (R-

1, R-2, R-4,

R-L)

[5]

Oracle, Lead3,

Sumbasic, LSA,

Lexrank, Textrank,

Bayes, HMM,

Maxent, Neuralsum

(CharCNN +

LSTM)

Indosum
ROUGE (R-

1, R-2, R-L)

[20]
RBM Network +

Fuzzy Logic
Kaggle News

ROUGE

(Unknown)

[21]

LSA + Self

Organizing Map

(SOM) + ANN

Opinosis

ROUGE (R-

1, R-2, R-L,

R-SU4)

[22] TreeLSTM
CLWritten,

CLSpoken

Simple

String

Accuracy

(SSA),

Compression

Rate, F-1

Score

[6] BiGRU Wikipedia
ROUGE (R-

1, R-2, R-L)

[4]

CRHASum

(Hierarchical

Attention + BiGRU

+ Semantic Feature)

DUC 2001,

DUC 2002,

DUC 2004

ROUGE (R-

1, R-2)

[2] BiGRU

Indonesian

Journal

Documents

ROUGE (R-

1, R-2)

[3]
CharCNN +

BiLSTM

CNN News,

DailyMail

ROUGE (R-

1, R-2, R-L)

[23] CNN + LSTM

Indian Supreme

Court

Judgements

ROUGE (R-

1, R-2, R-L)

[24]

Generative

Adversarial

Networks (GRU +

RNN)

Multiling 2015
ROUGE

(Unknown)

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

658

[25]
Auto Encoder (AE)

+ VAE + ELM-AE
SKE

ROUGE (R-

1, R-2)

[26] CNN Multiling 2015 F-1 Score

[27] BERTSUM

CNN News,

DailyMail,

NYT, XSum

ROUGE (R-

1, R-2, R-L)

[28] BERT + GPT-2

COVID-19

Open Research

Dataset

Challenge

ROUGE (R-

1)

[29]
Two Stage Encoder

Model (TSEM)

CNN News,

DailyMail

ROUGE (R-

1, R-2, R-L)

[30] DT+CM+NB

ISEAR,

Sentiment

polarity v2.0,

SST, Yelp,

IMDb

Accuracy,

Sensitivity

(recall),

Specificity,

Precision, F-

measure,

MCC

In this research, we proposed a model namely

HASumRuNNer for extractive text summarization using

Indonesian dataset. The model consists of three main

methods, they are BiGRU, CharCNN, and hierarchical

attention mechanism. Besides that, for more precise

determination of sentences, we add the summarization,

value from salience, absolute position, relative position

information, previous context and following context in the

final classification.

III. METHODOLOGY

The stages of this research are described in the flowchart

in Fig. 1 and the suggested HASumRuNNer model is

thoroughly detailed at the word and sentence levels in this

section. In addition, the gradient-based algorithm and

HASumRuNNer model evaluation procedure are also

described.

Figure 1. Flowchart of the proposed method.

The following are the steps of this study:

1. Creating research’s dataset: documents are gathered,

initially in the form of text.

2. Preprocessing: the process of converting all of the

words in a document into basic words and removing

punctuation marks and stop words. Following that,

word representations in the form of integers are created

for each word using the FastText library.

3. At this point, the process splits into two steps, namely:

a. BiGRU-Level Word where the word

representation created in step 2 is processed at the

BiGRU layer along with producing sentence

representations using hierarchical attention.

b. CharCNN-Level Word where sentence

representations are created by processing the

word representation created in step 2 at the

CharCNN layer.

To represent the real sentence, the outcomes of

procedures a and b are concatenated.

4. Employing BiGRU-Level Sentence: in the BiGRU

layer, which likewise employs hierarchical attention to

produce the final output of the sentence, each existing

sentence representation is processed.

5. Extracting sentences: The output no. 4 findings is

utilized to determine each sentence’s substance,

salience, attention, and absolute and relative position

values. The probability that a sentence is included in

the summary or not is calculated by adding together all

of these numbers.

6. Summarizing: each sentence that is a part of the

summation is chosen for the summary and can finally

be used to summarize the original content.

A. HASumRuNNer

1) Word-level

In this word-level, two types of models are used, they

are Bi-GRU and CharCNN.

Figure 2. BiGRU layer at word-level.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

659

Based on Fig. 2, the form of the Bi-GRU model to be

built is similar to what is used by Alami and Meknassi

et al. [3]. This model has a single bi-GRU layer and

accepts word input from every sentence in the document.

Each word is also represented in a numeric vector, a

process known as “word embedding”. The FastText library

is used to generate the word embedding. Following that,

the Bi-GRU layer encodes each of the word, generating a

hidden state (h) of the word and combining it to form a

single sentence (Si) representation in a document. The

formula of the beginning of word input process to

becoming a sentence is as follows.

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑡 + 𝑟𝑡 ⊙ 𝑈ℎℎ𝑡−1 + 𝑏ℎ)

 ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ𝑡 (1)

Eq. (1) is applied to the existing Bi-GRU layer, where t

is a timestep, or in this case, 1 timestep = 1 word, and xt is

the embedding word of the existing word. The hidden state

or encoded result of the existing word is then ht. The

symbols U and W represent the hidden state weights, and

each of the input word and b are biased.

ℎ⃗ 𝑡 = 𝐺𝑅𝑈𝑙𝑡𝑟(𝑥𝑡 , ℎ⃗ 𝑡−1)

ℎ⃖⃗𝑡 = 𝐺𝑅𝑈𝑟𝑡𝑙(𝑥𝑡 , ℎ⃖⃗𝑡−1)

 ℎ𝑡 = [ℎ⃗ 𝑡; ℎ⃖⃗𝑡]. (2)

Then, because the Bi-GRU layer is used, there are two

hidden states: forward hidden and backward hidden. The

two hidden states are concatenated to form the final hidden

state of the existing word.

𝑢𝑡 = (𝑉𝑤)⊤𝑡𝑎𝑛ℎ (𝑊𝑤[ℎ𝑡] + 𝑏𝑤)

𝛼𝑡𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢𝑡) =
exp (𝑢𝑡𝑖)

∑ exp (𝑗 𝑢𝑡𝑗)

 𝑗𝑡 = ∑ 𝛼𝑡𝑖ℎ𝑖𝑖 . (3)

Each hidden state of the word must be combined and

added hierarchically to an attention layer to become a

sentence representation that can be used at the sentence

level. The combining formula is shown above. The symbol

ati represents the t-th sentence in the i-th word’s attention

value. The formula for calculating attention value is

softmax on ut, where t is the word t. After calculating all

of the attention values for each word, they can be

combined into a sentence representation (jt) by summing

the multiplication results between the attention value and

the hidden state. The jt value in this case represents a

sentence representation of the Bi-GRU method.

The following is for sentence representation of the

CharCNN method. The CharCNN method is more or less

the same as in Fig. 3.

Every word in the sentence goes through a word

embedding process as in the previous Bi-GRU model.

After that, each sentence and word in the sentence carry

out a convolutional process with the following Eq. (4).

 𝑓𝑗
𝑖 = tanh (𝑊𝑗:𝑗+𝑐−1

⊗ 𝐾 + 𝑏) (4)

Figure 3. CharCNN layer at word-level.

The 𝑓𝑗
𝑖 symbol represents the feature map for the ith

sentence in the jth sequence. To get this feature map,

multiplication (dot product) is carried out between W

which represents 1 sentence (has size n × d where n is the

maximum number of words in the sentence and d is the

size / the length of the word embedding) with K, where K

is the kernel size with a width of c. Furthermore, in each

feature map, max pooling is carried out with the formula

below to finally produce a sentence representation from

the CharCNN method.

 𝑆𝑖 , 𝐾 = max 𝑓𝑗
𝑖 (5)

The results of sentence representations from the Bi-

GRU and CharCNN methods are combined (concatenation)

in order to be used at the sentence-level.

2) Sentence-level

In this sentence-level, a model that is almost similar to

the one conducted in the research by Alami [3] is used

again.

Figure 4. BiGRU layer at sentence-level.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

660

The model is composed of one bi-GRU layer and one

hierarchical attention layer showed in Fig. 4. For the Bi-

GRU formula, it is still the same at the word level, while

the formula for the attention layer is as follows:

𝑢𝑡 = (𝑉𝑤)⊤tanh (𝑊𝑤[𝑐𝑡: 𝑐𝑔] + 𝑏𝑤)

𝛼𝑡𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢𝑡) =
exp (𝑢𝑡𝑖)

∑ exp (𝑗 𝑢𝑡𝑗)

 𝑎𝑡 = ∑ 𝛼𝑡𝑖𝑐𝑖𝑖 (6)

The 𝑐𝑡 symbol is the sentence representation from the

word-level, while 𝑐𝑔 is the hidden state of the sentence

after it has been encoded by the BiGRU layer. The symbol

𝛼𝑡𝑖 again represents the attention value for the t-th

sentence in a document, and the i value here is for the i-th

sentence in the range 1 to j (previous) or in the range n

(number of sentences) to j (following) where j = t. For

example, the total sentence in the document is 5, so the

previous attention value from the 3rd sentence has a value

of t = 3, j = 3, and i in the i range from 1 to 3, while the

attention value following the third sentence has the value

of t = 3, j = 3, and i in the range of i ranging from 5 to 3.

After the attention value for each sentence is calculated,

we can find the value of 𝑎𝑡 which is the multiplication of

the attention value and the hidden state of the sentence.

The 𝑎𝑡 value is obtained from two sides, namely the

previous and following. The two values are finally added

up.

Then, the summarization process is based on the number

of summarization sentences that users want to produce. If

users want to get five sentences to be part of the

summarization, then choose the five sentences that have

the highest value generated using Eq. (7).

𝑑 = 𝑡𝑎𝑛ℎ (𝑊𝑑
1

𝑁𝑑
∑ [ℎ⃗ 𝑗; ℎ⃖⃗𝑗]

𝑁𝑑

𝑗=1 + 𝑏)

𝑃(𝑦𝑗 = 1|ℎ𝑗 , 𝑝𝑗 , 𝑎𝑗 , 𝑑) = 𝜎(𝑊𝑐ℎ𝑗 # (𝑐𝑜𝑛𝑡𝑒𝑛𝑡)

 +ℎ𝑗
⊤𝑊𝑠𝑑 # (𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑒)

 +𝑊𝑎𝑎𝑗 # (attention)

 +𝑊𝑎𝑝𝑝𝑗
𝑎 # (abs. pos. imp.)

 +𝑊𝑟𝑝𝑝𝑗
𝑟 # (rel. pos. imp.)

 +𝑏) # (bias) (7)

In Eq. (7), d is the representation of the document

derived from multiplying the weight with the average

hidden state of all sentences plus the bias. Then, to predict

the value of 0/1, we use the values of content, salience,

attention, the absolute and relative position of the sentence

in an embedding document, and also bias.

Furthermore, the existing model is tested with various

gradient-based algorithms like SGD, Adagrad, RMSProp,

Adam, Adadelta, Adamax, and Nadam. The results

obtained by each of the algorithms above are analyzed to

see which one gives the best performance.

B. Gradient Based Algorithm

Gradient descent is a method for determining a

function’s local (or, better yet, global) minimum. Gradient

descent is a technique commonly used in deep learning-

based models to reduce errors in existing models by

updating variables such as weight and bias. The update

occurs during the backpropagation model or, if the model

is recurrent, during the Back Propagation Through Time

(BPTT) process. After all training data have been

processed, the updating process is carried out using

standard gradient descent. The update process is carried

out in Stochastic Gradient Descent (SGD) every time one

set of training data is processed, or every time one batch of

training data is processed. One batch can consist of more

than one training dataset, so when using a batch, the update

process can occur as many times as the number of training

datasets divided by the batch size. For example, if there are

100 training datasets and the batch size is 3, the update can

happen 34 times. A common issue with gradient descent is

it often stops in a local minimum that is far from the global

minimum [29]. However, several modifications of

gradient descent have been made to overcome these

problems, including Nesterov [31], Adam (adaptive

moment estimation) [32], Adagrad (adaptive gradient)[33],

and Adadelta (adaptive learning rate) [34]. Some examples

of the basic formulas of the existing gradient descent

methods are as follows:

1) Stochastic gradient descent (SGD)

 𝑤𝑡+1 = 𝑤𝑡 − 𝛼
𝜕𝐿

𝜕𝑤𝑡
 (8)

Information:

𝑤𝑡+1: weight / parameter to be updated / optimized during

timestep t + 1

𝑤𝑡: weight / parameter that you want to update / optimize

during timestep t

𝛼: the learning rate which we usually define directly in the

range > 0 to 1
𝜕𝐿

𝜕𝑤𝑡
: gradient of the loss function which we want to

minimize the value

2) AdaGrad

𝑤𝑡+1 = 𝑤𝑡 −
𝛼

√𝑣𝑡+∈

𝜕𝐿

𝜕𝑤𝑡

 𝑣𝑡 = 𝑣𝑡−1 + [
𝜕𝐿

𝜕𝑤𝑡
]
2

 (9)

Information:

𝑤𝑡+1 : weight/parameter to be updated/optimized during

timestep t + 1

𝑤𝑡 : weight/parameter that you want to update/optimize

during timestep t

𝛼: the learning rate which we usually define directly in the

range > 0 to 1
𝜕𝐿

𝜕𝑤𝑡
: gradient of the loss function which we want to

minimize the value

𝑣𝑡: the sum of all gradient values from the loss function

(which has been raised to the power) until timestep t (the

value of 𝑣 is initialized with the value 0 when the timestep

is 0)

𝑣𝑡−1: the sum of all gradient values from the loss function

(which has been raised to the power) until timestep t – 1

∈: epsilon to prevent division by 0, the value of epsilon

that is usually used is very small, for example 10−7

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

661

3) RMSProp

𝑤𝑡+1 = 𝑤𝑡 −
𝛼

√𝑣𝑡+∈

𝜕𝐿

𝜕𝑤𝑡

 𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽) [
𝜕𝐿

𝜕𝑤𝑡
]
2

 (10)

Information:

𝑤𝑡+1 : weight/parameter to be updated/optimized during

timestep t + 1

𝑤𝑡 : weight/parameter that you want to update/optimize

during timestep t

𝛼: the learning rate which we usually define directly in the

range > 0 to 1
𝜕𝐿

𝜕𝑤𝑡
: gradient of the loss function which we want to

minimize the value

𝑣𝑡 : the sum of all exponential moving average gradient

values from the loss function (which has been raised to the

power) until timestep t (the value of 𝑣 is initialized with

the value 0 when the timestep is 0)

𝑣𝑡−1: the sum of all exponential moving average gradient

values from the loss function (which has been raised to the

power) until timestep t − 1

∈: epsilon to prevent division by 0, the value of epsilon

that is usually used is very small, for example, 10−6

𝛽: constant value, where the value used is 0.9 (as suggested

by the author of this method)

4) Adam

𝑤𝑡+1 = 𝑤𝑡 −
𝛼

√𝑣𝑡̂+∈
𝑚̂𝑡

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡

𝑣̂𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)
𝜕𝐿

𝜕𝑤𝑡

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) [
𝜕𝐿

𝜕𝑤𝑡
]
2

 (11)

Information:

𝑤𝑡+1 : weight/parameter to be updated/optimized during

timestep t + 1

𝑤𝑡 : weight/parameter that you want to update/optimize

during timestep t

𝛼: the learning rate which we usually define directly in the

range > 0 to 1
𝜕𝐿

𝜕𝑤𝑡
: gradient of the loss function which we want to

minimize the value

𝑚𝑡 : the sum of all values of the exponential moving

average gradient from the loss function (which are not

raised to a power) until timestep t (the value of 𝑚 is

initialized with the value 0 when the timestep is 0)

𝑚𝑡−1: the sum of all exponential moving average gradient

values from the loss function (which are not raised to the

power) until timestep t − 1

𝑣𝑡 : the sum of all exponential moving average gradient

values from the loss function (which has been raised to the

power) until timestep t (the value of 𝑣 is initialized with

the value 0 when the timestep is 0)

𝑣𝑡−1: the sum of all exponential moving average gradient

values from the loss function (which has been raised to the

power) until timestep t − 1

∈: epsilon to prevent division by 0, the value of epsilon

commonly used is very small, eg., 10−8 (as suggested by

the creator of this method)

𝛽1: constant value for the variable 𝑚, where the value used

is 0.9 (as suggested by the author of this method)

𝛽2: constant value for the variable, where the value used is

0.999 (as suggested by the author of this method)

𝑚̂𝑡 and 𝑣̂𝑡 : function as bias corrections for variables 𝑚

and 𝑣

5) Adadelta

𝑤𝑡+1 = 𝑤𝑡 −
√𝐷𝑡−1+∈

√𝑣𝑡+∈

𝜕𝐿

𝜕𝑤𝑡

𝐷𝑡 = 𝛽𝐷𝑡−1 + (1 − 𝛽)[Δ𝑤𝑡]
2

𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽)[
𝜕𝐿

𝜕𝑤𝑡
]2

 Δ𝑤𝑡 = 𝑤𝑡 − 𝑤𝑡−1 (12)

Information:

𝑤𝑡+1 : weight/parameter to be updated/optimized during

timestep t + 1

𝑤𝑡 : weight/parameter that you want to update/optimize

during timestep t
𝜕𝐿

𝜕𝑤𝑡
: gradient of the loss function which we want to

minimize the value

𝑣𝑡 : the sum of all exponential moving average gradient

values from the loss function (which has been raised to the

power) until timestep t (the value of 𝑣 is initialized with

the value 0 when the timestep is 0)

𝑣𝑡−1: the sum of all exponential moving average gradient

values from the loss function (which has been raised to the

power) until timestep t − 1

𝐷𝑡: the sum of all exponential moving average values from

the difference/delta weight (which has been raised to the

power) until timestep t (the value of 𝐷 is initialized with

the value 0 when the timestep is 0)

𝐷𝑡−1: the sum of all exponential moving average values

from the difference/delta weight (which has been raised to

the power) until timestep t − 1

∈: epsilon to prevent division by 0, the value of epsilon

that is usually used is very small, for example, 10−6

𝛽 : constant value, where the value used is 0.95 (as

suggested by the author of this method)

6) Adamax

𝑤𝑡+1 = 𝑤𝑡 −
𝛼

𝑣𝑡
𝑚𝑡̂

𝑚𝑡̂ =
𝑚𝑡

1 − 𝛽1
𝑡

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

662

𝑚𝑡 = 𝛽1 − 𝑚𝑡−1 + (1 − 𝛽1)
𝜕𝐿

𝜕𝑤𝑡

 𝑣𝑡 = max (𝛽2𝑣𝑡−1, |
𝜕𝐿

𝜕𝑤𝑡
|) (13)

Information:

𝑤𝑡+1 : weight/parameter to be updated/optimized during

timestep t + 1

𝑤𝑡 : weight/parameter that you want to update/optimize

during timestep t

𝛼 : the learning rate which we usually define directly in the

range > 0 to 1
𝜕𝐿

𝜕𝑤𝑡
: gradient of the loss function which we want to

minimize the value

𝑚𝑡 : the sum of all values of the exponential moving

average gradient from the loss function (which are not

raised to the power) until timestep t (the value of 𝑚 is

initialized with the value 0 when the timestep is 0)

𝑚𝑡−1: the sum of all exponential moving average gradient

values from the loss function (which are not raised to the

power) until timestep to t − 1

𝑣𝑡: the maximum value of the exponential moving average

gradient from the loss function (which has been

normalized) until timestep t (the value of 𝑣 is initialized

with the value 0 when the timestep is 0)

𝑣𝑡−1 : maximum exponential moving average gradient

from loss function (which has been normalized) until

timestep t − 1

∈: epsilon to prevent division by 0, the value of epsilon

that is usually used is very small, for example, 10−7

𝛽1: constant value for the variable 𝑚, where the value used

is 0.9 (as suggested by the author of this method)

𝛽2: constant value for the variable 𝑣, where the value used

is 0.999 (as suggested by the author of this method)

𝑚̂𝑡: serves as bias corrections for the variable 𝑚

7) Nadam

𝑤𝑡+1 = 𝑤𝑡 −
𝛼

√𝑣𝑡̂+∈
(𝛽1𝑚𝑡̂ +

1 − 𝛽1

1 − 𝛽1
𝑡

𝜕𝐿

𝜕𝑤𝑡
)

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡

𝑣̂𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)
𝜕𝐿

𝜕𝑤𝑡

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) [
𝜕𝐿

𝜕𝑤𝑡
]
2

 (14)

Information:

𝑤𝑡+1 : weight/parameter to be updated/optimized during

timestep t + 1

𝑤𝑡 : weight/parameter that you want to update/optimize

during timestep t

𝛼: the learning rate which we usually define directly in the

range > 0 to 1
𝜕𝐿

𝜕𝑤𝑡
: gradient of the loss function which we want to

minimize the value

𝑚𝑡 : the sum of all values of the exponential moving

average gradient from the loss function (which are not

raised to a power) until timestep t (the value of 𝑚 is

initialized with the value 0 when the timestep is 0)

𝑚𝑡−1 : the sum of all exponential moving average gradient

values from the loss function (which are not raised to the

power) until timestep t – 1

𝑣𝑡 : the sum of all exponential moving average gradient

values from the loss function (which has been raised to the

power) until timestep t (the value of 𝑣 is initialized with

the value 0 when the timestep is 0)

𝑣𝑡−1 : the sum of all exponential moving average gradient

values from the loss function (which has been raised to the

power) until timestep t – 1

∈ : epsilon to prevent division by 0, the value of epsilon

that is usually used is very small, for example, 10−7

C. Evaluation

Following the training and testing with the

aforementioned model, the measurements of the existing

text summarization predictions can be made using the

ROUGE-N method. A higher ROUGE value indicates a

more accurate summarization result.

 𝑅𝑂𝑈𝐺𝐸 − 𝑁 =
∑ ∑ 𝐶𝑚𝑎𝑡𝑐ℎ(𝑔𝑛)𝑔𝑛∈𝑆𝑆∈𝑆𝐻

∑ ∑ 𝐶(𝑔𝑛)𝑔𝑛∈𝑆𝑆∈𝑆𝐻

 (15)

where SH is the total number of manual summaries, S is 1

individual in the manual summary, gn is the specified N-

gram, and C (gn) is the number of co-occurrences of gn in

the manual summary and automatic summary.

IV. RESULT AND DISCUSSION

This section consists of information from the

preprocessing dataset, used model parameters, experiment

result from the model, and model evaluation analysis.

A. Preprocessing Dataset

Preprocessing is done first on the existing Indosum

dataset in this study. The dataset contains 18,774 records

and is intended for text summarization in Indonesian. It is

divided into six categories: entertainment, inspiration,

sport, showbiz, headline, and technology. The

preprocessing procedure consists of the following steps:
1. Tokenization: the process of converting each

sentence in a document into a group of words. The
sentence “Today Ani is playing together with his
friends.” is broken down into a group of words that
include “day”, “this”, “Ani”, “play”, “together”,
“with”, and “friends”.

2. Stop Word Removal: the process of removing
common words that appear frequently but have no
meaning, such as “this”, “with”, “and”, and other
conjunctions.

3. Stemming: the process of determining the root
word from each tokenized word for example, the
word “playing” is changed to the root word, which
is “play”, and the word “friendly” becomes “friend”.
In this research, the stemming process for each
word in the document is done by using a Python
library called Sastrawi.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

663

4. Word Embedding: this process is used to generate
a numerical matrix representation for each word
that has passed through the previous three
processes. This study employs a matrix of 100
numbers to represent one word. The FastText
Python library is used to generate the matrix.

The numbers of sentences and words used in this study

are limited to one document with a maximum length of 15

sentences and a maximum length of 25 words for each

sentence. Based on these constraints, one document will be

represented by a matrix with the dimensions of 15 × 25 ×

10.

B. Model Parameters

The HASumRuNNer model used in this study has a

shape shown in Fig. 5. Initially, the model accepts input

that has the size of the numbers of documents × 5 sentences

× 25 words × 100 numbers that represent one word. Then,

it enters the word-level where the flow is divided into 2,

namely CharCNN and BiGRU.

Figure 5. HASumRuNNer model parameters.

1. The input is transformed on the CharCNN side, where
the previously represented first dimension of the matrix
is changed to the previously represented first
dimension of the matrix representing one sentence in a
document. The CharCNN process is then operated with
the maximum pooling of three layers on each row and
the first dimension of the matrix produces a matrix with
the dimensions (number of documents × 15 sentences)
× 1 × 1 × 128. By adding two Highway Network layers,
the matrix is transformed into the size of a document ×
15 sentences × 128 [35]. 128 numbers now represent a
single sentence.

2. On the BiGRU side, the input is transformed in the
same way that it was in CharCNN, that is, if the first
dimension of the matrix previously represents one
document, now, it represents one sentence in a

document. After that, the BiGRU process is carried out
with the Hierarchical Attention Level Word to obtain a
matrix of size (number of documents × 15 sentences) ×
128. The matrix is transformed into the size of the
number of documents times 15 sentences times 128.
Now, one sentence has been represented by 128
numbers.

The outcomes of both sides of the method are merged

or concatenated into a matrix with the dimensions: number

of documents × 15 sentences × 256. The matrix from the

word level is processed at the sentence level by the BiGRU

process, Hierarchical Attention Level Sentence, and

probability calculations for each sentence on the

SumaRuNNer layer. The model’s final form or output is a

matrix with the size of the number of documents × 15

sentences, with one number representing the probability of

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

664

the sentence being included in the summarization in the

range of values from 0 to 1. Five sentences with the highest

probability are chosen as part of the summarization in this

study.

C. Experiment Result

In this research, the HASumRuNNer model is tested

with 7 types of gradient-based algorithms used during the

backpropagation process of the model. The test is carried

out with 5 times K-Fold validation where for each fold the

amount of data tested is shown in Table II.

TABLE II. K-FOLD DATASET

Fold Training Testing

1 15019 3775

2 15019 3775

3 15019 3775

4 15020 3774

Each fold uses 10% of the total training data for data

validation or development. The model is then trained using

batch sizes of 128 and epochs of 3 times for the entire

gradient-based algorithm, except Adadelta, which uses

epochs of 18 times. The values of ROUGE-1, ROUGE-2,

and ROUGE-L for each fold, as well as their averages, are

displayed for each algorithm.

1) Stochastic gradient descent (SGD)

TABLE III. RESULT ROUGE-N FROM SGD

Fold

1

Fold

2

Fold

3

Fold

4

Fold

5
Average

ROUGE-1 69.46 70.04 69.76 70.59 69.59 69.89

ROUGE-2 63.1 63.65 63.32 64.22 63.1 63.48

ROUGE-L 66.9 67.43 67.2 67.95 66.94 67.28

Based on Table III, the average ROUGE-1 value of the

algorithm is 69.89. Then, the average ROUGE-2 value is

63.48 and the average ROUGE-L value is 67.28.

2) Adagrad

TABLE IV. RESULT ROUGE-N FROM ADAGRAD

Fold

1

Fold

2

Fold

3

Fold

4

Fold

5
Average

ROUGE-1 69.45 69.95 69.61 70.29 69.45 69.75

ROUGE-2 63.09 63.55 63.16 63.92 62.95 63.33

ROUGE-L 66.9 67.35 67.05 67.66 66.8 67.15

Based on Table IV above, the average ROUGE-1 value

of the algorithm is 69.75. Then, the average ROUGE-2

value is 63.33 and the average ROUGE-L value is 67.15.

3) RMSProp

TABLE V. RESULT FROM RMSPROP

Fold

1

Fold

2

Fold

3

Fold

4

Fold

5
Average

ROUGE-1 70.11 71.06 70.78 70.9 70.36 70.64

ROUGE-2 63.7 64.71 64.4 64.56 63.88 64.25

ROUGE-L 67.54 68.48 68.27 68.42 67.82 68.11

Based on Table V, the average ROUGE-1 value of the

algorithm is 70.64. Then, the average ROUGE-2 value is

64.25 and the average ROUGE-L value is 68.11.

4) Adam

TABLE VI. RESULT FROM ADAM

Fold

1

Fold

2

Fold

3

Fold

4

Fold

5
Average

ROUGE-1 70.46 71.11 70.54 70.94 70.47 70.7

ROUGE-2 64.11 64.8 64.1 64.6 64.05 64.33

ROUGE-L 67.86 68.53 67.97 68.39 67.96 68.14

Based on Table VI, the average ROUGE-1 value of the

algorithm is 70.7. Then, the average ROUGE-2 value is

64.33 and the average ROUGE-L value is 68.14.

5) Adadelta

TABLE VII. RESULT FROM ADADELTA

Fold

1

Fold

2

Fold

3

Fold

4

Fold

5
Average

ROUGE-1 68.65 69.33 69.65 69.82 67.97 69.08

ROUGE-2 62.31 62.92 63.21 63.53 61.34 62.66

ROUGE-L 66.13 66.74 67.11 67.23 65.32 66.51

Based on Table VII, the average ROUGE-1 value of the

algorithm is 69.08. Then, the average ROUGE-2 value is

62.66 and the average ROUGE-L value is 66.51.

6) Adamax

TABLE VIII. RESULT FROM ADAMAX

Fold

1

Fold

2

Fold

3

Fold

4

Fold

5
Average

ROUGE-1 69.28 70.09 69.88 70.3 69.62 69.83

ROUGE-2 62.88 63.4 63.41 63.9 63.12 63.4

ROUGE-L 66.71 67.49 67.31 67.72 67.01 67.25

Based on Table VIII, the average ROUGE-1 value of

the algorithm is 69.83. Then, the average ROUGE-2 value

is 63.4 and the average ROUGE-L value is 67.25.

7) Nadam

TABLE IX. RESULT FROM NADAM

Fold

1

Fold

2

Fold

3

Fold

4

Fold

5
Average

ROUGE-1 70.17 70.95 70.66 70.96 69.78 70.6

ROUGE-2 63.83 64.59 64.25 64.6 63.32 64.13

ROUGE-L 67.62 68.38 68.09 68.43 67.17 67.94

Based on Table IX, the average ROUGE-1 value of the

algorithm is 70.6. Then, the average ROUGE-2 value is

64.13 and the average ROUGE-L value is 67.94.

D. Model Evaluation

Adam’s algorithm produces the best ROUGE-1,

ROUGE-2, and ROUGE-L values among the seven

gradient-based algorithms used in the HASumRuNNer

model, with the values of 70.7, 64.33, and 68.14. This may

be due to Adam being a hybrid of the RMSProp and SGD

with momentum methods, in which Adam uses the root of

the gradient to increase the learning rate, as in RMSProp,

and a moving average of the gradient, as in SGD with

momentum. The difference in ROUGE-1, ROUGE-2, and

ROUGE-L values generated by each algorithm also

demonstrate that the use of different backpropagation

methods can affect or be used as the parameters to improve

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

665

the model’s performance, particularly deep learning-based

models. Furthermore, for the comparison of the

HASumRuNNer model with other methods used in

research [36] can be seen in the Table X below.

TABLE X. COMPARISON HASUMRUNNER WITH OTHER MODEL

Model ROUGE-1 ROUGE-2 ROUGE-L

HASumRuNNer

+ Adam
70.7 64.33 68.14

BAYES 62.70 54.32 61.93

HMM 17.62 4.70 15.89

MAXENT 50.94 44.33 50.26

NEURALSUM 67.60 61.16 66.86

NEURALSUM

300 emb. size
67.96 61.65 67.24

NEURALSUM +

FASTTEXT
67.78 61.37 67.05

According to Table X, the proposed HASumRuNNer

model has higher ROUGE-1, ROUGE-2, and ROUGE-L

values than the other models mentioned. The

HASumRuNNer model has a higher ROUGE-1 value of

2.74 when compared to the NEURALSUM 300 emb. size.

The ROUGE-2 value is 2.68 times greater than the

NEURALSUM 300 emb. size, and the ROUGE-L value is

1.09 times greater. By combining CharCNN and BiGRU

at the word level, the HASumRuNNer model can produce

a more accurate representation of words at the word level

and sentence representations at the sentence level. The two

methods allow the model to study word patterns in

documents from two sides. Then, the hierarchical attention

at the word-level and sentence-level also prevents the loss

of information on every word in the document due to the

length of the words or sentences that becomes the model

input.

V. CONCLUSION AND FUTURE WORKS

This study contributes to the development of the

HASumRuNNer model, which can provide a more

accurate representation of words through the employment

of two approaches, namely CharCNN and BiGRU, as well

as the use of a hierarchical attention mechanism to

minimize information loss in documents with long

sentences or words. So, it supports users in texting

extractive summarization with greater accuracy.

Adam, with values of 70.7, 64.33, and 68.14, is the

gradient-based algorithm that produces the best ROUGE-

1, ROUGE-2, and ROUGE-L values in the

HASumRuNNer model. The proposed HASumRuNNer

model is then appropriate and accurate enough to be used

for extractive text summarization. The testing with the

Indosum dataset demonstrates that the model, particularly

the Adam gradient-based algorithm, produces higher

ROUGE-1, ROUGE-2, and ROUGE-L values than the

other models or methods used as references.

Testing the HASumRuNNer model with various datasets

will increase the model's validity in the future work. Also,

the summary of each document in the Indosum dataset

utilized in this work is created in an abstract form,

therefore the HASumRuNNer model is developed in an

abstract method for text summarizing to produce a more

accurate summary.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Research conceptualization was done by Muljono and

Kevin Djajadinata. The research methodology was done

by Mangatur Rudolf Nababan, Raden Arief Nugroho, and

Muljono. Software preparation was done by Muljono and

Kevin Djajadinata. Results validation was done by

Mangatur Rudolf Nababan and Muljono. Formal analysis

was analyzed by Kevin Djajadinata and Muljono.

Research resources was prepared by Muljono.

Investigation was worked by Kevin Djajadinata and

Muljono. Data curation was worked by Kevin Djajadinata

and Raden Arief Nugroho. The writing of the original draft

preparation was done by Muljono and Raden Arief

Nugroho. The review and editing were done by Mangatur

Rudolf Nababan. The visualization was done by Kevin

Djajadinata. Supervision was managed by Muljono and

Raden Arief Nugroho. The project administration was

managed by Kevin Djajadinata. All authors have read and

approved the final manuscript.

FUNDING

This article is funded by the Ministry under Hibah

Penelitian Dasar (Fundamental Research Grant) 2022.

ACKNOWLEDGEMENT

Regarding data collection, the authors appreciate the

help provided by Kevin Djajadinata, an alumni of

Informatics Engineering Department of Universitas Dian

Nuswantoro. Furthermore, the authors would also like to

thank Universitas Sebelas Maret and Universitas Dian

Nuswantoro for the continuous support in completing this

study. The authors of this study express sincere gratitude

to the Ministry of Education, Culture, Research, and

Technology.

REFERENCES

[1] E. R. Mahalleh and F. S. Gharehchopogh, “An automatic text

summarization based on valuable sentences selection,”

International Journal of Information Technology, vol. 14, no. 6, pp.

2963–2969, Oct. 2022, doi: 10.1007/S41870-022-01049-

X/TABLES/3

[2] R. Adelia, S. Suyanto, and U. N. Wisesty, “Indonesian abstractive

text summarization using bidirectional gated recurrent unit,”

Procedia Comput. Sci., vol. 157, pp. 581–588, Jan. 2019,

doi: 10.1016/J.PROCS.2019.09.017

[3] N. Alami, M. Meknassi, and N. En-nahnahi, “Enhancing

unsupervised neural networks based text summarization with word

embedding and ensemble learning,” Expert Syst. Appl., vol. 123, pp.

195–211, Jun. 2019, doi: 10.1016/J.ESWA.2019.01.037

[4] D. Anand and R. Wagh, “Effective deep learning approaches for

summarization of legal texts,” Journal of King Saud University—

Computer and Information Sciences, vol. 34, no. 5, pp. 2141–2150,

May 2022, doi: 10.1016/J.JKSUCI.2019.11.015

[5] V. Andrearczyk and P. F. Whelan, “Deep learning in texture

analysis and its application to tissue image classification,”

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

666

Biomedical Texture Analysis: Fundamentals, Tools and Challenges,

pp. 95–129, Jan. 2017, doi: 10.1016/B978-0-12-812133-7.00004-1

[6] D. Bacciu and A. Bruno, “Text summarization as tree transduction

by top-down TreeLSTM,” in Proc. the 2018 IEEE Symposium

Series on Computational Intelligence, pp. 1411–1418, Jan. 2019,

doi: 10.1109/SSCI.2018.8628873

[7] R. Bhargava, G. Sharma, and Y. Sharma, “Deep text summarization

using generative adversarial networks in Indian languages,”

Procedia Comput. Sci., vol. 167, pp. 147–153, Jan. 2020,

doi: 10.1016/J.PROCS.2020.03.192

[8] R. Bhargava and Y. Sharma, “Deep extractive text summarization,”

Procedia Comput. Sci., vol. 167, pp. 138–146, Jan. 2020,

doi: 10.1016/J.PROCS.2020.03.191

[9] R. Chandraseta and M. L. Khodra, “Composing Indonesian

paragraph for biography domain using extractive summarization,”

in Proc. 2019 International Conference on Advanced Informatics:

Concepts, Theory, and Applications, ICAICTA 2019, Sep. 2019,

doi: 10.1109/ICAICTA.2019.8904118

[10] J. Cheng and M. Lapata, “Neural summarization by extracting

sentences and words,” in Proc. 54th Annual Meeting of the

Association for Computational Linguistics, Mar. 2016, vol. 1, pp.

484–494, doi: 10.18653/v1/p16-1046

[11] Y. Diao, et al., “CRHASum: Extractive text summarization with

contextualized-representation hierarchical-attention summarization

network,” Neural Comput. Appl., vol. 32, no. 15, pp. 11491–11503,

Aug. 2020, doi: 10.1007/S00521-019-04638-3/FIGURES/3

[12] E. M. Dogo, O. J. Afolabi, N. I. Nwulu, B. Twala, and C. O.

Aigbavboa, “A comparative analysis of gradient descent-based

optimization algorithms on convolutional neural networks,” in Proc.

the International Conference on Computational Techniques,

Electronics and Mechanical Systems, CTEMS 2018, 2018, pp. 92–

99, doi: 10.1109/CTEMS.2018.8769211

[13] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright, “Randomized

smoothing for (parallel) stochastic optimization,” in Proc. the IEEE

Conference on Decision and Control, 2012, pp. 5442–5444,

doi: 10.1109/CDC.2012.6426698

[14] C. Feng, H. Chen, F. Cai, and M. Rijke, “Attentive encoder-based

extractive text summarization,” in Proc. the International

Conference on Information and Knowledge Management, Oct.

2018, pp. 1499–1502, doi: 10.1145/3269206.3269251

[15] A. Shaddeli, F. Soleimanian Gharehchopogh, M. Masdari, and V.

Solouk, “An improved African vulture optimization algorithm for

feature selection problems and its application of sentiment analysis

on movie reviews,” Big Data and Cognitive Computing, vol. 6, no.

4, p. 104, Sep. 2022, doi: 10.3390/BDCC6040104

[16] A. Hosseinalipour, F. S. Gharehchopogh, M. Masdari, and A.

Khademi, “A novel binary farmland fertility algorithm for feature

selection in analysis of the text psychology,” Applied Intelligence,

vol. 51, no. 7, pp. 4824–4859, Jul. 2021, doi: 10.1007/S10489-020-

02038-Y/FIGURES/28

[17] A. Shaddeli, F. S. Gharehchopogh, M. Masdari, and V. Solouk,

“BFRA: A new binary hyper-heuristics feature ranks algorithm for

feature selection in high-dimensional classification data,”

International Journal of Information Technology & Decision

Making (IJITDM), vol. 22, no. 01, pp. 471–536, Jan. 2023,

doi: 10.1142/S0219622022500432

[18] H. K. Maragheh, F. S. Gharehchopogh, K. Majidzadeh, and A. B.

Sangar, “A new hybrid based on long short-term memory network

with spotted hyena optimization algorithm for multi-label text

classification,” Mathematics, vol. 10, no. 3, p. 488, Feb. 2022,

doi: 10.3390/MATH10030488

[19] W. Guo, B. Wu, B. Wang, and Y. Yang, “Two-stage encoding

extractive summarization,” in Proc. the 2020 IEEE 5th

International Conference on Data Science in Cyberspace, DSC

2020, 2020, pp. 346–350, doi: 10.1109/DSC50466.2020.00060

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997,

doi: 10.1162/NECO.1997.9.8.1735

[21] Y. Chen. (Aug. 2015). Convolutional neural network for sentence

classification. [Online]. Available:

https://uwspace.uwaterloo.ca/handle/10012/9592

[22] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic

optimization,” in Proc. the 3rd International Conference for

Learning Representations, 2015.

[23] B. Kitchenham and S. M. Charters. (2007). Guidelines for

performing systematic literature reviews in software engineering.

[Online]. Available:

https://www.researchgate.net/publication/302924724

[24] K. Kurniawan and S. Louvan, “IndoSum: A new benchmark dataset

for Indonesian text summarization,” in Proc. the 2018 International

Conference on Asian Language Processing, IALP 2018, 2019, pp.

215–220, doi: 10.1109/IALP.2018.8629109

[25] Y. Liu and M. Lapata, “Text summarization with pretrained

encoders,” in Proc. the 2019 Conference on Empirical Methods in

Natural Language Processing, Aug. 2019, pp. 3730–3740, doi:

10.18653/v1/d19-1387

[26] K. Lv, S. Jiang, and J. Li, “Learning gradient descent: Better

generalization and longer horizons,” in Proc. 34th International

Conference on Machine Learning, 2017, pp. 2247–2255.

[27] R. Nallapati, F. Zhai, and B. Zhou, “SummaRuNNer: A recurrent

neural network based sequence model for extractive summarization

of documents,” in Proc. the AAAI Conference on Artificial

Intelligence, Feb. 2017, vol. 31, no. 1, pp. 3075–3081, doi:

10.1609/AAAI.V31I1.10958

[28] C. Shah and A. Jivani, “A hybrid approach of text summarization

using latent semantic analysis and deep learning,” in Proc. 2018

International Conference on Advances in Computing,

Communications and Informatics, ICACCI 2018, Nov. 2018, pp.

2039–2044, doi: 10.1109/ICACCI.2018.8554848

[29] A. Sinha, A. Yadav, and A. Gahlot, “Extractive text summarization

using neural networks,” arXiv preprint, arXiv:1802.1013,

https://arxiv.org/abs/1802.10137v1

[30] A. Hosseinalipour, F. S. Gharehchopogh, M. Masdari, and A.

Khademi, “Toward text psychology analysis using social spider

optimization algorithm,” Concurr. Comput., vol. 33, no. 17, p.

e6325, Sep. 2021, doi: 10.1002/CPE.6325

[31] R. K. Srivastava, K. Greff, K. Ch, and J. U. Schmidhuber,

“Highway networks,” arXiv preprint, arXiv:1505.00387,

https://arxiv.org/abs/1505.00387v2

[32] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A survey of optimization

methods from a machine learning perspective,” IEEE Trans.

Cybern., vol. 50, no. 8, pp. 3668–3681, Aug. 2020,

doi: 10.1109/TCYB.2019.2950779

[33] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the

importance of initialization and momentum in deep learning,” in

Proc. the 30th International Conference on Machine Learning,

2013, pp. 1139–1147.

[34] V. Kieuvongngam, B. Tan, and Y. Niu, “Automatic text

summarization of COVID-19 medical research articles using BERT

and GPT-2,” arXiv preprint, arXiv:2006.01997, Jun. 2020,

https://arxiv.org/abs/2006.01997v1

[35] P. Yan, L. Li, and D. Zeng, “A shortcut-stacked document encoder

for extractive text summarization,” in Proc. the International Joint

Conference on Neural Networks, Jul. 2019,

doi: 10.1109/IJCNN.2019.8852051

[36] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,”

arXiv preprint, arXiv:1212.5701, Dec. 2012,

https://arxiv.org/abs/1212.5701v1

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 4, 2023

667

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N4-656

